hw/arm/allwinner-r40: add Clock Control Unit
[qemu/ar7.git] / hw / arm / smmuv3.c
blob932f00969748394b628bbbb93d3da507ccfe3f11
1 /*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "hw/irq.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-properties.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "cpu.h"
28 #include "trace.h"
29 #include "qemu/log.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
33 #include "hw/arm/smmuv3.h"
34 #include "smmuv3-internal.h"
35 #include "smmu-internal.h"
37 #define PTW_RECORD_FAULT(cfg) (((cfg)->stage == 1) ? (cfg)->record_faults : \
38 (cfg)->s2cfg.record_faults)
40 /**
41 * smmuv3_trigger_irq - pulse @irq if enabled and update
42 * GERROR register in case of GERROR interrupt
44 * @irq: irq type
45 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
47 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
48 uint32_t gerror_mask)
51 bool pulse = false;
53 switch (irq) {
54 case SMMU_IRQ_EVTQ:
55 pulse = smmuv3_eventq_irq_enabled(s);
56 break;
57 case SMMU_IRQ_PRIQ:
58 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
59 break;
60 case SMMU_IRQ_CMD_SYNC:
61 pulse = true;
62 break;
63 case SMMU_IRQ_GERROR:
65 uint32_t pending = s->gerror ^ s->gerrorn;
66 uint32_t new_gerrors = ~pending & gerror_mask;
68 if (!new_gerrors) {
69 /* only toggle non pending errors */
70 return;
72 s->gerror ^= new_gerrors;
73 trace_smmuv3_write_gerror(new_gerrors, s->gerror);
75 pulse = smmuv3_gerror_irq_enabled(s);
76 break;
79 if (pulse) {
80 trace_smmuv3_trigger_irq(irq);
81 qemu_irq_pulse(s->irq[irq]);
85 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
87 uint32_t pending = s->gerror ^ s->gerrorn;
88 uint32_t toggled = s->gerrorn ^ new_gerrorn;
90 if (toggled & ~pending) {
91 qemu_log_mask(LOG_GUEST_ERROR,
92 "guest toggles non pending errors = 0x%x\n",
93 toggled & ~pending);
97 * We do not raise any error in case guest toggles bits corresponding
98 * to not active IRQs (CONSTRAINED UNPREDICTABLE)
100 s->gerrorn = new_gerrorn;
102 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
105 static inline MemTxResult queue_read(SMMUQueue *q, void *data)
107 dma_addr_t addr = Q_CONS_ENTRY(q);
109 return dma_memory_read(&address_space_memory, addr, data, q->entry_size,
110 MEMTXATTRS_UNSPECIFIED);
113 static MemTxResult queue_write(SMMUQueue *q, void *data)
115 dma_addr_t addr = Q_PROD_ENTRY(q);
116 MemTxResult ret;
118 ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size,
119 MEMTXATTRS_UNSPECIFIED);
120 if (ret != MEMTX_OK) {
121 return ret;
124 queue_prod_incr(q);
125 return MEMTX_OK;
128 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
130 SMMUQueue *q = &s->eventq;
131 MemTxResult r;
133 if (!smmuv3_eventq_enabled(s)) {
134 return MEMTX_ERROR;
137 if (smmuv3_q_full(q)) {
138 return MEMTX_ERROR;
141 r = queue_write(q, evt);
142 if (r != MEMTX_OK) {
143 return r;
146 if (!smmuv3_q_empty(q)) {
147 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
149 return MEMTX_OK;
152 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
154 Evt evt = {};
155 MemTxResult r;
157 if (!smmuv3_eventq_enabled(s)) {
158 return;
161 EVT_SET_TYPE(&evt, info->type);
162 EVT_SET_SID(&evt, info->sid);
164 switch (info->type) {
165 case SMMU_EVT_NONE:
166 return;
167 case SMMU_EVT_F_UUT:
168 EVT_SET_SSID(&evt, info->u.f_uut.ssid);
169 EVT_SET_SSV(&evt, info->u.f_uut.ssv);
170 EVT_SET_ADDR(&evt, info->u.f_uut.addr);
171 EVT_SET_RNW(&evt, info->u.f_uut.rnw);
172 EVT_SET_PNU(&evt, info->u.f_uut.pnu);
173 EVT_SET_IND(&evt, info->u.f_uut.ind);
174 break;
175 case SMMU_EVT_C_BAD_STREAMID:
176 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
177 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
178 break;
179 case SMMU_EVT_F_STE_FETCH:
180 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
181 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
182 EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
183 break;
184 case SMMU_EVT_C_BAD_STE:
185 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
186 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
187 break;
188 case SMMU_EVT_F_STREAM_DISABLED:
189 break;
190 case SMMU_EVT_F_TRANS_FORBIDDEN:
191 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
192 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
193 break;
194 case SMMU_EVT_C_BAD_SUBSTREAMID:
195 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
196 break;
197 case SMMU_EVT_F_CD_FETCH:
198 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
199 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
200 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
201 break;
202 case SMMU_EVT_C_BAD_CD:
203 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
204 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
205 break;
206 case SMMU_EVT_F_WALK_EABT:
207 case SMMU_EVT_F_TRANSLATION:
208 case SMMU_EVT_F_ADDR_SIZE:
209 case SMMU_EVT_F_ACCESS:
210 case SMMU_EVT_F_PERMISSION:
211 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
212 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
213 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
214 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
215 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
216 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
217 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
218 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
219 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
220 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
221 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
222 break;
223 case SMMU_EVT_F_CFG_CONFLICT:
224 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
225 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
226 break;
227 /* rest is not implemented */
228 case SMMU_EVT_F_BAD_ATS_TREQ:
229 case SMMU_EVT_F_TLB_CONFLICT:
230 case SMMU_EVT_E_PAGE_REQ:
231 default:
232 g_assert_not_reached();
235 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
236 r = smmuv3_write_eventq(s, &evt);
237 if (r != MEMTX_OK) {
238 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
240 info->recorded = true;
243 static void smmuv3_init_regs(SMMUv3State *s)
245 /* Based on sys property, the stages supported in smmu will be advertised.*/
246 if (s->stage && !strcmp("2", s->stage)) {
247 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1);
248 } else {
249 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1);
252 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
253 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
254 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
255 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, VMID16, 1); /* 16-bit VMID */
256 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
257 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
258 /* terminated transaction will always be aborted/error returned */
259 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
260 /* 2-level stream table supported */
261 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
263 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
264 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
265 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
267 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
268 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
269 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, BBML, 2);
271 /* 4K, 16K and 64K granule support */
272 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
273 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
274 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
275 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
277 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
278 s->cmdq.prod = 0;
279 s->cmdq.cons = 0;
280 s->cmdq.entry_size = sizeof(struct Cmd);
281 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
282 s->eventq.prod = 0;
283 s->eventq.cons = 0;
284 s->eventq.entry_size = sizeof(struct Evt);
286 s->features = 0;
287 s->sid_split = 0;
288 s->aidr = 0x1;
289 s->cr[0] = 0;
290 s->cr0ack = 0;
291 s->irq_ctrl = 0;
292 s->gerror = 0;
293 s->gerrorn = 0;
294 s->statusr = 0;
295 s->gbpa = SMMU_GBPA_RESET_VAL;
298 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
299 SMMUEventInfo *event)
301 int ret;
303 trace_smmuv3_get_ste(addr);
304 /* TODO: guarantee 64-bit single-copy atomicity */
305 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
306 MEMTXATTRS_UNSPECIFIED);
307 if (ret != MEMTX_OK) {
308 qemu_log_mask(LOG_GUEST_ERROR,
309 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
310 event->type = SMMU_EVT_F_STE_FETCH;
311 event->u.f_ste_fetch.addr = addr;
312 return -EINVAL;
314 return 0;
318 /* @ssid > 0 not supported yet */
319 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
320 CD *buf, SMMUEventInfo *event)
322 dma_addr_t addr = STE_CTXPTR(ste);
323 int ret;
325 trace_smmuv3_get_cd(addr);
326 /* TODO: guarantee 64-bit single-copy atomicity */
327 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
328 MEMTXATTRS_UNSPECIFIED);
329 if (ret != MEMTX_OK) {
330 qemu_log_mask(LOG_GUEST_ERROR,
331 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
332 event->type = SMMU_EVT_F_CD_FETCH;
333 event->u.f_ste_fetch.addr = addr;
334 return -EINVAL;
336 return 0;
340 * Max valid value is 39 when SMMU_IDR3.STT == 0.
341 * In architectures after SMMUv3.0:
342 * - If STE.S2TG selects a 4KB or 16KB granule, the minimum valid value for this
343 * field is MAX(16, 64-IAS)
344 * - If STE.S2TG selects a 64KB granule, the minimum valid value for this field
345 * is (64-IAS).
346 * As we only support AA64, IAS = OAS.
348 static bool s2t0sz_valid(SMMUTransCfg *cfg)
350 if (cfg->s2cfg.tsz > 39) {
351 return false;
354 if (cfg->s2cfg.granule_sz == 16) {
355 return (cfg->s2cfg.tsz >= 64 - oas2bits(SMMU_IDR5_OAS));
358 return (cfg->s2cfg.tsz >= MAX(64 - oas2bits(SMMU_IDR5_OAS), 16));
362 * Return true if s2 page table config is valid.
363 * This checks with the configured start level, ias_bits and granularity we can
364 * have a valid page table as described in ARM ARM D8.2 Translation process.
365 * The idea here is to see for the highest possible number of IPA bits, how
366 * many concatenated tables we would need, if it is more than 16, then this is
367 * not possible.
369 static bool s2_pgtable_config_valid(uint8_t sl0, uint8_t t0sz, uint8_t gran)
371 int level = get_start_level(sl0, gran);
372 uint64_t ipa_bits = 64 - t0sz;
373 uint64_t max_ipa = (1ULL << ipa_bits) - 1;
374 int nr_concat = pgd_concat_idx(level, gran, max_ipa) + 1;
376 return nr_concat <= VMSA_MAX_S2_CONCAT;
379 static int decode_ste_s2_cfg(SMMUTransCfg *cfg, STE *ste)
381 cfg->stage = 2;
383 if (STE_S2AA64(ste) == 0x0) {
384 qemu_log_mask(LOG_UNIMP,
385 "SMMUv3 AArch32 tables not supported\n");
386 g_assert_not_reached();
389 switch (STE_S2TG(ste)) {
390 case 0x0: /* 4KB */
391 cfg->s2cfg.granule_sz = 12;
392 break;
393 case 0x1: /* 64KB */
394 cfg->s2cfg.granule_sz = 16;
395 break;
396 case 0x2: /* 16KB */
397 cfg->s2cfg.granule_sz = 14;
398 break;
399 default:
400 qemu_log_mask(LOG_GUEST_ERROR,
401 "SMMUv3 bad STE S2TG: %x\n", STE_S2TG(ste));
402 goto bad_ste;
405 cfg->s2cfg.vttb = STE_S2TTB(ste);
407 cfg->s2cfg.sl0 = STE_S2SL0(ste);
408 /* FEAT_TTST not supported. */
409 if (cfg->s2cfg.sl0 == 0x3) {
410 qemu_log_mask(LOG_UNIMP, "SMMUv3 S2SL0 = 0x3 has no meaning!\n");
411 goto bad_ste;
414 /* For AA64, The effective S2PS size is capped to the OAS. */
415 cfg->s2cfg.eff_ps = oas2bits(MIN(STE_S2PS(ste), SMMU_IDR5_OAS));
417 * It is ILLEGAL for the address in S2TTB to be outside the range
418 * described by the effective S2PS value.
420 if (cfg->s2cfg.vttb & ~(MAKE_64BIT_MASK(0, cfg->s2cfg.eff_ps))) {
421 qemu_log_mask(LOG_GUEST_ERROR,
422 "SMMUv3 S2TTB too large 0x%" PRIx64
423 ", effective PS %d bits\n",
424 cfg->s2cfg.vttb, cfg->s2cfg.eff_ps);
425 goto bad_ste;
428 cfg->s2cfg.tsz = STE_S2T0SZ(ste);
430 if (!s2t0sz_valid(cfg)) {
431 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 bad STE S2T0SZ = %d\n",
432 cfg->s2cfg.tsz);
433 goto bad_ste;
436 if (!s2_pgtable_config_valid(cfg->s2cfg.sl0, cfg->s2cfg.tsz,
437 cfg->s2cfg.granule_sz)) {
438 qemu_log_mask(LOG_GUEST_ERROR,
439 "SMMUv3 STE stage 2 config not valid!\n");
440 goto bad_ste;
443 /* Only LE supported(IDR0.TTENDIAN). */
444 if (STE_S2ENDI(ste)) {
445 qemu_log_mask(LOG_GUEST_ERROR,
446 "SMMUv3 STE_S2ENDI only supports LE!\n");
447 goto bad_ste;
450 cfg->s2cfg.affd = STE_S2AFFD(ste);
452 cfg->s2cfg.record_faults = STE_S2R(ste);
453 /* As stall is not supported. */
454 if (STE_S2S(ste)) {
455 qemu_log_mask(LOG_UNIMP, "SMMUv3 Stall not implemented!\n");
456 goto bad_ste;
459 return 0;
461 bad_ste:
462 return -EINVAL;
465 /* Returns < 0 in case of invalid STE, 0 otherwise */
466 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
467 STE *ste, SMMUEventInfo *event)
469 uint32_t config;
470 int ret;
472 if (!STE_VALID(ste)) {
473 if (!event->inval_ste_allowed) {
474 qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
476 goto bad_ste;
479 config = STE_CONFIG(ste);
481 if (STE_CFG_ABORT(config)) {
482 cfg->aborted = true;
483 return 0;
486 if (STE_CFG_BYPASS(config)) {
487 cfg->bypassed = true;
488 return 0;
492 * If a stage is enabled in SW while not advertised, throw bad ste
493 * according to user manual(IHI0070E) "5.2 Stream Table Entry".
495 if (!STAGE1_SUPPORTED(s) && STE_CFG_S1_ENABLED(config)) {
496 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S1 used but not supported.\n");
497 goto bad_ste;
499 if (!STAGE2_SUPPORTED(s) && STE_CFG_S2_ENABLED(config)) {
500 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S2 used but not supported.\n");
501 goto bad_ste;
504 if (STAGE2_SUPPORTED(s)) {
505 /* VMID is considered even if s2 is disabled. */
506 cfg->s2cfg.vmid = STE_S2VMID(ste);
507 } else {
508 /* Default to -1 */
509 cfg->s2cfg.vmid = -1;
512 if (STE_CFG_S2_ENABLED(config)) {
514 * Stage-1 OAS defaults to OAS even if not enabled as it would be used
515 * in input address check for stage-2.
517 cfg->oas = oas2bits(SMMU_IDR5_OAS);
518 ret = decode_ste_s2_cfg(cfg, ste);
519 if (ret) {
520 goto bad_ste;
524 if (STE_S1CDMAX(ste) != 0) {
525 qemu_log_mask(LOG_UNIMP,
526 "SMMUv3 does not support multiple context descriptors yet\n");
527 goto bad_ste;
530 if (STE_S1STALLD(ste)) {
531 qemu_log_mask(LOG_UNIMP,
532 "SMMUv3 S1 stalling fault model not allowed yet\n");
533 goto bad_ste;
535 return 0;
537 bad_ste:
538 event->type = SMMU_EVT_C_BAD_STE;
539 return -EINVAL;
543 * smmu_find_ste - Return the stream table entry associated
544 * to the sid
546 * @s: smmuv3 handle
547 * @sid: stream ID
548 * @ste: returned stream table entry
549 * @event: handle to an event info
551 * Supports linear and 2-level stream table
552 * Return 0 on success, -EINVAL otherwise
554 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
555 SMMUEventInfo *event)
557 dma_addr_t addr, strtab_base;
558 uint32_t log2size;
559 int strtab_size_shift;
560 int ret;
562 trace_smmuv3_find_ste(sid, s->features, s->sid_split);
563 log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
565 * Check SID range against both guest-configured and implementation limits
567 if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
568 event->type = SMMU_EVT_C_BAD_STREAMID;
569 return -EINVAL;
571 if (s->features & SMMU_FEATURE_2LVL_STE) {
572 int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
573 dma_addr_t l1ptr, l2ptr;
574 STEDesc l1std;
577 * Align strtab base address to table size. For this purpose, assume it
578 * is not bounded by SMMU_IDR1_SIDSIZE.
580 strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
581 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
582 ~MAKE_64BIT_MASK(0, strtab_size_shift);
583 l1_ste_offset = sid >> s->sid_split;
584 l2_ste_offset = sid & ((1 << s->sid_split) - 1);
585 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
586 /* TODO: guarantee 64-bit single-copy atomicity */
587 ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
588 sizeof(l1std), MEMTXATTRS_UNSPECIFIED);
589 if (ret != MEMTX_OK) {
590 qemu_log_mask(LOG_GUEST_ERROR,
591 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
592 event->type = SMMU_EVT_F_STE_FETCH;
593 event->u.f_ste_fetch.addr = l1ptr;
594 return -EINVAL;
597 span = L1STD_SPAN(&l1std);
599 if (!span) {
600 /* l2ptr is not valid */
601 if (!event->inval_ste_allowed) {
602 qemu_log_mask(LOG_GUEST_ERROR,
603 "invalid sid=%d (L1STD span=0)\n", sid);
605 event->type = SMMU_EVT_C_BAD_STREAMID;
606 return -EINVAL;
608 max_l2_ste = (1 << span) - 1;
609 l2ptr = l1std_l2ptr(&l1std);
610 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
611 l2ptr, l2_ste_offset, max_l2_ste);
612 if (l2_ste_offset > max_l2_ste) {
613 qemu_log_mask(LOG_GUEST_ERROR,
614 "l2_ste_offset=%d > max_l2_ste=%d\n",
615 l2_ste_offset, max_l2_ste);
616 event->type = SMMU_EVT_C_BAD_STE;
617 return -EINVAL;
619 addr = l2ptr + l2_ste_offset * sizeof(*ste);
620 } else {
621 strtab_size_shift = log2size + 5;
622 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
623 ~MAKE_64BIT_MASK(0, strtab_size_shift);
624 addr = strtab_base + sid * sizeof(*ste);
627 if (smmu_get_ste(s, addr, ste, event)) {
628 return -EINVAL;
631 return 0;
634 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
636 int ret = -EINVAL;
637 int i;
639 if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
640 goto bad_cd;
642 if (!CD_A(cd)) {
643 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
645 if (CD_S(cd)) {
646 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
648 if (CD_HA(cd) || CD_HD(cd)) {
649 goto bad_cd; /* HTTU = 0 */
652 /* we support only those at the moment */
653 cfg->aa64 = true;
654 cfg->stage = 1;
656 cfg->oas = oas2bits(CD_IPS(cd));
657 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
658 cfg->tbi = CD_TBI(cd);
659 cfg->asid = CD_ASID(cd);
661 trace_smmuv3_decode_cd(cfg->oas);
663 /* decode data dependent on TT */
664 for (i = 0; i <= 1; i++) {
665 int tg, tsz;
666 SMMUTransTableInfo *tt = &cfg->tt[i];
668 cfg->tt[i].disabled = CD_EPD(cd, i);
669 if (cfg->tt[i].disabled) {
670 continue;
673 tsz = CD_TSZ(cd, i);
674 if (tsz < 16 || tsz > 39) {
675 goto bad_cd;
678 tg = CD_TG(cd, i);
679 tt->granule_sz = tg2granule(tg, i);
680 if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
681 tt->granule_sz != 16) || CD_ENDI(cd)) {
682 goto bad_cd;
685 tt->tsz = tsz;
686 tt->ttb = CD_TTB(cd, i);
687 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
688 goto bad_cd;
690 tt->had = CD_HAD(cd, i);
691 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
694 cfg->record_faults = CD_R(cd);
696 return 0;
698 bad_cd:
699 event->type = SMMU_EVT_C_BAD_CD;
700 return ret;
704 * smmuv3_decode_config - Prepare the translation configuration
705 * for the @mr iommu region
706 * @mr: iommu memory region the translation config must be prepared for
707 * @cfg: output translation configuration which is populated through
708 * the different configuration decoding steps
709 * @event: must be zero'ed by the caller
711 * return < 0 in case of config decoding error (@event is filled
712 * accordingly). Return 0 otherwise.
714 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
715 SMMUEventInfo *event)
717 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
718 uint32_t sid = smmu_get_sid(sdev);
719 SMMUv3State *s = sdev->smmu;
720 int ret;
721 STE ste;
722 CD cd;
724 /* ASID defaults to -1 (if s1 is not supported). */
725 cfg->asid = -1;
727 ret = smmu_find_ste(s, sid, &ste, event);
728 if (ret) {
729 return ret;
732 ret = decode_ste(s, cfg, &ste, event);
733 if (ret) {
734 return ret;
737 if (cfg->aborted || cfg->bypassed || (cfg->stage == 2)) {
738 return 0;
741 ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
742 if (ret) {
743 return ret;
746 return decode_cd(cfg, &cd, event);
750 * smmuv3_get_config - Look up for a cached copy of configuration data for
751 * @sdev and on cache miss performs a configuration structure decoding from
752 * guest RAM.
754 * @sdev: SMMUDevice handle
755 * @event: output event info
757 * The configuration cache contains data resulting from both STE and CD
758 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
759 * by the SMMUDevice handle.
761 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
763 SMMUv3State *s = sdev->smmu;
764 SMMUState *bc = &s->smmu_state;
765 SMMUTransCfg *cfg;
767 cfg = g_hash_table_lookup(bc->configs, sdev);
768 if (cfg) {
769 sdev->cfg_cache_hits++;
770 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
771 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
772 100 * sdev->cfg_cache_hits /
773 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
774 } else {
775 sdev->cfg_cache_misses++;
776 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
777 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
778 100 * sdev->cfg_cache_hits /
779 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
780 cfg = g_new0(SMMUTransCfg, 1);
782 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
783 g_hash_table_insert(bc->configs, sdev, cfg);
784 } else {
785 g_free(cfg);
786 cfg = NULL;
789 return cfg;
792 static void smmuv3_flush_config(SMMUDevice *sdev)
794 SMMUv3State *s = sdev->smmu;
795 SMMUState *bc = &s->smmu_state;
797 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
798 g_hash_table_remove(bc->configs, sdev);
801 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
802 IOMMUAccessFlags flag, int iommu_idx)
804 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
805 SMMUv3State *s = sdev->smmu;
806 uint32_t sid = smmu_get_sid(sdev);
807 SMMUEventInfo event = {.type = SMMU_EVT_NONE,
808 .sid = sid,
809 .inval_ste_allowed = false};
810 SMMUPTWEventInfo ptw_info = {};
811 SMMUTranslationStatus status;
812 SMMUState *bs = ARM_SMMU(s);
813 uint64_t page_mask, aligned_addr;
814 SMMUTLBEntry *cached_entry = NULL;
815 SMMUTransTableInfo *tt;
816 SMMUTransCfg *cfg = NULL;
817 IOMMUTLBEntry entry = {
818 .target_as = &address_space_memory,
819 .iova = addr,
820 .translated_addr = addr,
821 .addr_mask = ~(hwaddr)0,
822 .perm = IOMMU_NONE,
825 * Combined attributes used for TLB lookup, as only one stage is supported,
826 * it will hold attributes based on the enabled stage.
828 SMMUTransTableInfo tt_combined;
830 qemu_mutex_lock(&s->mutex);
832 if (!smmu_enabled(s)) {
833 if (FIELD_EX32(s->gbpa, GBPA, ABORT)) {
834 status = SMMU_TRANS_ABORT;
835 } else {
836 status = SMMU_TRANS_DISABLE;
838 goto epilogue;
841 cfg = smmuv3_get_config(sdev, &event);
842 if (!cfg) {
843 status = SMMU_TRANS_ERROR;
844 goto epilogue;
847 if (cfg->aborted) {
848 status = SMMU_TRANS_ABORT;
849 goto epilogue;
852 if (cfg->bypassed) {
853 status = SMMU_TRANS_BYPASS;
854 goto epilogue;
857 if (cfg->stage == 1) {
858 /* Select stage1 translation table. */
859 tt = select_tt(cfg, addr);
860 if (!tt) {
861 if (cfg->record_faults) {
862 event.type = SMMU_EVT_F_TRANSLATION;
863 event.u.f_translation.addr = addr;
864 event.u.f_translation.rnw = flag & 0x1;
866 status = SMMU_TRANS_ERROR;
867 goto epilogue;
869 tt_combined.granule_sz = tt->granule_sz;
870 tt_combined.tsz = tt->tsz;
872 } else {
873 /* Stage2. */
874 tt_combined.granule_sz = cfg->s2cfg.granule_sz;
875 tt_combined.tsz = cfg->s2cfg.tsz;
878 * TLB lookup looks for granule and input size for a translation stage,
879 * as only one stage is supported right now, choose the right values
880 * from the configuration.
882 page_mask = (1ULL << tt_combined.granule_sz) - 1;
883 aligned_addr = addr & ~page_mask;
885 cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, aligned_addr);
886 if (cached_entry) {
887 if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) {
888 status = SMMU_TRANS_ERROR;
890 * We know that the TLB only contains either stage-1 or stage-2 as
891 * nesting is not supported. So it is sufficient to check the
892 * translation stage to know the TLB stage for now.
894 event.u.f_walk_eabt.s2 = (cfg->stage == 2);
895 if (PTW_RECORD_FAULT(cfg)) {
896 event.type = SMMU_EVT_F_PERMISSION;
897 event.u.f_permission.addr = addr;
898 event.u.f_permission.rnw = flag & 0x1;
900 } else {
901 status = SMMU_TRANS_SUCCESS;
903 goto epilogue;
906 cached_entry = g_new0(SMMUTLBEntry, 1);
908 if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
909 /* All faults from PTW has S2 field. */
910 event.u.f_walk_eabt.s2 = (ptw_info.stage == 2);
911 g_free(cached_entry);
912 switch (ptw_info.type) {
913 case SMMU_PTW_ERR_WALK_EABT:
914 event.type = SMMU_EVT_F_WALK_EABT;
915 event.u.f_walk_eabt.addr = addr;
916 event.u.f_walk_eabt.rnw = flag & 0x1;
917 event.u.f_walk_eabt.class = 0x1;
918 event.u.f_walk_eabt.addr2 = ptw_info.addr;
919 break;
920 case SMMU_PTW_ERR_TRANSLATION:
921 if (PTW_RECORD_FAULT(cfg)) {
922 event.type = SMMU_EVT_F_TRANSLATION;
923 event.u.f_translation.addr = addr;
924 event.u.f_translation.rnw = flag & 0x1;
926 break;
927 case SMMU_PTW_ERR_ADDR_SIZE:
928 if (PTW_RECORD_FAULT(cfg)) {
929 event.type = SMMU_EVT_F_ADDR_SIZE;
930 event.u.f_addr_size.addr = addr;
931 event.u.f_addr_size.rnw = flag & 0x1;
933 break;
934 case SMMU_PTW_ERR_ACCESS:
935 if (PTW_RECORD_FAULT(cfg)) {
936 event.type = SMMU_EVT_F_ACCESS;
937 event.u.f_access.addr = addr;
938 event.u.f_access.rnw = flag & 0x1;
940 break;
941 case SMMU_PTW_ERR_PERMISSION:
942 if (PTW_RECORD_FAULT(cfg)) {
943 event.type = SMMU_EVT_F_PERMISSION;
944 event.u.f_permission.addr = addr;
945 event.u.f_permission.rnw = flag & 0x1;
947 break;
948 default:
949 g_assert_not_reached();
951 status = SMMU_TRANS_ERROR;
952 } else {
953 smmu_iotlb_insert(bs, cfg, cached_entry);
954 status = SMMU_TRANS_SUCCESS;
957 epilogue:
958 qemu_mutex_unlock(&s->mutex);
959 switch (status) {
960 case SMMU_TRANS_SUCCESS:
961 entry.perm = cached_entry->entry.perm;
962 entry.translated_addr = cached_entry->entry.translated_addr +
963 (addr & cached_entry->entry.addr_mask);
964 entry.addr_mask = cached_entry->entry.addr_mask;
965 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
966 entry.translated_addr, entry.perm);
967 break;
968 case SMMU_TRANS_DISABLE:
969 entry.perm = flag;
970 entry.addr_mask = ~TARGET_PAGE_MASK;
971 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
972 entry.perm);
973 break;
974 case SMMU_TRANS_BYPASS:
975 entry.perm = flag;
976 entry.addr_mask = ~TARGET_PAGE_MASK;
977 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
978 entry.perm);
979 break;
980 case SMMU_TRANS_ABORT:
981 /* no event is recorded on abort */
982 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
983 entry.perm);
984 break;
985 case SMMU_TRANS_ERROR:
986 qemu_log_mask(LOG_GUEST_ERROR,
987 "%s translation failed for iova=0x%"PRIx64" (%s)\n",
988 mr->parent_obj.name, addr, smmu_event_string(event.type));
989 smmuv3_record_event(s, &event);
990 break;
993 return entry;
997 * smmuv3_notify_iova - call the notifier @n for a given
998 * @asid and @iova tuple.
1000 * @mr: IOMMU mr region handle
1001 * @n: notifier to be called
1002 * @asid: address space ID or negative value if we don't care
1003 * @vmid: virtual machine ID or negative value if we don't care
1004 * @iova: iova
1005 * @tg: translation granule (if communicated through range invalidation)
1006 * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
1008 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
1009 IOMMUNotifier *n,
1010 int asid, int vmid,
1011 dma_addr_t iova, uint8_t tg,
1012 uint64_t num_pages)
1014 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
1015 IOMMUTLBEvent event;
1016 uint8_t granule;
1017 SMMUv3State *s = sdev->smmu;
1019 if (!tg) {
1020 SMMUEventInfo event = {.inval_ste_allowed = true};
1021 SMMUTransCfg *cfg = smmuv3_get_config(sdev, &event);
1022 SMMUTransTableInfo *tt;
1024 if (!cfg) {
1025 return;
1028 if (asid >= 0 && cfg->asid != asid) {
1029 return;
1032 if (vmid >= 0 && cfg->s2cfg.vmid != vmid) {
1033 return;
1036 if (STAGE1_SUPPORTED(s)) {
1037 tt = select_tt(cfg, iova);
1038 if (!tt) {
1039 return;
1041 granule = tt->granule_sz;
1042 } else {
1043 granule = cfg->s2cfg.granule_sz;
1046 } else {
1047 granule = tg * 2 + 10;
1050 event.type = IOMMU_NOTIFIER_UNMAP;
1051 event.entry.target_as = &address_space_memory;
1052 event.entry.iova = iova;
1053 event.entry.addr_mask = num_pages * (1 << granule) - 1;
1054 event.entry.perm = IOMMU_NONE;
1056 memory_region_notify_iommu_one(n, &event);
1059 /* invalidate an asid/vmid/iova range tuple in all mr's */
1060 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, int vmid,
1061 dma_addr_t iova, uint8_t tg,
1062 uint64_t num_pages)
1064 SMMUDevice *sdev;
1066 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
1067 IOMMUMemoryRegion *mr = &sdev->iommu;
1068 IOMMUNotifier *n;
1070 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, vmid,
1071 iova, tg, num_pages);
1073 IOMMU_NOTIFIER_FOREACH(n, mr) {
1074 smmuv3_notify_iova(mr, n, asid, vmid, iova, tg, num_pages);
1079 static void smmuv3_range_inval(SMMUState *s, Cmd *cmd)
1081 dma_addr_t end, addr = CMD_ADDR(cmd);
1082 uint8_t type = CMD_TYPE(cmd);
1083 int vmid = -1;
1084 uint8_t scale = CMD_SCALE(cmd);
1085 uint8_t num = CMD_NUM(cmd);
1086 uint8_t ttl = CMD_TTL(cmd);
1087 bool leaf = CMD_LEAF(cmd);
1088 uint8_t tg = CMD_TG(cmd);
1089 uint64_t num_pages;
1090 uint8_t granule;
1091 int asid = -1;
1092 SMMUv3State *smmuv3 = ARM_SMMUV3(s);
1094 /* Only consider VMID if stage-2 is supported. */
1095 if (STAGE2_SUPPORTED(smmuv3)) {
1096 vmid = CMD_VMID(cmd);
1099 if (type == SMMU_CMD_TLBI_NH_VA) {
1100 asid = CMD_ASID(cmd);
1103 if (!tg) {
1104 trace_smmuv3_range_inval(vmid, asid, addr, tg, 1, ttl, leaf);
1105 smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, 1);
1106 smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, 1, ttl);
1107 return;
1110 /* RIL in use */
1112 num_pages = (num + 1) * BIT_ULL(scale);
1113 granule = tg * 2 + 10;
1115 /* Split invalidations into ^2 range invalidations */
1116 end = addr + (num_pages << granule) - 1;
1118 while (addr != end + 1) {
1119 uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
1121 num_pages = (mask + 1) >> granule;
1122 trace_smmuv3_range_inval(vmid, asid, addr, tg, num_pages, ttl, leaf);
1123 smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, num_pages);
1124 smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, num_pages, ttl);
1125 addr += mask + 1;
1129 static gboolean
1130 smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
1132 SMMUDevice *sdev = (SMMUDevice *)key;
1133 uint32_t sid = smmu_get_sid(sdev);
1134 SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
1136 if (sid < sid_range->start || sid > sid_range->end) {
1137 return false;
1139 trace_smmuv3_config_cache_inv(sid);
1140 return true;
1143 static int smmuv3_cmdq_consume(SMMUv3State *s)
1145 SMMUState *bs = ARM_SMMU(s);
1146 SMMUCmdError cmd_error = SMMU_CERROR_NONE;
1147 SMMUQueue *q = &s->cmdq;
1148 SMMUCommandType type = 0;
1150 if (!smmuv3_cmdq_enabled(s)) {
1151 return 0;
1154 * some commands depend on register values, typically CR0. In case those
1155 * register values change while handling the command, spec says it
1156 * is UNPREDICTABLE whether the command is interpreted under the new
1157 * or old value.
1160 while (!smmuv3_q_empty(q)) {
1161 uint32_t pending = s->gerror ^ s->gerrorn;
1162 Cmd cmd;
1164 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
1165 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1167 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
1168 break;
1171 if (queue_read(q, &cmd) != MEMTX_OK) {
1172 cmd_error = SMMU_CERROR_ABT;
1173 break;
1176 type = CMD_TYPE(&cmd);
1178 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
1180 qemu_mutex_lock(&s->mutex);
1181 switch (type) {
1182 case SMMU_CMD_SYNC:
1183 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
1184 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
1186 break;
1187 case SMMU_CMD_PREFETCH_CONFIG:
1188 case SMMU_CMD_PREFETCH_ADDR:
1189 break;
1190 case SMMU_CMD_CFGI_STE:
1192 uint32_t sid = CMD_SID(&cmd);
1193 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1194 SMMUDevice *sdev;
1196 if (CMD_SSEC(&cmd)) {
1197 cmd_error = SMMU_CERROR_ILL;
1198 break;
1201 if (!mr) {
1202 break;
1205 trace_smmuv3_cmdq_cfgi_ste(sid);
1206 sdev = container_of(mr, SMMUDevice, iommu);
1207 smmuv3_flush_config(sdev);
1209 break;
1211 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
1213 uint32_t sid = CMD_SID(&cmd), mask;
1214 uint8_t range = CMD_STE_RANGE(&cmd);
1215 SMMUSIDRange sid_range;
1217 if (CMD_SSEC(&cmd)) {
1218 cmd_error = SMMU_CERROR_ILL;
1219 break;
1222 mask = (1ULL << (range + 1)) - 1;
1223 sid_range.start = sid & ~mask;
1224 sid_range.end = sid_range.start + mask;
1226 trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
1227 g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
1228 &sid_range);
1229 break;
1231 case SMMU_CMD_CFGI_CD:
1232 case SMMU_CMD_CFGI_CD_ALL:
1234 uint32_t sid = CMD_SID(&cmd);
1235 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1236 SMMUDevice *sdev;
1238 if (CMD_SSEC(&cmd)) {
1239 cmd_error = SMMU_CERROR_ILL;
1240 break;
1243 if (!mr) {
1244 break;
1247 trace_smmuv3_cmdq_cfgi_cd(sid);
1248 sdev = container_of(mr, SMMUDevice, iommu);
1249 smmuv3_flush_config(sdev);
1250 break;
1252 case SMMU_CMD_TLBI_NH_ASID:
1254 uint16_t asid = CMD_ASID(&cmd);
1256 if (!STAGE1_SUPPORTED(s)) {
1257 cmd_error = SMMU_CERROR_ILL;
1258 break;
1261 trace_smmuv3_cmdq_tlbi_nh_asid(asid);
1262 smmu_inv_notifiers_all(&s->smmu_state);
1263 smmu_iotlb_inv_asid(bs, asid);
1264 break;
1266 case SMMU_CMD_TLBI_NH_ALL:
1267 if (!STAGE1_SUPPORTED(s)) {
1268 cmd_error = SMMU_CERROR_ILL;
1269 break;
1271 QEMU_FALLTHROUGH;
1272 case SMMU_CMD_TLBI_NSNH_ALL:
1273 trace_smmuv3_cmdq_tlbi_nh();
1274 smmu_inv_notifiers_all(&s->smmu_state);
1275 smmu_iotlb_inv_all(bs);
1276 break;
1277 case SMMU_CMD_TLBI_NH_VAA:
1278 case SMMU_CMD_TLBI_NH_VA:
1279 if (!STAGE1_SUPPORTED(s)) {
1280 cmd_error = SMMU_CERROR_ILL;
1281 break;
1283 smmuv3_range_inval(bs, &cmd);
1284 break;
1285 case SMMU_CMD_TLBI_S12_VMALL:
1287 uint16_t vmid = CMD_VMID(&cmd);
1289 if (!STAGE2_SUPPORTED(s)) {
1290 cmd_error = SMMU_CERROR_ILL;
1291 break;
1294 trace_smmuv3_cmdq_tlbi_s12_vmid(vmid);
1295 smmu_inv_notifiers_all(&s->smmu_state);
1296 smmu_iotlb_inv_vmid(bs, vmid);
1297 break;
1299 case SMMU_CMD_TLBI_S2_IPA:
1300 if (!STAGE2_SUPPORTED(s)) {
1301 cmd_error = SMMU_CERROR_ILL;
1302 break;
1305 * As currently only either s1 or s2 are supported
1306 * we can reuse same function for s2.
1308 smmuv3_range_inval(bs, &cmd);
1309 break;
1310 case SMMU_CMD_TLBI_EL3_ALL:
1311 case SMMU_CMD_TLBI_EL3_VA:
1312 case SMMU_CMD_TLBI_EL2_ALL:
1313 case SMMU_CMD_TLBI_EL2_ASID:
1314 case SMMU_CMD_TLBI_EL2_VA:
1315 case SMMU_CMD_TLBI_EL2_VAA:
1316 case SMMU_CMD_ATC_INV:
1317 case SMMU_CMD_PRI_RESP:
1318 case SMMU_CMD_RESUME:
1319 case SMMU_CMD_STALL_TERM:
1320 trace_smmuv3_unhandled_cmd(type);
1321 break;
1322 default:
1323 cmd_error = SMMU_CERROR_ILL;
1324 break;
1326 qemu_mutex_unlock(&s->mutex);
1327 if (cmd_error) {
1328 if (cmd_error == SMMU_CERROR_ILL) {
1329 qemu_log_mask(LOG_GUEST_ERROR,
1330 "Illegal command type: %d\n", CMD_TYPE(&cmd));
1332 break;
1335 * We only increment the cons index after the completion of
1336 * the command. We do that because the SYNC returns immediately
1337 * and does not check the completion of previous commands
1339 queue_cons_incr(q);
1342 if (cmd_error) {
1343 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1344 smmu_write_cmdq_err(s, cmd_error);
1345 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1348 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1349 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1351 return 0;
1354 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1355 uint64_t data, MemTxAttrs attrs)
1357 switch (offset) {
1358 case A_GERROR_IRQ_CFG0:
1359 s->gerror_irq_cfg0 = data;
1360 return MEMTX_OK;
1361 case A_STRTAB_BASE:
1362 s->strtab_base = data;
1363 return MEMTX_OK;
1364 case A_CMDQ_BASE:
1365 s->cmdq.base = data;
1366 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1367 if (s->cmdq.log2size > SMMU_CMDQS) {
1368 s->cmdq.log2size = SMMU_CMDQS;
1370 return MEMTX_OK;
1371 case A_EVENTQ_BASE:
1372 s->eventq.base = data;
1373 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1374 if (s->eventq.log2size > SMMU_EVENTQS) {
1375 s->eventq.log2size = SMMU_EVENTQS;
1377 return MEMTX_OK;
1378 case A_EVENTQ_IRQ_CFG0:
1379 s->eventq_irq_cfg0 = data;
1380 return MEMTX_OK;
1381 default:
1382 qemu_log_mask(LOG_UNIMP,
1383 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1384 __func__, offset);
1385 return MEMTX_OK;
1389 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1390 uint64_t data, MemTxAttrs attrs)
1392 switch (offset) {
1393 case A_CR0:
1394 s->cr[0] = data;
1395 s->cr0ack = data & ~SMMU_CR0_RESERVED;
1396 /* in case the command queue has been enabled */
1397 smmuv3_cmdq_consume(s);
1398 return MEMTX_OK;
1399 case A_CR1:
1400 s->cr[1] = data;
1401 return MEMTX_OK;
1402 case A_CR2:
1403 s->cr[2] = data;
1404 return MEMTX_OK;
1405 case A_IRQ_CTRL:
1406 s->irq_ctrl = data;
1407 return MEMTX_OK;
1408 case A_GERRORN:
1409 smmuv3_write_gerrorn(s, data);
1411 * By acknowledging the CMDQ_ERR, SW may notify cmds can
1412 * be processed again
1414 smmuv3_cmdq_consume(s);
1415 return MEMTX_OK;
1416 case A_GERROR_IRQ_CFG0: /* 64b */
1417 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1418 return MEMTX_OK;
1419 case A_GERROR_IRQ_CFG0 + 4:
1420 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1421 return MEMTX_OK;
1422 case A_GERROR_IRQ_CFG1:
1423 s->gerror_irq_cfg1 = data;
1424 return MEMTX_OK;
1425 case A_GERROR_IRQ_CFG2:
1426 s->gerror_irq_cfg2 = data;
1427 return MEMTX_OK;
1428 case A_GBPA:
1430 * If UPDATE is not set, the write is ignored. This is the only
1431 * permitted behavior in SMMUv3.2 and later.
1433 if (data & R_GBPA_UPDATE_MASK) {
1434 /* Ignore update bit as write is synchronous. */
1435 s->gbpa = data & ~R_GBPA_UPDATE_MASK;
1437 return MEMTX_OK;
1438 case A_STRTAB_BASE: /* 64b */
1439 s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1440 return MEMTX_OK;
1441 case A_STRTAB_BASE + 4:
1442 s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1443 return MEMTX_OK;
1444 case A_STRTAB_BASE_CFG:
1445 s->strtab_base_cfg = data;
1446 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1447 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1448 s->features |= SMMU_FEATURE_2LVL_STE;
1450 return MEMTX_OK;
1451 case A_CMDQ_BASE: /* 64b */
1452 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1453 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1454 if (s->cmdq.log2size > SMMU_CMDQS) {
1455 s->cmdq.log2size = SMMU_CMDQS;
1457 return MEMTX_OK;
1458 case A_CMDQ_BASE + 4: /* 64b */
1459 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1460 return MEMTX_OK;
1461 case A_CMDQ_PROD:
1462 s->cmdq.prod = data;
1463 smmuv3_cmdq_consume(s);
1464 return MEMTX_OK;
1465 case A_CMDQ_CONS:
1466 s->cmdq.cons = data;
1467 return MEMTX_OK;
1468 case A_EVENTQ_BASE: /* 64b */
1469 s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1470 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1471 if (s->eventq.log2size > SMMU_EVENTQS) {
1472 s->eventq.log2size = SMMU_EVENTQS;
1474 return MEMTX_OK;
1475 case A_EVENTQ_BASE + 4:
1476 s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1477 return MEMTX_OK;
1478 case A_EVENTQ_PROD:
1479 s->eventq.prod = data;
1480 return MEMTX_OK;
1481 case A_EVENTQ_CONS:
1482 s->eventq.cons = data;
1483 return MEMTX_OK;
1484 case A_EVENTQ_IRQ_CFG0: /* 64b */
1485 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1486 return MEMTX_OK;
1487 case A_EVENTQ_IRQ_CFG0 + 4:
1488 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1489 return MEMTX_OK;
1490 case A_EVENTQ_IRQ_CFG1:
1491 s->eventq_irq_cfg1 = data;
1492 return MEMTX_OK;
1493 case A_EVENTQ_IRQ_CFG2:
1494 s->eventq_irq_cfg2 = data;
1495 return MEMTX_OK;
1496 default:
1497 qemu_log_mask(LOG_UNIMP,
1498 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1499 __func__, offset);
1500 return MEMTX_OK;
1504 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1505 unsigned size, MemTxAttrs attrs)
1507 SMMUState *sys = opaque;
1508 SMMUv3State *s = ARM_SMMUV3(sys);
1509 MemTxResult r;
1511 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1512 offset &= ~0x10000;
1514 switch (size) {
1515 case 8:
1516 r = smmu_writell(s, offset, data, attrs);
1517 break;
1518 case 4:
1519 r = smmu_writel(s, offset, data, attrs);
1520 break;
1521 default:
1522 r = MEMTX_ERROR;
1523 break;
1526 trace_smmuv3_write_mmio(offset, data, size, r);
1527 return r;
1530 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1531 uint64_t *data, MemTxAttrs attrs)
1533 switch (offset) {
1534 case A_GERROR_IRQ_CFG0:
1535 *data = s->gerror_irq_cfg0;
1536 return MEMTX_OK;
1537 case A_STRTAB_BASE:
1538 *data = s->strtab_base;
1539 return MEMTX_OK;
1540 case A_CMDQ_BASE:
1541 *data = s->cmdq.base;
1542 return MEMTX_OK;
1543 case A_EVENTQ_BASE:
1544 *data = s->eventq.base;
1545 return MEMTX_OK;
1546 default:
1547 *data = 0;
1548 qemu_log_mask(LOG_UNIMP,
1549 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1550 __func__, offset);
1551 return MEMTX_OK;
1555 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1556 uint64_t *data, MemTxAttrs attrs)
1558 switch (offset) {
1559 case A_IDREGS ... A_IDREGS + 0x2f:
1560 *data = smmuv3_idreg(offset - A_IDREGS);
1561 return MEMTX_OK;
1562 case A_IDR0 ... A_IDR5:
1563 *data = s->idr[(offset - A_IDR0) / 4];
1564 return MEMTX_OK;
1565 case A_IIDR:
1566 *data = s->iidr;
1567 return MEMTX_OK;
1568 case A_AIDR:
1569 *data = s->aidr;
1570 return MEMTX_OK;
1571 case A_CR0:
1572 *data = s->cr[0];
1573 return MEMTX_OK;
1574 case A_CR0ACK:
1575 *data = s->cr0ack;
1576 return MEMTX_OK;
1577 case A_CR1:
1578 *data = s->cr[1];
1579 return MEMTX_OK;
1580 case A_CR2:
1581 *data = s->cr[2];
1582 return MEMTX_OK;
1583 case A_STATUSR:
1584 *data = s->statusr;
1585 return MEMTX_OK;
1586 case A_GBPA:
1587 *data = s->gbpa;
1588 return MEMTX_OK;
1589 case A_IRQ_CTRL:
1590 case A_IRQ_CTRL_ACK:
1591 *data = s->irq_ctrl;
1592 return MEMTX_OK;
1593 case A_GERROR:
1594 *data = s->gerror;
1595 return MEMTX_OK;
1596 case A_GERRORN:
1597 *data = s->gerrorn;
1598 return MEMTX_OK;
1599 case A_GERROR_IRQ_CFG0: /* 64b */
1600 *data = extract64(s->gerror_irq_cfg0, 0, 32);
1601 return MEMTX_OK;
1602 case A_GERROR_IRQ_CFG0 + 4:
1603 *data = extract64(s->gerror_irq_cfg0, 32, 32);
1604 return MEMTX_OK;
1605 case A_GERROR_IRQ_CFG1:
1606 *data = s->gerror_irq_cfg1;
1607 return MEMTX_OK;
1608 case A_GERROR_IRQ_CFG2:
1609 *data = s->gerror_irq_cfg2;
1610 return MEMTX_OK;
1611 case A_STRTAB_BASE: /* 64b */
1612 *data = extract64(s->strtab_base, 0, 32);
1613 return MEMTX_OK;
1614 case A_STRTAB_BASE + 4: /* 64b */
1615 *data = extract64(s->strtab_base, 32, 32);
1616 return MEMTX_OK;
1617 case A_STRTAB_BASE_CFG:
1618 *data = s->strtab_base_cfg;
1619 return MEMTX_OK;
1620 case A_CMDQ_BASE: /* 64b */
1621 *data = extract64(s->cmdq.base, 0, 32);
1622 return MEMTX_OK;
1623 case A_CMDQ_BASE + 4:
1624 *data = extract64(s->cmdq.base, 32, 32);
1625 return MEMTX_OK;
1626 case A_CMDQ_PROD:
1627 *data = s->cmdq.prod;
1628 return MEMTX_OK;
1629 case A_CMDQ_CONS:
1630 *data = s->cmdq.cons;
1631 return MEMTX_OK;
1632 case A_EVENTQ_BASE: /* 64b */
1633 *data = extract64(s->eventq.base, 0, 32);
1634 return MEMTX_OK;
1635 case A_EVENTQ_BASE + 4: /* 64b */
1636 *data = extract64(s->eventq.base, 32, 32);
1637 return MEMTX_OK;
1638 case A_EVENTQ_PROD:
1639 *data = s->eventq.prod;
1640 return MEMTX_OK;
1641 case A_EVENTQ_CONS:
1642 *data = s->eventq.cons;
1643 return MEMTX_OK;
1644 default:
1645 *data = 0;
1646 qemu_log_mask(LOG_UNIMP,
1647 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1648 __func__, offset);
1649 return MEMTX_OK;
1653 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1654 unsigned size, MemTxAttrs attrs)
1656 SMMUState *sys = opaque;
1657 SMMUv3State *s = ARM_SMMUV3(sys);
1658 MemTxResult r;
1660 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1661 offset &= ~0x10000;
1663 switch (size) {
1664 case 8:
1665 r = smmu_readll(s, offset, data, attrs);
1666 break;
1667 case 4:
1668 r = smmu_readl(s, offset, data, attrs);
1669 break;
1670 default:
1671 r = MEMTX_ERROR;
1672 break;
1675 trace_smmuv3_read_mmio(offset, *data, size, r);
1676 return r;
1679 static const MemoryRegionOps smmu_mem_ops = {
1680 .read_with_attrs = smmu_read_mmio,
1681 .write_with_attrs = smmu_write_mmio,
1682 .endianness = DEVICE_LITTLE_ENDIAN,
1683 .valid = {
1684 .min_access_size = 4,
1685 .max_access_size = 8,
1687 .impl = {
1688 .min_access_size = 4,
1689 .max_access_size = 8,
1693 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1695 int i;
1697 for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1698 sysbus_init_irq(dev, &s->irq[i]);
1702 static void smmu_reset_hold(Object *obj)
1704 SMMUv3State *s = ARM_SMMUV3(obj);
1705 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1707 if (c->parent_phases.hold) {
1708 c->parent_phases.hold(obj);
1711 smmuv3_init_regs(s);
1714 static void smmu_realize(DeviceState *d, Error **errp)
1716 SMMUState *sys = ARM_SMMU(d);
1717 SMMUv3State *s = ARM_SMMUV3(sys);
1718 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1719 SysBusDevice *dev = SYS_BUS_DEVICE(d);
1720 Error *local_err = NULL;
1722 c->parent_realize(d, &local_err);
1723 if (local_err) {
1724 error_propagate(errp, local_err);
1725 return;
1728 qemu_mutex_init(&s->mutex);
1730 memory_region_init_io(&sys->iomem, OBJECT(s),
1731 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1733 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1735 sysbus_init_mmio(dev, &sys->iomem);
1737 smmu_init_irq(s, dev);
1740 static const VMStateDescription vmstate_smmuv3_queue = {
1741 .name = "smmuv3_queue",
1742 .version_id = 1,
1743 .minimum_version_id = 1,
1744 .fields = (VMStateField[]) {
1745 VMSTATE_UINT64(base, SMMUQueue),
1746 VMSTATE_UINT32(prod, SMMUQueue),
1747 VMSTATE_UINT32(cons, SMMUQueue),
1748 VMSTATE_UINT8(log2size, SMMUQueue),
1749 VMSTATE_END_OF_LIST(),
1753 static bool smmuv3_gbpa_needed(void *opaque)
1755 SMMUv3State *s = opaque;
1757 /* Only migrate GBPA if it has different reset value. */
1758 return s->gbpa != SMMU_GBPA_RESET_VAL;
1761 static const VMStateDescription vmstate_gbpa = {
1762 .name = "smmuv3/gbpa",
1763 .version_id = 1,
1764 .minimum_version_id = 1,
1765 .needed = smmuv3_gbpa_needed,
1766 .fields = (VMStateField[]) {
1767 VMSTATE_UINT32(gbpa, SMMUv3State),
1768 VMSTATE_END_OF_LIST()
1772 static const VMStateDescription vmstate_smmuv3 = {
1773 .name = "smmuv3",
1774 .version_id = 1,
1775 .minimum_version_id = 1,
1776 .priority = MIG_PRI_IOMMU,
1777 .fields = (VMStateField[]) {
1778 VMSTATE_UINT32(features, SMMUv3State),
1779 VMSTATE_UINT8(sid_size, SMMUv3State),
1780 VMSTATE_UINT8(sid_split, SMMUv3State),
1782 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1783 VMSTATE_UINT32(cr0ack, SMMUv3State),
1784 VMSTATE_UINT32(statusr, SMMUv3State),
1785 VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1786 VMSTATE_UINT32(gerror, SMMUv3State),
1787 VMSTATE_UINT32(gerrorn, SMMUv3State),
1788 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1789 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1790 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1791 VMSTATE_UINT64(strtab_base, SMMUv3State),
1792 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1793 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1794 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1795 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1797 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1798 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1800 VMSTATE_END_OF_LIST(),
1802 .subsections = (const VMStateDescription * []) {
1803 &vmstate_gbpa,
1804 NULL
1808 static Property smmuv3_properties[] = {
1810 * Stages of translation advertised.
1811 * "1": Stage 1
1812 * "2": Stage 2
1813 * Defaults to stage 1
1815 DEFINE_PROP_STRING("stage", SMMUv3State, stage),
1816 DEFINE_PROP_END_OF_LIST()
1819 static void smmuv3_instance_init(Object *obj)
1821 /* Nothing much to do here as of now */
1824 static void smmuv3_class_init(ObjectClass *klass, void *data)
1826 DeviceClass *dc = DEVICE_CLASS(klass);
1827 ResettableClass *rc = RESETTABLE_CLASS(klass);
1828 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1830 dc->vmsd = &vmstate_smmuv3;
1831 resettable_class_set_parent_phases(rc, NULL, smmu_reset_hold, NULL,
1832 &c->parent_phases);
1833 c->parent_realize = dc->realize;
1834 dc->realize = smmu_realize;
1835 device_class_set_props(dc, smmuv3_properties);
1838 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1839 IOMMUNotifierFlag old,
1840 IOMMUNotifierFlag new,
1841 Error **errp)
1843 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1844 SMMUv3State *s3 = sdev->smmu;
1845 SMMUState *s = &(s3->smmu_state);
1847 if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1848 error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
1849 return -EINVAL;
1852 if (new & IOMMU_NOTIFIER_MAP) {
1853 error_setg(errp,
1854 "device %02x.%02x.%x requires iommu MAP notifier which is "
1855 "not currently supported", pci_bus_num(sdev->bus),
1856 PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1857 return -EINVAL;
1860 if (old == IOMMU_NOTIFIER_NONE) {
1861 trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1862 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1863 } else if (new == IOMMU_NOTIFIER_NONE) {
1864 trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1865 QLIST_REMOVE(sdev, next);
1867 return 0;
1870 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1871 void *data)
1873 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1875 imrc->translate = smmuv3_translate;
1876 imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1879 static const TypeInfo smmuv3_type_info = {
1880 .name = TYPE_ARM_SMMUV3,
1881 .parent = TYPE_ARM_SMMU,
1882 .instance_size = sizeof(SMMUv3State),
1883 .instance_init = smmuv3_instance_init,
1884 .class_size = sizeof(SMMUv3Class),
1885 .class_init = smmuv3_class_init,
1888 static const TypeInfo smmuv3_iommu_memory_region_info = {
1889 .parent = TYPE_IOMMU_MEMORY_REGION,
1890 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1891 .class_init = smmuv3_iommu_memory_region_class_init,
1894 static void smmuv3_register_types(void)
1896 type_register(&smmuv3_type_info);
1897 type_register(&smmuv3_iommu_memory_region_info);
1900 type_init(smmuv3_register_types)