rtc-test: introduce more update tests
[qemu/ar7.git] / hw / misc / omap_gpmc.c
blob67d8e2f0233e4b5164e64abfacb4889c4d466212
1 /*
2 * TI OMAP general purpose memory controller emulation.
4 * Copyright (C) 2007-2009 Nokia Corporation
5 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
6 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) any later version of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/block/flash.h"
24 #include "hw/arm/omap.h"
25 #include "exec/memory.h"
26 #include "exec/address-spaces.h"
28 /* General-Purpose Memory Controller */
29 struct omap_gpmc_s {
30 qemu_irq irq;
31 qemu_irq drq;
32 MemoryRegion iomem;
33 int accept_256;
35 uint8_t revision;
36 uint8_t sysconfig;
37 uint16_t irqst;
38 uint16_t irqen;
39 uint16_t lastirq;
40 uint16_t timeout;
41 uint16_t config;
42 struct omap_gpmc_cs_file_s {
43 uint32_t config[7];
44 MemoryRegion *iomem;
45 MemoryRegion container;
46 MemoryRegion nandiomem;
47 DeviceState *dev;
48 } cs_file[8];
49 int ecc_cs;
50 int ecc_ptr;
51 uint32_t ecc_cfg;
52 ECCState ecc[9];
53 struct prefetch {
54 uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
55 uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
56 int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
57 int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
58 int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
59 MemoryRegion iomem;
60 uint8_t fifo[64];
61 } prefetch;
64 #define OMAP_GPMC_8BIT 0
65 #define OMAP_GPMC_16BIT 1
66 #define OMAP_GPMC_NOR 0
67 #define OMAP_GPMC_NAND 2
69 static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
71 return (f->config[0] >> 10) & 3;
74 static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
76 /* devsize field is really 2 bits but we ignore the high
77 * bit to ensure consistent behaviour if the guest sets
78 * it (values 2 and 3 are reserved in the TRM)
80 return (f->config[0] >> 12) & 1;
83 /* Extract the chip-select value from the prefetch config1 register */
84 static int prefetch_cs(uint32_t config1)
86 return (config1 >> 24) & 7;
89 static int prefetch_threshold(uint32_t config1)
91 return (config1 >> 8) & 0x7f;
94 static void omap_gpmc_int_update(struct omap_gpmc_s *s)
96 /* The TRM is a bit unclear, but it seems to say that
97 * the TERMINALCOUNTSTATUS bit is set only on the
98 * transition when the prefetch engine goes from
99 * active to inactive, whereas the FIFOEVENTSTATUS
100 * bit is held high as long as the fifo has at
101 * least THRESHOLD bytes available.
102 * So we do the latter here, but TERMINALCOUNTSTATUS
103 * is set elsewhere.
105 if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
106 s->irqst |= 1;
108 if ((s->irqen & s->irqst) != s->lastirq) {
109 s->lastirq = s->irqen & s->irqst;
110 qemu_set_irq(s->irq, s->lastirq);
114 static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
116 if (s->prefetch.config1 & 4) {
117 qemu_set_irq(s->drq, value);
121 /* Access functions for when a NAND-like device is mapped into memory:
122 * all addresses in the region behave like accesses to the relevant
123 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
125 static uint64_t omap_nand_read(void *opaque, hwaddr addr,
126 unsigned size)
128 struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
129 uint64_t v;
130 nand_setpins(f->dev, 0, 0, 0, 1, 0);
131 switch (omap_gpmc_devsize(f)) {
132 case OMAP_GPMC_8BIT:
133 v = nand_getio(f->dev);
134 if (size == 1) {
135 return v;
137 v |= (nand_getio(f->dev) << 8);
138 if (size == 2) {
139 return v;
141 v |= (nand_getio(f->dev) << 16);
142 v |= (nand_getio(f->dev) << 24);
143 return v;
144 case OMAP_GPMC_16BIT:
145 v = nand_getio(f->dev);
146 if (size == 1) {
147 /* 8 bit read from 16 bit device : probably a guest bug */
148 return v & 0xff;
150 if (size == 2) {
151 return v;
153 v |= (nand_getio(f->dev) << 16);
154 return v;
155 default:
156 abort();
160 static void omap_nand_setio(DeviceState *dev, uint64_t value,
161 int nandsize, int size)
163 /* Write the specified value to the NAND device, respecting
164 * both size of the NAND device and size of the write access.
166 switch (nandsize) {
167 case OMAP_GPMC_8BIT:
168 switch (size) {
169 case 1:
170 nand_setio(dev, value & 0xff);
171 break;
172 case 2:
173 nand_setio(dev, value & 0xff);
174 nand_setio(dev, (value >> 8) & 0xff);
175 break;
176 case 4:
177 default:
178 nand_setio(dev, value & 0xff);
179 nand_setio(dev, (value >> 8) & 0xff);
180 nand_setio(dev, (value >> 16) & 0xff);
181 nand_setio(dev, (value >> 24) & 0xff);
182 break;
184 break;
185 case OMAP_GPMC_16BIT:
186 switch (size) {
187 case 1:
188 /* writing to a 16bit device with 8bit access is probably a guest
189 * bug; pass the value through anyway.
191 case 2:
192 nand_setio(dev, value & 0xffff);
193 break;
194 case 4:
195 default:
196 nand_setio(dev, value & 0xffff);
197 nand_setio(dev, (value >> 16) & 0xffff);
198 break;
200 break;
204 static void omap_nand_write(void *opaque, hwaddr addr,
205 uint64_t value, unsigned size)
207 struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
208 nand_setpins(f->dev, 0, 0, 0, 1, 0);
209 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
212 static const MemoryRegionOps omap_nand_ops = {
213 .read = omap_nand_read,
214 .write = omap_nand_write,
215 .endianness = DEVICE_NATIVE_ENDIAN,
218 static void fill_prefetch_fifo(struct omap_gpmc_s *s)
220 /* Fill the prefetch FIFO by reading data from NAND.
221 * We do this synchronously, unlike the hardware which
222 * will do this asynchronously. We refill when the
223 * FIFO has THRESHOLD bytes free, and we always refill
224 * as much data as possible starting at the top end
225 * of the FIFO.
226 * (We have to refill at THRESHOLD rather than waiting
227 * for the FIFO to empty to allow for the case where
228 * the FIFO size isn't an exact multiple of THRESHOLD
229 * and we're doing DMA transfers.)
230 * This means we never need to handle wrap-around in
231 * the fifo-reading code, and the next byte of data
232 * to read is always fifo[63 - fifopointer].
234 int fptr;
235 int cs = prefetch_cs(s->prefetch.config1);
236 int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
237 int bytes;
238 /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
239 * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
240 * Instead believe the bit that says it is always a byte count.
242 bytes = 64 - s->prefetch.fifopointer;
243 if (bytes > s->prefetch.count) {
244 bytes = s->prefetch.count;
246 if (is16bit) {
247 bytes &= ~1;
250 s->prefetch.count -= bytes;
251 s->prefetch.fifopointer += bytes;
252 fptr = 64 - s->prefetch.fifopointer;
253 /* Move the existing data in the FIFO so it sits just
254 * before what we're about to read in
256 while (fptr < (64 - bytes)) {
257 s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
258 fptr++;
260 while (fptr < 64) {
261 if (is16bit) {
262 uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
263 s->prefetch.fifo[fptr++] = v & 0xff;
264 s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
265 } else {
266 s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
269 if (s->prefetch.startengine && (s->prefetch.count == 0)) {
270 /* This was the final transfer: raise TERMINALCOUNTSTATUS */
271 s->irqst |= 2;
272 s->prefetch.startengine = 0;
274 /* If there are any bytes in the FIFO at this point then
275 * we must raise a DMA request (either this is a final part
276 * transfer, or we filled the FIFO in which case we certainly
277 * have THRESHOLD bytes available)
279 if (s->prefetch.fifopointer != 0) {
280 omap_gpmc_dma_update(s, 1);
282 omap_gpmc_int_update(s);
285 /* Access functions for a NAND-like device when the prefetch/postwrite
286 * engine is enabled -- all addresses in the region behave alike:
287 * data is read or written to the FIFO.
289 static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
290 unsigned size)
292 struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
293 uint32_t data;
294 if (s->prefetch.config1 & 1) {
295 /* The TRM doesn't define the behaviour if you read from the
296 * FIFO when the prefetch engine is in write mode. We choose
297 * to always return zero.
299 return 0;
301 /* Note that trying to read an empty fifo repeats the last byte */
302 if (s->prefetch.fifopointer) {
303 s->prefetch.fifopointer--;
305 data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
306 if (s->prefetch.fifopointer ==
307 (64 - prefetch_threshold(s->prefetch.config1))) {
308 /* We've drained THRESHOLD bytes now. So deassert the
309 * DMA request, then refill the FIFO (which will probably
310 * assert it again.)
312 omap_gpmc_dma_update(s, 0);
313 fill_prefetch_fifo(s);
315 omap_gpmc_int_update(s);
316 return data;
319 static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
320 uint64_t value, unsigned size)
322 struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
323 int cs = prefetch_cs(s->prefetch.config1);
324 if ((s->prefetch.config1 & 1) == 0) {
325 /* The TRM doesn't define the behaviour of writing to the
326 * FIFO when the prefetch engine is in read mode. We
327 * choose to ignore the write.
329 return;
331 if (s->prefetch.count == 0) {
332 /* The TRM doesn't define the behaviour of writing to the
333 * FIFO if the transfer is complete. We choose to ignore.
335 return;
337 /* The only reason we do any data buffering in postwrite
338 * mode is if we are talking to a 16 bit NAND device, in
339 * which case we need to buffer the first byte of the
340 * 16 bit word until the other byte arrives.
342 int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
343 if (is16bit) {
344 /* fifopointer alternates between 64 (waiting for first
345 * byte of word) and 63 (waiting for second byte)
347 if (s->prefetch.fifopointer == 64) {
348 s->prefetch.fifo[0] = value;
349 s->prefetch.fifopointer--;
350 } else {
351 value = (value << 8) | s->prefetch.fifo[0];
352 omap_nand_write(&s->cs_file[cs], 0, value, 2);
353 s->prefetch.count--;
354 s->prefetch.fifopointer = 64;
356 } else {
357 /* Just write the byte : fifopointer remains 64 at all times */
358 omap_nand_write(&s->cs_file[cs], 0, value, 1);
359 s->prefetch.count--;
361 if (s->prefetch.count == 0) {
362 /* Final transfer: raise TERMINALCOUNTSTATUS */
363 s->irqst |= 2;
364 s->prefetch.startengine = 0;
366 omap_gpmc_int_update(s);
369 static const MemoryRegionOps omap_prefetch_ops = {
370 .read = omap_gpmc_prefetch_read,
371 .write = omap_gpmc_prefetch_write,
372 .endianness = DEVICE_NATIVE_ENDIAN,
373 .impl.min_access_size = 1,
374 .impl.max_access_size = 1,
377 static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
379 /* Return the MemoryRegion* to map/unmap for this chipselect */
380 struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
381 if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
382 return f->iomem;
384 if ((s->prefetch.config1 & 0x80) &&
385 (prefetch_cs(s->prefetch.config1) == cs)) {
386 /* The prefetch engine is enabled for this CS: map the FIFO */
387 return &s->prefetch.iomem;
389 return &f->nandiomem;
392 static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
394 struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
395 uint32_t mask = (f->config[6] >> 8) & 0xf;
396 uint32_t base = f->config[6] & 0x3f;
397 uint32_t size;
399 if (!f->iomem && !f->dev) {
400 return;
403 if (!(f->config[6] & (1 << 6))) {
404 /* Do nothing unless CSVALID */
405 return;
408 /* TODO: check for overlapping regions and report access errors */
409 if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
410 && !(s->accept_256 && !mask)) {
411 fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
412 __func__, mask);
415 base <<= 24;
416 size = (0x0fffffff & ~(mask << 24)) + 1;
417 /* TODO: rather than setting the size of the mapping (which should be
418 * constant), the mask should cause wrapping of the address space, so
419 * that the same memory becomes accessible at every <i>size</i> bytes
420 * starting from <i>base</i>. */
421 memory_region_init(&f->container, NULL, "omap-gpmc-file", size);
422 memory_region_add_subregion(&f->container, 0,
423 omap_gpmc_cs_memregion(s, cs));
424 memory_region_add_subregion(get_system_memory(), base,
425 &f->container);
428 static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
430 struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
431 if (!(f->config[6] & (1 << 6))) {
432 /* Do nothing unless CSVALID */
433 return;
435 if (!f->iomem && !f->dev) {
436 return;
438 memory_region_del_subregion(get_system_memory(), &f->container);
439 memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
440 object_unparent(OBJECT(&f->container));
443 void omap_gpmc_reset(struct omap_gpmc_s *s)
445 int i;
447 s->sysconfig = 0;
448 s->irqst = 0;
449 s->irqen = 0;
450 omap_gpmc_int_update(s);
451 for (i = 0; i < 8; i++) {
452 /* This has to happen before we change any of the config
453 * used to determine which memory regions are mapped or unmapped.
455 omap_gpmc_cs_unmap(s, i);
457 s->timeout = 0;
458 s->config = 0xa00;
459 s->prefetch.config1 = 0x00004000;
460 s->prefetch.transfercount = 0x00000000;
461 s->prefetch.startengine = 0;
462 s->prefetch.fifopointer = 0;
463 s->prefetch.count = 0;
464 for (i = 0; i < 8; i ++) {
465 s->cs_file[i].config[1] = 0x101001;
466 s->cs_file[i].config[2] = 0x020201;
467 s->cs_file[i].config[3] = 0x10031003;
468 s->cs_file[i].config[4] = 0x10f1111;
469 s->cs_file[i].config[5] = 0;
470 s->cs_file[i].config[6] = 0xf00;
471 /* In theory we could probe attached devices for some CFG1
472 * bits here, but we just retain them across resets as they
473 * were set initially by omap_gpmc_attach().
475 if (i == 0) {
476 s->cs_file[i].config[0] &= 0x00433e00;
477 s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
478 omap_gpmc_cs_map(s, i);
479 } else {
480 s->cs_file[i].config[0] &= 0x00403c00;
483 s->ecc_cs = 0;
484 s->ecc_ptr = 0;
485 s->ecc_cfg = 0x3fcff000;
486 for (i = 0; i < 9; i ++)
487 ecc_reset(&s->ecc[i]);
490 static int gpmc_wordaccess_only(hwaddr addr)
492 /* Return true if the register offset is to a register that
493 * only permits word width accesses.
494 * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
495 * for any chipselect.
497 if (addr >= 0x60 && addr <= 0x1d4) {
498 int cs = (addr - 0x60) / 0x30;
499 addr -= cs * 0x30;
500 if (addr >= 0x7c && addr < 0x88) {
501 /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
502 return 0;
505 return 1;
508 static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
509 unsigned size)
511 struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
512 int cs;
513 struct omap_gpmc_cs_file_s *f;
515 if (size != 4 && gpmc_wordaccess_only(addr)) {
516 return omap_badwidth_read32(opaque, addr);
519 switch (addr) {
520 case 0x000: /* GPMC_REVISION */
521 return s->revision;
523 case 0x010: /* GPMC_SYSCONFIG */
524 return s->sysconfig;
526 case 0x014: /* GPMC_SYSSTATUS */
527 return 1; /* RESETDONE */
529 case 0x018: /* GPMC_IRQSTATUS */
530 return s->irqst;
532 case 0x01c: /* GPMC_IRQENABLE */
533 return s->irqen;
535 case 0x040: /* GPMC_TIMEOUT_CONTROL */
536 return s->timeout;
538 case 0x044: /* GPMC_ERR_ADDRESS */
539 case 0x048: /* GPMC_ERR_TYPE */
540 return 0;
542 case 0x050: /* GPMC_CONFIG */
543 return s->config;
545 case 0x054: /* GPMC_STATUS */
546 return 0x001;
548 case 0x060 ... 0x1d4:
549 cs = (addr - 0x060) / 0x30;
550 addr -= cs * 0x30;
551 f = s->cs_file + cs;
552 switch (addr) {
553 case 0x60: /* GPMC_CONFIG1 */
554 return f->config[0];
555 case 0x64: /* GPMC_CONFIG2 */
556 return f->config[1];
557 case 0x68: /* GPMC_CONFIG3 */
558 return f->config[2];
559 case 0x6c: /* GPMC_CONFIG4 */
560 return f->config[3];
561 case 0x70: /* GPMC_CONFIG5 */
562 return f->config[4];
563 case 0x74: /* GPMC_CONFIG6 */
564 return f->config[5];
565 case 0x78: /* GPMC_CONFIG7 */
566 return f->config[6];
567 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
568 if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
569 return omap_nand_read(f, 0, size);
571 return 0;
573 break;
575 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
576 return s->prefetch.config1;
577 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
578 return s->prefetch.transfercount;
579 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
580 return s->prefetch.startengine;
581 case 0x1f0: /* GPMC_PREFETCH_STATUS */
582 /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
583 * FIFOTHRESHOLDSTATUS bit should be set when
584 * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
585 * Apparently the underlying functional spec from which the TRM was
586 * created states that the behaviour is ">=", and this also
587 * makes more conceptual sense.
589 return (s->prefetch.fifopointer << 24) |
590 ((s->prefetch.fifopointer >=
591 ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
592 s->prefetch.count;
594 case 0x1f4: /* GPMC_ECC_CONFIG */
595 return s->ecc_cs;
596 case 0x1f8: /* GPMC_ECC_CONTROL */
597 return s->ecc_ptr;
598 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
599 return s->ecc_cfg;
600 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
601 cs = (addr & 0x1f) >> 2;
602 /* TODO: check correctness */
603 return
604 ((s->ecc[cs].cp & 0x07) << 0) |
605 ((s->ecc[cs].cp & 0x38) << 13) |
606 ((s->ecc[cs].lp[0] & 0x1ff) << 3) |
607 ((s->ecc[cs].lp[1] & 0x1ff) << 19);
609 case 0x230: /* GPMC_TESTMODE_CTRL */
610 return 0;
611 case 0x234: /* GPMC_PSA_LSB */
612 case 0x238: /* GPMC_PSA_MSB */
613 return 0x00000000;
616 OMAP_BAD_REG(addr);
617 return 0;
620 static void omap_gpmc_write(void *opaque, hwaddr addr,
621 uint64_t value, unsigned size)
623 struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
624 int cs;
625 struct omap_gpmc_cs_file_s *f;
627 if (size != 4 && gpmc_wordaccess_only(addr)) {
628 omap_badwidth_write32(opaque, addr, value);
629 return;
632 switch (addr) {
633 case 0x000: /* GPMC_REVISION */
634 case 0x014: /* GPMC_SYSSTATUS */
635 case 0x054: /* GPMC_STATUS */
636 case 0x1f0: /* GPMC_PREFETCH_STATUS */
637 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
638 case 0x234: /* GPMC_PSA_LSB */
639 case 0x238: /* GPMC_PSA_MSB */
640 OMAP_RO_REG(addr);
641 break;
643 case 0x010: /* GPMC_SYSCONFIG */
644 if ((value >> 3) == 0x3)
645 fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
646 __FUNCTION__, value >> 3);
647 if (value & 2)
648 omap_gpmc_reset(s);
649 s->sysconfig = value & 0x19;
650 break;
652 case 0x018: /* GPMC_IRQSTATUS */
653 s->irqst &= ~value;
654 omap_gpmc_int_update(s);
655 break;
657 case 0x01c: /* GPMC_IRQENABLE */
658 s->irqen = value & 0xf03;
659 omap_gpmc_int_update(s);
660 break;
662 case 0x040: /* GPMC_TIMEOUT_CONTROL */
663 s->timeout = value & 0x1ff1;
664 break;
666 case 0x044: /* GPMC_ERR_ADDRESS */
667 case 0x048: /* GPMC_ERR_TYPE */
668 break;
670 case 0x050: /* GPMC_CONFIG */
671 s->config = value & 0xf13;
672 break;
674 case 0x060 ... 0x1d4:
675 cs = (addr - 0x060) / 0x30;
676 addr -= cs * 0x30;
677 f = s->cs_file + cs;
678 switch (addr) {
679 case 0x60: /* GPMC_CONFIG1 */
680 f->config[0] = value & 0xffef3e13;
681 break;
682 case 0x64: /* GPMC_CONFIG2 */
683 f->config[1] = value & 0x001f1f8f;
684 break;
685 case 0x68: /* GPMC_CONFIG3 */
686 f->config[2] = value & 0x001f1f8f;
687 break;
688 case 0x6c: /* GPMC_CONFIG4 */
689 f->config[3] = value & 0x1f8f1f8f;
690 break;
691 case 0x70: /* GPMC_CONFIG5 */
692 f->config[4] = value & 0x0f1f1f1f;
693 break;
694 case 0x74: /* GPMC_CONFIG6 */
695 f->config[5] = value & 0x00000fcf;
696 break;
697 case 0x78: /* GPMC_CONFIG7 */
698 if ((f->config[6] ^ value) & 0xf7f) {
699 omap_gpmc_cs_unmap(s, cs);
700 f->config[6] = value & 0x00000f7f;
701 omap_gpmc_cs_map(s, cs);
703 break;
704 case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
705 if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
706 nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
707 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
709 break;
710 case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
711 if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
712 nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
713 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
715 break;
716 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
717 if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
718 omap_nand_write(f, 0, value, size);
720 break;
721 default:
722 goto bad_reg;
724 break;
726 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
727 if (!s->prefetch.startengine) {
728 uint32_t newconfig1 = value & 0x7f8f7fbf;
729 uint32_t changed;
730 changed = newconfig1 ^ s->prefetch.config1;
731 if (changed & (0x80 | 0x7000000)) {
732 /* Turning the engine on or off, or mapping it somewhere else.
733 * cs_map() and cs_unmap() check the prefetch config and
734 * overall CSVALID bits, so it is sufficient to unmap-and-map
735 * both the old cs and the new one. Note that we adhere to
736 * the "unmap/change config/map" order (and not unmap twice
737 * if newcs == oldcs), otherwise we'll try to delete the wrong
738 * memory region.
740 int oldcs = prefetch_cs(s->prefetch.config1);
741 int newcs = prefetch_cs(newconfig1);
742 omap_gpmc_cs_unmap(s, oldcs);
743 if (oldcs != newcs) {
744 omap_gpmc_cs_unmap(s, newcs);
746 s->prefetch.config1 = newconfig1;
747 omap_gpmc_cs_map(s, oldcs);
748 if (oldcs != newcs) {
749 omap_gpmc_cs_map(s, newcs);
751 } else {
752 s->prefetch.config1 = newconfig1;
755 break;
757 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
758 if (!s->prefetch.startengine) {
759 s->prefetch.transfercount = value & 0x3fff;
761 break;
763 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
764 if (s->prefetch.startengine != (value & 1)) {
765 s->prefetch.startengine = value & 1;
766 if (s->prefetch.startengine) {
767 /* Prefetch engine start */
768 s->prefetch.count = s->prefetch.transfercount;
769 if (s->prefetch.config1 & 1) {
770 /* Write */
771 s->prefetch.fifopointer = 64;
772 } else {
773 /* Read */
774 s->prefetch.fifopointer = 0;
775 fill_prefetch_fifo(s);
777 } else {
778 /* Prefetch engine forcibly stopped. The TRM
779 * doesn't define the behaviour if you do this.
780 * We clear the prefetch count, which means that
781 * we permit no more writes, and don't read any
782 * more data from NAND. The CPU can still drain
783 * the FIFO of unread data.
785 s->prefetch.count = 0;
787 omap_gpmc_int_update(s);
789 break;
791 case 0x1f4: /* GPMC_ECC_CONFIG */
792 s->ecc_cs = 0x8f;
793 break;
794 case 0x1f8: /* GPMC_ECC_CONTROL */
795 if (value & (1 << 8))
796 for (cs = 0; cs < 9; cs ++)
797 ecc_reset(&s->ecc[cs]);
798 s->ecc_ptr = value & 0xf;
799 if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
800 s->ecc_ptr = 0;
801 s->ecc_cs &= ~1;
803 break;
804 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
805 s->ecc_cfg = value & 0x3fcff1ff;
806 break;
807 case 0x230: /* GPMC_TESTMODE_CTRL */
808 if (value & 7)
809 fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__);
810 break;
812 default:
813 bad_reg:
814 OMAP_BAD_REG(addr);
815 return;
819 static const MemoryRegionOps omap_gpmc_ops = {
820 .read = omap_gpmc_read,
821 .write = omap_gpmc_write,
822 .endianness = DEVICE_NATIVE_ENDIAN,
825 struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
826 hwaddr base,
827 qemu_irq irq, qemu_irq drq)
829 int cs;
830 struct omap_gpmc_s *s = g_new0(struct omap_gpmc_s, 1);
832 memory_region_init_io(&s->iomem, NULL, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
833 memory_region_add_subregion(get_system_memory(), base, &s->iomem);
835 s->irq = irq;
836 s->drq = drq;
837 s->accept_256 = cpu_is_omap3630(mpu);
838 s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
839 s->lastirq = 0;
840 omap_gpmc_reset(s);
842 /* We have to register a different IO memory handler for each
843 * chip select region in case a NAND device is mapped there. We
844 * make the region the worst-case size of 256MB and rely on the
845 * container memory region in cs_map to chop it down to the actual
846 * guest-requested size.
848 for (cs = 0; cs < 8; cs++) {
849 memory_region_init_io(&s->cs_file[cs].nandiomem, NULL,
850 &omap_nand_ops,
851 &s->cs_file[cs],
852 "omap-nand",
853 256 * 1024 * 1024);
856 memory_region_init_io(&s->prefetch.iomem, NULL, &omap_prefetch_ops, s,
857 "omap-gpmc-prefetch", 256 * 1024 * 1024);
858 return s;
861 void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
863 struct omap_gpmc_cs_file_s *f;
864 assert(iomem);
866 if (cs < 0 || cs >= 8) {
867 fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
868 exit(-1);
870 f = &s->cs_file[cs];
872 omap_gpmc_cs_unmap(s, cs);
873 f->config[0] &= ~(0xf << 10);
874 f->iomem = iomem;
875 omap_gpmc_cs_map(s, cs);
878 void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
880 struct omap_gpmc_cs_file_s *f;
881 assert(nand);
883 if (cs < 0 || cs >= 8) {
884 fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
885 exit(-1);
887 f = &s->cs_file[cs];
889 omap_gpmc_cs_unmap(s, cs);
890 f->config[0] &= ~(0xf << 10);
891 f->config[0] |= (OMAP_GPMC_NAND << 10);
892 f->dev = nand;
893 if (nand_getbuswidth(f->dev) == 16) {
894 f->config[0] |= OMAP_GPMC_16BIT << 12;
896 omap_gpmc_cs_map(s, cs);