target/arm: Use TRANS_FEAT for do_adr
[qemu/ar7.git] / util / uri.c
blobff72c6005f26c6b8d157f46a7e13258b54b97da3
1 /**
2 * uri.c: set of generic URI related routines
4 * Reference: RFCs 3986, 2732 and 2373
6 * Copyright (C) 1998-2003 Daniel Veillard. All Rights Reserved.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
22 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 * Except as contained in this notice, the name of Daniel Veillard shall not
26 * be used in advertising or otherwise to promote the sale, use or other
27 * dealings in this Software without prior written authorization from him.
29 * daniel@veillard.com
33 * Copyright (C) 2007, 2009-2010 Red Hat, Inc.
35 * This library is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU Lesser General Public
37 * License as published by the Free Software Foundation; either
38 * version 2.1 of the License, or (at your option) any later version.
40 * This library is distributed in the hope that it will be useful,
41 * but WITHOUT ANY WARRANTY; without even the implied warranty of
42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
43 * Lesser General Public License for more details.
45 * You should have received a copy of the GNU Lesser General Public
46 * License along with this library; if not, write to the Free Software
47 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
49 * Authors:
50 * Richard W.M. Jones <rjones@redhat.com>
54 #include "qemu/osdep.h"
55 #include "qemu/cutils.h"
57 #include "qemu/uri.h"
59 static void uri_clean(URI *uri);
62 * Old rule from 2396 used in legacy handling code
63 * alpha = lowalpha | upalpha
65 #define IS_ALPHA(x) (IS_LOWALPHA(x) || IS_UPALPHA(x))
68 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
69 * "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" |
70 * "u" | "v" | "w" | "x" | "y" | "z"
73 #define IS_LOWALPHA(x) (((x) >= 'a') && ((x) <= 'z'))
76 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |
77 * "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
78 * "U" | "V" | "W" | "X" | "Y" | "Z"
80 #define IS_UPALPHA(x) (((x) >= 'A') && ((x) <= 'Z'))
82 #ifdef IS_DIGIT
83 #undef IS_DIGIT
84 #endif
86 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
88 #define IS_DIGIT(x) (((x) >= '0') && ((x) <= '9'))
91 * alphanum = alpha | digit
94 #define IS_ALPHANUM(x) (IS_ALPHA(x) || IS_DIGIT(x))
97 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
100 #define IS_MARK(x) (((x) == '-') || ((x) == '_') || ((x) == '.') || \
101 ((x) == '!') || ((x) == '~') || ((x) == '*') || ((x) == '\'') || \
102 ((x) == '(') || ((x) == ')'))
105 * unwise = "{" | "}" | "|" | "\" | "^" | "`"
108 #define IS_UNWISE(p) \
109 (((*(p) == '{')) || ((*(p) == '}')) || ((*(p) == '|')) || \
110 ((*(p) == '\\')) || ((*(p) == '^')) || ((*(p) == '[')) || \
111 ((*(p) == ']')) || ((*(p) == '`')))
113 * reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | "," |
114 * "[" | "]"
117 #define IS_RESERVED(x) (((x) == ';') || ((x) == '/') || ((x) == '?') || \
118 ((x) == ':') || ((x) == '@') || ((x) == '&') || ((x) == '=') || \
119 ((x) == '+') || ((x) == '$') || ((x) == ',') || ((x) == '[') || \
120 ((x) == ']'))
123 * unreserved = alphanum | mark
126 #define IS_UNRESERVED(x) (IS_ALPHANUM(x) || IS_MARK(x))
129 * Skip to next pointer char, handle escaped sequences
132 #define NEXT(p) ((*p == '%') ? p += 3 : p++)
135 * Productions from the spec.
137 * authority = server | reg_name
138 * reg_name = 1*( unreserved | escaped | "$" | "," |
139 * ";" | ":" | "@" | "&" | "=" | "+" )
141 * path = [ abs_path | opaque_part ]
144 /************************************************************************
146 * RFC 3986 parser *
148 ************************************************************************/
150 #define ISA_DIGIT(p) ((*(p) >= '0') && (*(p) <= '9'))
151 #define ISA_ALPHA(p) (((*(p) >= 'a') && (*(p) <= 'z')) || \
152 ((*(p) >= 'A') && (*(p) <= 'Z')))
153 #define ISA_HEXDIG(p) \
154 (ISA_DIGIT(p) || ((*(p) >= 'a') && (*(p) <= 'f')) || \
155 ((*(p) >= 'A') && (*(p) <= 'F')))
158 * sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
159 * / "*" / "+" / "," / ";" / "="
161 #define ISA_SUB_DELIM(p) \
162 (((*(p) == '!')) || ((*(p) == '$')) || ((*(p) == '&')) || \
163 ((*(p) == '(')) || ((*(p) == ')')) || ((*(p) == '*')) || \
164 ((*(p) == '+')) || ((*(p) == ',')) || ((*(p) == ';')) || \
165 ((*(p) == '=')) || ((*(p) == '\'')))
168 * gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
170 #define ISA_GEN_DELIM(p) \
171 (((*(p) == ':')) || ((*(p) == '/')) || ((*(p) == '?')) || \
172 ((*(p) == '#')) || ((*(p) == '[')) || ((*(p) == ']')) || \
173 ((*(p) == '@')))
176 * reserved = gen-delims / sub-delims
178 #define ISA_RESERVED(p) (ISA_GEN_DELIM(p) || (ISA_SUB_DELIM(p)))
181 * unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
183 #define ISA_UNRESERVED(p) \
184 ((ISA_ALPHA(p)) || (ISA_DIGIT(p)) || ((*(p) == '-')) || \
185 ((*(p) == '.')) || ((*(p) == '_')) || ((*(p) == '~')))
188 * pct-encoded = "%" HEXDIG HEXDIG
190 #define ISA_PCT_ENCODED(p) \
191 ((*(p) == '%') && (ISA_HEXDIG(p + 1)) && (ISA_HEXDIG(p + 2)))
194 * pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
196 #define ISA_PCHAR(p) \
197 (ISA_UNRESERVED(p) || ISA_PCT_ENCODED(p) || ISA_SUB_DELIM(p) || \
198 ((*(p) == ':')) || ((*(p) == '@')))
201 * rfc3986_parse_scheme:
202 * @uri: pointer to an URI structure
203 * @str: pointer to the string to analyze
205 * Parse an URI scheme
207 * ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )
209 * Returns 0 or the error code
211 static int rfc3986_parse_scheme(URI *uri, const char **str)
213 const char *cur;
215 if (str == NULL) {
216 return -1;
219 cur = *str;
220 if (!ISA_ALPHA(cur)) {
221 return 2;
223 cur++;
224 while (ISA_ALPHA(cur) || ISA_DIGIT(cur) || (*cur == '+') || (*cur == '-') ||
225 (*cur == '.')) {
226 cur++;
228 if (uri != NULL) {
229 g_free(uri->scheme);
230 uri->scheme = g_strndup(*str, cur - *str);
232 *str = cur;
233 return 0;
237 * rfc3986_parse_fragment:
238 * @uri: pointer to an URI structure
239 * @str: pointer to the string to analyze
241 * Parse the query part of an URI
243 * fragment = *( pchar / "/" / "?" )
244 * NOTE: the strict syntax as defined by 3986 does not allow '[' and ']'
245 * in the fragment identifier but this is used very broadly for
246 * xpointer scheme selection, so we are allowing it here to not break
247 * for example all the DocBook processing chains.
249 * Returns 0 or the error code
251 static int rfc3986_parse_fragment(URI *uri, const char **str)
253 const char *cur;
255 if (str == NULL) {
256 return -1;
259 cur = *str;
261 while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
262 (*cur == '[') || (*cur == ']') ||
263 ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
264 NEXT(cur);
266 if (uri != NULL) {
267 g_free(uri->fragment);
268 if (uri->cleanup & 2) {
269 uri->fragment = g_strndup(*str, cur - *str);
270 } else {
271 uri->fragment = uri_string_unescape(*str, cur - *str, NULL);
274 *str = cur;
275 return 0;
279 * rfc3986_parse_query:
280 * @uri: pointer to an URI structure
281 * @str: pointer to the string to analyze
283 * Parse the query part of an URI
285 * query = *uric
287 * Returns 0 or the error code
289 static int rfc3986_parse_query(URI *uri, const char **str)
291 const char *cur;
293 if (str == NULL) {
294 return -1;
297 cur = *str;
299 while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
300 ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
301 NEXT(cur);
303 if (uri != NULL) {
304 g_free(uri->query);
305 uri->query = g_strndup(*str, cur - *str);
307 *str = cur;
308 return 0;
312 * rfc3986_parse_port:
313 * @uri: pointer to an URI structure
314 * @str: the string to analyze
316 * Parse a port part and fills in the appropriate fields
317 * of the @uri structure
319 * port = *DIGIT
321 * Returns 0 or the error code
323 static int rfc3986_parse_port(URI *uri, const char **str)
325 const char *cur = *str;
326 int port = 0;
328 if (ISA_DIGIT(cur)) {
329 while (ISA_DIGIT(cur)) {
330 port = port * 10 + (*cur - '0');
331 if (port > 65535) {
332 return 1;
334 cur++;
336 if (uri) {
337 uri->port = port;
339 *str = cur;
340 return 0;
342 return 1;
346 * rfc3986_parse_user_info:
347 * @uri: pointer to an URI structure
348 * @str: the string to analyze
350 * Parse a user information part and fill in the appropriate fields
351 * of the @uri structure
353 * userinfo = *( unreserved / pct-encoded / sub-delims / ":" )
355 * Returns 0 or the error code
357 static int rfc3986_parse_user_info(URI *uri, const char **str)
359 const char *cur;
361 cur = *str;
362 while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur) ||
363 (*cur == ':')) {
364 NEXT(cur);
366 if (*cur == '@') {
367 if (uri != NULL) {
368 g_free(uri->user);
369 if (uri->cleanup & 2) {
370 uri->user = g_strndup(*str, cur - *str);
371 } else {
372 uri->user = uri_string_unescape(*str, cur - *str, NULL);
375 *str = cur;
376 return 0;
378 return 1;
382 * rfc3986_parse_dec_octet:
383 * @str: the string to analyze
385 * dec-octet = DIGIT ; 0-9
386 * / %x31-39 DIGIT ; 10-99
387 * / "1" 2DIGIT ; 100-199
388 * / "2" %x30-34 DIGIT ; 200-249
389 * / "25" %x30-35 ; 250-255
391 * Skip a dec-octet.
393 * Returns 0 if found and skipped, 1 otherwise
395 static int rfc3986_parse_dec_octet(const char **str)
397 const char *cur = *str;
399 if (!(ISA_DIGIT(cur))) {
400 return 1;
402 if (!ISA_DIGIT(cur + 1)) {
403 cur++;
404 } else if ((*cur != '0') && (ISA_DIGIT(cur + 1)) && (!ISA_DIGIT(cur + 2))) {
405 cur += 2;
406 } else if ((*cur == '1') && (ISA_DIGIT(cur + 1)) && (ISA_DIGIT(cur + 2))) {
407 cur += 3;
408 } else if ((*cur == '2') && (*(cur + 1) >= '0') && (*(cur + 1) <= '4') &&
409 (ISA_DIGIT(cur + 2))) {
410 cur += 3;
411 } else if ((*cur == '2') && (*(cur + 1) == '5') && (*(cur + 2) >= '0') &&
412 (*(cur + 1) <= '5')) {
413 cur += 3;
414 } else {
415 return 1;
417 *str = cur;
418 return 0;
421 * rfc3986_parse_host:
422 * @uri: pointer to an URI structure
423 * @str: the string to analyze
425 * Parse an host part and fills in the appropriate fields
426 * of the @uri structure
428 * host = IP-literal / IPv4address / reg-name
429 * IP-literal = "[" ( IPv6address / IPvFuture ) "]"
430 * IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet
431 * reg-name = *( unreserved / pct-encoded / sub-delims )
433 * Returns 0 or the error code
435 static int rfc3986_parse_host(URI *uri, const char **str)
437 const char *cur = *str;
438 const char *host;
440 host = cur;
442 * IPv6 and future addressing scheme are enclosed between brackets
444 if (*cur == '[') {
445 cur++;
446 while ((*cur != ']') && (*cur != 0)) {
447 cur++;
449 if (*cur != ']') {
450 return 1;
452 cur++;
453 goto found;
456 * try to parse an IPv4
458 if (ISA_DIGIT(cur)) {
459 if (rfc3986_parse_dec_octet(&cur) != 0) {
460 goto not_ipv4;
462 if (*cur != '.') {
463 goto not_ipv4;
465 cur++;
466 if (rfc3986_parse_dec_octet(&cur) != 0) {
467 goto not_ipv4;
469 if (*cur != '.') {
470 goto not_ipv4;
472 if (rfc3986_parse_dec_octet(&cur) != 0) {
473 goto not_ipv4;
475 if (*cur != '.') {
476 goto not_ipv4;
478 if (rfc3986_parse_dec_octet(&cur) != 0) {
479 goto not_ipv4;
481 goto found;
482 not_ipv4:
483 cur = *str;
486 * then this should be a hostname which can be empty
488 while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur)) {
489 NEXT(cur);
491 found:
492 if (uri != NULL) {
493 g_free(uri->authority);
494 uri->authority = NULL;
495 g_free(uri->server);
496 if (cur != host) {
497 if (uri->cleanup & 2) {
498 uri->server = g_strndup(host, cur - host);
499 } else {
500 uri->server = uri_string_unescape(host, cur - host, NULL);
502 } else {
503 uri->server = NULL;
506 *str = cur;
507 return 0;
511 * rfc3986_parse_authority:
512 * @uri: pointer to an URI structure
513 * @str: the string to analyze
515 * Parse an authority part and fills in the appropriate fields
516 * of the @uri structure
518 * authority = [ userinfo "@" ] host [ ":" port ]
520 * Returns 0 or the error code
522 static int rfc3986_parse_authority(URI *uri, const char **str)
524 const char *cur;
525 int ret;
527 cur = *str;
529 * try to parse a userinfo and check for the trailing @
531 ret = rfc3986_parse_user_info(uri, &cur);
532 if ((ret != 0) || (*cur != '@')) {
533 cur = *str;
534 } else {
535 cur++;
537 ret = rfc3986_parse_host(uri, &cur);
538 if (ret != 0) {
539 return ret;
541 if (*cur == ':') {
542 cur++;
543 ret = rfc3986_parse_port(uri, &cur);
544 if (ret != 0) {
545 return ret;
548 *str = cur;
549 return 0;
553 * rfc3986_parse_segment:
554 * @str: the string to analyze
555 * @forbid: an optional forbidden character
556 * @empty: allow an empty segment
558 * Parse a segment and fills in the appropriate fields
559 * of the @uri structure
561 * segment = *pchar
562 * segment-nz = 1*pchar
563 * segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" )
564 * ; non-zero-length segment without any colon ":"
566 * Returns 0 or the error code
568 static int rfc3986_parse_segment(const char **str, char forbid, int empty)
570 const char *cur;
572 cur = *str;
573 if (!ISA_PCHAR(cur)) {
574 if (empty) {
575 return 0;
577 return 1;
579 while (ISA_PCHAR(cur) && (*cur != forbid)) {
580 NEXT(cur);
582 *str = cur;
583 return 0;
587 * rfc3986_parse_path_ab_empty:
588 * @uri: pointer to an URI structure
589 * @str: the string to analyze
591 * Parse an path absolute or empty and fills in the appropriate fields
592 * of the @uri structure
594 * path-abempty = *( "/" segment )
596 * Returns 0 or the error code
598 static int rfc3986_parse_path_ab_empty(URI *uri, const char **str)
600 const char *cur;
601 int ret;
603 cur = *str;
605 while (*cur == '/') {
606 cur++;
607 ret = rfc3986_parse_segment(&cur, 0, 1);
608 if (ret != 0) {
609 return ret;
612 if (uri != NULL) {
613 g_free(uri->path);
614 if (*str != cur) {
615 if (uri->cleanup & 2) {
616 uri->path = g_strndup(*str, cur - *str);
617 } else {
618 uri->path = uri_string_unescape(*str, cur - *str, NULL);
620 } else {
621 uri->path = NULL;
624 *str = cur;
625 return 0;
629 * rfc3986_parse_path_absolute:
630 * @uri: pointer to an URI structure
631 * @str: the string to analyze
633 * Parse an path absolute and fills in the appropriate fields
634 * of the @uri structure
636 * path-absolute = "/" [ segment-nz *( "/" segment ) ]
638 * Returns 0 or the error code
640 static int rfc3986_parse_path_absolute(URI *uri, const char **str)
642 const char *cur;
643 int ret;
645 cur = *str;
647 if (*cur != '/') {
648 return 1;
650 cur++;
651 ret = rfc3986_parse_segment(&cur, 0, 0);
652 if (ret == 0) {
653 while (*cur == '/') {
654 cur++;
655 ret = rfc3986_parse_segment(&cur, 0, 1);
656 if (ret != 0) {
657 return ret;
661 if (uri != NULL) {
662 g_free(uri->path);
663 if (cur != *str) {
664 if (uri->cleanup & 2) {
665 uri->path = g_strndup(*str, cur - *str);
666 } else {
667 uri->path = uri_string_unescape(*str, cur - *str, NULL);
669 } else {
670 uri->path = NULL;
673 *str = cur;
674 return 0;
678 * rfc3986_parse_path_rootless:
679 * @uri: pointer to an URI structure
680 * @str: the string to analyze
682 * Parse an path without root and fills in the appropriate fields
683 * of the @uri structure
685 * path-rootless = segment-nz *( "/" segment )
687 * Returns 0 or the error code
689 static int rfc3986_parse_path_rootless(URI *uri, const char **str)
691 const char *cur;
692 int ret;
694 cur = *str;
696 ret = rfc3986_parse_segment(&cur, 0, 0);
697 if (ret != 0) {
698 return ret;
700 while (*cur == '/') {
701 cur++;
702 ret = rfc3986_parse_segment(&cur, 0, 1);
703 if (ret != 0) {
704 return ret;
707 if (uri != NULL) {
708 g_free(uri->path);
709 if (cur != *str) {
710 if (uri->cleanup & 2) {
711 uri->path = g_strndup(*str, cur - *str);
712 } else {
713 uri->path = uri_string_unescape(*str, cur - *str, NULL);
715 } else {
716 uri->path = NULL;
719 *str = cur;
720 return 0;
724 * rfc3986_parse_path_no_scheme:
725 * @uri: pointer to an URI structure
726 * @str: the string to analyze
728 * Parse an path which is not a scheme and fills in the appropriate fields
729 * of the @uri structure
731 * path-noscheme = segment-nz-nc *( "/" segment )
733 * Returns 0 or the error code
735 static int rfc3986_parse_path_no_scheme(URI *uri, const char **str)
737 const char *cur;
738 int ret;
740 cur = *str;
742 ret = rfc3986_parse_segment(&cur, ':', 0);
743 if (ret != 0) {
744 return ret;
746 while (*cur == '/') {
747 cur++;
748 ret = rfc3986_parse_segment(&cur, 0, 1);
749 if (ret != 0) {
750 return ret;
753 if (uri != NULL) {
754 g_free(uri->path);
755 if (cur != *str) {
756 if (uri->cleanup & 2) {
757 uri->path = g_strndup(*str, cur - *str);
758 } else {
759 uri->path = uri_string_unescape(*str, cur - *str, NULL);
761 } else {
762 uri->path = NULL;
765 *str = cur;
766 return 0;
770 * rfc3986_parse_hier_part:
771 * @uri: pointer to an URI structure
772 * @str: the string to analyze
774 * Parse an hierarchical part and fills in the appropriate fields
775 * of the @uri structure
777 * hier-part = "//" authority path-abempty
778 * / path-absolute
779 * / path-rootless
780 * / path-empty
782 * Returns 0 or the error code
784 static int rfc3986_parse_hier_part(URI *uri, const char **str)
786 const char *cur;
787 int ret;
789 cur = *str;
791 if ((*cur == '/') && (*(cur + 1) == '/')) {
792 cur += 2;
793 ret = rfc3986_parse_authority(uri, &cur);
794 if (ret != 0) {
795 return ret;
797 ret = rfc3986_parse_path_ab_empty(uri, &cur);
798 if (ret != 0) {
799 return ret;
801 *str = cur;
802 return 0;
803 } else if (*cur == '/') {
804 ret = rfc3986_parse_path_absolute(uri, &cur);
805 if (ret != 0) {
806 return ret;
808 } else if (ISA_PCHAR(cur)) {
809 ret = rfc3986_parse_path_rootless(uri, &cur);
810 if (ret != 0) {
811 return ret;
813 } else {
814 /* path-empty is effectively empty */
815 if (uri != NULL) {
816 g_free(uri->path);
817 uri->path = NULL;
820 *str = cur;
821 return 0;
825 * rfc3986_parse_relative_ref:
826 * @uri: pointer to an URI structure
827 * @str: the string to analyze
829 * Parse an URI string and fills in the appropriate fields
830 * of the @uri structure
832 * relative-ref = relative-part [ "?" query ] [ "#" fragment ]
833 * relative-part = "//" authority path-abempty
834 * / path-absolute
835 * / path-noscheme
836 * / path-empty
838 * Returns 0 or the error code
840 static int rfc3986_parse_relative_ref(URI *uri, const char *str)
842 int ret;
844 if ((*str == '/') && (*(str + 1) == '/')) {
845 str += 2;
846 ret = rfc3986_parse_authority(uri, &str);
847 if (ret != 0) {
848 return ret;
850 ret = rfc3986_parse_path_ab_empty(uri, &str);
851 if (ret != 0) {
852 return ret;
854 } else if (*str == '/') {
855 ret = rfc3986_parse_path_absolute(uri, &str);
856 if (ret != 0) {
857 return ret;
859 } else if (ISA_PCHAR(str)) {
860 ret = rfc3986_parse_path_no_scheme(uri, &str);
861 if (ret != 0) {
862 return ret;
864 } else {
865 /* path-empty is effectively empty */
866 if (uri != NULL) {
867 g_free(uri->path);
868 uri->path = NULL;
872 if (*str == '?') {
873 str++;
874 ret = rfc3986_parse_query(uri, &str);
875 if (ret != 0) {
876 return ret;
879 if (*str == '#') {
880 str++;
881 ret = rfc3986_parse_fragment(uri, &str);
882 if (ret != 0) {
883 return ret;
886 if (*str != 0) {
887 uri_clean(uri);
888 return 1;
890 return 0;
894 * rfc3986_parse:
895 * @uri: pointer to an URI structure
896 * @str: the string to analyze
898 * Parse an URI string and fills in the appropriate fields
899 * of the @uri structure
901 * scheme ":" hier-part [ "?" query ] [ "#" fragment ]
903 * Returns 0 or the error code
905 static int rfc3986_parse(URI *uri, const char *str)
907 int ret;
909 ret = rfc3986_parse_scheme(uri, &str);
910 if (ret != 0) {
911 return ret;
913 if (*str != ':') {
914 return 1;
916 str++;
917 ret = rfc3986_parse_hier_part(uri, &str);
918 if (ret != 0) {
919 return ret;
921 if (*str == '?') {
922 str++;
923 ret = rfc3986_parse_query(uri, &str);
924 if (ret != 0) {
925 return ret;
928 if (*str == '#') {
929 str++;
930 ret = rfc3986_parse_fragment(uri, &str);
931 if (ret != 0) {
932 return ret;
935 if (*str != 0) {
936 uri_clean(uri);
937 return 1;
939 return 0;
943 * rfc3986_parse_uri_reference:
944 * @uri: pointer to an URI structure
945 * @str: the string to analyze
947 * Parse an URI reference string and fills in the appropriate fields
948 * of the @uri structure
950 * URI-reference = URI / relative-ref
952 * Returns 0 or the error code
954 static int rfc3986_parse_uri_reference(URI *uri, const char *str)
956 int ret;
958 if (str == NULL) {
959 return -1;
961 uri_clean(uri);
964 * Try first to parse absolute refs, then fallback to relative if
965 * it fails.
967 ret = rfc3986_parse(uri, str);
968 if (ret != 0) {
969 uri_clean(uri);
970 ret = rfc3986_parse_relative_ref(uri, str);
971 if (ret != 0) {
972 uri_clean(uri);
973 return ret;
976 return 0;
980 * uri_parse:
981 * @str: the URI string to analyze
983 * Parse an URI based on RFC 3986
985 * URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
987 * Returns a newly built URI or NULL in case of error
989 URI *uri_parse(const char *str)
991 URI *uri;
992 int ret;
994 if (str == NULL) {
995 return NULL;
997 uri = uri_new();
998 ret = rfc3986_parse_uri_reference(uri, str);
999 if (ret) {
1000 uri_free(uri);
1001 return NULL;
1003 return uri;
1007 * uri_parse_into:
1008 * @uri: pointer to an URI structure
1009 * @str: the string to analyze
1011 * Parse an URI reference string based on RFC 3986 and fills in the
1012 * appropriate fields of the @uri structure
1014 * URI-reference = URI / relative-ref
1016 * Returns 0 or the error code
1018 int uri_parse_into(URI *uri, const char *str)
1020 return rfc3986_parse_uri_reference(uri, str);
1024 * uri_parse_raw:
1025 * @str: the URI string to analyze
1026 * @raw: if 1 unescaping of URI pieces are disabled
1028 * Parse an URI but allows to keep intact the original fragments.
1030 * URI-reference = URI / relative-ref
1032 * Returns a newly built URI or NULL in case of error
1034 URI *uri_parse_raw(const char *str, int raw)
1036 URI *uri;
1037 int ret;
1039 if (str == NULL) {
1040 return NULL;
1042 uri = uri_new();
1043 if (raw) {
1044 uri->cleanup |= 2;
1046 ret = uri_parse_into(uri, str);
1047 if (ret) {
1048 uri_free(uri);
1049 return NULL;
1051 return uri;
1054 /************************************************************************
1056 * Generic URI structure functions *
1058 ************************************************************************/
1061 * uri_new:
1063 * Simply creates an empty URI
1065 * Returns the new structure or NULL in case of error
1067 URI *uri_new(void)
1069 return g_new0(URI, 1);
1073 * realloc2n:
1075 * Function to handle properly a reallocation when saving an URI
1076 * Also imposes some limit on the length of an URI string output
1078 static char *realloc2n(char *ret, int *max)
1080 char *temp;
1081 int tmp;
1083 tmp = *max * 2;
1084 temp = g_realloc(ret, (tmp + 1));
1085 *max = tmp;
1086 return temp;
1090 * uri_to_string:
1091 * @uri: pointer to an URI
1093 * Save the URI as an escaped string
1095 * Returns a new string (to be deallocated by caller)
1097 char *uri_to_string(URI *uri)
1099 char *ret = NULL;
1100 char *temp;
1101 const char *p;
1102 int len;
1103 int max;
1105 if (uri == NULL) {
1106 return NULL;
1109 max = 80;
1110 ret = g_malloc(max + 1);
1111 len = 0;
1113 if (uri->scheme != NULL) {
1114 p = uri->scheme;
1115 while (*p != 0) {
1116 if (len >= max) {
1117 temp = realloc2n(ret, &max);
1118 ret = temp;
1120 ret[len++] = *p++;
1122 if (len >= max) {
1123 temp = realloc2n(ret, &max);
1124 ret = temp;
1126 ret[len++] = ':';
1128 if (uri->opaque != NULL) {
1129 p = uri->opaque;
1130 while (*p != 0) {
1131 if (len + 3 >= max) {
1132 temp = realloc2n(ret, &max);
1133 ret = temp;
1135 if (IS_RESERVED(*(p)) || IS_UNRESERVED(*(p))) {
1136 ret[len++] = *p++;
1137 } else {
1138 int val = *(unsigned char *)p++;
1139 int hi = val / 0x10, lo = val % 0x10;
1140 ret[len++] = '%';
1141 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1142 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1145 } else {
1146 if (uri->server != NULL) {
1147 if (len + 3 >= max) {
1148 temp = realloc2n(ret, &max);
1149 ret = temp;
1151 ret[len++] = '/';
1152 ret[len++] = '/';
1153 if (uri->user != NULL) {
1154 p = uri->user;
1155 while (*p != 0) {
1156 if (len + 3 >= max) {
1157 temp = realloc2n(ret, &max);
1158 ret = temp;
1160 if ((IS_UNRESERVED(*(p))) || ((*(p) == ';')) ||
1161 ((*(p) == ':')) || ((*(p) == '&')) || ((*(p) == '=')) ||
1162 ((*(p) == '+')) || ((*(p) == '$')) || ((*(p) == ','))) {
1163 ret[len++] = *p++;
1164 } else {
1165 int val = *(unsigned char *)p++;
1166 int hi = val / 0x10, lo = val % 0x10;
1167 ret[len++] = '%';
1168 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1169 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1172 if (len + 3 >= max) {
1173 temp = realloc2n(ret, &max);
1174 ret = temp;
1176 ret[len++] = '@';
1178 p = uri->server;
1179 while (*p != 0) {
1180 if (len >= max) {
1181 temp = realloc2n(ret, &max);
1182 ret = temp;
1184 ret[len++] = *p++;
1186 if (uri->port > 0) {
1187 if (len + 10 >= max) {
1188 temp = realloc2n(ret, &max);
1189 ret = temp;
1191 len += snprintf(&ret[len], max - len, ":%d", uri->port);
1193 } else if (uri->authority != NULL) {
1194 if (len + 3 >= max) {
1195 temp = realloc2n(ret, &max);
1196 ret = temp;
1198 ret[len++] = '/';
1199 ret[len++] = '/';
1200 p = uri->authority;
1201 while (*p != 0) {
1202 if (len + 3 >= max) {
1203 temp = realloc2n(ret, &max);
1204 ret = temp;
1206 if ((IS_UNRESERVED(*(p))) || ((*(p) == '$')) ||
1207 ((*(p) == ',')) || ((*(p) == ';')) || ((*(p) == ':')) ||
1208 ((*(p) == '@')) || ((*(p) == '&')) || ((*(p) == '=')) ||
1209 ((*(p) == '+'))) {
1210 ret[len++] = *p++;
1211 } else {
1212 int val = *(unsigned char *)p++;
1213 int hi = val / 0x10, lo = val % 0x10;
1214 ret[len++] = '%';
1215 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1216 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1219 } else if (uri->scheme != NULL) {
1220 if (len + 3 >= max) {
1221 temp = realloc2n(ret, &max);
1222 ret = temp;
1224 ret[len++] = '/';
1225 ret[len++] = '/';
1227 if (uri->path != NULL) {
1228 p = uri->path;
1230 * the colon in file:///d: should not be escaped or
1231 * Windows accesses fail later.
1233 if ((uri->scheme != NULL) && (p[0] == '/') &&
1234 (((p[1] >= 'a') && (p[1] <= 'z')) ||
1235 ((p[1] >= 'A') && (p[1] <= 'Z'))) &&
1236 (p[2] == ':') && (!strcmp(uri->scheme, "file"))) {
1237 if (len + 3 >= max) {
1238 temp = realloc2n(ret, &max);
1239 ret = temp;
1241 ret[len++] = *p++;
1242 ret[len++] = *p++;
1243 ret[len++] = *p++;
1245 while (*p != 0) {
1246 if (len + 3 >= max) {
1247 temp = realloc2n(ret, &max);
1248 ret = temp;
1250 if ((IS_UNRESERVED(*(p))) || ((*(p) == '/')) ||
1251 ((*(p) == ';')) || ((*(p) == '@')) || ((*(p) == '&')) ||
1252 ((*(p) == '=')) || ((*(p) == '+')) || ((*(p) == '$')) ||
1253 ((*(p) == ','))) {
1254 ret[len++] = *p++;
1255 } else {
1256 int val = *(unsigned char *)p++;
1257 int hi = val / 0x10, lo = val % 0x10;
1258 ret[len++] = '%';
1259 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1260 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1264 if (uri->query != NULL) {
1265 if (len + 1 >= max) {
1266 temp = realloc2n(ret, &max);
1267 ret = temp;
1269 ret[len++] = '?';
1270 p = uri->query;
1271 while (*p != 0) {
1272 if (len + 1 >= max) {
1273 temp = realloc2n(ret, &max);
1274 ret = temp;
1276 ret[len++] = *p++;
1280 if (uri->fragment != NULL) {
1281 if (len + 3 >= max) {
1282 temp = realloc2n(ret, &max);
1283 ret = temp;
1285 ret[len++] = '#';
1286 p = uri->fragment;
1287 while (*p != 0) {
1288 if (len + 3 >= max) {
1289 temp = realloc2n(ret, &max);
1290 ret = temp;
1292 if ((IS_UNRESERVED(*(p))) || (IS_RESERVED(*(p)))) {
1293 ret[len++] = *p++;
1294 } else {
1295 int val = *(unsigned char *)p++;
1296 int hi = val / 0x10, lo = val % 0x10;
1297 ret[len++] = '%';
1298 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1299 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1303 if (len >= max) {
1304 temp = realloc2n(ret, &max);
1305 ret = temp;
1307 ret[len] = 0;
1308 return ret;
1312 * uri_clean:
1313 * @uri: pointer to an URI
1315 * Make sure the URI struct is free of content
1317 static void uri_clean(URI *uri)
1319 if (uri == NULL) {
1320 return;
1323 g_free(uri->scheme);
1324 uri->scheme = NULL;
1325 g_free(uri->server);
1326 uri->server = NULL;
1327 g_free(uri->user);
1328 uri->user = NULL;
1329 g_free(uri->path);
1330 uri->path = NULL;
1331 g_free(uri->fragment);
1332 uri->fragment = NULL;
1333 g_free(uri->opaque);
1334 uri->opaque = NULL;
1335 g_free(uri->authority);
1336 uri->authority = NULL;
1337 g_free(uri->query);
1338 uri->query = NULL;
1342 * uri_free:
1343 * @uri: pointer to an URI, NULL is ignored
1345 * Free up the URI struct
1347 void uri_free(URI *uri)
1349 uri_clean(uri);
1350 g_free(uri);
1353 /************************************************************************
1355 * Helper functions *
1357 ************************************************************************/
1360 * normalize_uri_path:
1361 * @path: pointer to the path string
1363 * Applies the 5 normalization steps to a path string--that is, RFC 2396
1364 * Section 5.2, steps 6.c through 6.g.
1366 * Normalization occurs directly on the string, no new allocation is done
1368 * Returns 0 or an error code
1370 static int normalize_uri_path(char *path)
1372 char *cur, *out;
1374 if (path == NULL) {
1375 return -1;
1378 /* Skip all initial "/" chars. We want to get to the beginning of the
1379 * first non-empty segment.
1381 cur = path;
1382 while (cur[0] == '/') {
1383 ++cur;
1385 if (cur[0] == '\0') {
1386 return 0;
1389 /* Keep everything we've seen so far. */
1390 out = cur;
1393 * Analyze each segment in sequence for cases (c) and (d).
1395 while (cur[0] != '\0') {
1397 * c) All occurrences of "./", where "." is a complete path segment,
1398 * are removed from the buffer string.
1400 if ((cur[0] == '.') && (cur[1] == '/')) {
1401 cur += 2;
1402 /* '//' normalization should be done at this point too */
1403 while (cur[0] == '/') {
1404 cur++;
1406 continue;
1410 * d) If the buffer string ends with "." as a complete path segment,
1411 * that "." is removed.
1413 if ((cur[0] == '.') && (cur[1] == '\0')) {
1414 break;
1417 /* Otherwise keep the segment. */
1418 while (cur[0] != '/') {
1419 if (cur[0] == '\0') {
1420 goto done_cd;
1422 (out++)[0] = (cur++)[0];
1424 /* nomalize // */
1425 while ((cur[0] == '/') && (cur[1] == '/')) {
1426 cur++;
1429 (out++)[0] = (cur++)[0];
1431 done_cd:
1432 out[0] = '\0';
1434 /* Reset to the beginning of the first segment for the next sequence. */
1435 cur = path;
1436 while (cur[0] == '/') {
1437 ++cur;
1439 if (cur[0] == '\0') {
1440 return 0;
1444 * Analyze each segment in sequence for cases (e) and (f).
1446 * e) All occurrences of "<segment>/../", where <segment> is a
1447 * complete path segment not equal to "..", are removed from the
1448 * buffer string. Removal of these path segments is performed
1449 * iteratively, removing the leftmost matching pattern on each
1450 * iteration, until no matching pattern remains.
1452 * f) If the buffer string ends with "<segment>/..", where <segment>
1453 * is a complete path segment not equal to "..", that
1454 * "<segment>/.." is removed.
1456 * To satisfy the "iterative" clause in (e), we need to collapse the
1457 * string every time we find something that needs to be removed. Thus,
1458 * we don't need to keep two pointers into the string: we only need a
1459 * "current position" pointer.
1461 while (1) {
1462 char *segp, *tmp;
1464 /* At the beginning of each iteration of this loop, "cur" points to
1465 * the first character of the segment we want to examine.
1468 /* Find the end of the current segment. */
1469 segp = cur;
1470 while ((segp[0] != '/') && (segp[0] != '\0')) {
1471 ++segp;
1474 /* If this is the last segment, we're done (we need at least two
1475 * segments to meet the criteria for the (e) and (f) cases).
1477 if (segp[0] == '\0') {
1478 break;
1481 /* If the first segment is "..", or if the next segment _isn't_ "..",
1482 * keep this segment and try the next one.
1484 ++segp;
1485 if (((cur[0] == '.') && (cur[1] == '.') && (segp == cur + 3)) ||
1486 ((segp[0] != '.') || (segp[1] != '.') ||
1487 ((segp[2] != '/') && (segp[2] != '\0')))) {
1488 cur = segp;
1489 continue;
1492 /* If we get here, remove this segment and the next one and back up
1493 * to the previous segment (if there is one), to implement the
1494 * "iteratively" clause. It's pretty much impossible to back up
1495 * while maintaining two pointers into the buffer, so just compact
1496 * the whole buffer now.
1499 /* If this is the end of the buffer, we're done. */
1500 if (segp[2] == '\0') {
1501 cur[0] = '\0';
1502 break;
1504 /* Valgrind complained, strcpy(cur, segp + 3); */
1505 /* string will overlap, do not use strcpy */
1506 tmp = cur;
1507 segp += 3;
1508 while ((*tmp++ = *segp++) != 0) {
1509 /* No further work */
1512 /* If there are no previous segments, then keep going from here. */
1513 segp = cur;
1514 while ((segp > path) && ((--segp)[0] == '/')) {
1515 /* No further work */
1517 if (segp == path) {
1518 continue;
1521 /* "segp" is pointing to the end of a previous segment; find it's
1522 * start. We need to back up to the previous segment and start
1523 * over with that to handle things like "foo/bar/../..". If we
1524 * don't do this, then on the first pass we'll remove the "bar/..",
1525 * but be pointing at the second ".." so we won't realize we can also
1526 * remove the "foo/..".
1528 cur = segp;
1529 while ((cur > path) && (cur[-1] != '/')) {
1530 --cur;
1533 out[0] = '\0';
1536 * g) If the resulting buffer string still begins with one or more
1537 * complete path segments of "..", then the reference is
1538 * considered to be in error. Implementations may handle this
1539 * error by retaining these components in the resolved path (i.e.,
1540 * treating them as part of the final URI), by removing them from
1541 * the resolved path (i.e., discarding relative levels above the
1542 * root), or by avoiding traversal of the reference.
1544 * We discard them from the final path.
1546 if (path[0] == '/') {
1547 cur = path;
1548 while ((cur[0] == '/') && (cur[1] == '.') && (cur[2] == '.') &&
1549 ((cur[3] == '/') || (cur[3] == '\0'))) {
1550 cur += 3;
1553 if (cur != path) {
1554 out = path;
1555 while (cur[0] != '\0') {
1556 (out++)[0] = (cur++)[0];
1558 out[0] = 0;
1562 return 0;
1565 static int is_hex(char c)
1567 if (((c >= '0') && (c <= '9')) || ((c >= 'a') && (c <= 'f')) ||
1568 ((c >= 'A') && (c <= 'F'))) {
1569 return 1;
1571 return 0;
1575 * uri_string_unescape:
1576 * @str: the string to unescape
1577 * @len: the length in bytes to unescape (or <= 0 to indicate full string)
1578 * @target: optional destination buffer
1580 * Unescaping routine, but does not check that the string is an URI. The
1581 * output is a direct unsigned char translation of %XX values (no encoding)
1582 * Note that the length of the result can only be smaller or same size as
1583 * the input string.
1585 * Returns a copy of the string, but unescaped, will return NULL only in case
1586 * of error
1588 char *uri_string_unescape(const char *str, int len, char *target)
1590 char *ret, *out;
1591 const char *in;
1593 if (str == NULL) {
1594 return NULL;
1596 if (len <= 0) {
1597 len = strlen(str);
1599 if (len < 0) {
1600 return NULL;
1603 if (target == NULL) {
1604 ret = g_malloc(len + 1);
1605 } else {
1606 ret = target;
1608 in = str;
1609 out = ret;
1610 while (len > 0) {
1611 if ((len > 2) && (*in == '%') && (is_hex(in[1])) && (is_hex(in[2]))) {
1612 in++;
1613 if ((*in >= '0') && (*in <= '9')) {
1614 *out = (*in - '0');
1615 } else if ((*in >= 'a') && (*in <= 'f')) {
1616 *out = (*in - 'a') + 10;
1617 } else if ((*in >= 'A') && (*in <= 'F')) {
1618 *out = (*in - 'A') + 10;
1620 in++;
1621 if ((*in >= '0') && (*in <= '9')) {
1622 *out = *out * 16 + (*in - '0');
1623 } else if ((*in >= 'a') && (*in <= 'f')) {
1624 *out = *out * 16 + (*in - 'a') + 10;
1625 } else if ((*in >= 'A') && (*in <= 'F')) {
1626 *out = *out * 16 + (*in - 'A') + 10;
1628 in++;
1629 len -= 3;
1630 out++;
1631 } else {
1632 *out++ = *in++;
1633 len--;
1636 *out = 0;
1637 return ret;
1641 * uri_string_escape:
1642 * @str: string to escape
1643 * @list: exception list string of chars not to escape
1645 * This routine escapes a string to hex, ignoring reserved characters (a-z)
1646 * and the characters in the exception list.
1648 * Returns a new escaped string or NULL in case of error.
1650 char *uri_string_escape(const char *str, const char *list)
1652 char *ret, ch;
1653 char *temp;
1654 const char *in;
1655 int len, out;
1657 if (str == NULL) {
1658 return NULL;
1660 if (str[0] == 0) {
1661 return g_strdup(str);
1663 len = strlen(str);
1664 if (!(len > 0)) {
1665 return NULL;
1668 len += 20;
1669 ret = g_malloc(len);
1670 in = str;
1671 out = 0;
1672 while (*in != 0) {
1673 if (len - out <= 3) {
1674 temp = realloc2n(ret, &len);
1675 ret = temp;
1678 ch = *in;
1680 if ((ch != '@') && (!IS_UNRESERVED(ch)) && (!strchr(list, ch))) {
1681 unsigned char val;
1682 ret[out++] = '%';
1683 val = ch >> 4;
1684 if (val <= 9) {
1685 ret[out++] = '0' + val;
1686 } else {
1687 ret[out++] = 'A' + val - 0xA;
1689 val = ch & 0xF;
1690 if (val <= 9) {
1691 ret[out++] = '0' + val;
1692 } else {
1693 ret[out++] = 'A' + val - 0xA;
1695 in++;
1696 } else {
1697 ret[out++] = *in++;
1700 ret[out] = 0;
1701 return ret;
1704 /************************************************************************
1706 * Public functions *
1708 ************************************************************************/
1711 * uri_resolve:
1712 * @URI: the URI instance found in the document
1713 * @base: the base value
1715 * Computes he final URI of the reference done by checking that
1716 * the given URI is valid, and building the final URI using the
1717 * base URI. This is processed according to section 5.2 of the
1718 * RFC 2396
1720 * 5.2. Resolving Relative References to Absolute Form
1722 * Returns a new URI string (to be freed by the caller) or NULL in case
1723 * of error.
1725 char *uri_resolve(const char *uri, const char *base)
1727 char *val = NULL;
1728 int ret, len, indx, cur, out;
1729 URI *ref = NULL;
1730 URI *bas = NULL;
1731 URI *res = NULL;
1734 * 1) The URI reference is parsed into the potential four components and
1735 * fragment identifier, as described in Section 4.3.
1737 * NOTE that a completely empty URI is treated by modern browsers
1738 * as a reference to "." rather than as a synonym for the current
1739 * URI. Should we do that here?
1741 if (uri == NULL) {
1742 ret = -1;
1743 } else {
1744 if (*uri) {
1745 ref = uri_new();
1746 ret = uri_parse_into(ref, uri);
1747 } else {
1748 ret = 0;
1751 if (ret != 0) {
1752 goto done;
1754 if ((ref != NULL) && (ref->scheme != NULL)) {
1756 * The URI is absolute don't modify.
1758 val = g_strdup(uri);
1759 goto done;
1761 if (base == NULL) {
1762 ret = -1;
1763 } else {
1764 bas = uri_new();
1765 ret = uri_parse_into(bas, base);
1767 if (ret != 0) {
1768 if (ref) {
1769 val = uri_to_string(ref);
1771 goto done;
1773 if (ref == NULL) {
1775 * the base fragment must be ignored
1777 g_free(bas->fragment);
1778 bas->fragment = NULL;
1779 val = uri_to_string(bas);
1780 goto done;
1784 * 2) If the path component is empty and the scheme, authority, and
1785 * query components are undefined, then it is a reference to the
1786 * current document and we are done. Otherwise, the reference URI's
1787 * query and fragment components are defined as found (or not found)
1788 * within the URI reference and not inherited from the base URI.
1790 * NOTE that in modern browsers, the parsing differs from the above
1791 * in the following aspect: the query component is allowed to be
1792 * defined while still treating this as a reference to the current
1793 * document.
1795 res = uri_new();
1796 if ((ref->scheme == NULL) && (ref->path == NULL) &&
1797 ((ref->authority == NULL) && (ref->server == NULL))) {
1798 res->scheme = g_strdup(bas->scheme);
1799 if (bas->authority != NULL) {
1800 res->authority = g_strdup(bas->authority);
1801 } else if (bas->server != NULL) {
1802 res->server = g_strdup(bas->server);
1803 res->user = g_strdup(bas->user);
1804 res->port = bas->port;
1806 res->path = g_strdup(bas->path);
1807 if (ref->query != NULL) {
1808 res->query = g_strdup(ref->query);
1809 } else {
1810 res->query = g_strdup(bas->query);
1812 res->fragment = g_strdup(ref->fragment);
1813 goto step_7;
1817 * 3) If the scheme component is defined, indicating that the reference
1818 * starts with a scheme name, then the reference is interpreted as an
1819 * absolute URI and we are done. Otherwise, the reference URI's
1820 * scheme is inherited from the base URI's scheme component.
1822 if (ref->scheme != NULL) {
1823 val = uri_to_string(ref);
1824 goto done;
1826 res->scheme = g_strdup(bas->scheme);
1828 res->query = g_strdup(ref->query);
1829 res->fragment = g_strdup(ref->fragment);
1832 * 4) If the authority component is defined, then the reference is a
1833 * network-path and we skip to step 7. Otherwise, the reference
1834 * URI's authority is inherited from the base URI's authority
1835 * component, which will also be undefined if the URI scheme does not
1836 * use an authority component.
1838 if ((ref->authority != NULL) || (ref->server != NULL)) {
1839 if (ref->authority != NULL) {
1840 res->authority = g_strdup(ref->authority);
1841 } else {
1842 res->server = g_strdup(ref->server);
1843 res->user = g_strdup(ref->user);
1844 res->port = ref->port;
1846 res->path = g_strdup(ref->path);
1847 goto step_7;
1849 if (bas->authority != NULL) {
1850 res->authority = g_strdup(bas->authority);
1851 } else if (bas->server != NULL) {
1852 res->server = g_strdup(bas->server);
1853 res->user = g_strdup(bas->user);
1854 res->port = bas->port;
1858 * 5) If the path component begins with a slash character ("/"), then
1859 * the reference is an absolute-path and we skip to step 7.
1861 if ((ref->path != NULL) && (ref->path[0] == '/')) {
1862 res->path = g_strdup(ref->path);
1863 goto step_7;
1867 * 6) If this step is reached, then we are resolving a relative-path
1868 * reference. The relative path needs to be merged with the base
1869 * URI's path. Although there are many ways to do this, we will
1870 * describe a simple method using a separate string buffer.
1872 * Allocate a buffer large enough for the result string.
1874 len = 2; /* extra / and 0 */
1875 if (ref->path != NULL) {
1876 len += strlen(ref->path);
1878 if (bas->path != NULL) {
1879 len += strlen(bas->path);
1881 res->path = g_malloc(len);
1882 res->path[0] = 0;
1885 * a) All but the last segment of the base URI's path component is
1886 * copied to the buffer. In other words, any characters after the
1887 * last (right-most) slash character, if any, are excluded.
1889 cur = 0;
1890 out = 0;
1891 if (bas->path != NULL) {
1892 while (bas->path[cur] != 0) {
1893 while ((bas->path[cur] != 0) && (bas->path[cur] != '/')) {
1894 cur++;
1896 if (bas->path[cur] == 0) {
1897 break;
1900 cur++;
1901 while (out < cur) {
1902 res->path[out] = bas->path[out];
1903 out++;
1907 res->path[out] = 0;
1910 * b) The reference's path component is appended to the buffer
1911 * string.
1913 if (ref->path != NULL && ref->path[0] != 0) {
1914 indx = 0;
1916 * Ensure the path includes a '/'
1918 if ((out == 0) && (bas->server != NULL)) {
1919 res->path[out++] = '/';
1921 while (ref->path[indx] != 0) {
1922 res->path[out++] = ref->path[indx++];
1925 res->path[out] = 0;
1928 * Steps c) to h) are really path normalization steps
1930 normalize_uri_path(res->path);
1932 step_7:
1935 * 7) The resulting URI components, including any inherited from the
1936 * base URI, are recombined to give the absolute form of the URI
1937 * reference.
1939 val = uri_to_string(res);
1941 done:
1942 uri_free(ref);
1943 uri_free(bas);
1944 uri_free(res);
1945 return val;
1949 * uri_resolve_relative:
1950 * @URI: the URI reference under consideration
1951 * @base: the base value
1953 * Expresses the URI of the reference in terms relative to the
1954 * base. Some examples of this operation include:
1955 * base = "http://site1.com/docs/book1.html"
1956 * URI input URI returned
1957 * docs/pic1.gif pic1.gif
1958 * docs/img/pic1.gif img/pic1.gif
1959 * img/pic1.gif ../img/pic1.gif
1960 * http://site1.com/docs/pic1.gif pic1.gif
1961 * http://site2.com/docs/pic1.gif http://site2.com/docs/pic1.gif
1963 * base = "docs/book1.html"
1964 * URI input URI returned
1965 * docs/pic1.gif pic1.gif
1966 * docs/img/pic1.gif img/pic1.gif
1967 * img/pic1.gif ../img/pic1.gif
1968 * http://site1.com/docs/pic1.gif http://site1.com/docs/pic1.gif
1971 * Note: if the URI reference is really weird or complicated, it may be
1972 * worthwhile to first convert it into a "nice" one by calling
1973 * uri_resolve (using 'base') before calling this routine,
1974 * since this routine (for reasonable efficiency) assumes URI has
1975 * already been through some validation.
1977 * Returns a new URI string (to be freed by the caller) or NULL in case
1978 * error.
1980 char *uri_resolve_relative(const char *uri, const char *base)
1982 char *val = NULL;
1983 int ret;
1984 int ix;
1985 int pos = 0;
1986 int nbslash = 0;
1987 int len;
1988 URI *ref = NULL;
1989 URI *bas = NULL;
1990 char *bptr, *uptr, *vptr;
1991 int remove_path = 0;
1993 if ((uri == NULL) || (*uri == 0)) {
1994 return NULL;
1998 * First parse URI into a standard form
2000 ref = uri_new();
2001 /* If URI not already in "relative" form */
2002 if (uri[0] != '.') {
2003 ret = uri_parse_into(ref, uri);
2004 if (ret != 0) {
2005 goto done; /* Error in URI, return NULL */
2007 } else {
2008 ref->path = g_strdup(uri);
2012 * Next parse base into the same standard form
2014 if ((base == NULL) || (*base == 0)) {
2015 val = g_strdup(uri);
2016 goto done;
2018 bas = uri_new();
2019 if (base[0] != '.') {
2020 ret = uri_parse_into(bas, base);
2021 if (ret != 0) {
2022 goto done; /* Error in base, return NULL */
2024 } else {
2025 bas->path = g_strdup(base);
2029 * If the scheme / server on the URI differs from the base,
2030 * just return the URI
2032 if ((ref->scheme != NULL) &&
2033 ((bas->scheme == NULL) || (strcmp(bas->scheme, ref->scheme)) ||
2034 (strcmp(bas->server, ref->server)))) {
2035 val = g_strdup(uri);
2036 goto done;
2038 if (bas->path == ref->path ||
2039 (bas->path && ref->path && !strcmp(bas->path, ref->path))) {
2040 val = g_strdup("");
2041 goto done;
2043 if (bas->path == NULL) {
2044 val = g_strdup(ref->path);
2045 goto done;
2047 if (ref->path == NULL) {
2048 ref->path = (char *)"/";
2049 remove_path = 1;
2053 * At this point (at last!) we can compare the two paths
2055 * First we take care of the special case where either of the
2056 * two path components may be missing (bug 316224)
2058 if (bas->path == NULL) {
2059 if (ref->path != NULL) {
2060 uptr = ref->path;
2061 if (*uptr == '/') {
2062 uptr++;
2064 /* exception characters from uri_to_string */
2065 val = uri_string_escape(uptr, "/;&=+$,");
2067 goto done;
2069 bptr = bas->path;
2070 if (ref->path == NULL) {
2071 for (ix = 0; bptr[ix] != 0; ix++) {
2072 if (bptr[ix] == '/') {
2073 nbslash++;
2076 uptr = NULL;
2077 len = 1; /* this is for a string terminator only */
2078 } else {
2080 * Next we compare the two strings and find where they first differ
2082 if ((ref->path[pos] == '.') && (ref->path[pos + 1] == '/')) {
2083 pos += 2;
2085 if ((*bptr == '.') && (bptr[1] == '/')) {
2086 bptr += 2;
2087 } else if ((*bptr == '/') && (ref->path[pos] != '/')) {
2088 bptr++;
2090 while ((bptr[pos] == ref->path[pos]) && (bptr[pos] != 0)) {
2091 pos++;
2094 if (bptr[pos] == ref->path[pos]) {
2095 val = g_strdup("");
2096 goto done; /* (I can't imagine why anyone would do this) */
2100 * In URI, "back up" to the last '/' encountered. This will be the
2101 * beginning of the "unique" suffix of URI
2103 ix = pos;
2104 if ((ref->path[ix] == '/') && (ix > 0)) {
2105 ix--;
2106 } else if ((ref->path[ix] == 0) && (ix > 1)
2107 && (ref->path[ix - 1] == '/')) {
2108 ix -= 2;
2110 for (; ix > 0; ix--) {
2111 if (ref->path[ix] == '/') {
2112 break;
2115 if (ix == 0) {
2116 uptr = ref->path;
2117 } else {
2118 ix++;
2119 uptr = &ref->path[ix];
2123 * In base, count the number of '/' from the differing point
2125 if (bptr[pos] != ref->path[pos]) { /* check for trivial URI == base */
2126 for (; bptr[ix] != 0; ix++) {
2127 if (bptr[ix] == '/') {
2128 nbslash++;
2132 len = strlen(uptr) + 1;
2135 if (nbslash == 0) {
2136 if (uptr != NULL) {
2137 /* exception characters from uri_to_string */
2138 val = uri_string_escape(uptr, "/;&=+$,");
2140 goto done;
2144 * Allocate just enough space for the returned string -
2145 * length of the remainder of the URI, plus enough space
2146 * for the "../" groups, plus one for the terminator
2148 val = g_malloc(len + 3 * nbslash);
2149 vptr = val;
2151 * Put in as many "../" as needed
2153 for (; nbslash > 0; nbslash--) {
2154 *vptr++ = '.';
2155 *vptr++ = '.';
2156 *vptr++ = '/';
2159 * Finish up with the end of the URI
2161 if (uptr != NULL) {
2162 if ((vptr > val) && (len > 0) && (uptr[0] == '/') &&
2163 (vptr[-1] == '/')) {
2164 memcpy(vptr, uptr + 1, len - 1);
2165 vptr[len - 2] = 0;
2166 } else {
2167 memcpy(vptr, uptr, len);
2168 vptr[len - 1] = 0;
2170 } else {
2171 vptr[len - 1] = 0;
2174 /* escape the freshly-built path */
2175 vptr = val;
2176 /* exception characters from uri_to_string */
2177 val = uri_string_escape(vptr, "/;&=+$,");
2178 g_free(vptr);
2180 done:
2182 * Free the working variables
2184 if (remove_path != 0) {
2185 ref->path = NULL;
2187 uri_free(ref);
2188 uri_free(bas);
2190 return val;
2194 * Utility functions to help parse and assemble query strings.
2197 struct QueryParams *query_params_new(int init_alloc)
2199 struct QueryParams *ps;
2201 if (init_alloc <= 0) {
2202 init_alloc = 1;
2205 ps = g_new(QueryParams, 1);
2206 ps->n = 0;
2207 ps->alloc = init_alloc;
2208 ps->p = g_new(QueryParam, ps->alloc);
2210 return ps;
2213 /* Ensure there is space to store at least one more parameter
2214 * at the end of the set.
2216 static int query_params_append(struct QueryParams *ps, const char *name,
2217 const char *value)
2219 if (ps->n >= ps->alloc) {
2220 ps->p = g_renew(QueryParam, ps->p, ps->alloc * 2);
2221 ps->alloc *= 2;
2224 ps->p[ps->n].name = g_strdup(name);
2225 ps->p[ps->n].value = g_strdup(value);
2226 ps->p[ps->n].ignore = 0;
2227 ps->n++;
2229 return 0;
2232 void query_params_free(struct QueryParams *ps)
2234 int i;
2236 for (i = 0; i < ps->n; ++i) {
2237 g_free(ps->p[i].name);
2238 g_free(ps->p[i].value);
2240 g_free(ps->p);
2241 g_free(ps);
2244 struct QueryParams *query_params_parse(const char *query)
2246 struct QueryParams *ps;
2247 const char *end, *eq;
2249 ps = query_params_new(0);
2250 if (!query || query[0] == '\0') {
2251 return ps;
2254 while (*query) {
2255 char *name = NULL, *value = NULL;
2257 /* Find the next separator, or end of the string. */
2258 end = strchr(query, '&');
2259 if (!end) {
2260 end = qemu_strchrnul(query, ';');
2263 /* Find the first '=' character between here and end. */
2264 eq = strchr(query, '=');
2265 if (eq && eq >= end) {
2266 eq = NULL;
2269 /* Empty section (eg. "&&"). */
2270 if (end == query) {
2271 goto next;
2274 /* If there is no '=' character, then we have just "name"
2275 * and consistent with CGI.pm we assume value is "".
2277 else if (!eq) {
2278 name = uri_string_unescape(query, end - query, NULL);
2279 value = NULL;
2281 /* Or if we have "name=" here (works around annoying
2282 * problem when calling uri_string_unescape with len = 0).
2284 else if (eq + 1 == end) {
2285 name = uri_string_unescape(query, eq - query, NULL);
2286 value = g_new0(char, 1);
2288 /* If the '=' character is at the beginning then we have
2289 * "=value" and consistent with CGI.pm we _ignore_ this.
2291 else if (query == eq) {
2292 goto next;
2295 /* Otherwise it's "name=value". */
2296 else {
2297 name = uri_string_unescape(query, eq - query, NULL);
2298 value = uri_string_unescape(eq + 1, end - (eq + 1), NULL);
2301 /* Append to the parameter set. */
2302 query_params_append(ps, name, value);
2303 g_free(name);
2304 g_free(value);
2306 next:
2307 query = end;
2308 if (*query) {
2309 query++; /* skip '&' separator */
2313 return ps;