memory: the only dirty memory flag for users is DIRTY_MEMORY_VGA
[qemu/ar7.git] / include / exec / memory.h
blob7b0929d54fdbd13165513c1bbb3a9402b98e7743
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "exec/memattrs.h"
32 #include "qemu/queue.h"
33 #include "qemu/int128.h"
34 #include "qemu/notify.h"
35 #include "qapi/error.h"
36 #include "qom/object.h"
37 #include "qemu/rcu.h"
39 #define MAX_PHYS_ADDR_SPACE_BITS 62
40 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
42 #define TYPE_MEMORY_REGION "qemu:memory-region"
43 #define MEMORY_REGION(obj) \
44 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
46 typedef struct MemoryRegionOps MemoryRegionOps;
47 typedef struct MemoryRegionMmio MemoryRegionMmio;
49 struct MemoryRegionMmio {
50 CPUReadMemoryFunc *read[3];
51 CPUWriteMemoryFunc *write[3];
54 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
56 /* See address_space_translate: bit 0 is read, bit 1 is write. */
57 typedef enum {
58 IOMMU_NONE = 0,
59 IOMMU_RO = 1,
60 IOMMU_WO = 2,
61 IOMMU_RW = 3,
62 } IOMMUAccessFlags;
64 struct IOMMUTLBEntry {
65 AddressSpace *target_as;
66 hwaddr iova;
67 hwaddr translated_addr;
68 hwaddr addr_mask; /* 0xfff = 4k translation */
69 IOMMUAccessFlags perm;
72 /* New-style MMIO accessors can indicate that the transaction failed.
73 * A zero (MEMTX_OK) response means success; anything else is a failure
74 * of some kind. The memory subsystem will bitwise-OR together results
75 * if it is synthesizing an operation from multiple smaller accesses.
77 #define MEMTX_OK 0
78 #define MEMTX_ERROR (1U << 0) /* device returned an error */
79 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
80 typedef uint32_t MemTxResult;
83 * Memory region callbacks
85 struct MemoryRegionOps {
86 /* Read from the memory region. @addr is relative to @mr; @size is
87 * in bytes. */
88 uint64_t (*read)(void *opaque,
89 hwaddr addr,
90 unsigned size);
91 /* Write to the memory region. @addr is relative to @mr; @size is
92 * in bytes. */
93 void (*write)(void *opaque,
94 hwaddr addr,
95 uint64_t data,
96 unsigned size);
98 MemTxResult (*read_with_attrs)(void *opaque,
99 hwaddr addr,
100 uint64_t *data,
101 unsigned size,
102 MemTxAttrs attrs);
103 MemTxResult (*write_with_attrs)(void *opaque,
104 hwaddr addr,
105 uint64_t data,
106 unsigned size,
107 MemTxAttrs attrs);
109 enum device_endian endianness;
110 /* Guest-visible constraints: */
111 struct {
112 /* If nonzero, specify bounds on access sizes beyond which a machine
113 * check is thrown.
115 unsigned min_access_size;
116 unsigned max_access_size;
117 /* If true, unaligned accesses are supported. Otherwise unaligned
118 * accesses throw machine checks.
120 bool unaligned;
122 * If present, and returns #false, the transaction is not accepted
123 * by the device (and results in machine dependent behaviour such
124 * as a machine check exception).
126 bool (*accepts)(void *opaque, hwaddr addr,
127 unsigned size, bool is_write);
128 } valid;
129 /* Internal implementation constraints: */
130 struct {
131 /* If nonzero, specifies the minimum size implemented. Smaller sizes
132 * will be rounded upwards and a partial result will be returned.
134 unsigned min_access_size;
135 /* If nonzero, specifies the maximum size implemented. Larger sizes
136 * will be done as a series of accesses with smaller sizes.
138 unsigned max_access_size;
139 /* If true, unaligned accesses are supported. Otherwise all accesses
140 * are converted to (possibly multiple) naturally aligned accesses.
142 bool unaligned;
143 } impl;
145 /* If .read and .write are not present, old_mmio may be used for
146 * backwards compatibility with old mmio registration
148 const MemoryRegionMmio old_mmio;
151 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
153 struct MemoryRegionIOMMUOps {
154 /* Return a TLB entry that contains a given address. */
155 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
158 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
159 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
161 struct MemoryRegion {
162 Object parent_obj;
163 /* All fields are private - violators will be prosecuted */
164 const MemoryRegionOps *ops;
165 const MemoryRegionIOMMUOps *iommu_ops;
166 void *opaque;
167 MemoryRegion *container;
168 Int128 size;
169 hwaddr addr;
170 void (*destructor)(MemoryRegion *mr);
171 ram_addr_t ram_addr;
172 uint64_t align;
173 bool subpage;
174 bool terminates;
175 bool romd_mode;
176 bool ram;
177 bool skip_dump;
178 bool readonly; /* For RAM regions */
179 bool enabled;
180 bool rom_device;
181 bool warning_printed; /* For reservations */
182 bool flush_coalesced_mmio;
183 MemoryRegion *alias;
184 hwaddr alias_offset;
185 int32_t priority;
186 bool may_overlap;
187 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
188 QTAILQ_ENTRY(MemoryRegion) subregions_link;
189 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
190 const char *name;
191 uint8_t dirty_log_mask;
192 unsigned ioeventfd_nb;
193 MemoryRegionIoeventfd *ioeventfds;
194 NotifierList iommu_notify;
198 * MemoryListener: callbacks structure for updates to the physical memory map
200 * Allows a component to adjust to changes in the guest-visible memory map.
201 * Use with memory_listener_register() and memory_listener_unregister().
203 struct MemoryListener {
204 void (*begin)(MemoryListener *listener);
205 void (*commit)(MemoryListener *listener);
206 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
207 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
208 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
209 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
210 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
211 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
212 void (*log_global_start)(MemoryListener *listener);
213 void (*log_global_stop)(MemoryListener *listener);
214 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
215 bool match_data, uint64_t data, EventNotifier *e);
216 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
217 bool match_data, uint64_t data, EventNotifier *e);
218 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
219 hwaddr addr, hwaddr len);
220 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
221 hwaddr addr, hwaddr len);
222 /* Lower = earlier (during add), later (during del) */
223 unsigned priority;
224 AddressSpace *address_space_filter;
225 QTAILQ_ENTRY(MemoryListener) link;
229 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
231 struct AddressSpace {
232 /* All fields are private. */
233 struct rcu_head rcu;
234 char *name;
235 MemoryRegion *root;
237 /* Accessed via RCU. */
238 struct FlatView *current_map;
240 int ioeventfd_nb;
241 struct MemoryRegionIoeventfd *ioeventfds;
242 struct AddressSpaceDispatch *dispatch;
243 struct AddressSpaceDispatch *next_dispatch;
244 MemoryListener dispatch_listener;
246 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
250 * MemoryRegionSection: describes a fragment of a #MemoryRegion
252 * @mr: the region, or %NULL if empty
253 * @address_space: the address space the region is mapped in
254 * @offset_within_region: the beginning of the section, relative to @mr's start
255 * @size: the size of the section; will not exceed @mr's boundaries
256 * @offset_within_address_space: the address of the first byte of the section
257 * relative to the region's address space
258 * @readonly: writes to this section are ignored
260 struct MemoryRegionSection {
261 MemoryRegion *mr;
262 AddressSpace *address_space;
263 hwaddr offset_within_region;
264 Int128 size;
265 hwaddr offset_within_address_space;
266 bool readonly;
270 * memory_region_init: Initialize a memory region
272 * The region typically acts as a container for other memory regions. Use
273 * memory_region_add_subregion() to add subregions.
275 * @mr: the #MemoryRegion to be initialized
276 * @owner: the object that tracks the region's reference count
277 * @name: used for debugging; not visible to the user or ABI
278 * @size: size of the region; any subregions beyond this size will be clipped
280 void memory_region_init(MemoryRegion *mr,
281 struct Object *owner,
282 const char *name,
283 uint64_t size);
286 * memory_region_ref: Add 1 to a memory region's reference count
288 * Whenever memory regions are accessed outside the BQL, they need to be
289 * preserved against hot-unplug. MemoryRegions actually do not have their
290 * own reference count; they piggyback on a QOM object, their "owner".
291 * This function adds a reference to the owner.
293 * All MemoryRegions must have an owner if they can disappear, even if the
294 * device they belong to operates exclusively under the BQL. This is because
295 * the region could be returned at any time by memory_region_find, and this
296 * is usually under guest control.
298 * @mr: the #MemoryRegion
300 void memory_region_ref(MemoryRegion *mr);
303 * memory_region_unref: Remove 1 to a memory region's reference count
305 * Whenever memory regions are accessed outside the BQL, they need to be
306 * preserved against hot-unplug. MemoryRegions actually do not have their
307 * own reference count; they piggyback on a QOM object, their "owner".
308 * This function removes a reference to the owner and possibly destroys it.
310 * @mr: the #MemoryRegion
312 void memory_region_unref(MemoryRegion *mr);
315 * memory_region_init_io: Initialize an I/O memory region.
317 * Accesses into the region will cause the callbacks in @ops to be called.
318 * if @size is nonzero, subregions will be clipped to @size.
320 * @mr: the #MemoryRegion to be initialized.
321 * @owner: the object that tracks the region's reference count
322 * @ops: a structure containing read and write callbacks to be used when
323 * I/O is performed on the region.
324 * @opaque: passed to to the read and write callbacks of the @ops structure.
325 * @name: used for debugging; not visible to the user or ABI
326 * @size: size of the region.
328 void memory_region_init_io(MemoryRegion *mr,
329 struct Object *owner,
330 const MemoryRegionOps *ops,
331 void *opaque,
332 const char *name,
333 uint64_t size);
336 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
337 * region will modify memory directly.
339 * @mr: the #MemoryRegion to be initialized.
340 * @owner: the object that tracks the region's reference count
341 * @name: the name of the region.
342 * @size: size of the region.
343 * @errp: pointer to Error*, to store an error if it happens.
345 void memory_region_init_ram(MemoryRegion *mr,
346 struct Object *owner,
347 const char *name,
348 uint64_t size,
349 Error **errp);
352 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
353 * RAM. Accesses into the region will
354 * modify memory directly. Only an initial
355 * portion of this RAM is actually used.
356 * The used size can change across reboots.
358 * @mr: the #MemoryRegion to be initialized.
359 * @owner: the object that tracks the region's reference count
360 * @name: the name of the region.
361 * @size: used size of the region.
362 * @max_size: max size of the region.
363 * @resized: callback to notify owner about used size change.
364 * @errp: pointer to Error*, to store an error if it happens.
366 void memory_region_init_resizeable_ram(MemoryRegion *mr,
367 struct Object *owner,
368 const char *name,
369 uint64_t size,
370 uint64_t max_size,
371 void (*resized)(const char*,
372 uint64_t length,
373 void *host),
374 Error **errp);
375 #ifdef __linux__
377 * memory_region_init_ram_from_file: Initialize RAM memory region with a
378 * mmap-ed backend.
380 * @mr: the #MemoryRegion to be initialized.
381 * @owner: the object that tracks the region's reference count
382 * @name: the name of the region.
383 * @size: size of the region.
384 * @share: %true if memory must be mmaped with the MAP_SHARED flag
385 * @path: the path in which to allocate the RAM.
386 * @errp: pointer to Error*, to store an error if it happens.
388 void memory_region_init_ram_from_file(MemoryRegion *mr,
389 struct Object *owner,
390 const char *name,
391 uint64_t size,
392 bool share,
393 const char *path,
394 Error **errp);
395 #endif
398 * memory_region_init_ram_ptr: Initialize RAM memory region from a
399 * user-provided pointer. Accesses into the
400 * region will modify memory directly.
402 * @mr: the #MemoryRegion to be initialized.
403 * @owner: the object that tracks the region's reference count
404 * @name: the name of the region.
405 * @size: size of the region.
406 * @ptr: memory to be mapped; must contain at least @size bytes.
408 void memory_region_init_ram_ptr(MemoryRegion *mr,
409 struct Object *owner,
410 const char *name,
411 uint64_t size,
412 void *ptr);
415 * memory_region_init_alias: Initialize a memory region that aliases all or a
416 * part of another memory region.
418 * @mr: the #MemoryRegion to be initialized.
419 * @owner: the object that tracks the region's reference count
420 * @name: used for debugging; not visible to the user or ABI
421 * @orig: the region to be referenced; @mr will be equivalent to
422 * @orig between @offset and @offset + @size - 1.
423 * @offset: start of the section in @orig to be referenced.
424 * @size: size of the region.
426 void memory_region_init_alias(MemoryRegion *mr,
427 struct Object *owner,
428 const char *name,
429 MemoryRegion *orig,
430 hwaddr offset,
431 uint64_t size);
434 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
435 * handled via callbacks.
437 * @mr: the #MemoryRegion to be initialized.
438 * @owner: the object that tracks the region's reference count
439 * @ops: callbacks for write access handling.
440 * @name: the name of the region.
441 * @size: size of the region.
442 * @errp: pointer to Error*, to store an error if it happens.
444 void memory_region_init_rom_device(MemoryRegion *mr,
445 struct Object *owner,
446 const MemoryRegionOps *ops,
447 void *opaque,
448 const char *name,
449 uint64_t size,
450 Error **errp);
453 * memory_region_init_reservation: Initialize a memory region that reserves
454 * I/O space.
456 * A reservation region primariy serves debugging purposes. It claims I/O
457 * space that is not supposed to be handled by QEMU itself. Any access via
458 * the memory API will cause an abort().
460 * @mr: the #MemoryRegion to be initialized
461 * @owner: the object that tracks the region's reference count
462 * @name: used for debugging; not visible to the user or ABI
463 * @size: size of the region.
465 void memory_region_init_reservation(MemoryRegion *mr,
466 struct Object *owner,
467 const char *name,
468 uint64_t size);
471 * memory_region_init_iommu: Initialize a memory region that translates
472 * addresses
474 * An IOMMU region translates addresses and forwards accesses to a target
475 * memory region.
477 * @mr: the #MemoryRegion to be initialized
478 * @owner: the object that tracks the region's reference count
479 * @ops: a function that translates addresses into the @target region
480 * @name: used for debugging; not visible to the user or ABI
481 * @size: size of the region.
483 void memory_region_init_iommu(MemoryRegion *mr,
484 struct Object *owner,
485 const MemoryRegionIOMMUOps *ops,
486 const char *name,
487 uint64_t size);
490 * memory_region_owner: get a memory region's owner.
492 * @mr: the memory region being queried.
494 struct Object *memory_region_owner(MemoryRegion *mr);
497 * memory_region_size: get a memory region's size.
499 * @mr: the memory region being queried.
501 uint64_t memory_region_size(MemoryRegion *mr);
504 * memory_region_is_ram: check whether a memory region is random access
506 * Returns %true is a memory region is random access.
508 * @mr: the memory region being queried
510 bool memory_region_is_ram(MemoryRegion *mr);
513 * memory_region_is_skip_dump: check whether a memory region should not be
514 * dumped
516 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
518 * @mr: the memory region being queried
520 bool memory_region_is_skip_dump(MemoryRegion *mr);
523 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
524 * region
526 * @mr: the memory region being queried
528 void memory_region_set_skip_dump(MemoryRegion *mr);
531 * memory_region_is_romd: check whether a memory region is in ROMD mode
533 * Returns %true if a memory region is a ROM device and currently set to allow
534 * direct reads.
536 * @mr: the memory region being queried
538 static inline bool memory_region_is_romd(MemoryRegion *mr)
540 return mr->rom_device && mr->romd_mode;
544 * memory_region_is_iommu: check whether a memory region is an iommu
546 * Returns %true is a memory region is an iommu.
548 * @mr: the memory region being queried
550 bool memory_region_is_iommu(MemoryRegion *mr);
553 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
555 * @mr: the memory region that was changed
556 * @entry: the new entry in the IOMMU translation table. The entry
557 * replaces all old entries for the same virtual I/O address range.
558 * Deleted entries have .@perm == 0.
560 void memory_region_notify_iommu(MemoryRegion *mr,
561 IOMMUTLBEntry entry);
564 * memory_region_register_iommu_notifier: register a notifier for changes to
565 * IOMMU translation entries.
567 * @mr: the memory region to observe
568 * @n: the notifier to be added; the notifier receives a pointer to an
569 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
570 * valid on exit from the notifier.
572 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
575 * memory_region_unregister_iommu_notifier: unregister a notifier for
576 * changes to IOMMU translation entries.
578 * @n: the notifier to be removed.
580 void memory_region_unregister_iommu_notifier(Notifier *n);
583 * memory_region_name: get a memory region's name
585 * Returns the string that was used to initialize the memory region.
587 * @mr: the memory region being queried
589 const char *memory_region_name(const MemoryRegion *mr);
592 * memory_region_is_logging: return whether a memory region is logging writes
594 * Returns %true if the memory region is logging writes
596 * @mr: the memory region being queried
598 bool memory_region_is_logging(MemoryRegion *mr);
601 * memory_region_is_rom: check whether a memory region is ROM
603 * Returns %true is a memory region is read-only memory.
605 * @mr: the memory region being queried
607 bool memory_region_is_rom(MemoryRegion *mr);
610 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
612 * Returns a file descriptor backing a file-based RAM memory region,
613 * or -1 if the region is not a file-based RAM memory region.
615 * @mr: the RAM or alias memory region being queried.
617 int memory_region_get_fd(MemoryRegion *mr);
620 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
622 * Returns a host pointer to a RAM memory region (created with
623 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with
624 * care.
626 * @mr: the memory region being queried.
628 void *memory_region_get_ram_ptr(MemoryRegion *mr);
630 /* memory_region_ram_resize: Resize a RAM region.
632 * Only legal before guest might have detected the memory size: e.g. on
633 * incoming migration, or right after reset.
635 * @mr: a memory region created with @memory_region_init_resizeable_ram.
636 * @newsize: the new size the region
637 * @errp: pointer to Error*, to store an error if it happens.
639 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
640 Error **errp);
643 * memory_region_set_log: Turn dirty logging on or off for a region.
645 * Turns dirty logging on or off for a specified client (display, migration).
646 * Only meaningful for RAM regions.
648 * @mr: the memory region being updated.
649 * @log: whether dirty logging is to be enabled or disabled.
650 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
652 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
655 * memory_region_get_dirty: Check whether a range of bytes is dirty
656 * for a specified client.
658 * Checks whether a range of bytes has been written to since the last
659 * call to memory_region_reset_dirty() with the same @client. Dirty logging
660 * must be enabled.
662 * @mr: the memory region being queried.
663 * @addr: the address (relative to the start of the region) being queried.
664 * @size: the size of the range being queried.
665 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
666 * %DIRTY_MEMORY_VGA.
668 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
669 hwaddr size, unsigned client);
672 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
674 * Marks a range of bytes as dirty, after it has been dirtied outside
675 * guest code.
677 * @mr: the memory region being dirtied.
678 * @addr: the address (relative to the start of the region) being dirtied.
679 * @size: size of the range being dirtied.
681 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
682 hwaddr size);
685 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
686 * for a specified client. It clears them.
688 * Checks whether a range of bytes has been written to since the last
689 * call to memory_region_reset_dirty() with the same @client. Dirty logging
690 * must be enabled.
692 * @mr: the memory region being queried.
693 * @addr: the address (relative to the start of the region) being queried.
694 * @size: the size of the range being queried.
695 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
696 * %DIRTY_MEMORY_VGA.
698 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
699 hwaddr size, unsigned client);
701 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
702 * any external TLBs (e.g. kvm)
704 * Flushes dirty information from accelerators such as kvm and vhost-net
705 * and makes it available to users of the memory API.
707 * @mr: the region being flushed.
709 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
712 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
713 * client.
715 * Marks a range of pages as no longer dirty.
717 * @mr: the region being updated.
718 * @addr: the start of the subrange being cleaned.
719 * @size: the size of the subrange being cleaned.
720 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
721 * %DIRTY_MEMORY_VGA.
723 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
724 hwaddr size, unsigned client);
727 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
729 * Allows a memory region to be marked as read-only (turning it into a ROM).
730 * only useful on RAM regions.
732 * @mr: the region being updated.
733 * @readonly: whether rhe region is to be ROM or RAM.
735 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
738 * memory_region_rom_device_set_romd: enable/disable ROMD mode
740 * Allows a ROM device (initialized with memory_region_init_rom_device() to
741 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
742 * device is mapped to guest memory and satisfies read access directly.
743 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
744 * Writes are always handled by the #MemoryRegion.write function.
746 * @mr: the memory region to be updated
747 * @romd_mode: %true to put the region into ROMD mode
749 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
752 * memory_region_set_coalescing: Enable memory coalescing for the region.
754 * Enabled writes to a region to be queued for later processing. MMIO ->write
755 * callbacks may be delayed until a non-coalesced MMIO is issued.
756 * Only useful for IO regions. Roughly similar to write-combining hardware.
758 * @mr: the memory region to be write coalesced
760 void memory_region_set_coalescing(MemoryRegion *mr);
763 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
764 * a region.
766 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
767 * Multiple calls can be issued coalesced disjoint ranges.
769 * @mr: the memory region to be updated.
770 * @offset: the start of the range within the region to be coalesced.
771 * @size: the size of the subrange to be coalesced.
773 void memory_region_add_coalescing(MemoryRegion *mr,
774 hwaddr offset,
775 uint64_t size);
778 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
780 * Disables any coalescing caused by memory_region_set_coalescing() or
781 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
782 * hardware.
784 * @mr: the memory region to be updated.
786 void memory_region_clear_coalescing(MemoryRegion *mr);
789 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
790 * accesses.
792 * Ensure that pending coalesced MMIO request are flushed before the memory
793 * region is accessed. This property is automatically enabled for all regions
794 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
796 * @mr: the memory region to be updated.
798 void memory_region_set_flush_coalesced(MemoryRegion *mr);
801 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
802 * accesses.
804 * Clear the automatic coalesced MMIO flushing enabled via
805 * memory_region_set_flush_coalesced. Note that this service has no effect on
806 * memory regions that have MMIO coalescing enabled for themselves. For them,
807 * automatic flushing will stop once coalescing is disabled.
809 * @mr: the memory region to be updated.
811 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
814 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
815 * is written to a location.
817 * Marks a word in an IO region (initialized with memory_region_init_io())
818 * as a trigger for an eventfd event. The I/O callback will not be called.
819 * The caller must be prepared to handle failure (that is, take the required
820 * action if the callback _is_ called).
822 * @mr: the memory region being updated.
823 * @addr: the address within @mr that is to be monitored
824 * @size: the size of the access to trigger the eventfd
825 * @match_data: whether to match against @data, instead of just @addr
826 * @data: the data to match against the guest write
827 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
829 void memory_region_add_eventfd(MemoryRegion *mr,
830 hwaddr addr,
831 unsigned size,
832 bool match_data,
833 uint64_t data,
834 EventNotifier *e);
837 * memory_region_del_eventfd: Cancel an eventfd.
839 * Cancels an eventfd trigger requested by a previous
840 * memory_region_add_eventfd() call.
842 * @mr: the memory region being updated.
843 * @addr: the address within @mr that is to be monitored
844 * @size: the size of the access to trigger the eventfd
845 * @match_data: whether to match against @data, instead of just @addr
846 * @data: the data to match against the guest write
847 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
849 void memory_region_del_eventfd(MemoryRegion *mr,
850 hwaddr addr,
851 unsigned size,
852 bool match_data,
853 uint64_t data,
854 EventNotifier *e);
857 * memory_region_add_subregion: Add a subregion to a container.
859 * Adds a subregion at @offset. The subregion may not overlap with other
860 * subregions (except for those explicitly marked as overlapping). A region
861 * may only be added once as a subregion (unless removed with
862 * memory_region_del_subregion()); use memory_region_init_alias() if you
863 * want a region to be a subregion in multiple locations.
865 * @mr: the region to contain the new subregion; must be a container
866 * initialized with memory_region_init().
867 * @offset: the offset relative to @mr where @subregion is added.
868 * @subregion: the subregion to be added.
870 void memory_region_add_subregion(MemoryRegion *mr,
871 hwaddr offset,
872 MemoryRegion *subregion);
874 * memory_region_add_subregion_overlap: Add a subregion to a container
875 * with overlap.
877 * Adds a subregion at @offset. The subregion may overlap with other
878 * subregions. Conflicts are resolved by having a higher @priority hide a
879 * lower @priority. Subregions without priority are taken as @priority 0.
880 * A region may only be added once as a subregion (unless removed with
881 * memory_region_del_subregion()); use memory_region_init_alias() if you
882 * want a region to be a subregion in multiple locations.
884 * @mr: the region to contain the new subregion; must be a container
885 * initialized with memory_region_init().
886 * @offset: the offset relative to @mr where @subregion is added.
887 * @subregion: the subregion to be added.
888 * @priority: used for resolving overlaps; highest priority wins.
890 void memory_region_add_subregion_overlap(MemoryRegion *mr,
891 hwaddr offset,
892 MemoryRegion *subregion,
893 int priority);
896 * memory_region_get_ram_addr: Get the ram address associated with a memory
897 * region
899 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen
900 * code is being reworked.
902 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
904 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
906 * memory_region_del_subregion: Remove a subregion.
908 * Removes a subregion from its container.
910 * @mr: the container to be updated.
911 * @subregion: the region being removed; must be a current subregion of @mr.
913 void memory_region_del_subregion(MemoryRegion *mr,
914 MemoryRegion *subregion);
917 * memory_region_set_enabled: dynamically enable or disable a region
919 * Enables or disables a memory region. A disabled memory region
920 * ignores all accesses to itself and its subregions. It does not
921 * obscure sibling subregions with lower priority - it simply behaves as
922 * if it was removed from the hierarchy.
924 * Regions default to being enabled.
926 * @mr: the region to be updated
927 * @enabled: whether to enable or disable the region
929 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
932 * memory_region_set_address: dynamically update the address of a region
934 * Dynamically updates the address of a region, relative to its container.
935 * May be used on regions are currently part of a memory hierarchy.
937 * @mr: the region to be updated
938 * @addr: new address, relative to container region
940 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
943 * memory_region_set_size: dynamically update the size of a region.
945 * Dynamically updates the size of a region.
947 * @mr: the region to be updated
948 * @size: used size of the region.
950 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
953 * memory_region_set_alias_offset: dynamically update a memory alias's offset
955 * Dynamically updates the offset into the target region that an alias points
956 * to, as if the fourth argument to memory_region_init_alias() has changed.
958 * @mr: the #MemoryRegion to be updated; should be an alias.
959 * @offset: the new offset into the target memory region
961 void memory_region_set_alias_offset(MemoryRegion *mr,
962 hwaddr offset);
965 * memory_region_present: checks if an address relative to a @container
966 * translates into #MemoryRegion within @container
968 * Answer whether a #MemoryRegion within @container covers the address
969 * @addr.
971 * @container: a #MemoryRegion within which @addr is a relative address
972 * @addr: the area within @container to be searched
974 bool memory_region_present(MemoryRegion *container, hwaddr addr);
977 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
978 * into any address space.
980 * @mr: a #MemoryRegion which should be checked if it's mapped
982 bool memory_region_is_mapped(MemoryRegion *mr);
985 * memory_region_find: translate an address/size relative to a
986 * MemoryRegion into a #MemoryRegionSection.
988 * Locates the first #MemoryRegion within @mr that overlaps the range
989 * given by @addr and @size.
991 * Returns a #MemoryRegionSection that describes a contiguous overlap.
992 * It will have the following characteristics:
993 * .@size = 0 iff no overlap was found
994 * .@mr is non-%NULL iff an overlap was found
996 * Remember that in the return value the @offset_within_region is
997 * relative to the returned region (in the .@mr field), not to the
998 * @mr argument.
1000 * Similarly, the .@offset_within_address_space is relative to the
1001 * address space that contains both regions, the passed and the
1002 * returned one. However, in the special case where the @mr argument
1003 * has no container (and thus is the root of the address space), the
1004 * following will hold:
1005 * .@offset_within_address_space >= @addr
1006 * .@offset_within_address_space + .@size <= @addr + @size
1008 * @mr: a MemoryRegion within which @addr is a relative address
1009 * @addr: start of the area within @as to be searched
1010 * @size: size of the area to be searched
1012 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1013 hwaddr addr, uint64_t size);
1016 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1018 * Synchronizes the dirty page log for an entire address space.
1019 * @as: the address space that contains the memory being synchronized
1021 void address_space_sync_dirty_bitmap(AddressSpace *as);
1024 * memory_region_transaction_begin: Start a transaction.
1026 * During a transaction, changes will be accumulated and made visible
1027 * only when the transaction ends (is committed).
1029 void memory_region_transaction_begin(void);
1032 * memory_region_transaction_commit: Commit a transaction and make changes
1033 * visible to the guest.
1035 void memory_region_transaction_commit(void);
1038 * memory_listener_register: register callbacks to be called when memory
1039 * sections are mapped or unmapped into an address
1040 * space
1042 * @listener: an object containing the callbacks to be called
1043 * @filter: if non-%NULL, only regions in this address space will be observed
1045 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1048 * memory_listener_unregister: undo the effect of memory_listener_register()
1050 * @listener: an object containing the callbacks to be removed
1052 void memory_listener_unregister(MemoryListener *listener);
1055 * memory_global_dirty_log_start: begin dirty logging for all regions
1057 void memory_global_dirty_log_start(void);
1060 * memory_global_dirty_log_stop: end dirty logging for all regions
1062 void memory_global_dirty_log_stop(void);
1064 void mtree_info(fprintf_function mon_printf, void *f);
1067 * memory_region_dispatch_read: perform a read directly to the specified
1068 * MemoryRegion.
1070 * @mr: #MemoryRegion to access
1071 * @addr: address within that region
1072 * @pval: pointer to uint64_t which the data is written to
1073 * @size: size of the access in bytes
1074 * @attrs: memory transaction attributes to use for the access
1076 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1077 hwaddr addr,
1078 uint64_t *pval,
1079 unsigned size,
1080 MemTxAttrs attrs);
1082 * memory_region_dispatch_write: perform a write directly to the specified
1083 * MemoryRegion.
1085 * @mr: #MemoryRegion to access
1086 * @addr: address within that region
1087 * @data: data to write
1088 * @size: size of the access in bytes
1089 * @attrs: memory transaction attributes to use for the access
1091 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1092 hwaddr addr,
1093 uint64_t data,
1094 unsigned size,
1095 MemTxAttrs attrs);
1098 * address_space_init: initializes an address space
1100 * @as: an uninitialized #AddressSpace
1101 * @root: a #MemoryRegion that routes addesses for the address space
1102 * @name: an address space name. The name is only used for debugging
1103 * output.
1105 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1109 * address_space_destroy: destroy an address space
1111 * Releases all resources associated with an address space. After an address space
1112 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1113 * as well.
1115 * @as: address space to be destroyed
1117 void address_space_destroy(AddressSpace *as);
1120 * address_space_rw: read from or write to an address space.
1122 * Return a MemTxResult indicating whether the operation succeeded
1123 * or failed (eg unassigned memory, device rejected the transaction,
1124 * IOMMU fault).
1126 * @as: #AddressSpace to be accessed
1127 * @addr: address within that address space
1128 * @attrs: memory transaction attributes
1129 * @buf: buffer with the data transferred
1130 * @is_write: indicates the transfer direction
1132 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1133 MemTxAttrs attrs, uint8_t *buf,
1134 int len, bool is_write);
1137 * address_space_write: write to address space.
1139 * Return a MemTxResult indicating whether the operation succeeded
1140 * or failed (eg unassigned memory, device rejected the transaction,
1141 * IOMMU fault).
1143 * @as: #AddressSpace to be accessed
1144 * @addr: address within that address space
1145 * @attrs: memory transaction attributes
1146 * @buf: buffer with the data transferred
1148 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1149 MemTxAttrs attrs,
1150 const uint8_t *buf, int len);
1153 * address_space_read: read from an address space.
1155 * Return a MemTxResult indicating whether the operation succeeded
1156 * or failed (eg unassigned memory, device rejected the transaction,
1157 * IOMMU fault).
1159 * @as: #AddressSpace to be accessed
1160 * @addr: address within that address space
1161 * @attrs: memory transaction attributes
1162 * @buf: buffer with the data transferred
1164 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1165 uint8_t *buf, int len);
1168 * address_space_ld*: load from an address space
1169 * address_space_st*: store to an address space
1171 * These functions perform a load or store of the byte, word,
1172 * longword or quad to the specified address within the AddressSpace.
1173 * The _le suffixed functions treat the data as little endian;
1174 * _be indicates big endian; no suffix indicates "same endianness
1175 * as guest CPU".
1177 * The "guest CPU endianness" accessors are deprecated for use outside
1178 * target-* code; devices should be CPU-agnostic and use either the LE
1179 * or the BE accessors.
1181 * @as #AddressSpace to be accessed
1182 * @addr: address within that address space
1183 * @val: data value, for stores
1184 * @attrs: memory transaction attributes
1185 * @result: location to write the success/failure of the transaction;
1186 * if NULL, this information is discarded
1188 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1189 MemTxAttrs attrs, MemTxResult *result);
1190 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1191 MemTxAttrs attrs, MemTxResult *result);
1192 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1193 MemTxAttrs attrs, MemTxResult *result);
1194 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1195 MemTxAttrs attrs, MemTxResult *result);
1196 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1197 MemTxAttrs attrs, MemTxResult *result);
1198 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1199 MemTxAttrs attrs, MemTxResult *result);
1200 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1201 MemTxAttrs attrs, MemTxResult *result);
1202 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1203 MemTxAttrs attrs, MemTxResult *result);
1204 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1205 MemTxAttrs attrs, MemTxResult *result);
1206 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1207 MemTxAttrs attrs, MemTxResult *result);
1208 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1209 MemTxAttrs attrs, MemTxResult *result);
1210 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1211 MemTxAttrs attrs, MemTxResult *result);
1212 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1213 MemTxAttrs attrs, MemTxResult *result);
1214 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1215 MemTxAttrs attrs, MemTxResult *result);
1217 #ifdef NEED_CPU_H
1218 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1219 MemTxAttrs attrs, MemTxResult *result);
1220 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1221 MemTxAttrs attrs, MemTxResult *result);
1222 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1223 MemTxAttrs attrs, MemTxResult *result);
1224 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1225 MemTxAttrs attrs, MemTxResult *result);
1226 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1227 MemTxAttrs attrs, MemTxResult *result);
1228 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1229 MemTxAttrs attrs, MemTxResult *result);
1230 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1231 MemTxAttrs attrs, MemTxResult *result);
1232 #endif
1234 /* address_space_translate: translate an address range into an address space
1235 * into a MemoryRegion and an address range into that section. Should be
1236 * called from an RCU critical section, to avoid that the last reference
1237 * to the returned region disappears after address_space_translate returns.
1239 * @as: #AddressSpace to be accessed
1240 * @addr: address within that address space
1241 * @xlat: pointer to address within the returned memory region section's
1242 * #MemoryRegion.
1243 * @len: pointer to length
1244 * @is_write: indicates the transfer direction
1246 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1247 hwaddr *xlat, hwaddr *len,
1248 bool is_write);
1250 /* address_space_access_valid: check for validity of accessing an address
1251 * space range
1253 * Check whether memory is assigned to the given address space range, and
1254 * access is permitted by any IOMMU regions that are active for the address
1255 * space.
1257 * For now, addr and len should be aligned to a page size. This limitation
1258 * will be lifted in the future.
1260 * @as: #AddressSpace to be accessed
1261 * @addr: address within that address space
1262 * @len: length of the area to be checked
1263 * @is_write: indicates the transfer direction
1265 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1267 /* address_space_map: map a physical memory region into a host virtual address
1269 * May map a subset of the requested range, given by and returned in @plen.
1270 * May return %NULL if resources needed to perform the mapping are exhausted.
1271 * Use only for reads OR writes - not for read-modify-write operations.
1272 * Use cpu_register_map_client() to know when retrying the map operation is
1273 * likely to succeed.
1275 * @as: #AddressSpace to be accessed
1276 * @addr: address within that address space
1277 * @plen: pointer to length of buffer; updated on return
1278 * @is_write: indicates the transfer direction
1280 void *address_space_map(AddressSpace *as, hwaddr addr,
1281 hwaddr *plen, bool is_write);
1283 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1285 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1286 * the amount of memory that was actually read or written by the caller.
1288 * @as: #AddressSpace used
1289 * @addr: address within that address space
1290 * @len: buffer length as returned by address_space_map()
1291 * @access_len: amount of data actually transferred
1292 * @is_write: indicates the transfer direction
1294 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1295 int is_write, hwaddr access_len);
1298 #endif
1300 #endif