hw/usb/hcd-ehci: Fix crash when showing help of EHCI devices
[qemu/ar7.git] / hw / block / fdc.c
blob82afda7f3a7b90fabd493413dac20a6129d5a47d
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/acpi/aml-build.h"
36 #include "hw/irq.h"
37 #include "hw/isa/isa.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/qdev-properties-system.h"
40 #include "hw/sysbus.h"
41 #include "migration/vmstate.h"
42 #include "hw/block/block.h"
43 #include "sysemu/block-backend.h"
44 #include "sysemu/blockdev.h"
45 #include "sysemu/sysemu.h"
46 #include "qemu/log.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/module.h"
49 #include "trace.h"
50 #include "qom/object.h"
52 /********************************************************/
53 /* debug Floppy devices */
55 #define DEBUG_FLOPPY 0
57 #define FLOPPY_DPRINTF(fmt, ...) \
58 do { \
59 if (DEBUG_FLOPPY) { \
60 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
61 } \
62 } while (0)
65 /********************************************************/
66 /* qdev floppy bus */
68 #define TYPE_FLOPPY_BUS "floppy-bus"
69 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
71 typedef struct FDCtrl FDCtrl;
72 typedef struct FDrive FDrive;
73 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
75 struct FloppyBus {
76 BusState bus;
77 FDCtrl *fdc;
80 static const TypeInfo floppy_bus_info = {
81 .name = TYPE_FLOPPY_BUS,
82 .parent = TYPE_BUS,
83 .instance_size = sizeof(FloppyBus),
86 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
88 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
89 bus->fdc = fdc;
93 /********************************************************/
94 /* Floppy drive emulation */
96 typedef enum FDriveRate {
97 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
98 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
99 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
100 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
101 } FDriveRate;
103 typedef enum FDriveSize {
104 FDRIVE_SIZE_UNKNOWN,
105 FDRIVE_SIZE_350,
106 FDRIVE_SIZE_525,
107 } FDriveSize;
109 typedef struct FDFormat {
110 FloppyDriveType drive;
111 uint8_t last_sect;
112 uint8_t max_track;
113 uint8_t max_head;
114 FDriveRate rate;
115 } FDFormat;
117 /* In many cases, the total sector size of a format is enough to uniquely
118 * identify it. However, there are some total sector collisions between
119 * formats of different physical size, and these are noted below by
120 * highlighting the total sector size for entries with collisions. */
121 static const FDFormat fd_formats[] = {
122 /* First entry is default format */
123 /* 1.44 MB 3"1/2 floppy disks */
124 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
125 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
126 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
127 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
128 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
129 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
130 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
131 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
132 /* 2.88 MB 3"1/2 floppy disks */
133 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
134 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
135 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
136 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
137 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
138 /* 720 kB 3"1/2 floppy disks */
139 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
140 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
141 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
142 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
143 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
144 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
145 /* 1.2 MB 5"1/4 floppy disks */
146 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
147 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
148 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
149 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
150 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
151 /* 720 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
153 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
154 /* 360 kB 5"1/4 floppy disks */
155 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
156 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
157 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
158 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
159 /* 320 kB 5"1/4 floppy disks */
160 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
161 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
162 /* 360 kB must match 5"1/4 better than 3"1/2... */
163 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
164 /* end */
165 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
168 static FDriveSize drive_size(FloppyDriveType drive)
170 switch (drive) {
171 case FLOPPY_DRIVE_TYPE_120:
172 return FDRIVE_SIZE_525;
173 case FLOPPY_DRIVE_TYPE_144:
174 case FLOPPY_DRIVE_TYPE_288:
175 return FDRIVE_SIZE_350;
176 default:
177 return FDRIVE_SIZE_UNKNOWN;
181 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
182 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
184 /* Will always be a fixed parameter for us */
185 #define FD_SECTOR_LEN 512
186 #define FD_SECTOR_SC 2 /* Sector size code */
187 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
189 /* Floppy disk drive emulation */
190 typedef enum FDiskFlags {
191 FDISK_DBL_SIDES = 0x01,
192 } FDiskFlags;
194 struct FDrive {
195 FDCtrl *fdctrl;
196 BlockBackend *blk;
197 BlockConf *conf;
198 /* Drive status */
199 FloppyDriveType drive; /* CMOS drive type */
200 uint8_t perpendicular; /* 2.88 MB access mode */
201 /* Position */
202 uint8_t head;
203 uint8_t track;
204 uint8_t sect;
205 /* Media */
206 FloppyDriveType disk; /* Current disk type */
207 FDiskFlags flags;
208 uint8_t last_sect; /* Nb sector per track */
209 uint8_t max_track; /* Nb of tracks */
210 uint16_t bps; /* Bytes per sector */
211 uint8_t ro; /* Is read-only */
212 uint8_t media_changed; /* Is media changed */
213 uint8_t media_rate; /* Data rate of medium */
215 bool media_validated; /* Have we validated the media? */
219 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
221 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
222 * currently goes through some pains to keep seeks within the bounds
223 * established by last_sect and max_track. Correcting this is difficult,
224 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
226 * For now: allow empty drives to have large bounds so we can seek around,
227 * with the understanding that when a diskette is inserted, the bounds will
228 * properly tighten to match the geometry of that inserted medium.
230 static void fd_empty_seek_hack(FDrive *drv)
232 drv->last_sect = 0xFF;
233 drv->max_track = 0xFF;
236 static void fd_init(FDrive *drv)
238 /* Drive */
239 drv->perpendicular = 0;
240 /* Disk */
241 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
242 drv->last_sect = 0;
243 drv->max_track = 0;
244 drv->ro = true;
245 drv->media_changed = 1;
248 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
250 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
251 uint8_t last_sect, uint8_t num_sides)
253 return (((track * num_sides) + head) * last_sect) + sect - 1;
256 /* Returns current position, in sectors, for given drive */
257 static int fd_sector(FDrive *drv)
259 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
260 NUM_SIDES(drv));
263 /* Returns current position, in bytes, for given drive */
264 static int fd_offset(FDrive *drv)
266 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
267 return fd_sector(drv) << BDRV_SECTOR_BITS;
270 /* Seek to a new position:
271 * returns 0 if already on right track
272 * returns 1 if track changed
273 * returns 2 if track is invalid
274 * returns 3 if sector is invalid
275 * returns 4 if seek is disabled
277 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
278 int enable_seek)
280 uint32_t sector;
281 int ret;
283 if (track > drv->max_track ||
284 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
285 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
286 head, track, sect, 1,
287 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
288 drv->max_track, drv->last_sect);
289 return 2;
291 if (sect > drv->last_sect) {
292 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
293 head, track, sect, 1,
294 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
295 drv->max_track, drv->last_sect);
296 return 3;
298 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
299 ret = 0;
300 if (sector != fd_sector(drv)) {
301 #if 0
302 if (!enable_seek) {
303 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
304 " (max=%d %02x %02x)\n",
305 head, track, sect, 1, drv->max_track,
306 drv->last_sect);
307 return 4;
309 #endif
310 drv->head = head;
311 if (drv->track != track) {
312 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
313 drv->media_changed = 0;
315 ret = 1;
317 drv->track = track;
318 drv->sect = sect;
321 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
322 ret = 2;
325 return ret;
328 /* Set drive back to track 0 */
329 static void fd_recalibrate(FDrive *drv)
331 FLOPPY_DPRINTF("recalibrate\n");
332 fd_seek(drv, 0, 0, 1, 1);
336 * Determine geometry based on inserted diskette.
337 * Will not operate on an empty drive.
339 * @return: 0 on success, -1 if the drive is empty.
341 static int pick_geometry(FDrive *drv)
343 BlockBackend *blk = drv->blk;
344 const FDFormat *parse;
345 uint64_t nb_sectors, size;
346 int i;
347 int match, size_match, type_match;
348 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
350 /* We can only pick a geometry if we have a diskette. */
351 if (!drv->blk || !blk_is_inserted(drv->blk) ||
352 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
354 return -1;
357 /* We need to determine the likely geometry of the inserted medium.
358 * In order of preference, we look for:
359 * (1) The same drive type and number of sectors,
360 * (2) The same diskette size and number of sectors,
361 * (3) The same drive type.
363 * In all cases, matches that occur higher in the drive table will take
364 * precedence over matches that occur later in the table.
366 blk_get_geometry(blk, &nb_sectors);
367 match = size_match = type_match = -1;
368 for (i = 0; ; i++) {
369 parse = &fd_formats[i];
370 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
371 break;
373 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
374 if (nb_sectors == size) {
375 if (magic || parse->drive == drv->drive) {
376 /* (1) perfect match -- nb_sectors and drive type */
377 goto out;
378 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
379 /* (2) size match -- nb_sectors and physical medium size */
380 match = (match == -1) ? i : match;
381 } else {
382 /* This is suspicious -- Did the user misconfigure? */
383 size_match = (size_match == -1) ? i : size_match;
385 } else if (type_match == -1) {
386 if ((parse->drive == drv->drive) ||
387 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
388 /* (3) type match -- nb_sectors mismatch, but matches the type
389 * specified explicitly by the user, or matches the fallback
390 * default type when using the drive autodetect mechanism */
391 type_match = i;
396 /* No exact match found */
397 if (match == -1) {
398 if (size_match != -1) {
399 parse = &fd_formats[size_match];
400 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
401 "but inserted medium appears to be a "
402 "%"PRId64" sector '%s' type\n",
403 FloppyDriveType_str(drv->drive),
404 nb_sectors,
405 FloppyDriveType_str(parse->drive));
407 assert(type_match != -1 && "misconfigured fd_format");
408 match = type_match;
410 parse = &(fd_formats[match]);
412 out:
413 if (parse->max_head == 0) {
414 drv->flags &= ~FDISK_DBL_SIDES;
415 } else {
416 drv->flags |= FDISK_DBL_SIDES;
418 drv->max_track = parse->max_track;
419 drv->last_sect = parse->last_sect;
420 drv->disk = parse->drive;
421 drv->media_rate = parse->rate;
422 return 0;
425 static void pick_drive_type(FDrive *drv)
427 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
428 return;
431 if (pick_geometry(drv) == 0) {
432 drv->drive = drv->disk;
433 } else {
434 drv->drive = get_fallback_drive_type(drv);
437 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
440 /* Revalidate a disk drive after a disk change */
441 static void fd_revalidate(FDrive *drv)
443 int rc;
445 FLOPPY_DPRINTF("revalidate\n");
446 if (drv->blk != NULL) {
447 drv->ro = !blk_is_writable(drv->blk);
448 if (!blk_is_inserted(drv->blk)) {
449 FLOPPY_DPRINTF("No disk in drive\n");
450 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
451 fd_empty_seek_hack(drv);
452 } else if (!drv->media_validated) {
453 rc = pick_geometry(drv);
454 if (rc) {
455 FLOPPY_DPRINTF("Could not validate floppy drive media");
456 } else {
457 drv->media_validated = true;
458 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
459 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
460 drv->max_track, drv->last_sect,
461 drv->ro ? "ro" : "rw");
464 } else {
465 FLOPPY_DPRINTF("No drive connected\n");
466 drv->last_sect = 0;
467 drv->max_track = 0;
468 drv->flags &= ~FDISK_DBL_SIDES;
469 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
470 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
474 static void fd_change_cb(void *opaque, bool load, Error **errp)
476 FDrive *drive = opaque;
478 if (!load) {
479 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
480 } else {
481 if (!blkconf_apply_backend_options(drive->conf,
482 !blk_supports_write_perm(drive->blk),
483 false, errp)) {
484 return;
488 drive->media_changed = 1;
489 drive->media_validated = false;
490 fd_revalidate(drive);
493 static const BlockDevOps fd_block_ops = {
494 .change_media_cb = fd_change_cb,
498 #define TYPE_FLOPPY_DRIVE "floppy"
499 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
501 struct FloppyDrive {
502 DeviceState qdev;
503 uint32_t unit;
504 BlockConf conf;
505 FloppyDriveType type;
508 static Property floppy_drive_properties[] = {
509 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
510 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
511 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
512 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
513 FloppyDriveType),
514 DEFINE_PROP_END_OF_LIST(),
517 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
519 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
520 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
521 FDrive *drive;
522 bool read_only;
523 int ret;
525 if (dev->unit == -1) {
526 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
527 drive = get_drv(bus->fdc, dev->unit);
528 if (!drive->blk) {
529 break;
534 if (dev->unit >= MAX_FD) {
535 error_setg(errp, "Can't create floppy unit %d, bus supports "
536 "only %d units", dev->unit, MAX_FD);
537 return;
540 drive = get_drv(bus->fdc, dev->unit);
541 if (drive->blk) {
542 error_setg(errp, "Floppy unit %d is in use", dev->unit);
543 return;
546 if (!dev->conf.blk) {
547 /* Anonymous BlockBackend for an empty drive */
548 dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
549 ret = blk_attach_dev(dev->conf.blk, qdev);
550 assert(ret == 0);
552 /* Don't take write permissions on an empty drive to allow attaching a
553 * read-only node later */
554 read_only = true;
555 } else {
556 read_only = !blk_bs(dev->conf.blk) ||
557 !blk_supports_write_perm(dev->conf.blk);
560 if (!blkconf_blocksizes(&dev->conf, errp)) {
561 return;
564 if (dev->conf.logical_block_size != 512 ||
565 dev->conf.physical_block_size != 512)
567 error_setg(errp, "Physical and logical block size must "
568 "be 512 for floppy");
569 return;
572 /* rerror/werror aren't supported by fdc and therefore not even registered
573 * with qdev. So set the defaults manually before they are used in
574 * blkconf_apply_backend_options(). */
575 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
576 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
578 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
579 return;
582 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
583 * for empty drives. */
584 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
585 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
586 error_setg(errp, "fdc doesn't support drive option werror");
587 return;
589 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
590 error_setg(errp, "fdc doesn't support drive option rerror");
591 return;
594 drive->conf = &dev->conf;
595 drive->blk = dev->conf.blk;
596 drive->fdctrl = bus->fdc;
598 fd_init(drive);
599 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
601 /* Keep 'type' qdev property and FDrive->drive in sync */
602 drive->drive = dev->type;
603 pick_drive_type(drive);
604 dev->type = drive->drive;
606 fd_revalidate(drive);
609 static void floppy_drive_class_init(ObjectClass *klass, void *data)
611 DeviceClass *k = DEVICE_CLASS(klass);
612 k->realize = floppy_drive_realize;
613 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
614 k->bus_type = TYPE_FLOPPY_BUS;
615 device_class_set_props(k, floppy_drive_properties);
616 k->desc = "virtual floppy drive";
619 static const TypeInfo floppy_drive_info = {
620 .name = TYPE_FLOPPY_DRIVE,
621 .parent = TYPE_DEVICE,
622 .instance_size = sizeof(FloppyDrive),
623 .class_init = floppy_drive_class_init,
626 /********************************************************/
627 /* Intel 82078 floppy disk controller emulation */
629 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
630 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
631 static int fdctrl_transfer_handler (void *opaque, int nchan,
632 int dma_pos, int dma_len);
633 static void fdctrl_raise_irq(FDCtrl *fdctrl);
634 static FDrive *get_cur_drv(FDCtrl *fdctrl);
636 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
637 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
638 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
639 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
640 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
641 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
642 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
643 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
644 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
645 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
646 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
647 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
649 enum {
650 FD_DIR_WRITE = 0,
651 FD_DIR_READ = 1,
652 FD_DIR_SCANE = 2,
653 FD_DIR_SCANL = 3,
654 FD_DIR_SCANH = 4,
655 FD_DIR_VERIFY = 5,
658 enum {
659 FD_STATE_MULTI = 0x01, /* multi track flag */
660 FD_STATE_FORMAT = 0x02, /* format flag */
663 enum {
664 FD_REG_SRA = 0x00,
665 FD_REG_SRB = 0x01,
666 FD_REG_DOR = 0x02,
667 FD_REG_TDR = 0x03,
668 FD_REG_MSR = 0x04,
669 FD_REG_DSR = 0x04,
670 FD_REG_FIFO = 0x05,
671 FD_REG_DIR = 0x07,
672 FD_REG_CCR = 0x07,
675 enum {
676 FD_CMD_READ_TRACK = 0x02,
677 FD_CMD_SPECIFY = 0x03,
678 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
679 FD_CMD_WRITE = 0x05,
680 FD_CMD_READ = 0x06,
681 FD_CMD_RECALIBRATE = 0x07,
682 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
683 FD_CMD_WRITE_DELETED = 0x09,
684 FD_CMD_READ_ID = 0x0a,
685 FD_CMD_READ_DELETED = 0x0c,
686 FD_CMD_FORMAT_TRACK = 0x0d,
687 FD_CMD_DUMPREG = 0x0e,
688 FD_CMD_SEEK = 0x0f,
689 FD_CMD_VERSION = 0x10,
690 FD_CMD_SCAN_EQUAL = 0x11,
691 FD_CMD_PERPENDICULAR_MODE = 0x12,
692 FD_CMD_CONFIGURE = 0x13,
693 FD_CMD_LOCK = 0x14,
694 FD_CMD_VERIFY = 0x16,
695 FD_CMD_POWERDOWN_MODE = 0x17,
696 FD_CMD_PART_ID = 0x18,
697 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
698 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
699 FD_CMD_SAVE = 0x2e,
700 FD_CMD_OPTION = 0x33,
701 FD_CMD_RESTORE = 0x4e,
702 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
703 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
704 FD_CMD_FORMAT_AND_WRITE = 0xcd,
705 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
708 enum {
709 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
710 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
711 FD_CONFIG_POLL = 0x10, /* Poll enabled */
712 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
713 FD_CONFIG_EIS = 0x40, /* No implied seeks */
716 enum {
717 FD_SR0_DS0 = 0x01,
718 FD_SR0_DS1 = 0x02,
719 FD_SR0_HEAD = 0x04,
720 FD_SR0_EQPMT = 0x10,
721 FD_SR0_SEEK = 0x20,
722 FD_SR0_ABNTERM = 0x40,
723 FD_SR0_INVCMD = 0x80,
724 FD_SR0_RDYCHG = 0xc0,
727 enum {
728 FD_SR1_MA = 0x01, /* Missing address mark */
729 FD_SR1_NW = 0x02, /* Not writable */
730 FD_SR1_EC = 0x80, /* End of cylinder */
733 enum {
734 FD_SR2_SNS = 0x04, /* Scan not satisfied */
735 FD_SR2_SEH = 0x08, /* Scan equal hit */
738 enum {
739 FD_SRA_DIR = 0x01,
740 FD_SRA_nWP = 0x02,
741 FD_SRA_nINDX = 0x04,
742 FD_SRA_HDSEL = 0x08,
743 FD_SRA_nTRK0 = 0x10,
744 FD_SRA_STEP = 0x20,
745 FD_SRA_nDRV2 = 0x40,
746 FD_SRA_INTPEND = 0x80,
749 enum {
750 FD_SRB_MTR0 = 0x01,
751 FD_SRB_MTR1 = 0x02,
752 FD_SRB_WGATE = 0x04,
753 FD_SRB_RDATA = 0x08,
754 FD_SRB_WDATA = 0x10,
755 FD_SRB_DR0 = 0x20,
758 enum {
759 #if MAX_FD == 4
760 FD_DOR_SELMASK = 0x03,
761 #else
762 FD_DOR_SELMASK = 0x01,
763 #endif
764 FD_DOR_nRESET = 0x04,
765 FD_DOR_DMAEN = 0x08,
766 FD_DOR_MOTEN0 = 0x10,
767 FD_DOR_MOTEN1 = 0x20,
768 FD_DOR_MOTEN2 = 0x40,
769 FD_DOR_MOTEN3 = 0x80,
772 enum {
773 #if MAX_FD == 4
774 FD_TDR_BOOTSEL = 0x0c,
775 #else
776 FD_TDR_BOOTSEL = 0x04,
777 #endif
780 enum {
781 FD_DSR_DRATEMASK= 0x03,
782 FD_DSR_PWRDOWN = 0x40,
783 FD_DSR_SWRESET = 0x80,
786 enum {
787 FD_MSR_DRV0BUSY = 0x01,
788 FD_MSR_DRV1BUSY = 0x02,
789 FD_MSR_DRV2BUSY = 0x04,
790 FD_MSR_DRV3BUSY = 0x08,
791 FD_MSR_CMDBUSY = 0x10,
792 FD_MSR_NONDMA = 0x20,
793 FD_MSR_DIO = 0x40,
794 FD_MSR_RQM = 0x80,
797 enum {
798 FD_DIR_DSKCHG = 0x80,
802 * See chapter 5.0 "Controller phases" of the spec:
804 * Command phase:
805 * The host writes a command and its parameters into the FIFO. The command
806 * phase is completed when all parameters for the command have been supplied,
807 * and execution phase is entered.
809 * Execution phase:
810 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
811 * contains the payload now, otherwise it's unused. When all bytes of the
812 * required data have been transferred, the state is switched to either result
813 * phase (if the command produces status bytes) or directly back into the
814 * command phase for the next command.
816 * Result phase:
817 * The host reads out the FIFO, which contains one or more result bytes now.
819 enum {
820 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
821 FD_PHASE_RECONSTRUCT = 0,
823 FD_PHASE_COMMAND = 1,
824 FD_PHASE_EXECUTION = 2,
825 FD_PHASE_RESULT = 3,
828 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
829 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
831 struct FDCtrl {
832 MemoryRegion iomem;
833 qemu_irq irq;
834 /* Controller state */
835 QEMUTimer *result_timer;
836 int dma_chann;
837 uint8_t phase;
838 IsaDma *dma;
839 /* Controller's identification */
840 uint8_t version;
841 /* HW */
842 uint8_t sra;
843 uint8_t srb;
844 uint8_t dor;
845 uint8_t dor_vmstate; /* only used as temp during vmstate */
846 uint8_t tdr;
847 uint8_t dsr;
848 uint8_t msr;
849 uint8_t cur_drv;
850 uint8_t status0;
851 uint8_t status1;
852 uint8_t status2;
853 /* Command FIFO */
854 uint8_t *fifo;
855 int32_t fifo_size;
856 uint32_t data_pos;
857 uint32_t data_len;
858 uint8_t data_state;
859 uint8_t data_dir;
860 uint8_t eot; /* last wanted sector */
861 /* States kept only to be returned back */
862 /* precompensation */
863 uint8_t precomp_trk;
864 uint8_t config;
865 uint8_t lock;
866 /* Power down config (also with status regB access mode */
867 uint8_t pwrd;
868 /* Floppy drives */
869 FloppyBus bus;
870 uint8_t num_floppies;
871 FDrive drives[MAX_FD];
872 struct {
873 FloppyDriveType type;
874 } qdev_for_drives[MAX_FD];
875 int reset_sensei;
876 FloppyDriveType fallback; /* type=auto failure fallback */
877 /* Timers state */
878 uint8_t timer0;
879 uint8_t timer1;
880 PortioList portio_list;
883 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
885 return drv->fdctrl->fallback;
888 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
889 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlSysBus, SYSBUS_FDC)
891 struct FDCtrlSysBus {
892 /*< private >*/
893 SysBusDevice parent_obj;
894 /*< public >*/
896 struct FDCtrl state;
899 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlISABus, ISA_FDC)
901 struct FDCtrlISABus {
902 ISADevice parent_obj;
904 uint32_t iobase;
905 uint32_t irq;
906 uint32_t dma;
907 struct FDCtrl state;
908 int32_t bootindexA;
909 int32_t bootindexB;
912 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
914 FDCtrl *fdctrl = opaque;
915 uint32_t retval;
917 reg &= 7;
918 switch (reg) {
919 case FD_REG_SRA:
920 retval = fdctrl_read_statusA(fdctrl);
921 break;
922 case FD_REG_SRB:
923 retval = fdctrl_read_statusB(fdctrl);
924 break;
925 case FD_REG_DOR:
926 retval = fdctrl_read_dor(fdctrl);
927 break;
928 case FD_REG_TDR:
929 retval = fdctrl_read_tape(fdctrl);
930 break;
931 case FD_REG_MSR:
932 retval = fdctrl_read_main_status(fdctrl);
933 break;
934 case FD_REG_FIFO:
935 retval = fdctrl_read_data(fdctrl);
936 break;
937 case FD_REG_DIR:
938 retval = fdctrl_read_dir(fdctrl);
939 break;
940 default:
941 retval = (uint32_t)(-1);
942 break;
944 trace_fdc_ioport_read(reg, retval);
946 return retval;
949 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
951 FDCtrl *fdctrl = opaque;
953 reg &= 7;
954 trace_fdc_ioport_write(reg, value);
955 switch (reg) {
956 case FD_REG_DOR:
957 fdctrl_write_dor(fdctrl, value);
958 break;
959 case FD_REG_TDR:
960 fdctrl_write_tape(fdctrl, value);
961 break;
962 case FD_REG_DSR:
963 fdctrl_write_rate(fdctrl, value);
964 break;
965 case FD_REG_FIFO:
966 fdctrl_write_data(fdctrl, value);
967 break;
968 case FD_REG_CCR:
969 fdctrl_write_ccr(fdctrl, value);
970 break;
971 default:
972 break;
976 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
977 unsigned ize)
979 return fdctrl_read(opaque, (uint32_t)reg);
982 static void fdctrl_write_mem (void *opaque, hwaddr reg,
983 uint64_t value, unsigned size)
985 fdctrl_write(opaque, (uint32_t)reg, value);
988 static const MemoryRegionOps fdctrl_mem_ops = {
989 .read = fdctrl_read_mem,
990 .write = fdctrl_write_mem,
991 .endianness = DEVICE_NATIVE_ENDIAN,
994 static const MemoryRegionOps fdctrl_mem_strict_ops = {
995 .read = fdctrl_read_mem,
996 .write = fdctrl_write_mem,
997 .endianness = DEVICE_NATIVE_ENDIAN,
998 .valid = {
999 .min_access_size = 1,
1000 .max_access_size = 1,
1004 static bool fdrive_media_changed_needed(void *opaque)
1006 FDrive *drive = opaque;
1008 return (drive->blk != NULL && drive->media_changed != 1);
1011 static const VMStateDescription vmstate_fdrive_media_changed = {
1012 .name = "fdrive/media_changed",
1013 .version_id = 1,
1014 .minimum_version_id = 1,
1015 .needed = fdrive_media_changed_needed,
1016 .fields = (VMStateField[]) {
1017 VMSTATE_UINT8(media_changed, FDrive),
1018 VMSTATE_END_OF_LIST()
1022 static const VMStateDescription vmstate_fdrive_media_rate = {
1023 .name = "fdrive/media_rate",
1024 .version_id = 1,
1025 .minimum_version_id = 1,
1026 .fields = (VMStateField[]) {
1027 VMSTATE_UINT8(media_rate, FDrive),
1028 VMSTATE_END_OF_LIST()
1032 static bool fdrive_perpendicular_needed(void *opaque)
1034 FDrive *drive = opaque;
1036 return drive->perpendicular != 0;
1039 static const VMStateDescription vmstate_fdrive_perpendicular = {
1040 .name = "fdrive/perpendicular",
1041 .version_id = 1,
1042 .minimum_version_id = 1,
1043 .needed = fdrive_perpendicular_needed,
1044 .fields = (VMStateField[]) {
1045 VMSTATE_UINT8(perpendicular, FDrive),
1046 VMSTATE_END_OF_LIST()
1050 static int fdrive_post_load(void *opaque, int version_id)
1052 fd_revalidate(opaque);
1053 return 0;
1056 static const VMStateDescription vmstate_fdrive = {
1057 .name = "fdrive",
1058 .version_id = 1,
1059 .minimum_version_id = 1,
1060 .post_load = fdrive_post_load,
1061 .fields = (VMStateField[]) {
1062 VMSTATE_UINT8(head, FDrive),
1063 VMSTATE_UINT8(track, FDrive),
1064 VMSTATE_UINT8(sect, FDrive),
1065 VMSTATE_END_OF_LIST()
1067 .subsections = (const VMStateDescription*[]) {
1068 &vmstate_fdrive_media_changed,
1069 &vmstate_fdrive_media_rate,
1070 &vmstate_fdrive_perpendicular,
1071 NULL
1076 * Reconstructs the phase from register values according to the logic that was
1077 * implemented in qemu 2.3. This is the default value that is used if the phase
1078 * subsection is not present on migration.
1080 * Don't change this function to reflect newer qemu versions, it is part of
1081 * the migration ABI.
1083 static int reconstruct_phase(FDCtrl *fdctrl)
1085 if (fdctrl->msr & FD_MSR_NONDMA) {
1086 return FD_PHASE_EXECUTION;
1087 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1088 /* qemu 2.3 disabled RQM only during DMA transfers */
1089 return FD_PHASE_EXECUTION;
1090 } else if (fdctrl->msr & FD_MSR_DIO) {
1091 return FD_PHASE_RESULT;
1092 } else {
1093 return FD_PHASE_COMMAND;
1097 static int fdc_pre_save(void *opaque)
1099 FDCtrl *s = opaque;
1101 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1103 return 0;
1106 static int fdc_pre_load(void *opaque)
1108 FDCtrl *s = opaque;
1109 s->phase = FD_PHASE_RECONSTRUCT;
1110 return 0;
1113 static int fdc_post_load(void *opaque, int version_id)
1115 FDCtrl *s = opaque;
1117 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1118 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1120 if (s->phase == FD_PHASE_RECONSTRUCT) {
1121 s->phase = reconstruct_phase(s);
1124 return 0;
1127 static bool fdc_reset_sensei_needed(void *opaque)
1129 FDCtrl *s = opaque;
1131 return s->reset_sensei != 0;
1134 static const VMStateDescription vmstate_fdc_reset_sensei = {
1135 .name = "fdc/reset_sensei",
1136 .version_id = 1,
1137 .minimum_version_id = 1,
1138 .needed = fdc_reset_sensei_needed,
1139 .fields = (VMStateField[]) {
1140 VMSTATE_INT32(reset_sensei, FDCtrl),
1141 VMSTATE_END_OF_LIST()
1145 static bool fdc_result_timer_needed(void *opaque)
1147 FDCtrl *s = opaque;
1149 return timer_pending(s->result_timer);
1152 static const VMStateDescription vmstate_fdc_result_timer = {
1153 .name = "fdc/result_timer",
1154 .version_id = 1,
1155 .minimum_version_id = 1,
1156 .needed = fdc_result_timer_needed,
1157 .fields = (VMStateField[]) {
1158 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1159 VMSTATE_END_OF_LIST()
1163 static bool fdc_phase_needed(void *opaque)
1165 FDCtrl *fdctrl = opaque;
1167 return reconstruct_phase(fdctrl) != fdctrl->phase;
1170 static const VMStateDescription vmstate_fdc_phase = {
1171 .name = "fdc/phase",
1172 .version_id = 1,
1173 .minimum_version_id = 1,
1174 .needed = fdc_phase_needed,
1175 .fields = (VMStateField[]) {
1176 VMSTATE_UINT8(phase, FDCtrl),
1177 VMSTATE_END_OF_LIST()
1181 static const VMStateDescription vmstate_fdc = {
1182 .name = "fdc",
1183 .version_id = 2,
1184 .minimum_version_id = 2,
1185 .pre_save = fdc_pre_save,
1186 .pre_load = fdc_pre_load,
1187 .post_load = fdc_post_load,
1188 .fields = (VMStateField[]) {
1189 /* Controller State */
1190 VMSTATE_UINT8(sra, FDCtrl),
1191 VMSTATE_UINT8(srb, FDCtrl),
1192 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1193 VMSTATE_UINT8(tdr, FDCtrl),
1194 VMSTATE_UINT8(dsr, FDCtrl),
1195 VMSTATE_UINT8(msr, FDCtrl),
1196 VMSTATE_UINT8(status0, FDCtrl),
1197 VMSTATE_UINT8(status1, FDCtrl),
1198 VMSTATE_UINT8(status2, FDCtrl),
1199 /* Command FIFO */
1200 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1201 uint8_t),
1202 VMSTATE_UINT32(data_pos, FDCtrl),
1203 VMSTATE_UINT32(data_len, FDCtrl),
1204 VMSTATE_UINT8(data_state, FDCtrl),
1205 VMSTATE_UINT8(data_dir, FDCtrl),
1206 VMSTATE_UINT8(eot, FDCtrl),
1207 /* States kept only to be returned back */
1208 VMSTATE_UINT8(timer0, FDCtrl),
1209 VMSTATE_UINT8(timer1, FDCtrl),
1210 VMSTATE_UINT8(precomp_trk, FDCtrl),
1211 VMSTATE_UINT8(config, FDCtrl),
1212 VMSTATE_UINT8(lock, FDCtrl),
1213 VMSTATE_UINT8(pwrd, FDCtrl),
1214 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1215 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1216 vmstate_fdrive, FDrive),
1217 VMSTATE_END_OF_LIST()
1219 .subsections = (const VMStateDescription*[]) {
1220 &vmstate_fdc_reset_sensei,
1221 &vmstate_fdc_result_timer,
1222 &vmstate_fdc_phase,
1223 NULL
1227 static void fdctrl_external_reset_sysbus(DeviceState *d)
1229 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1230 FDCtrl *s = &sys->state;
1232 fdctrl_reset(s, 0);
1235 static void fdctrl_external_reset_isa(DeviceState *d)
1237 FDCtrlISABus *isa = ISA_FDC(d);
1238 FDCtrl *s = &isa->state;
1240 fdctrl_reset(s, 0);
1243 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1245 //FDCtrl *s = opaque;
1247 if (level) {
1248 // XXX
1249 FLOPPY_DPRINTF("TC pulsed\n");
1253 /* Change IRQ state */
1254 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1256 fdctrl->status0 = 0;
1257 if (!(fdctrl->sra & FD_SRA_INTPEND))
1258 return;
1259 FLOPPY_DPRINTF("Reset interrupt\n");
1260 qemu_set_irq(fdctrl->irq, 0);
1261 fdctrl->sra &= ~FD_SRA_INTPEND;
1264 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1266 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1267 qemu_set_irq(fdctrl->irq, 1);
1268 fdctrl->sra |= FD_SRA_INTPEND;
1271 fdctrl->reset_sensei = 0;
1272 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1275 /* Reset controller */
1276 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1278 int i;
1280 FLOPPY_DPRINTF("reset controller\n");
1281 fdctrl_reset_irq(fdctrl);
1282 /* Initialise controller */
1283 fdctrl->sra = 0;
1284 fdctrl->srb = 0xc0;
1285 if (!fdctrl->drives[1].blk) {
1286 fdctrl->sra |= FD_SRA_nDRV2;
1288 fdctrl->cur_drv = 0;
1289 fdctrl->dor = FD_DOR_nRESET;
1290 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1291 fdctrl->msr = FD_MSR_RQM;
1292 fdctrl->reset_sensei = 0;
1293 timer_del(fdctrl->result_timer);
1294 /* FIFO state */
1295 fdctrl->data_pos = 0;
1296 fdctrl->data_len = 0;
1297 fdctrl->data_state = 0;
1298 fdctrl->data_dir = FD_DIR_WRITE;
1299 for (i = 0; i < MAX_FD; i++)
1300 fd_recalibrate(&fdctrl->drives[i]);
1301 fdctrl_to_command_phase(fdctrl);
1302 if (do_irq) {
1303 fdctrl->status0 |= FD_SR0_RDYCHG;
1304 fdctrl_raise_irq(fdctrl);
1305 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1309 static inline FDrive *drv0(FDCtrl *fdctrl)
1311 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1314 static inline FDrive *drv1(FDCtrl *fdctrl)
1316 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1317 return &fdctrl->drives[1];
1318 else
1319 return &fdctrl->drives[0];
1322 #if MAX_FD == 4
1323 static inline FDrive *drv2(FDCtrl *fdctrl)
1325 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1326 return &fdctrl->drives[2];
1327 else
1328 return &fdctrl->drives[1];
1331 static inline FDrive *drv3(FDCtrl *fdctrl)
1333 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1334 return &fdctrl->drives[3];
1335 else
1336 return &fdctrl->drives[2];
1338 #endif
1340 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1342 switch (unit) {
1343 case 0: return drv0(fdctrl);
1344 case 1: return drv1(fdctrl);
1345 #if MAX_FD == 4
1346 case 2: return drv2(fdctrl);
1347 case 3: return drv3(fdctrl);
1348 #endif
1349 default: return NULL;
1353 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1355 return get_drv(fdctrl, fdctrl->cur_drv);
1358 /* Status A register : 0x00 (read-only) */
1359 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1361 uint32_t retval = fdctrl->sra;
1363 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1365 return retval;
1368 /* Status B register : 0x01 (read-only) */
1369 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1371 uint32_t retval = fdctrl->srb;
1373 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1375 return retval;
1378 /* Digital output register : 0x02 */
1379 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1381 uint32_t retval = fdctrl->dor;
1383 /* Selected drive */
1384 retval |= fdctrl->cur_drv;
1385 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1387 return retval;
1390 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1392 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1394 /* Motors */
1395 if (value & FD_DOR_MOTEN0)
1396 fdctrl->srb |= FD_SRB_MTR0;
1397 else
1398 fdctrl->srb &= ~FD_SRB_MTR0;
1399 if (value & FD_DOR_MOTEN1)
1400 fdctrl->srb |= FD_SRB_MTR1;
1401 else
1402 fdctrl->srb &= ~FD_SRB_MTR1;
1404 /* Drive */
1405 if (value & 1)
1406 fdctrl->srb |= FD_SRB_DR0;
1407 else
1408 fdctrl->srb &= ~FD_SRB_DR0;
1410 /* Reset */
1411 if (!(value & FD_DOR_nRESET)) {
1412 if (fdctrl->dor & FD_DOR_nRESET) {
1413 FLOPPY_DPRINTF("controller enter RESET state\n");
1415 } else {
1416 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1417 FLOPPY_DPRINTF("controller out of RESET state\n");
1418 fdctrl_reset(fdctrl, 1);
1419 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1422 /* Selected drive */
1423 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1425 fdctrl->dor = value;
1428 /* Tape drive register : 0x03 */
1429 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1431 uint32_t retval = fdctrl->tdr;
1433 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1435 return retval;
1438 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1440 /* Reset mode */
1441 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1442 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1443 return;
1445 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1446 /* Disk boot selection indicator */
1447 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1448 /* Tape indicators: never allow */
1451 /* Main status register : 0x04 (read) */
1452 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1454 uint32_t retval = fdctrl->msr;
1456 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1457 fdctrl->dor |= FD_DOR_nRESET;
1459 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1461 return retval;
1464 /* Data select rate register : 0x04 (write) */
1465 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1467 /* Reset mode */
1468 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1469 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1470 return;
1472 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1473 /* Reset: autoclear */
1474 if (value & FD_DSR_SWRESET) {
1475 fdctrl->dor &= ~FD_DOR_nRESET;
1476 fdctrl_reset(fdctrl, 1);
1477 fdctrl->dor |= FD_DOR_nRESET;
1479 if (value & FD_DSR_PWRDOWN) {
1480 fdctrl_reset(fdctrl, 1);
1482 fdctrl->dsr = value;
1485 /* Configuration control register: 0x07 (write) */
1486 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1488 /* Reset mode */
1489 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1490 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1491 return;
1493 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1495 /* Only the rate selection bits used in AT mode, and we
1496 * store those in the DSR.
1498 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1499 (value & FD_DSR_DRATEMASK);
1502 static int fdctrl_media_changed(FDrive *drv)
1504 return drv->media_changed;
1507 /* Digital input register : 0x07 (read-only) */
1508 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1510 uint32_t retval = 0;
1512 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1513 retval |= FD_DIR_DSKCHG;
1515 if (retval != 0) {
1516 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1519 return retval;
1522 /* Clear the FIFO and update the state for receiving the next command */
1523 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1525 fdctrl->phase = FD_PHASE_COMMAND;
1526 fdctrl->data_dir = FD_DIR_WRITE;
1527 fdctrl->data_pos = 0;
1528 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1529 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1530 fdctrl->msr |= FD_MSR_RQM;
1533 /* Update the state to allow the guest to read out the command status.
1534 * @fifo_len is the number of result bytes to be read out. */
1535 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1537 fdctrl->phase = FD_PHASE_RESULT;
1538 fdctrl->data_dir = FD_DIR_READ;
1539 fdctrl->data_len = fifo_len;
1540 fdctrl->data_pos = 0;
1541 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1544 /* Set an error: unimplemented/unknown command */
1545 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1547 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1548 fdctrl->fifo[0]);
1549 fdctrl->fifo[0] = FD_SR0_INVCMD;
1550 fdctrl_to_result_phase(fdctrl, 1);
1553 /* Seek to next sector
1554 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1555 * otherwise returns 1
1557 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1559 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1560 cur_drv->head, cur_drv->track, cur_drv->sect,
1561 fd_sector(cur_drv));
1562 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1563 error in fact */
1564 uint8_t new_head = cur_drv->head;
1565 uint8_t new_track = cur_drv->track;
1566 uint8_t new_sect = cur_drv->sect;
1568 int ret = 1;
1570 if (new_sect >= cur_drv->last_sect ||
1571 new_sect == fdctrl->eot) {
1572 new_sect = 1;
1573 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1574 if (new_head == 0 &&
1575 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1576 new_head = 1;
1577 } else {
1578 new_head = 0;
1579 new_track++;
1580 fdctrl->status0 |= FD_SR0_SEEK;
1581 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1582 ret = 0;
1585 } else {
1586 fdctrl->status0 |= FD_SR0_SEEK;
1587 new_track++;
1588 ret = 0;
1590 if (ret == 1) {
1591 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1592 new_head, new_track, new_sect, fd_sector(cur_drv));
1594 } else {
1595 new_sect++;
1597 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1598 return ret;
1601 /* Callback for transfer end (stop or abort) */
1602 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1603 uint8_t status1, uint8_t status2)
1605 FDrive *cur_drv;
1606 cur_drv = get_cur_drv(fdctrl);
1608 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1609 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1610 if (cur_drv->head) {
1611 fdctrl->status0 |= FD_SR0_HEAD;
1613 fdctrl->status0 |= status0;
1615 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1616 status0, status1, status2, fdctrl->status0);
1617 fdctrl->fifo[0] = fdctrl->status0;
1618 fdctrl->fifo[1] = status1;
1619 fdctrl->fifo[2] = status2;
1620 fdctrl->fifo[3] = cur_drv->track;
1621 fdctrl->fifo[4] = cur_drv->head;
1622 fdctrl->fifo[5] = cur_drv->sect;
1623 fdctrl->fifo[6] = FD_SECTOR_SC;
1624 fdctrl->data_dir = FD_DIR_READ;
1625 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1626 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1627 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1629 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1630 fdctrl->msr &= ~FD_MSR_NONDMA;
1632 fdctrl_to_result_phase(fdctrl, 7);
1633 fdctrl_raise_irq(fdctrl);
1636 /* Prepare a data transfer (either DMA or FIFO) */
1637 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1639 FDrive *cur_drv;
1640 uint8_t kh, kt, ks;
1642 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1643 cur_drv = get_cur_drv(fdctrl);
1644 kt = fdctrl->fifo[2];
1645 kh = fdctrl->fifo[3];
1646 ks = fdctrl->fifo[4];
1647 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1648 GET_CUR_DRV(fdctrl), kh, kt, ks,
1649 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1650 NUM_SIDES(cur_drv)));
1651 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1652 case 2:
1653 /* sect too big */
1654 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1655 fdctrl->fifo[3] = kt;
1656 fdctrl->fifo[4] = kh;
1657 fdctrl->fifo[5] = ks;
1658 return;
1659 case 3:
1660 /* track too big */
1661 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1662 fdctrl->fifo[3] = kt;
1663 fdctrl->fifo[4] = kh;
1664 fdctrl->fifo[5] = ks;
1665 return;
1666 case 4:
1667 /* No seek enabled */
1668 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1669 fdctrl->fifo[3] = kt;
1670 fdctrl->fifo[4] = kh;
1671 fdctrl->fifo[5] = ks;
1672 return;
1673 case 1:
1674 fdctrl->status0 |= FD_SR0_SEEK;
1675 break;
1676 default:
1677 break;
1680 /* Check the data rate. If the programmed data rate does not match
1681 * the currently inserted medium, the operation has to fail. */
1682 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1683 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1684 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1685 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1686 fdctrl->fifo[3] = kt;
1687 fdctrl->fifo[4] = kh;
1688 fdctrl->fifo[5] = ks;
1689 return;
1692 /* Set the FIFO state */
1693 fdctrl->data_dir = direction;
1694 fdctrl->data_pos = 0;
1695 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1696 if (fdctrl->fifo[0] & 0x80)
1697 fdctrl->data_state |= FD_STATE_MULTI;
1698 else
1699 fdctrl->data_state &= ~FD_STATE_MULTI;
1700 if (fdctrl->fifo[5] == 0) {
1701 fdctrl->data_len = fdctrl->fifo[8];
1702 } else {
1703 int tmp;
1704 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1705 tmp = (fdctrl->fifo[6] - ks + 1);
1706 if (fdctrl->fifo[0] & 0x80)
1707 tmp += fdctrl->fifo[6];
1708 fdctrl->data_len *= tmp;
1710 fdctrl->eot = fdctrl->fifo[6];
1711 if (fdctrl->dor & FD_DOR_DMAEN) {
1712 /* DMA transfer is enabled. */
1713 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1715 FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1716 direction, (128 << fdctrl->fifo[5]) *
1717 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1719 /* No access is allowed until DMA transfer has completed */
1720 fdctrl->msr &= ~FD_MSR_RQM;
1721 if (direction != FD_DIR_VERIFY) {
1723 * Now, we just have to wait for the DMA controller to
1724 * recall us...
1726 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1727 k->schedule(fdctrl->dma);
1728 } else {
1729 /* Start transfer */
1730 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1731 fdctrl->data_len);
1733 return;
1735 FLOPPY_DPRINTF("start non-DMA transfer\n");
1736 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1737 if (direction != FD_DIR_WRITE)
1738 fdctrl->msr |= FD_MSR_DIO;
1739 /* IO based transfer: calculate len */
1740 fdctrl_raise_irq(fdctrl);
1743 /* Prepare a transfer of deleted data */
1744 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1746 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1748 /* We don't handle deleted data,
1749 * so we don't return *ANYTHING*
1751 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1754 /* handlers for DMA transfers */
1755 static int fdctrl_transfer_handler (void *opaque, int nchan,
1756 int dma_pos, int dma_len)
1758 FDCtrl *fdctrl;
1759 FDrive *cur_drv;
1760 int len, start_pos, rel_pos;
1761 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1762 IsaDmaClass *k;
1764 fdctrl = opaque;
1765 if (fdctrl->msr & FD_MSR_RQM) {
1766 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1767 return 0;
1769 k = ISADMA_GET_CLASS(fdctrl->dma);
1770 cur_drv = get_cur_drv(fdctrl);
1771 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1772 fdctrl->data_dir == FD_DIR_SCANH)
1773 status2 = FD_SR2_SNS;
1774 if (dma_len > fdctrl->data_len)
1775 dma_len = fdctrl->data_len;
1776 if (cur_drv->blk == NULL) {
1777 if (fdctrl->data_dir == FD_DIR_WRITE)
1778 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1779 else
1780 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1781 len = 0;
1782 goto transfer_error;
1784 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1785 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1786 len = dma_len - fdctrl->data_pos;
1787 if (len + rel_pos > FD_SECTOR_LEN)
1788 len = FD_SECTOR_LEN - rel_pos;
1789 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1790 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1791 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1792 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1793 fd_sector(cur_drv) * FD_SECTOR_LEN);
1794 if (fdctrl->data_dir != FD_DIR_WRITE ||
1795 len < FD_SECTOR_LEN || rel_pos != 0) {
1796 /* READ & SCAN commands and realign to a sector for WRITE */
1797 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1798 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1799 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1800 fd_sector(cur_drv));
1801 /* Sure, image size is too small... */
1802 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1805 switch (fdctrl->data_dir) {
1806 case FD_DIR_READ:
1807 /* READ commands */
1808 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1809 fdctrl->data_pos, len);
1810 break;
1811 case FD_DIR_WRITE:
1812 /* WRITE commands */
1813 if (cur_drv->ro) {
1814 /* Handle readonly medium early, no need to do DMA, touch the
1815 * LED or attempt any writes. A real floppy doesn't attempt
1816 * to write to readonly media either. */
1817 fdctrl_stop_transfer(fdctrl,
1818 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1819 0x00);
1820 goto transfer_error;
1823 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1824 fdctrl->data_pos, len);
1825 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1826 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1827 FLOPPY_DPRINTF("error writing sector %d\n",
1828 fd_sector(cur_drv));
1829 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1830 goto transfer_error;
1832 break;
1833 case FD_DIR_VERIFY:
1834 /* VERIFY commands */
1835 break;
1836 default:
1837 /* SCAN commands */
1839 uint8_t tmpbuf[FD_SECTOR_LEN];
1840 int ret;
1841 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1842 len);
1843 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1844 if (ret == 0) {
1845 status2 = FD_SR2_SEH;
1846 goto end_transfer;
1848 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1849 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1850 status2 = 0x00;
1851 goto end_transfer;
1854 break;
1856 fdctrl->data_pos += len;
1857 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1858 if (rel_pos == 0) {
1859 /* Seek to next sector */
1860 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1861 break;
1864 end_transfer:
1865 len = fdctrl->data_pos - start_pos;
1866 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1867 fdctrl->data_pos, len, fdctrl->data_len);
1868 if (fdctrl->data_dir == FD_DIR_SCANE ||
1869 fdctrl->data_dir == FD_DIR_SCANL ||
1870 fdctrl->data_dir == FD_DIR_SCANH)
1871 status2 = FD_SR2_SEH;
1872 fdctrl->data_len -= len;
1873 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1874 transfer_error:
1876 return len;
1879 /* Data register : 0x05 */
1880 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1882 FDrive *cur_drv;
1883 uint32_t retval = 0;
1884 uint32_t pos;
1886 cur_drv = get_cur_drv(fdctrl);
1887 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1888 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1889 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1890 return 0;
1893 /* If data_len spans multiple sectors, the current position in the FIFO
1894 * wraps around while fdctrl->data_pos is the real position in the whole
1895 * request. */
1896 pos = fdctrl->data_pos;
1897 pos %= FD_SECTOR_LEN;
1899 switch (fdctrl->phase) {
1900 case FD_PHASE_EXECUTION:
1901 assert(fdctrl->msr & FD_MSR_NONDMA);
1902 if (pos == 0) {
1903 if (fdctrl->data_pos != 0)
1904 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1905 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1906 fd_sector(cur_drv));
1907 return 0;
1909 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1910 BDRV_SECTOR_SIZE)
1911 < 0) {
1912 FLOPPY_DPRINTF("error getting sector %d\n",
1913 fd_sector(cur_drv));
1914 /* Sure, image size is too small... */
1915 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1919 if (++fdctrl->data_pos == fdctrl->data_len) {
1920 fdctrl->msr &= ~FD_MSR_RQM;
1921 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1923 break;
1925 case FD_PHASE_RESULT:
1926 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1927 if (++fdctrl->data_pos == fdctrl->data_len) {
1928 fdctrl->msr &= ~FD_MSR_RQM;
1929 fdctrl_to_command_phase(fdctrl);
1930 fdctrl_reset_irq(fdctrl);
1932 break;
1934 case FD_PHASE_COMMAND:
1935 default:
1936 abort();
1939 retval = fdctrl->fifo[pos];
1940 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1942 return retval;
1945 static void fdctrl_format_sector(FDCtrl *fdctrl)
1947 FDrive *cur_drv;
1948 uint8_t kh, kt, ks;
1950 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1951 cur_drv = get_cur_drv(fdctrl);
1952 kt = fdctrl->fifo[6];
1953 kh = fdctrl->fifo[7];
1954 ks = fdctrl->fifo[8];
1955 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1956 GET_CUR_DRV(fdctrl), kh, kt, ks,
1957 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1958 NUM_SIDES(cur_drv)));
1959 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1960 case 2:
1961 /* sect too big */
1962 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1963 fdctrl->fifo[3] = kt;
1964 fdctrl->fifo[4] = kh;
1965 fdctrl->fifo[5] = ks;
1966 return;
1967 case 3:
1968 /* track too big */
1969 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1970 fdctrl->fifo[3] = kt;
1971 fdctrl->fifo[4] = kh;
1972 fdctrl->fifo[5] = ks;
1973 return;
1974 case 4:
1975 /* No seek enabled */
1976 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1977 fdctrl->fifo[3] = kt;
1978 fdctrl->fifo[4] = kh;
1979 fdctrl->fifo[5] = ks;
1980 return;
1981 case 1:
1982 fdctrl->status0 |= FD_SR0_SEEK;
1983 break;
1984 default:
1985 break;
1987 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1988 if (cur_drv->blk == NULL ||
1989 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1990 BDRV_SECTOR_SIZE, 0) < 0) {
1991 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1992 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1993 } else {
1994 if (cur_drv->sect == cur_drv->last_sect) {
1995 fdctrl->data_state &= ~FD_STATE_FORMAT;
1996 /* Last sector done */
1997 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1998 } else {
1999 /* More to do */
2000 fdctrl->data_pos = 0;
2001 fdctrl->data_len = 4;
2006 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2008 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2009 fdctrl->fifo[0] = fdctrl->lock << 4;
2010 fdctrl_to_result_phase(fdctrl, 1);
2013 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2015 FDrive *cur_drv = get_cur_drv(fdctrl);
2017 /* Drives position */
2018 fdctrl->fifo[0] = drv0(fdctrl)->track;
2019 fdctrl->fifo[1] = drv1(fdctrl)->track;
2020 #if MAX_FD == 4
2021 fdctrl->fifo[2] = drv2(fdctrl)->track;
2022 fdctrl->fifo[3] = drv3(fdctrl)->track;
2023 #else
2024 fdctrl->fifo[2] = 0;
2025 fdctrl->fifo[3] = 0;
2026 #endif
2027 /* timers */
2028 fdctrl->fifo[4] = fdctrl->timer0;
2029 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2030 fdctrl->fifo[6] = cur_drv->last_sect;
2031 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2032 (cur_drv->perpendicular << 2);
2033 fdctrl->fifo[8] = fdctrl->config;
2034 fdctrl->fifo[9] = fdctrl->precomp_trk;
2035 fdctrl_to_result_phase(fdctrl, 10);
2038 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2040 /* Controller's version */
2041 fdctrl->fifo[0] = fdctrl->version;
2042 fdctrl_to_result_phase(fdctrl, 1);
2045 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2047 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2048 fdctrl_to_result_phase(fdctrl, 1);
2051 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2053 FDrive *cur_drv = get_cur_drv(fdctrl);
2055 /* Drives position */
2056 drv0(fdctrl)->track = fdctrl->fifo[3];
2057 drv1(fdctrl)->track = fdctrl->fifo[4];
2058 #if MAX_FD == 4
2059 drv2(fdctrl)->track = fdctrl->fifo[5];
2060 drv3(fdctrl)->track = fdctrl->fifo[6];
2061 #endif
2062 /* timers */
2063 fdctrl->timer0 = fdctrl->fifo[7];
2064 fdctrl->timer1 = fdctrl->fifo[8];
2065 cur_drv->last_sect = fdctrl->fifo[9];
2066 fdctrl->lock = fdctrl->fifo[10] >> 7;
2067 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2068 fdctrl->config = fdctrl->fifo[11];
2069 fdctrl->precomp_trk = fdctrl->fifo[12];
2070 fdctrl->pwrd = fdctrl->fifo[13];
2071 fdctrl_to_command_phase(fdctrl);
2074 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2076 FDrive *cur_drv = get_cur_drv(fdctrl);
2078 fdctrl->fifo[0] = 0;
2079 fdctrl->fifo[1] = 0;
2080 /* Drives position */
2081 fdctrl->fifo[2] = drv0(fdctrl)->track;
2082 fdctrl->fifo[3] = drv1(fdctrl)->track;
2083 #if MAX_FD == 4
2084 fdctrl->fifo[4] = drv2(fdctrl)->track;
2085 fdctrl->fifo[5] = drv3(fdctrl)->track;
2086 #else
2087 fdctrl->fifo[4] = 0;
2088 fdctrl->fifo[5] = 0;
2089 #endif
2090 /* timers */
2091 fdctrl->fifo[6] = fdctrl->timer0;
2092 fdctrl->fifo[7] = fdctrl->timer1;
2093 fdctrl->fifo[8] = cur_drv->last_sect;
2094 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2095 (cur_drv->perpendicular << 2);
2096 fdctrl->fifo[10] = fdctrl->config;
2097 fdctrl->fifo[11] = fdctrl->precomp_trk;
2098 fdctrl->fifo[12] = fdctrl->pwrd;
2099 fdctrl->fifo[13] = 0;
2100 fdctrl->fifo[14] = 0;
2101 fdctrl_to_result_phase(fdctrl, 15);
2104 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2106 FDrive *cur_drv = get_cur_drv(fdctrl);
2108 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2109 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2110 (NANOSECONDS_PER_SECOND / 50));
2113 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2115 FDrive *cur_drv;
2117 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2118 cur_drv = get_cur_drv(fdctrl);
2119 fdctrl->data_state |= FD_STATE_FORMAT;
2120 if (fdctrl->fifo[0] & 0x80)
2121 fdctrl->data_state |= FD_STATE_MULTI;
2122 else
2123 fdctrl->data_state &= ~FD_STATE_MULTI;
2124 cur_drv->bps =
2125 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2126 #if 0
2127 cur_drv->last_sect =
2128 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2129 fdctrl->fifo[3] / 2;
2130 #else
2131 cur_drv->last_sect = fdctrl->fifo[3];
2132 #endif
2133 /* TODO: implement format using DMA expected by the Bochs BIOS
2134 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2135 * the sector with the specified fill byte
2137 fdctrl->data_state &= ~FD_STATE_FORMAT;
2138 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2141 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2143 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2144 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2145 if (fdctrl->fifo[2] & 1)
2146 fdctrl->dor &= ~FD_DOR_DMAEN;
2147 else
2148 fdctrl->dor |= FD_DOR_DMAEN;
2149 /* No result back */
2150 fdctrl_to_command_phase(fdctrl);
2153 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2155 FDrive *cur_drv;
2157 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2158 cur_drv = get_cur_drv(fdctrl);
2159 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2160 /* 1 Byte status back */
2161 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2162 (cur_drv->track == 0 ? 0x10 : 0x00) |
2163 (cur_drv->head << 2) |
2164 GET_CUR_DRV(fdctrl) |
2165 0x28;
2166 fdctrl_to_result_phase(fdctrl, 1);
2169 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2171 FDrive *cur_drv;
2173 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2174 cur_drv = get_cur_drv(fdctrl);
2175 fd_recalibrate(cur_drv);
2176 fdctrl_to_command_phase(fdctrl);
2177 /* Raise Interrupt */
2178 fdctrl->status0 |= FD_SR0_SEEK;
2179 fdctrl_raise_irq(fdctrl);
2182 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2184 FDrive *cur_drv = get_cur_drv(fdctrl);
2186 if (fdctrl->reset_sensei > 0) {
2187 fdctrl->fifo[0] =
2188 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2189 fdctrl->reset_sensei--;
2190 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2191 fdctrl->fifo[0] = FD_SR0_INVCMD;
2192 fdctrl_to_result_phase(fdctrl, 1);
2193 return;
2194 } else {
2195 fdctrl->fifo[0] =
2196 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2197 | GET_CUR_DRV(fdctrl);
2200 fdctrl->fifo[1] = cur_drv->track;
2201 fdctrl_to_result_phase(fdctrl, 2);
2202 fdctrl_reset_irq(fdctrl);
2203 fdctrl->status0 = FD_SR0_RDYCHG;
2206 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2208 FDrive *cur_drv;
2210 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2211 cur_drv = get_cur_drv(fdctrl);
2212 fdctrl_to_command_phase(fdctrl);
2213 /* The seek command just sends step pulses to the drive and doesn't care if
2214 * there is a medium inserted of if it's banging the head against the drive.
2216 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2217 /* Raise Interrupt */
2218 fdctrl->status0 |= FD_SR0_SEEK;
2219 fdctrl_raise_irq(fdctrl);
2222 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2224 FDrive *cur_drv = get_cur_drv(fdctrl);
2226 if (fdctrl->fifo[1] & 0x80)
2227 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2228 /* No result back */
2229 fdctrl_to_command_phase(fdctrl);
2232 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2234 fdctrl->config = fdctrl->fifo[2];
2235 fdctrl->precomp_trk = fdctrl->fifo[3];
2236 /* No result back */
2237 fdctrl_to_command_phase(fdctrl);
2240 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2242 fdctrl->pwrd = fdctrl->fifo[1];
2243 fdctrl->fifo[0] = fdctrl->fifo[1];
2244 fdctrl_to_result_phase(fdctrl, 1);
2247 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2249 /* No result back */
2250 fdctrl_to_command_phase(fdctrl);
2253 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2255 FDrive *cur_drv = get_cur_drv(fdctrl);
2256 uint32_t pos;
2258 pos = fdctrl->data_pos - 1;
2259 pos %= FD_SECTOR_LEN;
2260 if (fdctrl->fifo[pos] & 0x80) {
2261 /* Command parameters done */
2262 if (fdctrl->fifo[pos] & 0x40) {
2263 fdctrl->fifo[0] = fdctrl->fifo[1];
2264 fdctrl->fifo[2] = 0;
2265 fdctrl->fifo[3] = 0;
2266 fdctrl_to_result_phase(fdctrl, 4);
2267 } else {
2268 fdctrl_to_command_phase(fdctrl);
2270 } else if (fdctrl->data_len > 7) {
2271 /* ERROR */
2272 fdctrl->fifo[0] = 0x80 |
2273 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2274 fdctrl_to_result_phase(fdctrl, 1);
2278 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2280 FDrive *cur_drv;
2282 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2283 cur_drv = get_cur_drv(fdctrl);
2284 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2285 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2286 cur_drv->sect, 1);
2287 } else {
2288 fd_seek(cur_drv, cur_drv->head,
2289 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2291 fdctrl_to_command_phase(fdctrl);
2292 /* Raise Interrupt */
2293 fdctrl->status0 |= FD_SR0_SEEK;
2294 fdctrl_raise_irq(fdctrl);
2297 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2299 FDrive *cur_drv;
2301 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2302 cur_drv = get_cur_drv(fdctrl);
2303 if (fdctrl->fifo[2] > cur_drv->track) {
2304 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2305 } else {
2306 fd_seek(cur_drv, cur_drv->head,
2307 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2309 fdctrl_to_command_phase(fdctrl);
2310 /* Raise Interrupt */
2311 fdctrl->status0 |= FD_SR0_SEEK;
2312 fdctrl_raise_irq(fdctrl);
2316 * Handlers for the execution phase of each command
2318 typedef struct FDCtrlCommand {
2319 uint8_t value;
2320 uint8_t mask;
2321 const char* name;
2322 int parameters;
2323 void (*handler)(FDCtrl *fdctrl, int direction);
2324 int direction;
2325 } FDCtrlCommand;
2327 static const FDCtrlCommand handlers[] = {
2328 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2329 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2330 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2331 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2332 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2333 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2334 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2335 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2336 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2337 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2338 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2339 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2340 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2341 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2342 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2343 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2344 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2345 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2346 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2347 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2348 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2349 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2350 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2351 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2352 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2353 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2354 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2355 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2356 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2357 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2358 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2359 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2361 /* Associate command to an index in the 'handlers' array */
2362 static uint8_t command_to_handler[256];
2364 static const FDCtrlCommand *get_command(uint8_t cmd)
2366 int idx;
2368 idx = command_to_handler[cmd];
2369 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2370 return &handlers[idx];
2373 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2375 FDrive *cur_drv;
2376 const FDCtrlCommand *cmd;
2377 uint32_t pos;
2379 /* Reset mode */
2380 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2381 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2382 return;
2384 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2385 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2386 return;
2388 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2390 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2392 /* If data_len spans multiple sectors, the current position in the FIFO
2393 * wraps around while fdctrl->data_pos is the real position in the whole
2394 * request. */
2395 pos = fdctrl->data_pos++;
2396 pos %= FD_SECTOR_LEN;
2397 fdctrl->fifo[pos] = value;
2399 if (fdctrl->data_pos == fdctrl->data_len) {
2400 fdctrl->msr &= ~FD_MSR_RQM;
2403 switch (fdctrl->phase) {
2404 case FD_PHASE_EXECUTION:
2405 /* For DMA requests, RQM should be cleared during execution phase, so
2406 * we would have errored out above. */
2407 assert(fdctrl->msr & FD_MSR_NONDMA);
2409 /* FIFO data write */
2410 if (pos == FD_SECTOR_LEN - 1 ||
2411 fdctrl->data_pos == fdctrl->data_len) {
2412 cur_drv = get_cur_drv(fdctrl);
2413 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2414 BDRV_SECTOR_SIZE, 0) < 0) {
2415 FLOPPY_DPRINTF("error writing sector %d\n",
2416 fd_sector(cur_drv));
2417 break;
2419 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2420 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2421 fd_sector(cur_drv));
2422 break;
2426 /* Switch to result phase when done with the transfer */
2427 if (fdctrl->data_pos == fdctrl->data_len) {
2428 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2430 break;
2432 case FD_PHASE_COMMAND:
2433 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2434 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2436 if (pos == 0) {
2437 /* The first byte specifies the command. Now we start reading
2438 * as many parameters as this command requires. */
2439 cmd = get_command(value);
2440 fdctrl->data_len = cmd->parameters + 1;
2441 if (cmd->parameters) {
2442 fdctrl->msr |= FD_MSR_RQM;
2444 fdctrl->msr |= FD_MSR_CMDBUSY;
2447 if (fdctrl->data_pos == fdctrl->data_len) {
2448 /* We have all parameters now, execute the command */
2449 fdctrl->phase = FD_PHASE_EXECUTION;
2451 if (fdctrl->data_state & FD_STATE_FORMAT) {
2452 fdctrl_format_sector(fdctrl);
2453 break;
2456 cmd = get_command(fdctrl->fifo[0]);
2457 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2458 cmd->handler(fdctrl, cmd->direction);
2460 break;
2462 case FD_PHASE_RESULT:
2463 default:
2464 abort();
2468 static void fdctrl_result_timer(void *opaque)
2470 FDCtrl *fdctrl = opaque;
2471 FDrive *cur_drv = get_cur_drv(fdctrl);
2473 /* Pretend we are spinning.
2474 * This is needed for Coherent, which uses READ ID to check for
2475 * sector interleaving.
2477 if (cur_drv->last_sect != 0) {
2478 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2480 /* READ_ID can't automatically succeed! */
2481 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2482 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2483 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2484 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2485 } else {
2486 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2490 /* Init functions */
2492 static void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2494 DeviceState *dev;
2495 int i;
2497 for (i = 0; i < MAX_FD; i++) {
2498 if (fds[i]) {
2499 dev = qdev_new("floppy");
2500 qdev_prop_set_uint32(dev, "unit", i);
2501 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2502 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2503 &error_fatal);
2504 qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2509 void isa_fdc_init_drives(ISADevice *fdc, DriveInfo **fds)
2511 fdctrl_init_drives(&ISA_FDC(fdc)->state.bus, fds);
2514 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2515 hwaddr mmio_base, DriveInfo **fds)
2517 FDCtrl *fdctrl;
2518 DeviceState *dev;
2519 SysBusDevice *sbd;
2520 FDCtrlSysBus *sys;
2522 dev = qdev_new("sysbus-fdc");
2523 sys = SYSBUS_FDC(dev);
2524 fdctrl = &sys->state;
2525 fdctrl->dma_chann = dma_chann; /* FIXME */
2526 sbd = SYS_BUS_DEVICE(dev);
2527 sysbus_realize_and_unref(sbd, &error_fatal);
2528 sysbus_connect_irq(sbd, 0, irq);
2529 sysbus_mmio_map(sbd, 0, mmio_base);
2531 fdctrl_init_drives(&sys->state.bus, fds);
2534 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2535 DriveInfo **fds, qemu_irq *fdc_tc)
2537 DeviceState *dev;
2538 FDCtrlSysBus *sys;
2540 dev = qdev_new("sun-fdtwo");
2541 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2542 sys = SYSBUS_FDC(dev);
2543 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2544 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2545 *fdc_tc = qdev_get_gpio_in(dev, 0);
2547 fdctrl_init_drives(&sys->state.bus, fds);
2550 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2551 Error **errp)
2553 int i, j;
2554 FDrive *drive;
2555 static int command_tables_inited = 0;
2557 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2558 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2559 return;
2562 /* Fill 'command_to_handler' lookup table */
2563 if (!command_tables_inited) {
2564 command_tables_inited = 1;
2565 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2566 for (j = 0; j < sizeof(command_to_handler); j++) {
2567 if ((j & handlers[i].mask) == handlers[i].value) {
2568 command_to_handler[j] = i;
2574 FLOPPY_DPRINTF("init controller\n");
2575 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2576 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2577 fdctrl->fifo_size = 512;
2578 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2579 fdctrl_result_timer, fdctrl);
2581 fdctrl->version = 0x90; /* Intel 82078 controller */
2582 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2583 fdctrl->num_floppies = MAX_FD;
2585 if (fdctrl->dma_chann != -1) {
2586 IsaDmaClass *k;
2587 assert(fdctrl->dma);
2588 k = ISADMA_GET_CLASS(fdctrl->dma);
2589 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2590 &fdctrl_transfer_handler, fdctrl);
2593 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2595 for (i = 0; i < MAX_FD; i++) {
2596 drive = &fdctrl->drives[i];
2597 drive->fdctrl = fdctrl;
2598 fd_init(drive);
2599 fd_revalidate(drive);
2603 static const MemoryRegionPortio fdc_portio_list[] = {
2604 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2605 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2606 PORTIO_END_OF_LIST(),
2609 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2611 ISADevice *isadev = ISA_DEVICE(dev);
2612 FDCtrlISABus *isa = ISA_FDC(dev);
2613 FDCtrl *fdctrl = &isa->state;
2614 Error *err = NULL;
2616 isa_register_portio_list(isadev, &fdctrl->portio_list,
2617 isa->iobase, fdc_portio_list, fdctrl,
2618 "fdc");
2620 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2621 fdctrl->dma_chann = isa->dma;
2622 if (fdctrl->dma_chann != -1) {
2623 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2624 if (!fdctrl->dma) {
2625 error_setg(errp, "ISA controller does not support DMA");
2626 return;
2630 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2631 fdctrl_realize_common(dev, fdctrl, &err);
2632 if (err != NULL) {
2633 error_propagate(errp, err);
2634 return;
2638 static void sysbus_fdc_initfn(Object *obj)
2640 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2641 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2642 FDCtrl *fdctrl = &sys->state;
2644 fdctrl->dma_chann = -1;
2646 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2647 "fdc", 0x08);
2648 sysbus_init_mmio(sbd, &fdctrl->iomem);
2651 static void sun4m_fdc_initfn(Object *obj)
2653 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2654 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2655 FDCtrl *fdctrl = &sys->state;
2657 fdctrl->dma_chann = -1;
2659 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2660 fdctrl, "fdctrl", 0x08);
2661 sysbus_init_mmio(sbd, &fdctrl->iomem);
2664 static void sysbus_fdc_common_initfn(Object *obj)
2666 DeviceState *dev = DEVICE(obj);
2667 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2668 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2669 FDCtrl *fdctrl = &sys->state;
2671 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2673 sysbus_init_irq(sbd, &fdctrl->irq);
2674 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2677 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2679 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2680 FDCtrl *fdctrl = &sys->state;
2682 fdctrl_realize_common(dev, fdctrl, errp);
2685 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2687 FDCtrlISABus *isa = ISA_FDC(fdc);
2689 return isa->state.drives[i].drive;
2692 static void isa_fdc_get_drive_max_chs(FloppyDriveType type, uint8_t *maxc,
2693 uint8_t *maxh, uint8_t *maxs)
2695 const FDFormat *fdf;
2697 *maxc = *maxh = *maxs = 0;
2698 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2699 if (fdf->drive != type) {
2700 continue;
2702 if (*maxc < fdf->max_track) {
2703 *maxc = fdf->max_track;
2705 if (*maxh < fdf->max_head) {
2706 *maxh = fdf->max_head;
2708 if (*maxs < fdf->last_sect) {
2709 *maxs = fdf->last_sect;
2712 (*maxc)--;
2715 static Aml *build_fdinfo_aml(int idx, FloppyDriveType type)
2717 Aml *dev, *fdi;
2718 uint8_t maxc, maxh, maxs;
2720 isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs);
2722 dev = aml_device("FLP%c", 'A' + idx);
2724 aml_append(dev, aml_name_decl("_ADR", aml_int(idx)));
2726 fdi = aml_package(16);
2727 aml_append(fdi, aml_int(idx)); /* Drive Number */
2728 aml_append(fdi,
2729 aml_int(cmos_get_fd_drive_type(type))); /* Device Type */
2731 * the values below are the limits of the drive, and are thus independent
2732 * of the inserted media
2734 aml_append(fdi, aml_int(maxc)); /* Maximum Cylinder Number */
2735 aml_append(fdi, aml_int(maxs)); /* Maximum Sector Number */
2736 aml_append(fdi, aml_int(maxh)); /* Maximum Head Number */
2738 * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of
2739 * the drive type, so shall we
2741 aml_append(fdi, aml_int(0xAF)); /* disk_specify_1 */
2742 aml_append(fdi, aml_int(0x02)); /* disk_specify_2 */
2743 aml_append(fdi, aml_int(0x25)); /* disk_motor_wait */
2744 aml_append(fdi, aml_int(0x02)); /* disk_sector_siz */
2745 aml_append(fdi, aml_int(0x12)); /* disk_eot */
2746 aml_append(fdi, aml_int(0x1B)); /* disk_rw_gap */
2747 aml_append(fdi, aml_int(0xFF)); /* disk_dtl */
2748 aml_append(fdi, aml_int(0x6C)); /* disk_formt_gap */
2749 aml_append(fdi, aml_int(0xF6)); /* disk_fill */
2750 aml_append(fdi, aml_int(0x0F)); /* disk_head_sttl */
2751 aml_append(fdi, aml_int(0x08)); /* disk_motor_strt */
2753 aml_append(dev, aml_name_decl("_FDI", fdi));
2754 return dev;
2757 int cmos_get_fd_drive_type(FloppyDriveType fd0)
2759 int val;
2761 switch (fd0) {
2762 case FLOPPY_DRIVE_TYPE_144:
2763 /* 1.44 Mb 3"5 drive */
2764 val = 4;
2765 break;
2766 case FLOPPY_DRIVE_TYPE_288:
2767 /* 2.88 Mb 3"5 drive */
2768 val = 5;
2769 break;
2770 case FLOPPY_DRIVE_TYPE_120:
2771 /* 1.2 Mb 5"5 drive */
2772 val = 2;
2773 break;
2774 case FLOPPY_DRIVE_TYPE_NONE:
2775 default:
2776 val = 0;
2777 break;
2779 return val;
2782 static void fdc_isa_build_aml(ISADevice *isadev, Aml *scope)
2784 Aml *dev;
2785 Aml *crs;
2786 int i;
2788 #define ACPI_FDE_MAX_FD 4
2789 uint32_t fde_buf[5] = {
2790 0, 0, 0, 0, /* presence of floppy drives #0 - #3 */
2791 cpu_to_le32(2) /* tape presence (2 == never present) */
2794 crs = aml_resource_template();
2795 aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04));
2796 aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01));
2797 aml_append(crs, aml_irq_no_flags(6));
2798 aml_append(crs,
2799 aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2));
2801 dev = aml_device("FDC0");
2802 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700")));
2803 aml_append(dev, aml_name_decl("_CRS", crs));
2805 for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) {
2806 FloppyDriveType type = isa_fdc_get_drive_type(isadev, i);
2808 if (type < FLOPPY_DRIVE_TYPE_NONE) {
2809 fde_buf[i] = cpu_to_le32(1); /* drive present */
2810 aml_append(dev, build_fdinfo_aml(i, type));
2813 aml_append(dev, aml_name_decl("_FDE",
2814 aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf)));
2816 aml_append(scope, dev);
2819 static const VMStateDescription vmstate_isa_fdc ={
2820 .name = "fdc",
2821 .version_id = 2,
2822 .minimum_version_id = 2,
2823 .fields = (VMStateField[]) {
2824 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2825 VMSTATE_END_OF_LIST()
2829 static Property isa_fdc_properties[] = {
2830 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2831 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2832 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2833 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2834 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2835 FloppyDriveType),
2836 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2837 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2838 FloppyDriveType),
2839 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2840 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2841 FloppyDriveType),
2842 DEFINE_PROP_END_OF_LIST(),
2845 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2847 DeviceClass *dc = DEVICE_CLASS(klass);
2848 ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
2850 dc->realize = isabus_fdc_realize;
2851 dc->fw_name = "fdc";
2852 dc->reset = fdctrl_external_reset_isa;
2853 dc->vmsd = &vmstate_isa_fdc;
2854 isa->build_aml = fdc_isa_build_aml;
2855 device_class_set_props(dc, isa_fdc_properties);
2856 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2859 static void isabus_fdc_instance_init(Object *obj)
2861 FDCtrlISABus *isa = ISA_FDC(obj);
2863 device_add_bootindex_property(obj, &isa->bootindexA,
2864 "bootindexA", "/floppy@0",
2865 DEVICE(obj));
2866 device_add_bootindex_property(obj, &isa->bootindexB,
2867 "bootindexB", "/floppy@1",
2868 DEVICE(obj));
2871 static const TypeInfo isa_fdc_info = {
2872 .name = TYPE_ISA_FDC,
2873 .parent = TYPE_ISA_DEVICE,
2874 .instance_size = sizeof(FDCtrlISABus),
2875 .class_init = isabus_fdc_class_init,
2876 .instance_init = isabus_fdc_instance_init,
2879 static const VMStateDescription vmstate_sysbus_fdc ={
2880 .name = "fdc",
2881 .version_id = 2,
2882 .minimum_version_id = 2,
2883 .fields = (VMStateField[]) {
2884 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2885 VMSTATE_END_OF_LIST()
2889 static Property sysbus_fdc_properties[] = {
2890 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2891 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2892 FloppyDriveType),
2893 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2894 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2895 FloppyDriveType),
2896 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2897 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2898 FloppyDriveType),
2899 DEFINE_PROP_END_OF_LIST(),
2902 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2904 DeviceClass *dc = DEVICE_CLASS(klass);
2906 device_class_set_props(dc, sysbus_fdc_properties);
2907 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2910 static const TypeInfo sysbus_fdc_info = {
2911 .name = "sysbus-fdc",
2912 .parent = TYPE_SYSBUS_FDC,
2913 .instance_init = sysbus_fdc_initfn,
2914 .class_init = sysbus_fdc_class_init,
2917 static Property sun4m_fdc_properties[] = {
2918 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2919 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2920 FloppyDriveType),
2921 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2922 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2923 FloppyDriveType),
2924 DEFINE_PROP_END_OF_LIST(),
2927 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2929 DeviceClass *dc = DEVICE_CLASS(klass);
2931 device_class_set_props(dc, sun4m_fdc_properties);
2932 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2935 static const TypeInfo sun4m_fdc_info = {
2936 .name = "sun-fdtwo",
2937 .parent = TYPE_SYSBUS_FDC,
2938 .instance_init = sun4m_fdc_initfn,
2939 .class_init = sun4m_fdc_class_init,
2942 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2944 DeviceClass *dc = DEVICE_CLASS(klass);
2946 dc->realize = sysbus_fdc_common_realize;
2947 dc->reset = fdctrl_external_reset_sysbus;
2948 dc->vmsd = &vmstate_sysbus_fdc;
2951 static const TypeInfo sysbus_fdc_type_info = {
2952 .name = TYPE_SYSBUS_FDC,
2953 .parent = TYPE_SYS_BUS_DEVICE,
2954 .instance_size = sizeof(FDCtrlSysBus),
2955 .instance_init = sysbus_fdc_common_initfn,
2956 .abstract = true,
2957 .class_init = sysbus_fdc_common_class_init,
2960 static void fdc_register_types(void)
2962 type_register_static(&isa_fdc_info);
2963 type_register_static(&sysbus_fdc_type_info);
2964 type_register_static(&sysbus_fdc_info);
2965 type_register_static(&sun4m_fdc_info);
2966 type_register_static(&floppy_bus_info);
2967 type_register_static(&floppy_drive_info);
2970 type_init(fdc_register_types)