2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "sysemu/blockdev.h"
29 #ifdef M25P80_ERR_DEBUG
30 #define DB_PRINT(...) do { \
31 fprintf(stderr, ": %s: ", __func__); \
32 fprintf(stderr, ## __VA_ARGS__); \
38 /* Fields for FlashPartInfo->flags */
40 /* erase capabilities */
43 /* set to allow the page program command to write 0s back to 1. Useful for
44 * modelling EEPROM with SPI flash command set
48 typedef struct FlashPartInfo
{
49 const char *part_name
;
50 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
52 /* extended jedec code */
54 /* there is confusion between manufacturers as to what a sector is. In this
55 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
56 * command (opcode 0xd8).
64 /* adapted from linux */
66 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
67 .part_name = (_part_name),\
69 .ext_jedec = (_ext_jedec),\
70 .sector_size = (_sector_size),\
71 .n_sectors = (_n_sectors),\
75 #define JEDEC_NUMONYX 0x20
76 #define JEDEC_WINBOND 0xEF
77 #define JEDEC_SPANSION 0x01
79 static const FlashPartInfo known_devices
[] = {
80 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
81 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K
) },
82 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K
) },
84 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K
) },
85 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K
) },
86 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K
) },
88 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K
) },
89 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K
) },
90 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K
) },
91 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K
) },
94 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K
) },
95 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
96 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
97 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
99 /* Intel/Numonyx -- xxxs33b */
100 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
101 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
102 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
105 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K
) },
106 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
107 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K
) },
108 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
109 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
110 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
111 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
112 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
113 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
115 /* Spansion -- single (large) sector size only, at least
116 * for the chips listed here (without boot sectors).
118 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
119 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
120 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
121 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
122 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K
) },
123 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
124 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
125 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
126 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
127 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
128 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
129 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
130 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
131 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
132 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K
| ER_32K
) },
133 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K
| ER_32K
) },
135 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
136 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K
) },
137 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K
) },
138 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K
) },
139 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K
) },
140 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K
) },
141 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K
) },
142 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K
) },
143 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K
) },
145 /* ST Microelectronics -- newer production may have feature updates */
146 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
147 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
148 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
149 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
150 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
151 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
152 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
153 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
154 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
156 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
157 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
158 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
160 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
161 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K
) },
163 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K
) },
164 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K
) },
165 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K
) },
166 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
168 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
169 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K
) },
170 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K
) },
171 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K
) },
172 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K
) },
173 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K
) },
174 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K
) },
175 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K
) },
176 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K
) },
177 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K
) },
179 /* Numonyx -- n25q128 */
180 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
213 STATE_COLLECTING_DATA
,
217 typedef struct Flash
{
221 BlockDriverState
*bdrv
;
231 uint8_t needed_bytes
;
232 uint8_t cmd_in_progress
;
239 const FlashPartInfo
*pi
;
243 static void bdrv_sync_complete(void *opaque
, int ret
)
245 /* do nothing. Masters do not directly interact with the backing store,
246 * only the working copy so no mutexing required.
250 static void flash_sync_page(Flash
*s
, int page
)
253 int bdrv_sector
, nb_sectors
;
256 bdrv_sector
= (page
* s
->pi
->page_size
) / BDRV_SECTOR_SIZE
;
257 nb_sectors
= DIV_ROUND_UP(s
->pi
->page_size
, BDRV_SECTOR_SIZE
);
258 qemu_iovec_init(&iov
, 1);
259 qemu_iovec_add(&iov
, s
->storage
+ bdrv_sector
* BDRV_SECTOR_SIZE
,
260 nb_sectors
* BDRV_SECTOR_SIZE
);
261 bdrv_aio_writev(s
->bdrv
, bdrv_sector
, &iov
, nb_sectors
,
262 bdrv_sync_complete
, NULL
);
266 static inline void flash_sync_area(Flash
*s
, int64_t off
, int64_t len
)
268 int64_t start
, end
, nb_sectors
;
275 assert(!(len
% BDRV_SECTOR_SIZE
));
276 start
= off
/ BDRV_SECTOR_SIZE
;
277 end
= (off
+ len
) / BDRV_SECTOR_SIZE
;
278 nb_sectors
= end
- start
;
279 qemu_iovec_init(&iov
, 1);
280 qemu_iovec_add(&iov
, s
->storage
+ (start
* BDRV_SECTOR_SIZE
),
281 nb_sectors
* BDRV_SECTOR_SIZE
);
282 bdrv_aio_writev(s
->bdrv
, start
, &iov
, nb_sectors
, bdrv_sync_complete
, NULL
);
285 static void flash_erase(Flash
*s
, int offset
, FlashCMD cmd
)
288 uint8_t capa_to_assert
= 0;
293 capa_to_assert
= ER_4K
;
297 capa_to_assert
= ER_32K
;
300 len
= s
->pi
->sector_size
;
309 DB_PRINT("offset = %#x, len = %d\n", offset
, len
);
310 if ((s
->pi
->flags
& capa_to_assert
) != capa_to_assert
) {
311 hw_error("m25p80: %dk erase size not supported by device\n", len
);
314 if (!s
->write_enable
) {
315 DB_PRINT("erase with write protect!\n");
318 memset(s
->storage
+ offset
, 0xff, len
);
319 flash_sync_area(s
, offset
, len
);
322 static inline void flash_sync_dirty(Flash
*s
, int64_t newpage
)
324 if (s
->dirty_page
>= 0 && s
->dirty_page
!= newpage
) {
325 flash_sync_page(s
, s
->dirty_page
);
326 s
->dirty_page
= newpage
;
331 void flash_write8(Flash
*s
, uint64_t addr
, uint8_t data
)
333 int64_t page
= addr
/ s
->pi
->page_size
;
334 uint8_t prev
= s
->storage
[s
->cur_addr
];
336 if (!s
->write_enable
) {
337 DB_PRINT("write with write protect!\n");
340 if ((prev
^ data
) & data
) {
341 DB_PRINT("programming zero to one! addr=%lx %x -> %x\n",
345 if (s
->pi
->flags
& WR_1
) {
346 s
->storage
[s
->cur_addr
] = data
;
348 s
->storage
[s
->cur_addr
] &= data
;
351 flash_sync_dirty(s
, page
);
352 s
->dirty_page
= page
;
355 static void complete_collecting_data(Flash
*s
)
357 s
->cur_addr
= s
->data
[0] << 16;
358 s
->cur_addr
|= s
->data
[1] << 8;
359 s
->cur_addr
|= s
->data
[2];
361 switch (s
->cmd_in_progress
) {
365 s
->state
= STATE_PAGE_PROGRAM
;
373 s
->state
= STATE_READ
;
378 flash_erase(s
, s
->cur_addr
, s
->cmd_in_progress
);
385 static void decode_new_cmd(Flash
*s
, uint32_t value
)
387 s
->cmd_in_progress
= value
;
388 DB_PRINT("decoded new command:%x\n", value
);
402 s
->state
= STATE_COLLECTING_DATA
;
411 s
->state
= STATE_COLLECTING_DATA
;
415 switch ((s
->pi
->jedec
>> 16) & 0xFF) {
426 s
->state
= STATE_COLLECTING_DATA
;
430 switch ((s
->pi
->jedec
>> 16) & 0xFF) {
441 s
->state
= STATE_COLLECTING_DATA
;
445 s
->write_enable
= false;
448 s
->write_enable
= true;
452 s
->data
[0] = (!!s
->write_enable
) << 1;
455 s
->state
= STATE_READING_DATA
;
459 DB_PRINT("populated jedec code\n");
460 s
->data
[0] = (s
->pi
->jedec
>> 16) & 0xff;
461 s
->data
[1] = (s
->pi
->jedec
>> 8) & 0xff;
462 s
->data
[2] = s
->pi
->jedec
& 0xff;
463 if (s
->pi
->ext_jedec
) {
464 s
->data
[3] = (s
->pi
->ext_jedec
>> 8) & 0xff;
465 s
->data
[4] = s
->pi
->ext_jedec
& 0xff;
471 s
->state
= STATE_READING_DATA
;
475 if (s
->write_enable
) {
476 DB_PRINT("chip erase\n");
477 flash_erase(s
, 0, BULK_ERASE
);
479 DB_PRINT("chip erase with write protect!\n");
485 DB_PRINT("Unknown cmd %x\n", value
);
490 static int m25p80_cs(SSISlave
*ss
, bool select
)
492 Flash
*s
= FROM_SSI_SLAVE(Flash
, ss
);
497 s
->state
= STATE_IDLE
;
498 flash_sync_dirty(s
, -1);
501 DB_PRINT("%sselect\n", select
? "de" : "");
506 static uint32_t m25p80_transfer8(SSISlave
*ss
, uint32_t tx
)
508 Flash
*s
= FROM_SSI_SLAVE(Flash
, ss
);
513 case STATE_PAGE_PROGRAM
:
514 DB_PRINT("page program cur_addr=%lx data=%x\n", s
->cur_addr
,
516 flash_write8(s
, s
->cur_addr
, (uint8_t)tx
);
521 r
= s
->storage
[s
->cur_addr
];
522 DB_PRINT("READ 0x%lx=%x\n", s
->cur_addr
, r
);
523 s
->cur_addr
= (s
->cur_addr
+ 1) % s
->size
;
526 case STATE_COLLECTING_DATA
:
527 s
->data
[s
->len
] = (uint8_t)tx
;
530 if (s
->len
== s
->needed_bytes
) {
531 complete_collecting_data(s
);
535 case STATE_READING_DATA
:
538 if (s
->pos
== s
->len
) {
540 s
->state
= STATE_IDLE
;
546 decode_new_cmd(s
, (uint8_t)tx
);
553 static int m25p80_init(SSISlave
*ss
)
556 Flash
*s
= FROM_SSI_SLAVE(Flash
, ss
);
557 const FlashPartInfo
*i
;
559 if (!s
->part_name
) { /* default to actual m25p80 if no partname given */
560 s
->part_name
= (char *)"m25p80";
564 for (i
= known_devices
;; i
++) {
567 fprintf(stderr
, "Unknown SPI flash part: \"%s\"\n", s
->part_name
);
569 } else if (!strcmp(i
->part_name
, s
->part_name
)) {
575 s
->size
= s
->pi
->sector_size
* s
->pi
->n_sectors
;
577 s
->storage
= qemu_blockalign(s
->bdrv
, s
->size
);
579 dinfo
= drive_get_next(IF_MTD
);
581 if (dinfo
&& dinfo
->bdrv
) {
582 DB_PRINT("Binding to IF_MTD drive\n");
583 s
->bdrv
= dinfo
->bdrv
;
584 /* FIXME: Move to late init */
585 if (bdrv_read(s
->bdrv
, 0, s
->storage
, DIV_ROUND_UP(s
->size
,
586 BDRV_SECTOR_SIZE
))) {
587 fprintf(stderr
, "Failed to initialize SPI flash!\n");
591 memset(s
->storage
, 0xFF, s
->size
);
597 static void m25p80_pre_save(void *opaque
)
599 flash_sync_dirty((Flash
*)opaque
, -1);
602 static const VMStateDescription vmstate_m25p80
= {
603 .name
= "xilinx_spi",
605 .minimum_version_id
= 1,
606 .minimum_version_id_old
= 1,
607 .pre_save
= m25p80_pre_save
,
608 .fields
= (VMStateField
[]) {
609 VMSTATE_UINT8(state
, Flash
),
610 VMSTATE_UINT8_ARRAY(data
, Flash
, 16),
611 VMSTATE_UINT32(len
, Flash
),
612 VMSTATE_UINT32(pos
, Flash
),
613 VMSTATE_UINT8(needed_bytes
, Flash
),
614 VMSTATE_UINT8(cmd_in_progress
, Flash
),
615 VMSTATE_UINT64(cur_addr
, Flash
),
616 VMSTATE_BOOL(write_enable
, Flash
),
617 VMSTATE_END_OF_LIST()
621 static Property m25p80_properties
[] = {
622 DEFINE_PROP_STRING("partname", Flash
, part_name
),
623 DEFINE_PROP_END_OF_LIST(),
626 static void m25p80_class_init(ObjectClass
*klass
, void *data
)
628 DeviceClass
*dc
= DEVICE_CLASS(klass
);
629 SSISlaveClass
*k
= SSI_SLAVE_CLASS(klass
);
631 k
->init
= m25p80_init
;
632 k
->transfer
= m25p80_transfer8
;
633 k
->set_cs
= m25p80_cs
;
634 k
->cs_polarity
= SSI_CS_LOW
;
635 dc
->props
= m25p80_properties
;
636 dc
->vmsd
= &vmstate_m25p80
;
639 static const TypeInfo m25p80_info
= {
641 .parent
= TYPE_SSI_SLAVE
,
642 .instance_size
= sizeof(Flash
),
643 .class_init
= m25p80_class_init
,
646 static void m25p80_register_types(void)
648 type_register_static(&m25p80_info
);
651 type_init(m25p80_register_types
)