9pfs: clarify latency of v9fs_co_run_in_worker()
[qemu/ar7.git] / hw / net / cadence_gem.c
bloba93b5c07ce5c7268574715dcecf12eae4ace2639
1 /*
2 * QEMU Cadence GEM emulation
4 * Copyright (c) 2011 Xilinx, Inc.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "migration/vmstate.h"
32 #include "qapi/error.h"
33 #include "qemu/log.h"
34 #include "qemu/module.h"
35 #include "sysemu/dma.h"
36 #include "net/checksum.h"
37 #include "net/eth.h"
39 #define CADENCE_GEM_ERR_DEBUG 0
40 #define DB_PRINT(...) do {\
41 if (CADENCE_GEM_ERR_DEBUG) { \
42 qemu_log(": %s: ", __func__); \
43 qemu_log(__VA_ARGS__); \
44 } \
45 } while (0)
47 #define GEM_NWCTRL (0x00000000 / 4) /* Network Control reg */
48 #define GEM_NWCFG (0x00000004 / 4) /* Network Config reg */
49 #define GEM_NWSTATUS (0x00000008 / 4) /* Network Status reg */
50 #define GEM_USERIO (0x0000000C / 4) /* User IO reg */
51 #define GEM_DMACFG (0x00000010 / 4) /* DMA Control reg */
52 #define GEM_TXSTATUS (0x00000014 / 4) /* TX Status reg */
53 #define GEM_RXQBASE (0x00000018 / 4) /* RX Q Base address reg */
54 #define GEM_TXQBASE (0x0000001C / 4) /* TX Q Base address reg */
55 #define GEM_RXSTATUS (0x00000020 / 4) /* RX Status reg */
56 #define GEM_ISR (0x00000024 / 4) /* Interrupt Status reg */
57 #define GEM_IER (0x00000028 / 4) /* Interrupt Enable reg */
58 #define GEM_IDR (0x0000002C / 4) /* Interrupt Disable reg */
59 #define GEM_IMR (0x00000030 / 4) /* Interrupt Mask reg */
60 #define GEM_PHYMNTNC (0x00000034 / 4) /* Phy Maintenance reg */
61 #define GEM_RXPAUSE (0x00000038 / 4) /* RX Pause Time reg */
62 #define GEM_TXPAUSE (0x0000003C / 4) /* TX Pause Time reg */
63 #define GEM_TXPARTIALSF (0x00000040 / 4) /* TX Partial Store and Forward */
64 #define GEM_RXPARTIALSF (0x00000044 / 4) /* RX Partial Store and Forward */
65 #define GEM_JUMBO_MAX_LEN (0x00000048 / 4) /* Max Jumbo Frame Size */
66 #define GEM_HASHLO (0x00000080 / 4) /* Hash Low address reg */
67 #define GEM_HASHHI (0x00000084 / 4) /* Hash High address reg */
68 #define GEM_SPADDR1LO (0x00000088 / 4) /* Specific addr 1 low reg */
69 #define GEM_SPADDR1HI (0x0000008C / 4) /* Specific addr 1 high reg */
70 #define GEM_SPADDR2LO (0x00000090 / 4) /* Specific addr 2 low reg */
71 #define GEM_SPADDR2HI (0x00000094 / 4) /* Specific addr 2 high reg */
72 #define GEM_SPADDR3LO (0x00000098 / 4) /* Specific addr 3 low reg */
73 #define GEM_SPADDR3HI (0x0000009C / 4) /* Specific addr 3 high reg */
74 #define GEM_SPADDR4LO (0x000000A0 / 4) /* Specific addr 4 low reg */
75 #define GEM_SPADDR4HI (0x000000A4 / 4) /* Specific addr 4 high reg */
76 #define GEM_TIDMATCH1 (0x000000A8 / 4) /* Type ID1 Match reg */
77 #define GEM_TIDMATCH2 (0x000000AC / 4) /* Type ID2 Match reg */
78 #define GEM_TIDMATCH3 (0x000000B0 / 4) /* Type ID3 Match reg */
79 #define GEM_TIDMATCH4 (0x000000B4 / 4) /* Type ID4 Match reg */
80 #define GEM_WOLAN (0x000000B8 / 4) /* Wake on LAN reg */
81 #define GEM_IPGSTRETCH (0x000000BC / 4) /* IPG Stretch reg */
82 #define GEM_SVLAN (0x000000C0 / 4) /* Stacked VLAN reg */
83 #define GEM_MODID (0x000000FC / 4) /* Module ID reg */
84 #define GEM_OCTTXLO (0x00000100 / 4) /* Octects transmitted Low reg */
85 #define GEM_OCTTXHI (0x00000104 / 4) /* Octects transmitted High reg */
86 #define GEM_TXCNT (0x00000108 / 4) /* Error-free Frames transmitted */
87 #define GEM_TXBCNT (0x0000010C / 4) /* Error-free Broadcast Frames */
88 #define GEM_TXMCNT (0x00000110 / 4) /* Error-free Multicast Frame */
89 #define GEM_TXPAUSECNT (0x00000114 / 4) /* Pause Frames Transmitted */
90 #define GEM_TX64CNT (0x00000118 / 4) /* Error-free 64 TX */
91 #define GEM_TX65CNT (0x0000011C / 4) /* Error-free 65-127 TX */
92 #define GEM_TX128CNT (0x00000120 / 4) /* Error-free 128-255 TX */
93 #define GEM_TX256CNT (0x00000124 / 4) /* Error-free 256-511 */
94 #define GEM_TX512CNT (0x00000128 / 4) /* Error-free 512-1023 TX */
95 #define GEM_TX1024CNT (0x0000012C / 4) /* Error-free 1024-1518 TX */
96 #define GEM_TX1519CNT (0x00000130 / 4) /* Error-free larger than 1519 TX */
97 #define GEM_TXURUNCNT (0x00000134 / 4) /* TX under run error counter */
98 #define GEM_SINGLECOLLCNT (0x00000138 / 4) /* Single Collision Frames */
99 #define GEM_MULTCOLLCNT (0x0000013C / 4) /* Multiple Collision Frames */
100 #define GEM_EXCESSCOLLCNT (0x00000140 / 4) /* Excessive Collision Frames */
101 #define GEM_LATECOLLCNT (0x00000144 / 4) /* Late Collision Frames */
102 #define GEM_DEFERTXCNT (0x00000148 / 4) /* Deferred Transmission Frames */
103 #define GEM_CSENSECNT (0x0000014C / 4) /* Carrier Sense Error Counter */
104 #define GEM_OCTRXLO (0x00000150 / 4) /* Octects Received register Low */
105 #define GEM_OCTRXHI (0x00000154 / 4) /* Octects Received register High */
106 #define GEM_RXCNT (0x00000158 / 4) /* Error-free Frames Received */
107 #define GEM_RXBROADCNT (0x0000015C / 4) /* Error-free Broadcast Frames RX */
108 #define GEM_RXMULTICNT (0x00000160 / 4) /* Error-free Multicast Frames RX */
109 #define GEM_RXPAUSECNT (0x00000164 / 4) /* Pause Frames Received Counter */
110 #define GEM_RX64CNT (0x00000168 / 4) /* Error-free 64 byte Frames RX */
111 #define GEM_RX65CNT (0x0000016C / 4) /* Error-free 65-127B Frames RX */
112 #define GEM_RX128CNT (0x00000170 / 4) /* Error-free 128-255B Frames RX */
113 #define GEM_RX256CNT (0x00000174 / 4) /* Error-free 256-512B Frames RX */
114 #define GEM_RX512CNT (0x00000178 / 4) /* Error-free 512-1023B Frames RX */
115 #define GEM_RX1024CNT (0x0000017C / 4) /* Error-free 1024-1518B Frames RX */
116 #define GEM_RX1519CNT (0x00000180 / 4) /* Error-free 1519-max Frames RX */
117 #define GEM_RXUNDERCNT (0x00000184 / 4) /* Undersize Frames Received */
118 #define GEM_RXOVERCNT (0x00000188 / 4) /* Oversize Frames Received */
119 #define GEM_RXJABCNT (0x0000018C / 4) /* Jabbers Received Counter */
120 #define GEM_RXFCSCNT (0x00000190 / 4) /* Frame Check seq. Error Counter */
121 #define GEM_RXLENERRCNT (0x00000194 / 4) /* Length Field Error Counter */
122 #define GEM_RXSYMERRCNT (0x00000198 / 4) /* Symbol Error Counter */
123 #define GEM_RXALIGNERRCNT (0x0000019C / 4) /* Alignment Error Counter */
124 #define GEM_RXRSCERRCNT (0x000001A0 / 4) /* Receive Resource Error Counter */
125 #define GEM_RXORUNCNT (0x000001A4 / 4) /* Receive Overrun Counter */
126 #define GEM_RXIPCSERRCNT (0x000001A8 / 4) /* IP header Checksum Err Counter */
127 #define GEM_RXTCPCCNT (0x000001AC / 4) /* TCP Checksum Error Counter */
128 #define GEM_RXUDPCCNT (0x000001B0 / 4) /* UDP Checksum Error Counter */
130 #define GEM_1588S (0x000001D0 / 4) /* 1588 Timer Seconds */
131 #define GEM_1588NS (0x000001D4 / 4) /* 1588 Timer Nanoseconds */
132 #define GEM_1588ADJ (0x000001D8 / 4) /* 1588 Timer Adjust */
133 #define GEM_1588INC (0x000001DC / 4) /* 1588 Timer Increment */
134 #define GEM_PTPETXS (0x000001E0 / 4) /* PTP Event Frame Transmitted (s) */
135 #define GEM_PTPETXNS (0x000001E4 / 4) /*
136 * PTP Event Frame Transmitted (ns)
138 #define GEM_PTPERXS (0x000001E8 / 4) /* PTP Event Frame Received (s) */
139 #define GEM_PTPERXNS (0x000001EC / 4) /* PTP Event Frame Received (ns) */
140 #define GEM_PTPPTXS (0x000001E0 / 4) /* PTP Peer Frame Transmitted (s) */
141 #define GEM_PTPPTXNS (0x000001E4 / 4) /* PTP Peer Frame Transmitted (ns) */
142 #define GEM_PTPPRXS (0x000001E8 / 4) /* PTP Peer Frame Received (s) */
143 #define GEM_PTPPRXNS (0x000001EC / 4) /* PTP Peer Frame Received (ns) */
145 /* Design Configuration Registers */
146 #define GEM_DESCONF (0x00000280 / 4)
147 #define GEM_DESCONF2 (0x00000284 / 4)
148 #define GEM_DESCONF3 (0x00000288 / 4)
149 #define GEM_DESCONF4 (0x0000028C / 4)
150 #define GEM_DESCONF5 (0x00000290 / 4)
151 #define GEM_DESCONF6 (0x00000294 / 4)
152 #define GEM_DESCONF6_64B_MASK (1U << 23)
153 #define GEM_DESCONF7 (0x00000298 / 4)
155 #define GEM_INT_Q1_STATUS (0x00000400 / 4)
156 #define GEM_INT_Q1_MASK (0x00000640 / 4)
158 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
159 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6)
161 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
162 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6)
164 #define GEM_TBQPH (0x000004C8 / 4)
165 #define GEM_RBQPH (0x000004D4 / 4)
167 #define GEM_INT_Q1_ENABLE (0x00000600 / 4)
168 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
170 #define GEM_INT_Q1_DISABLE (0x00000620 / 4)
171 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
173 #define GEM_INT_Q1_MASK (0x00000640 / 4)
174 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
176 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
178 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
179 #define GEM_ST1R_DSTC_ENABLE (1 << 28)
180 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
181 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
182 #define GEM_ST1R_DSTC_MATCH_SHIFT (4)
183 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
184 #define GEM_ST1R_QUEUE_SHIFT (0)
185 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
187 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
189 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
190 #define GEM_ST2R_COMPARE_A_SHIFT (13)
191 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
192 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
193 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
194 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
195 + 1)
196 #define GEM_ST2R_QUEUE_SHIFT (0)
197 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
199 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
200 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
202 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
203 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
204 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
205 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
207 /*****************************************/
208 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
209 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
210 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
211 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
213 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
214 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
215 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
216 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
217 #define GEM_NWCFG_RCV_1538 0x00000100 /* Receive 1538 bytes frame */
218 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
219 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
220 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
221 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
222 #define GEM_NWCFG_JUMBO_FRAME 0x00000008 /* Jumbo Frames enable */
224 #define GEM_DMACFG_ADDR_64B (1U << 30)
225 #define GEM_DMACFG_TX_BD_EXT (1U << 29)
226 #define GEM_DMACFG_RX_BD_EXT (1U << 28)
227 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
228 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
229 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
230 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
232 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
233 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
235 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
236 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
238 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
239 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
240 #define GEM_INT_AMBA_ERR 0x00000040
241 #define GEM_INT_TXUSED 0x00000008
242 #define GEM_INT_RXUSED 0x00000004
243 #define GEM_INT_RXCMPL 0x00000002
245 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
246 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
247 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
248 #define GEM_PHYMNTNC_ADDR_SHFT 23
249 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
250 #define GEM_PHYMNTNC_REG_SHIFT 18
252 /* Marvell PHY definitions */
253 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
255 #define PHY_REG_CONTROL 0
256 #define PHY_REG_STATUS 1
257 #define PHY_REG_PHYID1 2
258 #define PHY_REG_PHYID2 3
259 #define PHY_REG_ANEGADV 4
260 #define PHY_REG_LINKPABIL 5
261 #define PHY_REG_ANEGEXP 6
262 #define PHY_REG_NEXTP 7
263 #define PHY_REG_LINKPNEXTP 8
264 #define PHY_REG_100BTCTRL 9
265 #define PHY_REG_1000BTSTAT 10
266 #define PHY_REG_EXTSTAT 15
267 #define PHY_REG_PHYSPCFC_CTL 16
268 #define PHY_REG_PHYSPCFC_ST 17
269 #define PHY_REG_INT_EN 18
270 #define PHY_REG_INT_ST 19
271 #define PHY_REG_EXT_PHYSPCFC_CTL 20
272 #define PHY_REG_RXERR 21
273 #define PHY_REG_EACD 22
274 #define PHY_REG_LED 24
275 #define PHY_REG_LED_OVRD 25
276 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
277 #define PHY_REG_EXT_PHYSPCFC_ST 27
278 #define PHY_REG_CABLE_DIAG 28
280 #define PHY_REG_CONTROL_RST 0x8000
281 #define PHY_REG_CONTROL_LOOP 0x4000
282 #define PHY_REG_CONTROL_ANEG 0x1000
283 #define PHY_REG_CONTROL_ANRESTART 0x0200
285 #define PHY_REG_STATUS_LINK 0x0004
286 #define PHY_REG_STATUS_ANEGCMPL 0x0020
288 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
289 #define PHY_REG_INT_ST_LINKC 0x0400
290 #define PHY_REG_INT_ST_ENERGY 0x0010
292 /***********************************************************************/
293 #define GEM_RX_REJECT (-1)
294 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
295 #define GEM_RX_BROADCAST_ACCEPT (-3)
296 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
297 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
299 #define GEM_RX_SAR_ACCEPT 0
301 /***********************************************************************/
303 #define DESC_1_USED 0x80000000
304 #define DESC_1_LENGTH 0x00001FFF
306 #define DESC_1_TX_WRAP 0x40000000
307 #define DESC_1_TX_LAST 0x00008000
309 #define DESC_0_RX_WRAP 0x00000002
310 #define DESC_0_RX_OWNERSHIP 0x00000001
312 #define R_DESC_1_RX_SAR_SHIFT 25
313 #define R_DESC_1_RX_SAR_LENGTH 2
314 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
315 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
316 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
317 #define R_DESC_1_RX_BROADCAST (1 << 31)
319 #define DESC_1_RX_SOF 0x00004000
320 #define DESC_1_RX_EOF 0x00008000
322 #define GEM_MODID_VALUE 0x00020118
324 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
326 uint64_t ret = desc[0];
328 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
329 ret |= (uint64_t)desc[2] << 32;
331 return ret;
334 static inline unsigned tx_desc_get_used(uint32_t *desc)
336 return (desc[1] & DESC_1_USED) ? 1 : 0;
339 static inline void tx_desc_set_used(uint32_t *desc)
341 desc[1] |= DESC_1_USED;
344 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
346 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
349 static inline unsigned tx_desc_get_last(uint32_t *desc)
351 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
354 static inline unsigned tx_desc_get_length(uint32_t *desc)
356 return desc[1] & DESC_1_LENGTH;
359 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
361 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
362 DB_PRINT("bufaddr: 0x%08x\n", *desc);
363 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
364 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
365 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
366 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
369 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
371 uint64_t ret = desc[0] & ~0x3UL;
373 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
374 ret |= (uint64_t)desc[2] << 32;
376 return ret;
379 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
381 int ret = 2;
383 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
384 ret += 2;
386 if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
387 : GEM_DMACFG_TX_BD_EXT)) {
388 ret += 2;
391 assert(ret <= DESC_MAX_NUM_WORDS);
392 return ret;
395 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
397 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
400 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
402 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
405 static inline void rx_desc_set_ownership(uint32_t *desc)
407 desc[0] |= DESC_0_RX_OWNERSHIP;
410 static inline void rx_desc_set_sof(uint32_t *desc)
412 desc[1] |= DESC_1_RX_SOF;
415 static inline void rx_desc_clear_control(uint32_t *desc)
417 desc[1] = 0;
420 static inline void rx_desc_set_eof(uint32_t *desc)
422 desc[1] |= DESC_1_RX_EOF;
425 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
427 desc[1] &= ~DESC_1_LENGTH;
428 desc[1] |= len;
431 static inline void rx_desc_set_broadcast(uint32_t *desc)
433 desc[1] |= R_DESC_1_RX_BROADCAST;
436 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
438 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
441 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
443 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
446 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
448 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
449 sar_idx);
450 desc[1] |= R_DESC_1_RX_SAR_MATCH;
453 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
454 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
456 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
458 uint32_t size;
459 if (s->regs[GEM_NWCFG] & GEM_NWCFG_JUMBO_FRAME) {
460 size = s->regs[GEM_JUMBO_MAX_LEN];
461 if (size > s->jumbo_max_len) {
462 size = s->jumbo_max_len;
463 qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
464 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
466 } else if (tx) {
467 size = 1518;
468 } else {
469 size = s->regs[GEM_NWCFG] & GEM_NWCFG_RCV_1538 ? 1538 : 1518;
471 return size;
474 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
476 if (q == 0) {
477 s->regs[GEM_ISR] |= flag & ~(s->regs[GEM_IMR]);
478 } else {
479 s->regs[GEM_INT_Q1_STATUS + q - 1] |= flag &
480 ~(s->regs[GEM_INT_Q1_MASK + q - 1]);
485 * gem_init_register_masks:
486 * One time initialization.
487 * Set masks to identify which register bits have magical clear properties
489 static void gem_init_register_masks(CadenceGEMState *s)
491 unsigned int i;
492 /* Mask of register bits which are read only */
493 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
494 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
495 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
496 s->regs_ro[GEM_DMACFG] = 0x8E00F000;
497 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
498 s->regs_ro[GEM_RXQBASE] = 0x00000003;
499 s->regs_ro[GEM_TXQBASE] = 0x00000003;
500 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
501 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
502 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
503 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
504 for (i = 0; i < s->num_priority_queues; i++) {
505 s->regs_ro[GEM_INT_Q1_STATUS + i] = 0xFFFFFFFF;
506 s->regs_ro[GEM_INT_Q1_ENABLE + i] = 0xFFFFF319;
507 s->regs_ro[GEM_INT_Q1_DISABLE + i] = 0xFFFFF319;
508 s->regs_ro[GEM_INT_Q1_MASK + i] = 0xFFFFFFFF;
511 /* Mask of register bits which are clear on read */
512 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
513 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
514 for (i = 0; i < s->num_priority_queues; i++) {
515 s->regs_rtc[GEM_INT_Q1_STATUS + i] = 0x00000CE6;
518 /* Mask of register bits which are write 1 to clear */
519 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
520 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
521 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
523 /* Mask of register bits which are write only */
524 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
525 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
526 s->regs_wo[GEM_IER] = 0x07FFFFFF;
527 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
528 for (i = 0; i < s->num_priority_queues; i++) {
529 s->regs_wo[GEM_INT_Q1_ENABLE + i] = 0x00000CE6;
530 s->regs_wo[GEM_INT_Q1_DISABLE + i] = 0x00000CE6;
535 * phy_update_link:
536 * Make the emulated PHY link state match the QEMU "interface" state.
538 static void phy_update_link(CadenceGEMState *s)
540 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
542 /* Autonegotiation status mirrors link status. */
543 if (qemu_get_queue(s->nic)->link_down) {
544 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
545 PHY_REG_STATUS_LINK);
546 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
547 } else {
548 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
549 PHY_REG_STATUS_LINK);
550 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
551 PHY_REG_INT_ST_ANEGCMPL |
552 PHY_REG_INT_ST_ENERGY);
556 static bool gem_can_receive(NetClientState *nc)
558 CadenceGEMState *s;
559 int i;
561 s = qemu_get_nic_opaque(nc);
563 /* Do nothing if receive is not enabled. */
564 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
565 if (s->can_rx_state != 1) {
566 s->can_rx_state = 1;
567 DB_PRINT("can't receive - no enable\n");
569 return false;
572 for (i = 0; i < s->num_priority_queues; i++) {
573 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
574 break;
578 if (i == s->num_priority_queues) {
579 if (s->can_rx_state != 2) {
580 s->can_rx_state = 2;
581 DB_PRINT("can't receive - all the buffer descriptors are busy\n");
583 return false;
586 if (s->can_rx_state != 0) {
587 s->can_rx_state = 0;
588 DB_PRINT("can receive\n");
590 return true;
594 * gem_update_int_status:
595 * Raise or lower interrupt based on current status.
597 static void gem_update_int_status(CadenceGEMState *s)
599 int i;
601 qemu_set_irq(s->irq[0], !!s->regs[GEM_ISR]);
603 for (i = 1; i < s->num_priority_queues; ++i) {
604 qemu_set_irq(s->irq[i], !!s->regs[GEM_INT_Q1_STATUS + i - 1]);
609 * gem_receive_updatestats:
610 * Increment receive statistics.
612 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
613 unsigned bytes)
615 uint64_t octets;
617 /* Total octets (bytes) received */
618 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
619 s->regs[GEM_OCTRXHI];
620 octets += bytes;
621 s->regs[GEM_OCTRXLO] = octets >> 32;
622 s->regs[GEM_OCTRXHI] = octets;
624 /* Error-free Frames received */
625 s->regs[GEM_RXCNT]++;
627 /* Error-free Broadcast Frames counter */
628 if (!memcmp(packet, broadcast_addr, 6)) {
629 s->regs[GEM_RXBROADCNT]++;
632 /* Error-free Multicast Frames counter */
633 if (packet[0] == 0x01) {
634 s->regs[GEM_RXMULTICNT]++;
637 if (bytes <= 64) {
638 s->regs[GEM_RX64CNT]++;
639 } else if (bytes <= 127) {
640 s->regs[GEM_RX65CNT]++;
641 } else if (bytes <= 255) {
642 s->regs[GEM_RX128CNT]++;
643 } else if (bytes <= 511) {
644 s->regs[GEM_RX256CNT]++;
645 } else if (bytes <= 1023) {
646 s->regs[GEM_RX512CNT]++;
647 } else if (bytes <= 1518) {
648 s->regs[GEM_RX1024CNT]++;
649 } else {
650 s->regs[GEM_RX1519CNT]++;
655 * Get the MAC Address bit from the specified position
657 static unsigned get_bit(const uint8_t *mac, unsigned bit)
659 unsigned byte;
661 byte = mac[bit / 8];
662 byte >>= (bit & 0x7);
663 byte &= 1;
665 return byte;
669 * Calculate a GEM MAC Address hash index
671 static unsigned calc_mac_hash(const uint8_t *mac)
673 int index_bit, mac_bit;
674 unsigned hash_index;
676 hash_index = 0;
677 mac_bit = 5;
678 for (index_bit = 5; index_bit >= 0; index_bit--) {
679 hash_index |= (get_bit(mac, mac_bit) ^
680 get_bit(mac, mac_bit + 6) ^
681 get_bit(mac, mac_bit + 12) ^
682 get_bit(mac, mac_bit + 18) ^
683 get_bit(mac, mac_bit + 24) ^
684 get_bit(mac, mac_bit + 30) ^
685 get_bit(mac, mac_bit + 36) ^
686 get_bit(mac, mac_bit + 42)) << index_bit;
687 mac_bit--;
690 return hash_index;
694 * gem_mac_address_filter:
695 * Accept or reject this destination address?
696 * Returns:
697 * GEM_RX_REJECT: reject
698 * >= 0: Specific address accept (which matched SAR is returned)
699 * others for various other modes of accept:
700 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
701 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
703 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
705 uint8_t *gem_spaddr;
706 int i, is_mc;
708 /* Promiscuous mode? */
709 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
710 return GEM_RX_PROMISCUOUS_ACCEPT;
713 if (!memcmp(packet, broadcast_addr, 6)) {
714 /* Reject broadcast packets? */
715 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
716 return GEM_RX_REJECT;
718 return GEM_RX_BROADCAST_ACCEPT;
721 /* Accept packets -w- hash match? */
722 is_mc = is_multicast_ether_addr(packet);
723 if ((is_mc && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
724 (!is_mc && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
725 uint64_t buckets;
726 unsigned hash_index;
728 hash_index = calc_mac_hash(packet);
729 buckets = ((uint64_t)s->regs[GEM_HASHHI] << 32) | s->regs[GEM_HASHLO];
730 if ((buckets >> hash_index) & 1) {
731 return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
732 : GEM_RX_UNICAST_HASH_ACCEPT;
736 /* Check all 4 specific addresses */
737 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
738 for (i = 3; i >= 0; i--) {
739 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
740 return GEM_RX_SAR_ACCEPT + i;
744 /* No address match; reject the packet */
745 return GEM_RX_REJECT;
748 /* Figure out which queue the received data should be sent to */
749 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
750 unsigned rxbufsize)
752 uint32_t reg;
753 bool matched, mismatched;
754 int i, j;
756 for (i = 0; i < s->num_type1_screeners; i++) {
757 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
758 matched = false;
759 mismatched = false;
761 /* Screening is based on UDP Port */
762 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
763 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
764 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
765 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
766 matched = true;
767 } else {
768 mismatched = true;
772 /* Screening is based on DS/TC */
773 if (reg & GEM_ST1R_DSTC_ENABLE) {
774 uint8_t dscp = rxbuf_ptr[14 + 1];
775 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
776 GEM_ST1R_DSTC_MATCH_WIDTH)) {
777 matched = true;
778 } else {
779 mismatched = true;
783 if (matched && !mismatched) {
784 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
788 for (i = 0; i < s->num_type2_screeners; i++) {
789 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
790 matched = false;
791 mismatched = false;
793 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
794 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
795 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
796 GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
798 if (et_idx > s->num_type2_screeners) {
799 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
800 "register index: %d\n", et_idx);
802 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
803 et_idx]) {
804 matched = true;
805 } else {
806 mismatched = true;
810 /* Compare A, B, C */
811 for (j = 0; j < 3; j++) {
812 uint32_t cr0, cr1, mask;
813 uint16_t rx_cmp;
814 int offset;
815 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
816 GEM_ST2R_COMPARE_WIDTH);
818 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
819 continue;
821 if (cr_idx > s->num_type2_screeners) {
822 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
823 "register index: %d\n", cr_idx);
826 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
827 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
828 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
829 GEM_T2CW1_OFFSET_VALUE_WIDTH);
831 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
832 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
833 case 3: /* Skip UDP header */
834 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
835 "unimplemented - assuming UDP\n");
836 offset += 8;
837 /* Fallthrough */
838 case 2: /* skip the IP header */
839 offset += 20;
840 /* Fallthrough */
841 case 1: /* Count from after the ethertype */
842 offset += 14;
843 break;
844 case 0:
845 /* Offset from start of frame */
846 break;
849 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
850 mask = extract32(cr0, 0, 16);
852 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
853 matched = true;
854 } else {
855 mismatched = true;
859 if (matched && !mismatched) {
860 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
864 /* We made it here, assume it's queue 0 */
865 return 0;
868 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
870 uint32_t base_addr = 0;
872 switch (q) {
873 case 0:
874 base_addr = s->regs[tx ? GEM_TXQBASE : GEM_RXQBASE];
875 break;
876 case 1 ... (MAX_PRIORITY_QUEUES - 1):
877 base_addr = s->regs[(tx ? GEM_TRANSMIT_Q1_PTR :
878 GEM_RECEIVE_Q1_PTR) + q - 1];
879 break;
880 default:
881 g_assert_not_reached();
884 return base_addr;
887 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
889 return gem_get_queue_base_addr(s, true, q);
892 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
894 return gem_get_queue_base_addr(s, false, q);
897 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
899 hwaddr desc_addr = 0;
901 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
902 desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
904 desc_addr <<= 32;
905 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
906 return desc_addr;
909 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
911 return gem_get_desc_addr(s, true, q);
914 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
916 return gem_get_desc_addr(s, false, q);
919 static void gem_get_rx_desc(CadenceGEMState *s, int q)
921 hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
923 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
925 /* read current descriptor */
926 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
927 s->rx_desc[q],
928 sizeof(uint32_t) * gem_get_desc_len(s, true));
930 /* Descriptor owned by software ? */
931 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
932 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
933 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
934 gem_set_isr(s, q, GEM_INT_RXUSED);
935 /* Handle interrupt consequences */
936 gem_update_int_status(s);
941 * gem_receive:
942 * Fit a packet handed to us by QEMU into the receive descriptor ring.
944 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
946 CadenceGEMState *s = qemu_get_nic_opaque(nc);
947 unsigned rxbufsize, bytes_to_copy;
948 unsigned rxbuf_offset;
949 uint8_t *rxbuf_ptr;
950 bool first_desc = true;
951 int maf;
952 int q = 0;
954 /* Is this destination MAC address "for us" ? */
955 maf = gem_mac_address_filter(s, buf);
956 if (maf == GEM_RX_REJECT) {
957 return size; /* no, drop siliently b/c it's not an error */
960 /* Discard packets with receive length error enabled ? */
961 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
962 unsigned type_len;
964 /* Fish the ethertype / length field out of the RX packet */
965 type_len = buf[12] << 8 | buf[13];
966 /* It is a length field, not an ethertype */
967 if (type_len < 0x600) {
968 if (size < type_len) {
969 /* discard */
970 return -1;
976 * Determine configured receive buffer offset (probably 0)
978 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
979 GEM_NWCFG_BUFF_OFST_S;
981 /* The configure size of each receive buffer. Determines how many
982 * buffers needed to hold this packet.
984 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
985 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
986 bytes_to_copy = size;
988 /* Hardware allows a zero value here but warns against it. To avoid QEMU
989 * indefinite loops we enforce a minimum value here
991 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
992 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
995 /* Pad to minimum length. Assume FCS field is stripped, logic
996 * below will increment it to the real minimum of 64 when
997 * not FCS stripping
999 if (size < 60) {
1000 size = 60;
1003 /* Strip of FCS field ? (usually yes) */
1004 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
1005 rxbuf_ptr = (void *)buf;
1006 } else {
1007 unsigned crc_val;
1009 if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1010 size = MAX_FRAME_SIZE - sizeof(crc_val);
1012 bytes_to_copy = size;
1013 /* The application wants the FCS field, which QEMU does not provide.
1014 * We must try and calculate one.
1017 memcpy(s->rx_packet, buf, size);
1018 memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1019 rxbuf_ptr = s->rx_packet;
1020 crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1021 memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1023 bytes_to_copy += 4;
1024 size += 4;
1027 DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1029 /* Find which queue we are targeting */
1030 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1032 if (size > gem_get_max_buf_len(s, false)) {
1033 qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1034 gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1035 return -1;
1038 while (bytes_to_copy) {
1039 hwaddr desc_addr;
1041 /* Do nothing if receive is not enabled. */
1042 if (!gem_can_receive(nc)) {
1043 return -1;
1046 DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1047 MIN(bytes_to_copy, rxbufsize),
1048 rx_desc_get_buffer(s, s->rx_desc[q]));
1050 /* Copy packet data to emulated DMA buffer */
1051 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1052 rxbuf_offset,
1053 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1054 MIN(bytes_to_copy, rxbufsize));
1055 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1056 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1058 rx_desc_clear_control(s->rx_desc[q]);
1060 /* Update the descriptor. */
1061 if (first_desc) {
1062 rx_desc_set_sof(s->rx_desc[q]);
1063 first_desc = false;
1065 if (bytes_to_copy == 0) {
1066 rx_desc_set_eof(s->rx_desc[q]);
1067 rx_desc_set_length(s->rx_desc[q], size);
1069 rx_desc_set_ownership(s->rx_desc[q]);
1071 switch (maf) {
1072 case GEM_RX_PROMISCUOUS_ACCEPT:
1073 break;
1074 case GEM_RX_BROADCAST_ACCEPT:
1075 rx_desc_set_broadcast(s->rx_desc[q]);
1076 break;
1077 case GEM_RX_UNICAST_HASH_ACCEPT:
1078 rx_desc_set_unicast_hash(s->rx_desc[q]);
1079 break;
1080 case GEM_RX_MULTICAST_HASH_ACCEPT:
1081 rx_desc_set_multicast_hash(s->rx_desc[q]);
1082 break;
1083 case GEM_RX_REJECT:
1084 abort();
1085 default: /* SAR */
1086 rx_desc_set_sar(s->rx_desc[q], maf);
1089 /* Descriptor write-back. */
1090 desc_addr = gem_get_rx_desc_addr(s, q);
1091 address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1092 s->rx_desc[q],
1093 sizeof(uint32_t) * gem_get_desc_len(s, true));
1095 /* Next descriptor */
1096 if (rx_desc_get_wrap(s->rx_desc[q])) {
1097 DB_PRINT("wrapping RX descriptor list\n");
1098 s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1099 } else {
1100 DB_PRINT("incrementing RX descriptor list\n");
1101 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1104 gem_get_rx_desc(s, q);
1107 /* Count it */
1108 gem_receive_updatestats(s, buf, size);
1110 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1111 gem_set_isr(s, q, GEM_INT_RXCMPL);
1113 /* Handle interrupt consequences */
1114 gem_update_int_status(s);
1116 return size;
1120 * gem_transmit_updatestats:
1121 * Increment transmit statistics.
1123 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1124 unsigned bytes)
1126 uint64_t octets;
1128 /* Total octets (bytes) transmitted */
1129 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
1130 s->regs[GEM_OCTTXHI];
1131 octets += bytes;
1132 s->regs[GEM_OCTTXLO] = octets >> 32;
1133 s->regs[GEM_OCTTXHI] = octets;
1135 /* Error-free Frames transmitted */
1136 s->regs[GEM_TXCNT]++;
1138 /* Error-free Broadcast Frames counter */
1139 if (!memcmp(packet, broadcast_addr, 6)) {
1140 s->regs[GEM_TXBCNT]++;
1143 /* Error-free Multicast Frames counter */
1144 if (packet[0] == 0x01) {
1145 s->regs[GEM_TXMCNT]++;
1148 if (bytes <= 64) {
1149 s->regs[GEM_TX64CNT]++;
1150 } else if (bytes <= 127) {
1151 s->regs[GEM_TX65CNT]++;
1152 } else if (bytes <= 255) {
1153 s->regs[GEM_TX128CNT]++;
1154 } else if (bytes <= 511) {
1155 s->regs[GEM_TX256CNT]++;
1156 } else if (bytes <= 1023) {
1157 s->regs[GEM_TX512CNT]++;
1158 } else if (bytes <= 1518) {
1159 s->regs[GEM_TX1024CNT]++;
1160 } else {
1161 s->regs[GEM_TX1519CNT]++;
1166 * gem_transmit:
1167 * Fish packets out of the descriptor ring and feed them to QEMU
1169 static void gem_transmit(CadenceGEMState *s)
1171 uint32_t desc[DESC_MAX_NUM_WORDS];
1172 hwaddr packet_desc_addr;
1173 uint8_t *p;
1174 unsigned total_bytes;
1175 int q = 0;
1177 /* Do nothing if transmit is not enabled. */
1178 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1179 return;
1182 DB_PRINT("\n");
1184 /* The packet we will hand off to QEMU.
1185 * Packets scattered across multiple descriptors are gathered to this
1186 * one contiguous buffer first.
1188 p = s->tx_packet;
1189 total_bytes = 0;
1191 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1192 /* read current descriptor */
1193 packet_desc_addr = gem_get_tx_desc_addr(s, q);
1195 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1196 address_space_read(&s->dma_as, packet_desc_addr,
1197 MEMTXATTRS_UNSPECIFIED, desc,
1198 sizeof(uint32_t) * gem_get_desc_len(s, false));
1199 /* Handle all descriptors owned by hardware */
1200 while (tx_desc_get_used(desc) == 0) {
1202 /* Do nothing if transmit is not enabled. */
1203 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1204 return;
1206 print_gem_tx_desc(desc, q);
1208 /* The real hardware would eat this (and possibly crash).
1209 * For QEMU let's lend a helping hand.
1211 if ((tx_desc_get_buffer(s, desc) == 0) ||
1212 (tx_desc_get_length(desc) == 0)) {
1213 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1214 packet_desc_addr);
1215 break;
1218 if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1219 (p - s->tx_packet)) {
1220 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1221 HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1222 packet_desc_addr, tx_desc_get_length(desc),
1223 gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1224 gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1225 break;
1228 /* Gather this fragment of the packet from "dma memory" to our
1229 * contig buffer.
1231 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1232 MEMTXATTRS_UNSPECIFIED,
1233 p, tx_desc_get_length(desc));
1234 p += tx_desc_get_length(desc);
1235 total_bytes += tx_desc_get_length(desc);
1237 /* Last descriptor for this packet; hand the whole thing off */
1238 if (tx_desc_get_last(desc)) {
1239 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1240 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1242 /* Modify the 1st descriptor of this packet to be owned by
1243 * the processor.
1245 address_space_read(&s->dma_as, desc_addr,
1246 MEMTXATTRS_UNSPECIFIED, desc_first,
1247 sizeof(desc_first));
1248 tx_desc_set_used(desc_first);
1249 address_space_write(&s->dma_as, desc_addr,
1250 MEMTXATTRS_UNSPECIFIED, desc_first,
1251 sizeof(desc_first));
1252 /* Advance the hardware current descriptor past this packet */
1253 if (tx_desc_get_wrap(desc)) {
1254 s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1255 } else {
1256 s->tx_desc_addr[q] = packet_desc_addr +
1257 4 * gem_get_desc_len(s, false);
1259 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1261 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1262 gem_set_isr(s, q, GEM_INT_TXCMPL);
1264 /* Handle interrupt consequences */
1265 gem_update_int_status(s);
1267 /* Is checksum offload enabled? */
1268 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1269 net_checksum_calculate(s->tx_packet, total_bytes);
1272 /* Update MAC statistics */
1273 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1275 /* Send the packet somewhere */
1276 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1277 GEM_NWCTRL_LOCALLOOP)) {
1278 gem_receive(qemu_get_queue(s->nic), s->tx_packet,
1279 total_bytes);
1280 } else {
1281 qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1282 total_bytes);
1285 /* Prepare for next packet */
1286 p = s->tx_packet;
1287 total_bytes = 0;
1290 /* read next descriptor */
1291 if (tx_desc_get_wrap(desc)) {
1293 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
1294 packet_desc_addr = s->regs[GEM_TBQPH];
1295 packet_desc_addr <<= 32;
1296 } else {
1297 packet_desc_addr = 0;
1299 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1300 } else {
1301 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1303 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1304 address_space_read(&s->dma_as, packet_desc_addr,
1305 MEMTXATTRS_UNSPECIFIED, desc,
1306 sizeof(uint32_t) * gem_get_desc_len(s, false));
1309 if (tx_desc_get_used(desc)) {
1310 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1311 /* IRQ TXUSED is defined only for queue 0 */
1312 if (q == 0) {
1313 gem_set_isr(s, 0, GEM_INT_TXUSED);
1315 gem_update_int_status(s);
1320 static void gem_phy_reset(CadenceGEMState *s)
1322 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1323 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1324 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1325 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1326 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1327 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1328 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1329 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1330 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1331 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1332 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1333 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1334 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1335 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1336 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1337 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1338 s->phy_regs[PHY_REG_LED] = 0x4100;
1339 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1340 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1342 phy_update_link(s);
1345 static void gem_reset(DeviceState *d)
1347 int i;
1348 CadenceGEMState *s = CADENCE_GEM(d);
1349 const uint8_t *a;
1350 uint32_t queues_mask = 0;
1352 DB_PRINT("\n");
1354 /* Set post reset register values */
1355 memset(&s->regs[0], 0, sizeof(s->regs));
1356 s->regs[GEM_NWCFG] = 0x00080000;
1357 s->regs[GEM_NWSTATUS] = 0x00000006;
1358 s->regs[GEM_DMACFG] = 0x00020784;
1359 s->regs[GEM_IMR] = 0x07ffffff;
1360 s->regs[GEM_TXPAUSE] = 0x0000ffff;
1361 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1362 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1363 s->regs[GEM_MODID] = s->revision;
1364 s->regs[GEM_DESCONF] = 0x02D00111;
1365 s->regs[GEM_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1366 s->regs[GEM_DESCONF5] = 0x002f2045;
1367 s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
1368 s->regs[GEM_INT_Q1_MASK] = 0x00000CE6;
1369 s->regs[GEM_JUMBO_MAX_LEN] = s->jumbo_max_len;
1371 if (s->num_priority_queues > 1) {
1372 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1373 s->regs[GEM_DESCONF6] |= queues_mask;
1376 /* Set MAC address */
1377 a = &s->conf.macaddr.a[0];
1378 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1379 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1381 for (i = 0; i < 4; i++) {
1382 s->sar_active[i] = false;
1385 gem_phy_reset(s);
1387 gem_update_int_status(s);
1390 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1392 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1393 return s->phy_regs[reg_num];
1396 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1398 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1400 switch (reg_num) {
1401 case PHY_REG_CONTROL:
1402 if (val & PHY_REG_CONTROL_RST) {
1403 /* Phy reset */
1404 gem_phy_reset(s);
1405 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1406 s->phy_loop = 0;
1408 if (val & PHY_REG_CONTROL_ANEG) {
1409 /* Complete autonegotiation immediately */
1410 val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1411 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1413 if (val & PHY_REG_CONTROL_LOOP) {
1414 DB_PRINT("PHY placed in loopback\n");
1415 s->phy_loop = 1;
1416 } else {
1417 s->phy_loop = 0;
1419 break;
1421 s->phy_regs[reg_num] = val;
1425 * gem_read32:
1426 * Read a GEM register.
1428 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1430 CadenceGEMState *s;
1431 uint32_t retval;
1432 s = (CadenceGEMState *)opaque;
1434 offset >>= 2;
1435 retval = s->regs[offset];
1437 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1439 switch (offset) {
1440 case GEM_ISR:
1441 DB_PRINT("lowering irqs on ISR read\n");
1442 /* The interrupts get updated at the end of the function. */
1443 break;
1444 case GEM_PHYMNTNC:
1445 if (retval & GEM_PHYMNTNC_OP_R) {
1446 uint32_t phy_addr, reg_num;
1448 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1449 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1450 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1451 retval &= 0xFFFF0000;
1452 retval |= gem_phy_read(s, reg_num);
1453 } else {
1454 retval |= 0xFFFF; /* No device at this address */
1457 break;
1460 /* Squash read to clear bits */
1461 s->regs[offset] &= ~(s->regs_rtc[offset]);
1463 /* Do not provide write only bits */
1464 retval &= ~(s->regs_wo[offset]);
1466 DB_PRINT("0x%08x\n", retval);
1467 gem_update_int_status(s);
1468 return retval;
1472 * gem_write32:
1473 * Write a GEM register.
1475 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1476 unsigned size)
1478 CadenceGEMState *s = (CadenceGEMState *)opaque;
1479 uint32_t readonly;
1480 int i;
1482 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1483 offset >>= 2;
1485 /* Squash bits which are read only in write value */
1486 val &= ~(s->regs_ro[offset]);
1487 /* Preserve (only) bits which are read only and wtc in register */
1488 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1490 /* Copy register write to backing store */
1491 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1493 /* do w1c */
1494 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1496 /* Handle register write side effects */
1497 switch (offset) {
1498 case GEM_NWCTRL:
1499 if (val & GEM_NWCTRL_RXENA) {
1500 for (i = 0; i < s->num_priority_queues; ++i) {
1501 gem_get_rx_desc(s, i);
1504 if (val & GEM_NWCTRL_TXSTART) {
1505 gem_transmit(s);
1507 if (!(val & GEM_NWCTRL_TXENA)) {
1508 /* Reset to start of Q when transmit disabled. */
1509 for (i = 0; i < s->num_priority_queues; i++) {
1510 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1513 if (gem_can_receive(qemu_get_queue(s->nic))) {
1514 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1516 break;
1518 case GEM_TXSTATUS:
1519 gem_update_int_status(s);
1520 break;
1521 case GEM_RXQBASE:
1522 s->rx_desc_addr[0] = val;
1523 break;
1524 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1525 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1526 break;
1527 case GEM_TXQBASE:
1528 s->tx_desc_addr[0] = val;
1529 break;
1530 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1531 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1532 break;
1533 case GEM_RXSTATUS:
1534 gem_update_int_status(s);
1535 break;
1536 case GEM_IER:
1537 s->regs[GEM_IMR] &= ~val;
1538 gem_update_int_status(s);
1539 break;
1540 case GEM_JUMBO_MAX_LEN:
1541 s->regs[GEM_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1542 break;
1543 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1544 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1545 gem_update_int_status(s);
1546 break;
1547 case GEM_IDR:
1548 s->regs[GEM_IMR] |= val;
1549 gem_update_int_status(s);
1550 break;
1551 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1552 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1553 gem_update_int_status(s);
1554 break;
1555 case GEM_SPADDR1LO:
1556 case GEM_SPADDR2LO:
1557 case GEM_SPADDR3LO:
1558 case GEM_SPADDR4LO:
1559 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1560 break;
1561 case GEM_SPADDR1HI:
1562 case GEM_SPADDR2HI:
1563 case GEM_SPADDR3HI:
1564 case GEM_SPADDR4HI:
1565 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1566 break;
1567 case GEM_PHYMNTNC:
1568 if (val & GEM_PHYMNTNC_OP_W) {
1569 uint32_t phy_addr, reg_num;
1571 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1572 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1573 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1574 gem_phy_write(s, reg_num, val);
1577 break;
1580 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1583 static const MemoryRegionOps gem_ops = {
1584 .read = gem_read,
1585 .write = gem_write,
1586 .endianness = DEVICE_LITTLE_ENDIAN,
1589 static void gem_set_link(NetClientState *nc)
1591 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1593 DB_PRINT("\n");
1594 phy_update_link(s);
1595 gem_update_int_status(s);
1598 static NetClientInfo net_gem_info = {
1599 .type = NET_CLIENT_DRIVER_NIC,
1600 .size = sizeof(NICState),
1601 .can_receive = gem_can_receive,
1602 .receive = gem_receive,
1603 .link_status_changed = gem_set_link,
1606 static void gem_realize(DeviceState *dev, Error **errp)
1608 CadenceGEMState *s = CADENCE_GEM(dev);
1609 int i;
1611 address_space_init(&s->dma_as,
1612 s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1614 if (s->num_priority_queues == 0 ||
1615 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1616 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1617 s->num_priority_queues);
1618 return;
1619 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1620 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1621 s->num_type1_screeners);
1622 return;
1623 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1624 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1625 s->num_type2_screeners);
1626 return;
1629 for (i = 0; i < s->num_priority_queues; ++i) {
1630 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1633 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1635 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1636 object_get_typename(OBJECT(dev)), dev->id, s);
1638 if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1639 error_setg(errp, "jumbo-max-len is greater than %d",
1640 MAX_FRAME_SIZE);
1641 return;
1645 static void gem_init(Object *obj)
1647 CadenceGEMState *s = CADENCE_GEM(obj);
1648 DeviceState *dev = DEVICE(obj);
1650 DB_PRINT("\n");
1652 gem_init_register_masks(s);
1653 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1654 "enet", sizeof(s->regs));
1656 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1658 object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
1659 (Object **)&s->dma_mr,
1660 qdev_prop_allow_set_link_before_realize,
1661 OBJ_PROP_LINK_STRONG);
1664 static const VMStateDescription vmstate_cadence_gem = {
1665 .name = "cadence_gem",
1666 .version_id = 4,
1667 .minimum_version_id = 4,
1668 .fields = (VMStateField[]) {
1669 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1670 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1671 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1672 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1673 MAX_PRIORITY_QUEUES),
1674 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1675 MAX_PRIORITY_QUEUES),
1676 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1677 VMSTATE_END_OF_LIST(),
1681 static Property gem_properties[] = {
1682 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1683 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1684 GEM_MODID_VALUE),
1685 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1686 num_priority_queues, 1),
1687 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1688 num_type1_screeners, 4),
1689 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1690 num_type2_screeners, 4),
1691 DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1692 jumbo_max_len, 10240),
1693 DEFINE_PROP_END_OF_LIST(),
1696 static void gem_class_init(ObjectClass *klass, void *data)
1698 DeviceClass *dc = DEVICE_CLASS(klass);
1700 dc->realize = gem_realize;
1701 device_class_set_props(dc, gem_properties);
1702 dc->vmsd = &vmstate_cadence_gem;
1703 dc->reset = gem_reset;
1706 static const TypeInfo gem_info = {
1707 .name = TYPE_CADENCE_GEM,
1708 .parent = TYPE_SYS_BUS_DEVICE,
1709 .instance_size = sizeof(CadenceGEMState),
1710 .instance_init = gem_init,
1711 .class_init = gem_class_init,
1714 static void gem_register_types(void)
1716 type_register_static(&gem_info);
1719 type_init(gem_register_types)