9pfs: clarify latency of v9fs_co_run_in_worker()
[qemu/ar7.git] / hw / timer / arm_mptimer.c
blobcdfca3000bee288e1ab976f2334f3bfd2b7e7165
1 /*
2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Copyright (c) 2011 Linaro Limited
6 * Written by Paul Brook, Peter Maydell
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "hw/hw.h"
24 #include "hw/irq.h"
25 #include "hw/ptimer.h"
26 #include "hw/qdev-properties.h"
27 #include "hw/timer/arm_mptimer.h"
28 #include "migration/vmstate.h"
29 #include "qapi/error.h"
30 #include "qemu/module.h"
31 #include "hw/core/cpu.h"
33 #define PTIMER_POLICY \
34 (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD | \
35 PTIMER_POLICY_CONTINUOUS_TRIGGER | \
36 PTIMER_POLICY_NO_IMMEDIATE_TRIGGER | \
37 PTIMER_POLICY_NO_IMMEDIATE_RELOAD | \
38 PTIMER_POLICY_NO_COUNTER_ROUND_DOWN)
40 /* This device implements the per-cpu private timer and watchdog block
41 * which is used in both the ARM11MPCore and Cortex-A9MP.
44 static inline int get_current_cpu(ARMMPTimerState *s)
46 int cpu_id = current_cpu ? current_cpu->cpu_index : 0;
48 if (cpu_id >= s->num_cpu) {
49 hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
50 s->num_cpu, cpu_id);
53 return cpu_id;
56 static inline void timerblock_update_irq(TimerBlock *tb)
58 qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
61 /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */
62 static inline uint32_t timerblock_scale(uint32_t control)
64 return (((control >> 8) & 0xff) + 1) * 10;
67 /* Must be called within a ptimer transaction block */
68 static inline void timerblock_set_count(struct ptimer_state *timer,
69 uint32_t control, uint64_t *count)
71 /* PTimer would trigger interrupt for periodic timer when counter set
72 * to 0, MPtimer under certain condition only.
74 if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) {
75 *count = ptimer_get_limit(timer);
77 ptimer_set_count(timer, *count);
80 /* Must be called within a ptimer transaction block */
81 static inline void timerblock_run(struct ptimer_state *timer,
82 uint32_t control, uint32_t load)
84 if ((control & 1) && ((control & 0xff00) || load != 0)) {
85 ptimer_run(timer, !(control & 2));
89 static void timerblock_tick(void *opaque)
91 TimerBlock *tb = (TimerBlock *)opaque;
92 /* Periodic timer with load = 0 and prescaler != 0 would re-trigger
93 * IRQ after one period, otherwise it either stops or wraps around.
95 if ((tb->control & 2) && (tb->control & 0xff00) == 0 &&
96 ptimer_get_limit(tb->timer) == 0) {
97 ptimer_stop(tb->timer);
99 tb->status = 1;
100 timerblock_update_irq(tb);
103 static uint64_t timerblock_read(void *opaque, hwaddr addr,
104 unsigned size)
106 TimerBlock *tb = (TimerBlock *)opaque;
107 switch (addr) {
108 case 0: /* Load */
109 return ptimer_get_limit(tb->timer);
110 case 4: /* Counter. */
111 return ptimer_get_count(tb->timer);
112 case 8: /* Control. */
113 return tb->control;
114 case 12: /* Interrupt status. */
115 return tb->status;
116 default:
117 return 0;
121 static void timerblock_write(void *opaque, hwaddr addr,
122 uint64_t value, unsigned size)
124 TimerBlock *tb = (TimerBlock *)opaque;
125 uint32_t control = tb->control;
126 switch (addr) {
127 case 0: /* Load */
128 ptimer_transaction_begin(tb->timer);
129 /* Setting load to 0 stops the timer without doing the tick if
130 * prescaler = 0.
132 if ((control & 1) && (control & 0xff00) == 0 && value == 0) {
133 ptimer_stop(tb->timer);
135 ptimer_set_limit(tb->timer, value, 1);
136 timerblock_run(tb->timer, control, value);
137 ptimer_transaction_commit(tb->timer);
138 break;
139 case 4: /* Counter. */
140 ptimer_transaction_begin(tb->timer);
141 /* Setting counter to 0 stops the one-shot timer, or periodic with
142 * load = 0, without doing the tick if prescaler = 0.
144 if ((control & 1) && (control & 0xff00) == 0 && value == 0 &&
145 (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) {
146 ptimer_stop(tb->timer);
148 timerblock_set_count(tb->timer, control, &value);
149 timerblock_run(tb->timer, control, value);
150 ptimer_transaction_commit(tb->timer);
151 break;
152 case 8: /* Control. */
153 ptimer_transaction_begin(tb->timer);
154 if ((control & 3) != (value & 3)) {
155 ptimer_stop(tb->timer);
157 if ((control & 0xff00) != (value & 0xff00)) {
158 ptimer_set_period(tb->timer, timerblock_scale(value));
160 if (value & 1) {
161 uint64_t count = ptimer_get_count(tb->timer);
162 /* Re-load periodic timer counter if needed. */
163 if ((value & 2) && count == 0) {
164 timerblock_set_count(tb->timer, value, &count);
166 timerblock_run(tb->timer, value, count);
168 tb->control = value;
169 ptimer_transaction_commit(tb->timer);
170 break;
171 case 12: /* Interrupt status. */
172 tb->status &= ~value;
173 timerblock_update_irq(tb);
174 break;
178 /* Wrapper functions to implement the "read timer/watchdog for
179 * the current CPU" memory regions.
181 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
182 unsigned size)
184 ARMMPTimerState *s = (ARMMPTimerState *)opaque;
185 int id = get_current_cpu(s);
186 return timerblock_read(&s->timerblock[id], addr, size);
189 static void arm_thistimer_write(void *opaque, hwaddr addr,
190 uint64_t value, unsigned size)
192 ARMMPTimerState *s = (ARMMPTimerState *)opaque;
193 int id = get_current_cpu(s);
194 timerblock_write(&s->timerblock[id], addr, value, size);
197 static const MemoryRegionOps arm_thistimer_ops = {
198 .read = arm_thistimer_read,
199 .write = arm_thistimer_write,
200 .valid = {
201 .min_access_size = 4,
202 .max_access_size = 4,
204 .endianness = DEVICE_NATIVE_ENDIAN,
207 static const MemoryRegionOps timerblock_ops = {
208 .read = timerblock_read,
209 .write = timerblock_write,
210 .valid = {
211 .min_access_size = 4,
212 .max_access_size = 4,
214 .endianness = DEVICE_NATIVE_ENDIAN,
217 static void timerblock_reset(TimerBlock *tb)
219 tb->control = 0;
220 tb->status = 0;
221 if (tb->timer) {
222 ptimer_transaction_begin(tb->timer);
223 ptimer_stop(tb->timer);
224 ptimer_set_limit(tb->timer, 0, 1);
225 ptimer_set_period(tb->timer, timerblock_scale(0));
226 ptimer_transaction_commit(tb->timer);
230 static void arm_mptimer_reset(DeviceState *dev)
232 ARMMPTimerState *s = ARM_MPTIMER(dev);
233 int i;
235 for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
236 timerblock_reset(&s->timerblock[i]);
240 static void arm_mptimer_init(Object *obj)
242 ARMMPTimerState *s = ARM_MPTIMER(obj);
244 memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
245 "arm_mptimer_timer", 0x20);
246 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
249 static void arm_mptimer_realize(DeviceState *dev, Error **errp)
251 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
252 ARMMPTimerState *s = ARM_MPTIMER(dev);
253 int i;
255 if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
256 error_setg(errp, "num-cpu must be between 1 and %d",
257 ARM_MPTIMER_MAX_CPUS);
258 return;
260 /* We implement one timer block per CPU, and expose multiple MMIO regions:
261 * * region 0 is "timer for this core"
262 * * region 1 is "timer for core 0"
263 * * region 2 is "timer for core 1"
264 * and so on.
265 * The outgoing interrupt lines are
266 * * timer for core 0
267 * * timer for core 1
268 * and so on.
270 for (i = 0; i < s->num_cpu; i++) {
271 TimerBlock *tb = &s->timerblock[i];
272 tb->timer = ptimer_init(timerblock_tick, tb, PTIMER_POLICY);
273 sysbus_init_irq(sbd, &tb->irq);
274 memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
275 "arm_mptimer_timerblock", 0x20);
276 sysbus_init_mmio(sbd, &tb->iomem);
280 static const VMStateDescription vmstate_timerblock = {
281 .name = "arm_mptimer_timerblock",
282 .version_id = 3,
283 .minimum_version_id = 3,
284 .fields = (VMStateField[]) {
285 VMSTATE_UINT32(control, TimerBlock),
286 VMSTATE_UINT32(status, TimerBlock),
287 VMSTATE_PTIMER(timer, TimerBlock),
288 VMSTATE_END_OF_LIST()
292 static const VMStateDescription vmstate_arm_mptimer = {
293 .name = "arm_mptimer",
294 .version_id = 3,
295 .minimum_version_id = 3,
296 .fields = (VMStateField[]) {
297 VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
298 3, vmstate_timerblock, TimerBlock),
299 VMSTATE_END_OF_LIST()
303 static Property arm_mptimer_properties[] = {
304 DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
305 DEFINE_PROP_END_OF_LIST()
308 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
310 DeviceClass *dc = DEVICE_CLASS(klass);
312 dc->realize = arm_mptimer_realize;
313 dc->vmsd = &vmstate_arm_mptimer;
314 dc->reset = arm_mptimer_reset;
315 device_class_set_props(dc, arm_mptimer_properties);
318 static const TypeInfo arm_mptimer_info = {
319 .name = TYPE_ARM_MPTIMER,
320 .parent = TYPE_SYS_BUS_DEVICE,
321 .instance_size = sizeof(ARMMPTimerState),
322 .instance_init = arm_mptimer_init,
323 .class_init = arm_mptimer_class_init,
326 static void arm_mptimer_register_types(void)
328 type_register_static(&arm_mptimer_info);
331 type_init(arm_mptimer_register_types)