rtc-test: introduce more update tests
[qemu/ar7.git] / hw / block / nand.c
blob0d33ac281f5ece553832c0c3a3502fb4119d613b
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
19 #ifndef NAND_IO
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/block/flash.h"
24 #include "sysemu/block-backend.h"
25 #include "hw/qdev.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
29 # define NAND_CMD_READ0 0x00
30 # define NAND_CMD_READ1 0x01
31 # define NAND_CMD_READ2 0x50
32 # define NAND_CMD_LPREAD2 0x30
33 # define NAND_CMD_NOSERIALREAD2 0x35
34 # define NAND_CMD_RANDOMREAD1 0x05
35 # define NAND_CMD_RANDOMREAD2 0xe0
36 # define NAND_CMD_READID 0x90
37 # define NAND_CMD_RESET 0xff
38 # define NAND_CMD_PAGEPROGRAM1 0x80
39 # define NAND_CMD_PAGEPROGRAM2 0x10
40 # define NAND_CMD_CACHEPROGRAM2 0x15
41 # define NAND_CMD_BLOCKERASE1 0x60
42 # define NAND_CMD_BLOCKERASE2 0xd0
43 # define NAND_CMD_READSTATUS 0x70
44 # define NAND_CMD_COPYBACKPRG1 0x85
46 # define NAND_IOSTATUS_ERROR (1 << 0)
47 # define NAND_IOSTATUS_PLANE0 (1 << 1)
48 # define NAND_IOSTATUS_PLANE1 (1 << 2)
49 # define NAND_IOSTATUS_PLANE2 (1 << 3)
50 # define NAND_IOSTATUS_PLANE3 (1 << 4)
51 # define NAND_IOSTATUS_READY (1 << 6)
52 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
54 # define MAX_PAGE 0x800
55 # define MAX_OOB 0x40
57 typedef struct NANDFlashState NANDFlashState;
58 struct NANDFlashState {
59 DeviceState parent_obj;
61 uint8_t manf_id, chip_id;
62 uint8_t buswidth; /* in BYTES */
63 int size, pages;
64 int page_shift, oob_shift, erase_shift, addr_shift;
65 uint8_t *storage;
66 BlockBackend *blk;
67 int mem_oob;
69 uint8_t cle, ale, ce, wp, gnd;
71 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
72 uint8_t *ioaddr;
73 int iolen;
75 uint32_t cmd;
76 uint64_t addr;
77 int addrlen;
78 int status;
79 int offset;
81 void (*blk_write)(NANDFlashState *s);
82 void (*blk_erase)(NANDFlashState *s);
83 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
85 uint32_t ioaddr_vmstate;
88 #define TYPE_NAND "nand"
90 #define NAND(obj) \
91 OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
93 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
95 /* Like memcpy() but we logical-AND the data into the destination */
96 int i;
97 for (i = 0; i < n; i++) {
98 dest[i] &= src[i];
102 # define NAND_NO_AUTOINCR 0x00000001
103 # define NAND_BUSWIDTH_16 0x00000002
104 # define NAND_NO_PADDING 0x00000004
105 # define NAND_CACHEPRG 0x00000008
106 # define NAND_COPYBACK 0x00000010
107 # define NAND_IS_AND 0x00000020
108 # define NAND_4PAGE_ARRAY 0x00000040
109 # define NAND_NO_READRDY 0x00000100
110 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
112 # define NAND_IO
114 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
115 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
116 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
117 # define OOB_SHIFT (PAGE_SHIFT - 5)
118 # define OOB_SIZE (1 << OOB_SHIFT)
119 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
120 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
122 # define PAGE_SIZE 256
123 # define PAGE_SHIFT 8
124 # define PAGE_SECTORS 1
125 # define ADDR_SHIFT 8
126 # include "nand.c"
127 # define PAGE_SIZE 512
128 # define PAGE_SHIFT 9
129 # define PAGE_SECTORS 1
130 # define ADDR_SHIFT 8
131 # include "nand.c"
132 # define PAGE_SIZE 2048
133 # define PAGE_SHIFT 11
134 # define PAGE_SECTORS 4
135 # define ADDR_SHIFT 16
136 # include "nand.c"
138 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
139 static const struct {
140 int size;
141 int width;
142 int page_shift;
143 int erase_shift;
144 uint32_t options;
145 } nand_flash_ids[0x100] = {
146 [0 ... 0xff] = { 0 },
148 [0x6e] = { 1, 8, 8, 4, 0 },
149 [0x64] = { 2, 8, 8, 4, 0 },
150 [0x6b] = { 4, 8, 9, 4, 0 },
151 [0xe8] = { 1, 8, 8, 4, 0 },
152 [0xec] = { 1, 8, 8, 4, 0 },
153 [0xea] = { 2, 8, 8, 4, 0 },
154 [0xd5] = { 4, 8, 9, 4, 0 },
155 [0xe3] = { 4, 8, 9, 4, 0 },
156 [0xe5] = { 4, 8, 9, 4, 0 },
157 [0xd6] = { 8, 8, 9, 4, 0 },
159 [0x39] = { 8, 8, 9, 4, 0 },
160 [0xe6] = { 8, 8, 9, 4, 0 },
161 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
162 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
164 [0x33] = { 16, 8, 9, 5, 0 },
165 [0x73] = { 16, 8, 9, 5, 0 },
166 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
167 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
169 [0x35] = { 32, 8, 9, 5, 0 },
170 [0x75] = { 32, 8, 9, 5, 0 },
171 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
172 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
174 [0x36] = { 64, 8, 9, 5, 0 },
175 [0x76] = { 64, 8, 9, 5, 0 },
176 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
177 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
179 [0x78] = { 128, 8, 9, 5, 0 },
180 [0x39] = { 128, 8, 9, 5, 0 },
181 [0x79] = { 128, 8, 9, 5, 0 },
182 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
183 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
184 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
185 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
187 [0x71] = { 256, 8, 9, 5, 0 },
190 * These are the new chips with large page size. The pagesize and the
191 * erasesize is determined from the extended id bytes
193 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
194 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
196 /* 512 Megabit */
197 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
198 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
199 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
200 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
202 /* 1 Gigabit */
203 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
204 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
205 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
206 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
208 /* 2 Gigabit */
209 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
210 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
211 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
212 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
214 /* 4 Gigabit */
215 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
216 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
217 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
218 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
220 /* 8 Gigabit */
221 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
222 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
223 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
224 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
226 /* 16 Gigabit */
227 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
228 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
229 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
230 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
233 static void nand_reset(DeviceState *dev)
235 NANDFlashState *s = NAND(dev);
236 s->cmd = NAND_CMD_READ0;
237 s->addr = 0;
238 s->addrlen = 0;
239 s->iolen = 0;
240 s->offset = 0;
241 s->status &= NAND_IOSTATUS_UNPROTCT;
242 s->status |= NAND_IOSTATUS_READY;
245 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
247 s->ioaddr[s->iolen++] = value;
248 for (value = s->buswidth; --value;) {
249 s->ioaddr[s->iolen++] = 0;
253 static void nand_command(NANDFlashState *s)
255 unsigned int offset;
256 switch (s->cmd) {
257 case NAND_CMD_READ0:
258 s->iolen = 0;
259 break;
261 case NAND_CMD_READID:
262 s->ioaddr = s->io;
263 s->iolen = 0;
264 nand_pushio_byte(s, s->manf_id);
265 nand_pushio_byte(s, s->chip_id);
266 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
267 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
268 /* Page Size, Block Size, Spare Size; bit 6 indicates
269 * 8 vs 16 bit width NAND.
271 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
272 } else {
273 nand_pushio_byte(s, 0xc0); /* Multi-plane */
275 break;
277 case NAND_CMD_RANDOMREAD2:
278 case NAND_CMD_NOSERIALREAD2:
279 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
280 break;
281 offset = s->addr & ((1 << s->addr_shift) - 1);
282 s->blk_load(s, s->addr, offset);
283 if (s->gnd)
284 s->iolen = (1 << s->page_shift) - offset;
285 else
286 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
287 break;
289 case NAND_CMD_RESET:
290 nand_reset(DEVICE(s));
291 break;
293 case NAND_CMD_PAGEPROGRAM1:
294 s->ioaddr = s->io;
295 s->iolen = 0;
296 break;
298 case NAND_CMD_PAGEPROGRAM2:
299 if (s->wp) {
300 s->blk_write(s);
302 break;
304 case NAND_CMD_BLOCKERASE1:
305 break;
307 case NAND_CMD_BLOCKERASE2:
308 s->addr &= (1ull << s->addrlen * 8) - 1;
309 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
310 16 : 8;
312 if (s->wp) {
313 s->blk_erase(s);
315 break;
317 case NAND_CMD_READSTATUS:
318 s->ioaddr = s->io;
319 s->iolen = 0;
320 nand_pushio_byte(s, s->status);
321 break;
323 default:
324 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
328 static void nand_pre_save(void *opaque)
330 NANDFlashState *s = NAND(opaque);
332 s->ioaddr_vmstate = s->ioaddr - s->io;
335 static int nand_post_load(void *opaque, int version_id)
337 NANDFlashState *s = NAND(opaque);
339 if (s->ioaddr_vmstate > sizeof(s->io)) {
340 return -EINVAL;
342 s->ioaddr = s->io + s->ioaddr_vmstate;
344 return 0;
347 static const VMStateDescription vmstate_nand = {
348 .name = "nand",
349 .version_id = 1,
350 .minimum_version_id = 1,
351 .pre_save = nand_pre_save,
352 .post_load = nand_post_load,
353 .fields = (VMStateField[]) {
354 VMSTATE_UINT8(cle, NANDFlashState),
355 VMSTATE_UINT8(ale, NANDFlashState),
356 VMSTATE_UINT8(ce, NANDFlashState),
357 VMSTATE_UINT8(wp, NANDFlashState),
358 VMSTATE_UINT8(gnd, NANDFlashState),
359 VMSTATE_BUFFER(io, NANDFlashState),
360 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
361 VMSTATE_INT32(iolen, NANDFlashState),
362 VMSTATE_UINT32(cmd, NANDFlashState),
363 VMSTATE_UINT64(addr, NANDFlashState),
364 VMSTATE_INT32(addrlen, NANDFlashState),
365 VMSTATE_INT32(status, NANDFlashState),
366 VMSTATE_INT32(offset, NANDFlashState),
367 /* XXX: do we want to save s->storage too? */
368 VMSTATE_END_OF_LIST()
372 static void nand_realize(DeviceState *dev, Error **errp)
374 int pagesize;
375 NANDFlashState *s = NAND(dev);
376 int ret;
379 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
380 s->size = nand_flash_ids[s->chip_id].size << 20;
381 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
382 s->page_shift = 11;
383 s->erase_shift = 6;
384 } else {
385 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
386 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
389 switch (1 << s->page_shift) {
390 case 256:
391 nand_init_256(s);
392 break;
393 case 512:
394 nand_init_512(s);
395 break;
396 case 2048:
397 nand_init_2048(s);
398 break;
399 default:
400 error_setg(errp, "Unsupported NAND block size %#x",
401 1 << s->page_shift);
402 return;
405 pagesize = 1 << s->oob_shift;
406 s->mem_oob = 1;
407 if (s->blk) {
408 if (blk_is_read_only(s->blk)) {
409 error_setg(errp, "Can't use a read-only drive");
410 return;
412 ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
413 BLK_PERM_ALL, errp);
414 if (ret < 0) {
415 return;
417 if (blk_getlength(s->blk) >=
418 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
419 pagesize = 0;
420 s->mem_oob = 0;
422 } else {
423 pagesize += 1 << s->page_shift;
425 if (pagesize) {
426 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
427 0xff, s->pages * pagesize);
429 /* Give s->ioaddr a sane value in case we save state before it is used. */
430 s->ioaddr = s->io;
433 static Property nand_properties[] = {
434 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
435 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
436 DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
437 DEFINE_PROP_END_OF_LIST(),
440 static void nand_class_init(ObjectClass *klass, void *data)
442 DeviceClass *dc = DEVICE_CLASS(klass);
444 dc->realize = nand_realize;
445 dc->reset = nand_reset;
446 dc->vmsd = &vmstate_nand;
447 dc->props = nand_properties;
450 static const TypeInfo nand_info = {
451 .name = TYPE_NAND,
452 .parent = TYPE_DEVICE,
453 .instance_size = sizeof(NANDFlashState),
454 .class_init = nand_class_init,
457 static void nand_register_types(void)
459 type_register_static(&nand_info);
463 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
464 * outputs are R/B and eight I/O pins.
466 * CE, WP and R/B are active low.
468 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
469 uint8_t ce, uint8_t wp, uint8_t gnd)
471 NANDFlashState *s = NAND(dev);
473 s->cle = cle;
474 s->ale = ale;
475 s->ce = ce;
476 s->wp = wp;
477 s->gnd = gnd;
478 if (wp) {
479 s->status |= NAND_IOSTATUS_UNPROTCT;
480 } else {
481 s->status &= ~NAND_IOSTATUS_UNPROTCT;
485 void nand_getpins(DeviceState *dev, int *rb)
487 *rb = 1;
490 void nand_setio(DeviceState *dev, uint32_t value)
492 int i;
493 NANDFlashState *s = NAND(dev);
495 if (!s->ce && s->cle) {
496 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
497 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
498 return;
499 if (value == NAND_CMD_RANDOMREAD1) {
500 s->addr &= ~((1 << s->addr_shift) - 1);
501 s->addrlen = 0;
502 return;
505 if (value == NAND_CMD_READ0) {
506 s->offset = 0;
507 } else if (value == NAND_CMD_READ1) {
508 s->offset = 0x100;
509 value = NAND_CMD_READ0;
510 } else if (value == NAND_CMD_READ2) {
511 s->offset = 1 << s->page_shift;
512 value = NAND_CMD_READ0;
515 s->cmd = value;
517 if (s->cmd == NAND_CMD_READSTATUS ||
518 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
519 s->cmd == NAND_CMD_BLOCKERASE1 ||
520 s->cmd == NAND_CMD_BLOCKERASE2 ||
521 s->cmd == NAND_CMD_NOSERIALREAD2 ||
522 s->cmd == NAND_CMD_RANDOMREAD2 ||
523 s->cmd == NAND_CMD_RESET) {
524 nand_command(s);
527 if (s->cmd != NAND_CMD_RANDOMREAD2) {
528 s->addrlen = 0;
532 if (s->ale) {
533 unsigned int shift = s->addrlen * 8;
534 uint64_t mask = ~(0xffull << shift);
535 uint64_t v = (uint64_t)value << shift;
537 s->addr = (s->addr & mask) | v;
538 s->addrlen ++;
540 switch (s->addrlen) {
541 case 1:
542 if (s->cmd == NAND_CMD_READID) {
543 nand_command(s);
545 break;
546 case 2: /* fix cache address as a byte address */
547 s->addr <<= (s->buswidth - 1);
548 break;
549 case 3:
550 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
551 (s->cmd == NAND_CMD_READ0 ||
552 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
553 nand_command(s);
555 break;
556 case 4:
557 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
558 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
559 (s->cmd == NAND_CMD_READ0 ||
560 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
561 nand_command(s);
563 break;
564 case 5:
565 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
566 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
567 (s->cmd == NAND_CMD_READ0 ||
568 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
569 nand_command(s);
571 break;
572 default:
573 break;
577 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
578 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
579 for (i = s->buswidth; i--; value >>= 8) {
580 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
583 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
584 if ((s->addr & ((1 << s->addr_shift) - 1)) <
585 (1 << s->page_shift) + (1 << s->oob_shift)) {
586 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
587 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
588 (uint8_t) (value & 0xff);
594 uint32_t nand_getio(DeviceState *dev)
596 int offset;
597 uint32_t x = 0;
598 NANDFlashState *s = NAND(dev);
600 /* Allow sequential reading */
601 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
602 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
603 s->offset = 0;
605 s->blk_load(s, s->addr, offset);
606 if (s->gnd)
607 s->iolen = (1 << s->page_shift) - offset;
608 else
609 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
612 if (s->ce || s->iolen <= 0) {
613 return 0;
616 for (offset = s->buswidth; offset--;) {
617 x |= s->ioaddr[offset] << (offset << 3);
619 /* after receiving READ STATUS command all subsequent reads will
620 * return the status register value until another command is issued
622 if (s->cmd != NAND_CMD_READSTATUS) {
623 s->addr += s->buswidth;
624 s->ioaddr += s->buswidth;
625 s->iolen -= s->buswidth;
627 return x;
630 uint32_t nand_getbuswidth(DeviceState *dev)
632 NANDFlashState *s = (NANDFlashState *) dev;
633 return s->buswidth << 3;
636 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
638 DeviceState *dev;
640 if (nand_flash_ids[chip_id].size == 0) {
641 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
643 dev = DEVICE(object_new(TYPE_NAND));
644 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
645 qdev_prop_set_uint8(dev, "chip_id", chip_id);
646 if (blk) {
647 qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
650 qdev_init_nofail(dev);
651 return dev;
654 type_init(nand_register_types)
656 #else
658 /* Program a single page */
659 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
661 uint64_t off, page, sector, soff;
662 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
663 if (PAGE(s->addr) >= s->pages)
664 return;
666 if (!s->blk) {
667 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
668 s->offset, s->io, s->iolen);
669 } else if (s->mem_oob) {
670 sector = SECTOR(s->addr);
671 off = (s->addr & PAGE_MASK) + s->offset;
672 soff = SECTOR_OFFSET(s->addr);
673 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
674 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
675 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
676 return;
679 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
680 if (off + s->iolen > PAGE_SIZE) {
681 page = PAGE(s->addr);
682 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
683 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
686 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
687 PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
688 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
690 } else {
691 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
692 sector = off >> 9;
693 soff = off & 0x1ff;
694 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
695 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
696 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
697 return;
700 mem_and(iobuf + soff, s->io, s->iolen);
702 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
703 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
704 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
707 s->offset = 0;
710 /* Erase a single block */
711 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
713 uint64_t i, page, addr;
714 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
715 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
717 if (PAGE(addr) >= s->pages) {
718 return;
721 if (!s->blk) {
722 memset(s->storage + PAGE_START(addr),
723 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
724 } else if (s->mem_oob) {
725 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
726 0xff, OOB_SIZE << s->erase_shift);
727 i = SECTOR(addr);
728 page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
729 for (; i < page; i ++)
730 if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
731 BDRV_SECTOR_SIZE, 0) < 0) {
732 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
734 } else {
735 addr = PAGE_START(addr);
736 page = addr >> 9;
737 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
738 BDRV_SECTOR_SIZE) < 0) {
739 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
741 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
742 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
743 BDRV_SECTOR_SIZE, 0) < 0) {
744 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
747 memset(iobuf, 0xff, 0x200);
748 i = (addr & ~0x1ff) + 0x200;
749 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
750 i < addr; i += 0x200) {
751 if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
752 printf("%s: write error in sector %" PRIu64 "\n",
753 __func__, i >> 9);
757 page = i >> 9;
758 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
759 BDRV_SECTOR_SIZE) < 0) {
760 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
762 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
763 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
764 BDRV_SECTOR_SIZE, 0) < 0) {
765 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
770 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
771 uint64_t addr, int offset)
773 if (PAGE(addr) >= s->pages) {
774 return;
777 if (s->blk) {
778 if (s->mem_oob) {
779 if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
780 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
781 printf("%s: read error in sector %" PRIu64 "\n",
782 __func__, SECTOR(addr));
784 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
785 s->storage + (PAGE(s->addr) << OOB_SHIFT),
786 OOB_SIZE);
787 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
788 } else {
789 if (blk_pread(s->blk, PAGE_START(addr), s->io,
790 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
791 printf("%s: read error in sector %" PRIu64 "\n",
792 __func__, PAGE_START(addr) >> 9);
794 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
796 } else {
797 memcpy(s->io, s->storage + PAGE_START(s->addr) +
798 offset, PAGE_SIZE + OOB_SIZE - offset);
799 s->ioaddr = s->io;
803 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
805 s->oob_shift = PAGE_SHIFT - 5;
806 s->pages = s->size >> PAGE_SHIFT;
807 s->addr_shift = ADDR_SHIFT;
809 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
810 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
811 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
814 # undef PAGE_SIZE
815 # undef PAGE_SHIFT
816 # undef PAGE_SECTORS
817 # undef ADDR_SHIFT
818 #endif /* NAND_IO */