include/qemu/osdep.h: Don't include qapi/error.h
[qemu/ar7.git] / migration / rdma.c
blob0601d528bcc0a3b71f44367676e0cbb4c9124d35
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
6 * Authors:
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qapi/error.h"
16 #include "qemu-common.h"
17 #include "migration/migration.h"
18 #include "migration/qemu-file.h"
19 #include "exec/cpu-common.h"
20 #include "qemu/error-report.h"
21 #include "qemu/main-loop.h"
22 #include "qemu/sockets.h"
23 #include "qemu/bitmap.h"
24 #include "qemu/coroutine.h"
25 #include <sys/socket.h>
26 #include <netdb.h>
27 #include <arpa/inet.h>
28 #include <rdma/rdma_cma.h>
29 #include "trace.h"
32 * Print and error on both the Monitor and the Log file.
34 #define ERROR(errp, fmt, ...) \
35 do { \
36 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
37 if (errp && (*(errp) == NULL)) { \
38 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
39 } \
40 } while (0)
42 #define RDMA_RESOLVE_TIMEOUT_MS 10000
44 /* Do not merge data if larger than this. */
45 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
46 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
48 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
51 * This is only for non-live state being migrated.
52 * Instead of RDMA_WRITE messages, we use RDMA_SEND
53 * messages for that state, which requires a different
54 * delivery design than main memory.
56 #define RDMA_SEND_INCREMENT 32768
59 * Maximum size infiniband SEND message
61 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
62 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
64 #define RDMA_CONTROL_VERSION_CURRENT 1
66 * Capabilities for negotiation.
68 #define RDMA_CAPABILITY_PIN_ALL 0x01
71 * Add the other flags above to this list of known capabilities
72 * as they are introduced.
74 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
76 #define CHECK_ERROR_STATE() \
77 do { \
78 if (rdma->error_state) { \
79 if (!rdma->error_reported) { \
80 error_report("RDMA is in an error state waiting migration" \
81 " to abort!"); \
82 rdma->error_reported = 1; \
83 } \
84 return rdma->error_state; \
85 } \
86 } while (0);
89 * A work request ID is 64-bits and we split up these bits
90 * into 3 parts:
92 * bits 0-15 : type of control message, 2^16
93 * bits 16-29: ram block index, 2^14
94 * bits 30-63: ram block chunk number, 2^34
96 * The last two bit ranges are only used for RDMA writes,
97 * in order to track their completion and potentially
98 * also track unregistration status of the message.
100 #define RDMA_WRID_TYPE_SHIFT 0UL
101 #define RDMA_WRID_BLOCK_SHIFT 16UL
102 #define RDMA_WRID_CHUNK_SHIFT 30UL
104 #define RDMA_WRID_TYPE_MASK \
105 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
107 #define RDMA_WRID_BLOCK_MASK \
108 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
110 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
113 * RDMA migration protocol:
114 * 1. RDMA Writes (data messages, i.e. RAM)
115 * 2. IB Send/Recv (control channel messages)
117 enum {
118 RDMA_WRID_NONE = 0,
119 RDMA_WRID_RDMA_WRITE = 1,
120 RDMA_WRID_SEND_CONTROL = 2000,
121 RDMA_WRID_RECV_CONTROL = 4000,
124 static const char *wrid_desc[] = {
125 [RDMA_WRID_NONE] = "NONE",
126 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
127 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
128 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
132 * Work request IDs for IB SEND messages only (not RDMA writes).
133 * This is used by the migration protocol to transmit
134 * control messages (such as device state and registration commands)
136 * We could use more WRs, but we have enough for now.
138 enum {
139 RDMA_WRID_READY = 0,
140 RDMA_WRID_DATA,
141 RDMA_WRID_CONTROL,
142 RDMA_WRID_MAX,
146 * SEND/RECV IB Control Messages.
148 enum {
149 RDMA_CONTROL_NONE = 0,
150 RDMA_CONTROL_ERROR,
151 RDMA_CONTROL_READY, /* ready to receive */
152 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
153 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
154 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
155 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
156 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
157 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
158 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
159 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
160 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
163 static const char *control_desc[] = {
164 [RDMA_CONTROL_NONE] = "NONE",
165 [RDMA_CONTROL_ERROR] = "ERROR",
166 [RDMA_CONTROL_READY] = "READY",
167 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
168 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
169 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
170 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
171 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
172 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
173 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
174 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
175 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
179 * Memory and MR structures used to represent an IB Send/Recv work request.
180 * This is *not* used for RDMA writes, only IB Send/Recv.
182 typedef struct {
183 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
184 struct ibv_mr *control_mr; /* registration metadata */
185 size_t control_len; /* length of the message */
186 uint8_t *control_curr; /* start of unconsumed bytes */
187 } RDMAWorkRequestData;
190 * Negotiate RDMA capabilities during connection-setup time.
192 typedef struct {
193 uint32_t version;
194 uint32_t flags;
195 } RDMACapabilities;
197 static void caps_to_network(RDMACapabilities *cap)
199 cap->version = htonl(cap->version);
200 cap->flags = htonl(cap->flags);
203 static void network_to_caps(RDMACapabilities *cap)
205 cap->version = ntohl(cap->version);
206 cap->flags = ntohl(cap->flags);
210 * Representation of a RAMBlock from an RDMA perspective.
211 * This is not transmitted, only local.
212 * This and subsequent structures cannot be linked lists
213 * because we're using a single IB message to transmit
214 * the information. It's small anyway, so a list is overkill.
216 typedef struct RDMALocalBlock {
217 char *block_name;
218 uint8_t *local_host_addr; /* local virtual address */
219 uint64_t remote_host_addr; /* remote virtual address */
220 uint64_t offset;
221 uint64_t length;
222 struct ibv_mr **pmr; /* MRs for chunk-level registration */
223 struct ibv_mr *mr; /* MR for non-chunk-level registration */
224 uint32_t *remote_keys; /* rkeys for chunk-level registration */
225 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
226 int index; /* which block are we */
227 unsigned int src_index; /* (Only used on dest) */
228 bool is_ram_block;
229 int nb_chunks;
230 unsigned long *transit_bitmap;
231 unsigned long *unregister_bitmap;
232 } RDMALocalBlock;
235 * Also represents a RAMblock, but only on the dest.
236 * This gets transmitted by the dest during connection-time
237 * to the source VM and then is used to populate the
238 * corresponding RDMALocalBlock with
239 * the information needed to perform the actual RDMA.
241 typedef struct QEMU_PACKED RDMADestBlock {
242 uint64_t remote_host_addr;
243 uint64_t offset;
244 uint64_t length;
245 uint32_t remote_rkey;
246 uint32_t padding;
247 } RDMADestBlock;
249 static uint64_t htonll(uint64_t v)
251 union { uint32_t lv[2]; uint64_t llv; } u;
252 u.lv[0] = htonl(v >> 32);
253 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
254 return u.llv;
257 static uint64_t ntohll(uint64_t v) {
258 union { uint32_t lv[2]; uint64_t llv; } u;
259 u.llv = v;
260 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
263 static void dest_block_to_network(RDMADestBlock *db)
265 db->remote_host_addr = htonll(db->remote_host_addr);
266 db->offset = htonll(db->offset);
267 db->length = htonll(db->length);
268 db->remote_rkey = htonl(db->remote_rkey);
271 static void network_to_dest_block(RDMADestBlock *db)
273 db->remote_host_addr = ntohll(db->remote_host_addr);
274 db->offset = ntohll(db->offset);
275 db->length = ntohll(db->length);
276 db->remote_rkey = ntohl(db->remote_rkey);
280 * Virtual address of the above structures used for transmitting
281 * the RAMBlock descriptions at connection-time.
282 * This structure is *not* transmitted.
284 typedef struct RDMALocalBlocks {
285 int nb_blocks;
286 bool init; /* main memory init complete */
287 RDMALocalBlock *block;
288 } RDMALocalBlocks;
291 * Main data structure for RDMA state.
292 * While there is only one copy of this structure being allocated right now,
293 * this is the place where one would start if you wanted to consider
294 * having more than one RDMA connection open at the same time.
296 typedef struct RDMAContext {
297 char *host;
298 int port;
300 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
303 * This is used by *_exchange_send() to figure out whether or not
304 * the initial "READY" message has already been received or not.
305 * This is because other functions may potentially poll() and detect
306 * the READY message before send() does, in which case we need to
307 * know if it completed.
309 int control_ready_expected;
311 /* number of outstanding writes */
312 int nb_sent;
314 /* store info about current buffer so that we can
315 merge it with future sends */
316 uint64_t current_addr;
317 uint64_t current_length;
318 /* index of ram block the current buffer belongs to */
319 int current_index;
320 /* index of the chunk in the current ram block */
321 int current_chunk;
323 bool pin_all;
326 * infiniband-specific variables for opening the device
327 * and maintaining connection state and so forth.
329 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
330 * cm_id->verbs, cm_id->channel, and cm_id->qp.
332 struct rdma_cm_id *cm_id; /* connection manager ID */
333 struct rdma_cm_id *listen_id;
334 bool connected;
336 struct ibv_context *verbs;
337 struct rdma_event_channel *channel;
338 struct ibv_qp *qp; /* queue pair */
339 struct ibv_comp_channel *comp_channel; /* completion channel */
340 struct ibv_pd *pd; /* protection domain */
341 struct ibv_cq *cq; /* completion queue */
344 * If a previous write failed (perhaps because of a failed
345 * memory registration, then do not attempt any future work
346 * and remember the error state.
348 int error_state;
349 int error_reported;
352 * Description of ram blocks used throughout the code.
354 RDMALocalBlocks local_ram_blocks;
355 RDMADestBlock *dest_blocks;
357 /* Index of the next RAMBlock received during block registration */
358 unsigned int next_src_index;
361 * Migration on *destination* started.
362 * Then use coroutine yield function.
363 * Source runs in a thread, so we don't care.
365 int migration_started_on_destination;
367 int total_registrations;
368 int total_writes;
370 int unregister_current, unregister_next;
371 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
373 GHashTable *blockmap;
374 } RDMAContext;
377 * Interface to the rest of the migration call stack.
379 typedef struct QEMUFileRDMA {
380 RDMAContext *rdma;
381 size_t len;
382 void *file;
383 } QEMUFileRDMA;
386 * Main structure for IB Send/Recv control messages.
387 * This gets prepended at the beginning of every Send/Recv.
389 typedef struct QEMU_PACKED {
390 uint32_t len; /* Total length of data portion */
391 uint32_t type; /* which control command to perform */
392 uint32_t repeat; /* number of commands in data portion of same type */
393 uint32_t padding;
394 } RDMAControlHeader;
396 static void control_to_network(RDMAControlHeader *control)
398 control->type = htonl(control->type);
399 control->len = htonl(control->len);
400 control->repeat = htonl(control->repeat);
403 static void network_to_control(RDMAControlHeader *control)
405 control->type = ntohl(control->type);
406 control->len = ntohl(control->len);
407 control->repeat = ntohl(control->repeat);
411 * Register a single Chunk.
412 * Information sent by the source VM to inform the dest
413 * to register an single chunk of memory before we can perform
414 * the actual RDMA operation.
416 typedef struct QEMU_PACKED {
417 union QEMU_PACKED {
418 uint64_t current_addr; /* offset into the ram_addr_t space */
419 uint64_t chunk; /* chunk to lookup if unregistering */
420 } key;
421 uint32_t current_index; /* which ramblock the chunk belongs to */
422 uint32_t padding;
423 uint64_t chunks; /* how many sequential chunks to register */
424 } RDMARegister;
426 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
428 RDMALocalBlock *local_block;
429 local_block = &rdma->local_ram_blocks.block[reg->current_index];
431 if (local_block->is_ram_block) {
433 * current_addr as passed in is an address in the local ram_addr_t
434 * space, we need to translate this for the destination
436 reg->key.current_addr -= local_block->offset;
437 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
439 reg->key.current_addr = htonll(reg->key.current_addr);
440 reg->current_index = htonl(reg->current_index);
441 reg->chunks = htonll(reg->chunks);
444 static void network_to_register(RDMARegister *reg)
446 reg->key.current_addr = ntohll(reg->key.current_addr);
447 reg->current_index = ntohl(reg->current_index);
448 reg->chunks = ntohll(reg->chunks);
451 typedef struct QEMU_PACKED {
452 uint32_t value; /* if zero, we will madvise() */
453 uint32_t block_idx; /* which ram block index */
454 uint64_t offset; /* Address in remote ram_addr_t space */
455 uint64_t length; /* length of the chunk */
456 } RDMACompress;
458 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
460 comp->value = htonl(comp->value);
462 * comp->offset as passed in is an address in the local ram_addr_t
463 * space, we need to translate this for the destination
465 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
466 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
467 comp->block_idx = htonl(comp->block_idx);
468 comp->offset = htonll(comp->offset);
469 comp->length = htonll(comp->length);
472 static void network_to_compress(RDMACompress *comp)
474 comp->value = ntohl(comp->value);
475 comp->block_idx = ntohl(comp->block_idx);
476 comp->offset = ntohll(comp->offset);
477 comp->length = ntohll(comp->length);
481 * The result of the dest's memory registration produces an "rkey"
482 * which the source VM must reference in order to perform
483 * the RDMA operation.
485 typedef struct QEMU_PACKED {
486 uint32_t rkey;
487 uint32_t padding;
488 uint64_t host_addr;
489 } RDMARegisterResult;
491 static void result_to_network(RDMARegisterResult *result)
493 result->rkey = htonl(result->rkey);
494 result->host_addr = htonll(result->host_addr);
497 static void network_to_result(RDMARegisterResult *result)
499 result->rkey = ntohl(result->rkey);
500 result->host_addr = ntohll(result->host_addr);
503 const char *print_wrid(int wrid);
504 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
505 uint8_t *data, RDMAControlHeader *resp,
506 int *resp_idx,
507 int (*callback)(RDMAContext *rdma));
509 static inline uint64_t ram_chunk_index(const uint8_t *start,
510 const uint8_t *host)
512 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
515 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
516 uint64_t i)
518 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
519 (i << RDMA_REG_CHUNK_SHIFT));
522 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
523 uint64_t i)
525 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
526 (1UL << RDMA_REG_CHUNK_SHIFT);
528 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
529 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
532 return result;
535 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
536 void *host_addr,
537 ram_addr_t block_offset, uint64_t length)
539 RDMALocalBlocks *local = &rdma->local_ram_blocks;
540 RDMALocalBlock *block;
541 RDMALocalBlock *old = local->block;
543 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
545 if (local->nb_blocks) {
546 int x;
548 if (rdma->blockmap) {
549 for (x = 0; x < local->nb_blocks; x++) {
550 g_hash_table_remove(rdma->blockmap,
551 (void *)(uintptr_t)old[x].offset);
552 g_hash_table_insert(rdma->blockmap,
553 (void *)(uintptr_t)old[x].offset,
554 &local->block[x]);
557 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
558 g_free(old);
561 block = &local->block[local->nb_blocks];
563 block->block_name = g_strdup(block_name);
564 block->local_host_addr = host_addr;
565 block->offset = block_offset;
566 block->length = length;
567 block->index = local->nb_blocks;
568 block->src_index = ~0U; /* Filled in by the receipt of the block list */
569 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
570 block->transit_bitmap = bitmap_new(block->nb_chunks);
571 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
572 block->unregister_bitmap = bitmap_new(block->nb_chunks);
573 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
574 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
576 block->is_ram_block = local->init ? false : true;
578 if (rdma->blockmap) {
579 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
582 trace_rdma_add_block(block_name, local->nb_blocks,
583 (uintptr_t) block->local_host_addr,
584 block->offset, block->length,
585 (uintptr_t) (block->local_host_addr + block->length),
586 BITS_TO_LONGS(block->nb_chunks) *
587 sizeof(unsigned long) * 8,
588 block->nb_chunks);
590 local->nb_blocks++;
592 return 0;
596 * Memory regions need to be registered with the device and queue pairs setup
597 * in advanced before the migration starts. This tells us where the RAM blocks
598 * are so that we can register them individually.
600 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
601 ram_addr_t block_offset, ram_addr_t length, void *opaque)
603 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
607 * Identify the RAMBlocks and their quantity. They will be references to
608 * identify chunk boundaries inside each RAMBlock and also be referenced
609 * during dynamic page registration.
611 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
613 RDMALocalBlocks *local = &rdma->local_ram_blocks;
615 assert(rdma->blockmap == NULL);
616 memset(local, 0, sizeof *local);
617 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
618 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
619 rdma->dest_blocks = g_new0(RDMADestBlock,
620 rdma->local_ram_blocks.nb_blocks);
621 local->init = true;
622 return 0;
626 * Note: If used outside of cleanup, the caller must ensure that the destination
627 * block structures are also updated
629 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
631 RDMALocalBlocks *local = &rdma->local_ram_blocks;
632 RDMALocalBlock *old = local->block;
633 int x;
635 if (rdma->blockmap) {
636 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
638 if (block->pmr) {
639 int j;
641 for (j = 0; j < block->nb_chunks; j++) {
642 if (!block->pmr[j]) {
643 continue;
645 ibv_dereg_mr(block->pmr[j]);
646 rdma->total_registrations--;
648 g_free(block->pmr);
649 block->pmr = NULL;
652 if (block->mr) {
653 ibv_dereg_mr(block->mr);
654 rdma->total_registrations--;
655 block->mr = NULL;
658 g_free(block->transit_bitmap);
659 block->transit_bitmap = NULL;
661 g_free(block->unregister_bitmap);
662 block->unregister_bitmap = NULL;
664 g_free(block->remote_keys);
665 block->remote_keys = NULL;
667 g_free(block->block_name);
668 block->block_name = NULL;
670 if (rdma->blockmap) {
671 for (x = 0; x < local->nb_blocks; x++) {
672 g_hash_table_remove(rdma->blockmap,
673 (void *)(uintptr_t)old[x].offset);
677 if (local->nb_blocks > 1) {
679 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
681 if (block->index) {
682 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
685 if (block->index < (local->nb_blocks - 1)) {
686 memcpy(local->block + block->index, old + (block->index + 1),
687 sizeof(RDMALocalBlock) *
688 (local->nb_blocks - (block->index + 1)));
690 } else {
691 assert(block == local->block);
692 local->block = NULL;
695 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
696 block->offset, block->length,
697 (uintptr_t)(block->local_host_addr + block->length),
698 BITS_TO_LONGS(block->nb_chunks) *
699 sizeof(unsigned long) * 8, block->nb_chunks);
701 g_free(old);
703 local->nb_blocks--;
705 if (local->nb_blocks && rdma->blockmap) {
706 for (x = 0; x < local->nb_blocks; x++) {
707 g_hash_table_insert(rdma->blockmap,
708 (void *)(uintptr_t)local->block[x].offset,
709 &local->block[x]);
713 return 0;
717 * Put in the log file which RDMA device was opened and the details
718 * associated with that device.
720 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
722 struct ibv_port_attr port;
724 if (ibv_query_port(verbs, 1, &port)) {
725 error_report("Failed to query port information");
726 return;
729 printf("%s RDMA Device opened: kernel name %s "
730 "uverbs device name %s, "
731 "infiniband_verbs class device path %s, "
732 "infiniband class device path %s, "
733 "transport: (%d) %s\n",
734 who,
735 verbs->device->name,
736 verbs->device->dev_name,
737 verbs->device->dev_path,
738 verbs->device->ibdev_path,
739 port.link_layer,
740 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
741 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
742 ? "Ethernet" : "Unknown"));
746 * Put in the log file the RDMA gid addressing information,
747 * useful for folks who have trouble understanding the
748 * RDMA device hierarchy in the kernel.
750 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
752 char sgid[33];
753 char dgid[33];
754 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
755 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
756 trace_qemu_rdma_dump_gid(who, sgid, dgid);
760 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
761 * We will try the next addrinfo struct, and fail if there are
762 * no other valid addresses to bind against.
764 * If user is listening on '[::]', then we will not have a opened a device
765 * yet and have no way of verifying if the device is RoCE or not.
767 * In this case, the source VM will throw an error for ALL types of
768 * connections (both IPv4 and IPv6) if the destination machine does not have
769 * a regular infiniband network available for use.
771 * The only way to guarantee that an error is thrown for broken kernels is
772 * for the management software to choose a *specific* interface at bind time
773 * and validate what time of hardware it is.
775 * Unfortunately, this puts the user in a fix:
777 * If the source VM connects with an IPv4 address without knowing that the
778 * destination has bound to '[::]' the migration will unconditionally fail
779 * unless the management software is explicitly listening on the IPv4
780 * address while using a RoCE-based device.
782 * If the source VM connects with an IPv6 address, then we're OK because we can
783 * throw an error on the source (and similarly on the destination).
785 * But in mixed environments, this will be broken for a while until it is fixed
786 * inside linux.
788 * We do provide a *tiny* bit of help in this function: We can list all of the
789 * devices in the system and check to see if all the devices are RoCE or
790 * Infiniband.
792 * If we detect that we have a *pure* RoCE environment, then we can safely
793 * thrown an error even if the management software has specified '[::]' as the
794 * bind address.
796 * However, if there is are multiple hetergeneous devices, then we cannot make
797 * this assumption and the user just has to be sure they know what they are
798 * doing.
800 * Patches are being reviewed on linux-rdma.
802 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
804 struct ibv_port_attr port_attr;
806 /* This bug only exists in linux, to our knowledge. */
807 #ifdef CONFIG_LINUX
810 * Verbs are only NULL if management has bound to '[::]'.
812 * Let's iterate through all the devices and see if there any pure IB
813 * devices (non-ethernet).
815 * If not, then we can safely proceed with the migration.
816 * Otherwise, there are no guarantees until the bug is fixed in linux.
818 if (!verbs) {
819 int num_devices, x;
820 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
821 bool roce_found = false;
822 bool ib_found = false;
824 for (x = 0; x < num_devices; x++) {
825 verbs = ibv_open_device(dev_list[x]);
826 if (!verbs) {
827 if (errno == EPERM) {
828 continue;
829 } else {
830 return -EINVAL;
834 if (ibv_query_port(verbs, 1, &port_attr)) {
835 ibv_close_device(verbs);
836 ERROR(errp, "Could not query initial IB port");
837 return -EINVAL;
840 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
841 ib_found = true;
842 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
843 roce_found = true;
846 ibv_close_device(verbs);
850 if (roce_found) {
851 if (ib_found) {
852 fprintf(stderr, "WARN: migrations may fail:"
853 " IPv6 over RoCE / iWARP in linux"
854 " is broken. But since you appear to have a"
855 " mixed RoCE / IB environment, be sure to only"
856 " migrate over the IB fabric until the kernel "
857 " fixes the bug.\n");
858 } else {
859 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
860 " and your management software has specified '[::]'"
861 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
862 return -ENONET;
866 return 0;
870 * If we have a verbs context, that means that some other than '[::]' was
871 * used by the management software for binding. In which case we can
872 * actually warn the user about a potentially broken kernel.
875 /* IB ports start with 1, not 0 */
876 if (ibv_query_port(verbs, 1, &port_attr)) {
877 ERROR(errp, "Could not query initial IB port");
878 return -EINVAL;
881 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
882 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
883 "(but patches on linux-rdma in progress)");
884 return -ENONET;
887 #endif
889 return 0;
893 * Figure out which RDMA device corresponds to the requested IP hostname
894 * Also create the initial connection manager identifiers for opening
895 * the connection.
897 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
899 int ret;
900 struct rdma_addrinfo *res;
901 char port_str[16];
902 struct rdma_cm_event *cm_event;
903 char ip[40] = "unknown";
904 struct rdma_addrinfo *e;
906 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
907 ERROR(errp, "RDMA hostname has not been set");
908 return -EINVAL;
911 /* create CM channel */
912 rdma->channel = rdma_create_event_channel();
913 if (!rdma->channel) {
914 ERROR(errp, "could not create CM channel");
915 return -EINVAL;
918 /* create CM id */
919 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
920 if (ret) {
921 ERROR(errp, "could not create channel id");
922 goto err_resolve_create_id;
925 snprintf(port_str, 16, "%d", rdma->port);
926 port_str[15] = '\0';
928 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
929 if (ret < 0) {
930 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
931 goto err_resolve_get_addr;
934 for (e = res; e != NULL; e = e->ai_next) {
935 inet_ntop(e->ai_family,
936 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
937 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
939 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
940 RDMA_RESOLVE_TIMEOUT_MS);
941 if (!ret) {
942 if (e->ai_family == AF_INET6) {
943 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
944 if (ret) {
945 continue;
948 goto route;
952 ERROR(errp, "could not resolve address %s", rdma->host);
953 goto err_resolve_get_addr;
955 route:
956 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
958 ret = rdma_get_cm_event(rdma->channel, &cm_event);
959 if (ret) {
960 ERROR(errp, "could not perform event_addr_resolved");
961 goto err_resolve_get_addr;
964 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
965 ERROR(errp, "result not equal to event_addr_resolved %s",
966 rdma_event_str(cm_event->event));
967 perror("rdma_resolve_addr");
968 rdma_ack_cm_event(cm_event);
969 ret = -EINVAL;
970 goto err_resolve_get_addr;
972 rdma_ack_cm_event(cm_event);
974 /* resolve route */
975 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
976 if (ret) {
977 ERROR(errp, "could not resolve rdma route");
978 goto err_resolve_get_addr;
981 ret = rdma_get_cm_event(rdma->channel, &cm_event);
982 if (ret) {
983 ERROR(errp, "could not perform event_route_resolved");
984 goto err_resolve_get_addr;
986 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
987 ERROR(errp, "result not equal to event_route_resolved: %s",
988 rdma_event_str(cm_event->event));
989 rdma_ack_cm_event(cm_event);
990 ret = -EINVAL;
991 goto err_resolve_get_addr;
993 rdma_ack_cm_event(cm_event);
994 rdma->verbs = rdma->cm_id->verbs;
995 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
996 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
997 return 0;
999 err_resolve_get_addr:
1000 rdma_destroy_id(rdma->cm_id);
1001 rdma->cm_id = NULL;
1002 err_resolve_create_id:
1003 rdma_destroy_event_channel(rdma->channel);
1004 rdma->channel = NULL;
1005 return ret;
1009 * Create protection domain and completion queues
1011 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1013 /* allocate pd */
1014 rdma->pd = ibv_alloc_pd(rdma->verbs);
1015 if (!rdma->pd) {
1016 error_report("failed to allocate protection domain");
1017 return -1;
1020 /* create completion channel */
1021 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1022 if (!rdma->comp_channel) {
1023 error_report("failed to allocate completion channel");
1024 goto err_alloc_pd_cq;
1028 * Completion queue can be filled by both read and write work requests,
1029 * so must reflect the sum of both possible queue sizes.
1031 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1032 NULL, rdma->comp_channel, 0);
1033 if (!rdma->cq) {
1034 error_report("failed to allocate completion queue");
1035 goto err_alloc_pd_cq;
1038 return 0;
1040 err_alloc_pd_cq:
1041 if (rdma->pd) {
1042 ibv_dealloc_pd(rdma->pd);
1044 if (rdma->comp_channel) {
1045 ibv_destroy_comp_channel(rdma->comp_channel);
1047 rdma->pd = NULL;
1048 rdma->comp_channel = NULL;
1049 return -1;
1054 * Create queue pairs.
1056 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1058 struct ibv_qp_init_attr attr = { 0 };
1059 int ret;
1061 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1062 attr.cap.max_recv_wr = 3;
1063 attr.cap.max_send_sge = 1;
1064 attr.cap.max_recv_sge = 1;
1065 attr.send_cq = rdma->cq;
1066 attr.recv_cq = rdma->cq;
1067 attr.qp_type = IBV_QPT_RC;
1069 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1070 if (ret) {
1071 return -1;
1074 rdma->qp = rdma->cm_id->qp;
1075 return 0;
1078 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1080 int i;
1081 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1083 for (i = 0; i < local->nb_blocks; i++) {
1084 local->block[i].mr =
1085 ibv_reg_mr(rdma->pd,
1086 local->block[i].local_host_addr,
1087 local->block[i].length,
1088 IBV_ACCESS_LOCAL_WRITE |
1089 IBV_ACCESS_REMOTE_WRITE
1091 if (!local->block[i].mr) {
1092 perror("Failed to register local dest ram block!\n");
1093 break;
1095 rdma->total_registrations++;
1098 if (i >= local->nb_blocks) {
1099 return 0;
1102 for (i--; i >= 0; i--) {
1103 ibv_dereg_mr(local->block[i].mr);
1104 rdma->total_registrations--;
1107 return -1;
1112 * Find the ram block that corresponds to the page requested to be
1113 * transmitted by QEMU.
1115 * Once the block is found, also identify which 'chunk' within that
1116 * block that the page belongs to.
1118 * This search cannot fail or the migration will fail.
1120 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1121 uintptr_t block_offset,
1122 uint64_t offset,
1123 uint64_t length,
1124 uint64_t *block_index,
1125 uint64_t *chunk_index)
1127 uint64_t current_addr = block_offset + offset;
1128 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1129 (void *) block_offset);
1130 assert(block);
1131 assert(current_addr >= block->offset);
1132 assert((current_addr + length) <= (block->offset + block->length));
1134 *block_index = block->index;
1135 *chunk_index = ram_chunk_index(block->local_host_addr,
1136 block->local_host_addr + (current_addr - block->offset));
1138 return 0;
1142 * Register a chunk with IB. If the chunk was already registered
1143 * previously, then skip.
1145 * Also return the keys associated with the registration needed
1146 * to perform the actual RDMA operation.
1148 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1149 RDMALocalBlock *block, uintptr_t host_addr,
1150 uint32_t *lkey, uint32_t *rkey, int chunk,
1151 uint8_t *chunk_start, uint8_t *chunk_end)
1153 if (block->mr) {
1154 if (lkey) {
1155 *lkey = block->mr->lkey;
1157 if (rkey) {
1158 *rkey = block->mr->rkey;
1160 return 0;
1163 /* allocate memory to store chunk MRs */
1164 if (!block->pmr) {
1165 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1169 * If 'rkey', then we're the destination, so grant access to the source.
1171 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1173 if (!block->pmr[chunk]) {
1174 uint64_t len = chunk_end - chunk_start;
1176 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1178 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1179 chunk_start, len,
1180 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1181 IBV_ACCESS_REMOTE_WRITE) : 0));
1183 if (!block->pmr[chunk]) {
1184 perror("Failed to register chunk!");
1185 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1186 " start %" PRIuPTR " end %" PRIuPTR
1187 " host %" PRIuPTR
1188 " local %" PRIuPTR " registrations: %d\n",
1189 block->index, chunk, (uintptr_t)chunk_start,
1190 (uintptr_t)chunk_end, host_addr,
1191 (uintptr_t)block->local_host_addr,
1192 rdma->total_registrations);
1193 return -1;
1195 rdma->total_registrations++;
1198 if (lkey) {
1199 *lkey = block->pmr[chunk]->lkey;
1201 if (rkey) {
1202 *rkey = block->pmr[chunk]->rkey;
1204 return 0;
1208 * Register (at connection time) the memory used for control
1209 * channel messages.
1211 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1213 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1214 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1215 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1216 if (rdma->wr_data[idx].control_mr) {
1217 rdma->total_registrations++;
1218 return 0;
1220 error_report("qemu_rdma_reg_control failed");
1221 return -1;
1224 const char *print_wrid(int wrid)
1226 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1227 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1229 return wrid_desc[wrid];
1233 * RDMA requires memory registration (mlock/pinning), but this is not good for
1234 * overcommitment.
1236 * In preparation for the future where LRU information or workload-specific
1237 * writable writable working set memory access behavior is available to QEMU
1238 * it would be nice to have in place the ability to UN-register/UN-pin
1239 * particular memory regions from the RDMA hardware when it is determine that
1240 * those regions of memory will likely not be accessed again in the near future.
1242 * While we do not yet have such information right now, the following
1243 * compile-time option allows us to perform a non-optimized version of this
1244 * behavior.
1246 * By uncommenting this option, you will cause *all* RDMA transfers to be
1247 * unregistered immediately after the transfer completes on both sides of the
1248 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1250 * This will have a terrible impact on migration performance, so until future
1251 * workload information or LRU information is available, do not attempt to use
1252 * this feature except for basic testing.
1254 //#define RDMA_UNREGISTRATION_EXAMPLE
1257 * Perform a non-optimized memory unregistration after every transfer
1258 * for demonstration purposes, only if pin-all is not requested.
1260 * Potential optimizations:
1261 * 1. Start a new thread to run this function continuously
1262 - for bit clearing
1263 - and for receipt of unregister messages
1264 * 2. Use an LRU.
1265 * 3. Use workload hints.
1267 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1269 while (rdma->unregistrations[rdma->unregister_current]) {
1270 int ret;
1271 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1272 uint64_t chunk =
1273 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1274 uint64_t index =
1275 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1276 RDMALocalBlock *block =
1277 &(rdma->local_ram_blocks.block[index]);
1278 RDMARegister reg = { .current_index = index };
1279 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1281 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1282 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1283 .repeat = 1,
1286 trace_qemu_rdma_unregister_waiting_proc(chunk,
1287 rdma->unregister_current);
1289 rdma->unregistrations[rdma->unregister_current] = 0;
1290 rdma->unregister_current++;
1292 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1293 rdma->unregister_current = 0;
1298 * Unregistration is speculative (because migration is single-threaded
1299 * and we cannot break the protocol's inifinband message ordering).
1300 * Thus, if the memory is currently being used for transmission,
1301 * then abort the attempt to unregister and try again
1302 * later the next time a completion is received for this memory.
1304 clear_bit(chunk, block->unregister_bitmap);
1306 if (test_bit(chunk, block->transit_bitmap)) {
1307 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1308 continue;
1311 trace_qemu_rdma_unregister_waiting_send(chunk);
1313 ret = ibv_dereg_mr(block->pmr[chunk]);
1314 block->pmr[chunk] = NULL;
1315 block->remote_keys[chunk] = 0;
1317 if (ret != 0) {
1318 perror("unregistration chunk failed");
1319 return -ret;
1321 rdma->total_registrations--;
1323 reg.key.chunk = chunk;
1324 register_to_network(rdma, &reg);
1325 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1326 &resp, NULL, NULL);
1327 if (ret < 0) {
1328 return ret;
1331 trace_qemu_rdma_unregister_waiting_complete(chunk);
1334 return 0;
1337 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1338 uint64_t chunk)
1340 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1342 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1343 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1345 return result;
1349 * Set bit for unregistration in the next iteration.
1350 * We cannot transmit right here, but will unpin later.
1352 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1353 uint64_t chunk, uint64_t wr_id)
1355 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1356 error_report("rdma migration: queue is full");
1357 } else {
1358 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1360 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1361 trace_qemu_rdma_signal_unregister_append(chunk,
1362 rdma->unregister_next);
1364 rdma->unregistrations[rdma->unregister_next++] =
1365 qemu_rdma_make_wrid(wr_id, index, chunk);
1367 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1368 rdma->unregister_next = 0;
1370 } else {
1371 trace_qemu_rdma_signal_unregister_already(chunk);
1377 * Consult the connection manager to see a work request
1378 * (of any kind) has completed.
1379 * Return the work request ID that completed.
1381 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1382 uint32_t *byte_len)
1384 int ret;
1385 struct ibv_wc wc;
1386 uint64_t wr_id;
1388 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1390 if (!ret) {
1391 *wr_id_out = RDMA_WRID_NONE;
1392 return 0;
1395 if (ret < 0) {
1396 error_report("ibv_poll_cq return %d", ret);
1397 return ret;
1400 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1402 if (wc.status != IBV_WC_SUCCESS) {
1403 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1404 wc.status, ibv_wc_status_str(wc.status));
1405 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1407 return -1;
1410 if (rdma->control_ready_expected &&
1411 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1412 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1413 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1414 rdma->control_ready_expected = 0;
1417 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1418 uint64_t chunk =
1419 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1420 uint64_t index =
1421 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1422 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1424 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1425 index, chunk, block->local_host_addr,
1426 (void *)(uintptr_t)block->remote_host_addr);
1428 clear_bit(chunk, block->transit_bitmap);
1430 if (rdma->nb_sent > 0) {
1431 rdma->nb_sent--;
1434 if (!rdma->pin_all) {
1436 * FYI: If one wanted to signal a specific chunk to be unregistered
1437 * using LRU or workload-specific information, this is the function
1438 * you would call to do so. That chunk would then get asynchronously
1439 * unregistered later.
1441 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1442 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1443 #endif
1445 } else {
1446 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1449 *wr_id_out = wc.wr_id;
1450 if (byte_len) {
1451 *byte_len = wc.byte_len;
1454 return 0;
1458 * Block until the next work request has completed.
1460 * First poll to see if a work request has already completed,
1461 * otherwise block.
1463 * If we encounter completed work requests for IDs other than
1464 * the one we're interested in, then that's generally an error.
1466 * The only exception is actual RDMA Write completions. These
1467 * completions only need to be recorded, but do not actually
1468 * need further processing.
1470 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1471 uint32_t *byte_len)
1473 int num_cq_events = 0, ret = 0;
1474 struct ibv_cq *cq;
1475 void *cq_ctx;
1476 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1478 if (ibv_req_notify_cq(rdma->cq, 0)) {
1479 return -1;
1481 /* poll cq first */
1482 while (wr_id != wrid_requested) {
1483 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1484 if (ret < 0) {
1485 return ret;
1488 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1490 if (wr_id == RDMA_WRID_NONE) {
1491 break;
1493 if (wr_id != wrid_requested) {
1494 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1495 wrid_requested, print_wrid(wr_id), wr_id);
1499 if (wr_id == wrid_requested) {
1500 return 0;
1503 while (1) {
1505 * Coroutine doesn't start until process_incoming_migration()
1506 * so don't yield unless we know we're running inside of a coroutine.
1508 if (rdma->migration_started_on_destination) {
1509 yield_until_fd_readable(rdma->comp_channel->fd);
1512 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1513 perror("ibv_get_cq_event");
1514 goto err_block_for_wrid;
1517 num_cq_events++;
1519 if (ibv_req_notify_cq(cq, 0)) {
1520 goto err_block_for_wrid;
1523 while (wr_id != wrid_requested) {
1524 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1525 if (ret < 0) {
1526 goto err_block_for_wrid;
1529 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1531 if (wr_id == RDMA_WRID_NONE) {
1532 break;
1534 if (wr_id != wrid_requested) {
1535 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1536 wrid_requested, print_wrid(wr_id), wr_id);
1540 if (wr_id == wrid_requested) {
1541 goto success_block_for_wrid;
1545 success_block_for_wrid:
1546 if (num_cq_events) {
1547 ibv_ack_cq_events(cq, num_cq_events);
1549 return 0;
1551 err_block_for_wrid:
1552 if (num_cq_events) {
1553 ibv_ack_cq_events(cq, num_cq_events);
1555 return ret;
1559 * Post a SEND message work request for the control channel
1560 * containing some data and block until the post completes.
1562 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1563 RDMAControlHeader *head)
1565 int ret = 0;
1566 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1567 struct ibv_send_wr *bad_wr;
1568 struct ibv_sge sge = {
1569 .addr = (uintptr_t)(wr->control),
1570 .length = head->len + sizeof(RDMAControlHeader),
1571 .lkey = wr->control_mr->lkey,
1573 struct ibv_send_wr send_wr = {
1574 .wr_id = RDMA_WRID_SEND_CONTROL,
1575 .opcode = IBV_WR_SEND,
1576 .send_flags = IBV_SEND_SIGNALED,
1577 .sg_list = &sge,
1578 .num_sge = 1,
1581 trace_qemu_rdma_post_send_control(control_desc[head->type]);
1584 * We don't actually need to do a memcpy() in here if we used
1585 * the "sge" properly, but since we're only sending control messages
1586 * (not RAM in a performance-critical path), then its OK for now.
1588 * The copy makes the RDMAControlHeader simpler to manipulate
1589 * for the time being.
1591 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1592 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1593 control_to_network((void *) wr->control);
1595 if (buf) {
1596 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1600 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1602 if (ret > 0) {
1603 error_report("Failed to use post IB SEND for control");
1604 return -ret;
1607 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1608 if (ret < 0) {
1609 error_report("rdma migration: send polling control error");
1612 return ret;
1616 * Post a RECV work request in anticipation of some future receipt
1617 * of data on the control channel.
1619 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1621 struct ibv_recv_wr *bad_wr;
1622 struct ibv_sge sge = {
1623 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1624 .length = RDMA_CONTROL_MAX_BUFFER,
1625 .lkey = rdma->wr_data[idx].control_mr->lkey,
1628 struct ibv_recv_wr recv_wr = {
1629 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1630 .sg_list = &sge,
1631 .num_sge = 1,
1635 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1636 return -1;
1639 return 0;
1643 * Block and wait for a RECV control channel message to arrive.
1645 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1646 RDMAControlHeader *head, int expecting, int idx)
1648 uint32_t byte_len;
1649 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1650 &byte_len);
1652 if (ret < 0) {
1653 error_report("rdma migration: recv polling control error!");
1654 return ret;
1657 network_to_control((void *) rdma->wr_data[idx].control);
1658 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1660 trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1662 if (expecting == RDMA_CONTROL_NONE) {
1663 trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1664 head->type);
1665 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1666 error_report("Was expecting a %s (%d) control message"
1667 ", but got: %s (%d), length: %d",
1668 control_desc[expecting], expecting,
1669 control_desc[head->type], head->type, head->len);
1670 return -EIO;
1672 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1673 error_report("too long length: %d", head->len);
1674 return -EINVAL;
1676 if (sizeof(*head) + head->len != byte_len) {
1677 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1678 return -EINVAL;
1681 return 0;
1685 * When a RECV work request has completed, the work request's
1686 * buffer is pointed at the header.
1688 * This will advance the pointer to the data portion
1689 * of the control message of the work request's buffer that
1690 * was populated after the work request finished.
1692 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1693 RDMAControlHeader *head)
1695 rdma->wr_data[idx].control_len = head->len;
1696 rdma->wr_data[idx].control_curr =
1697 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1701 * This is an 'atomic' high-level operation to deliver a single, unified
1702 * control-channel message.
1704 * Additionally, if the user is expecting some kind of reply to this message,
1705 * they can request a 'resp' response message be filled in by posting an
1706 * additional work request on behalf of the user and waiting for an additional
1707 * completion.
1709 * The extra (optional) response is used during registration to us from having
1710 * to perform an *additional* exchange of message just to provide a response by
1711 * instead piggy-backing on the acknowledgement.
1713 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1714 uint8_t *data, RDMAControlHeader *resp,
1715 int *resp_idx,
1716 int (*callback)(RDMAContext *rdma))
1718 int ret = 0;
1721 * Wait until the dest is ready before attempting to deliver the message
1722 * by waiting for a READY message.
1724 if (rdma->control_ready_expected) {
1725 RDMAControlHeader resp;
1726 ret = qemu_rdma_exchange_get_response(rdma,
1727 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1728 if (ret < 0) {
1729 return ret;
1734 * If the user is expecting a response, post a WR in anticipation of it.
1736 if (resp) {
1737 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1738 if (ret) {
1739 error_report("rdma migration: error posting"
1740 " extra control recv for anticipated result!");
1741 return ret;
1746 * Post a WR to replace the one we just consumed for the READY message.
1748 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1749 if (ret) {
1750 error_report("rdma migration: error posting first control recv!");
1751 return ret;
1755 * Deliver the control message that was requested.
1757 ret = qemu_rdma_post_send_control(rdma, data, head);
1759 if (ret < 0) {
1760 error_report("Failed to send control buffer!");
1761 return ret;
1765 * If we're expecting a response, block and wait for it.
1767 if (resp) {
1768 if (callback) {
1769 trace_qemu_rdma_exchange_send_issue_callback();
1770 ret = callback(rdma);
1771 if (ret < 0) {
1772 return ret;
1776 trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1777 ret = qemu_rdma_exchange_get_response(rdma, resp,
1778 resp->type, RDMA_WRID_DATA);
1780 if (ret < 0) {
1781 return ret;
1784 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1785 if (resp_idx) {
1786 *resp_idx = RDMA_WRID_DATA;
1788 trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1791 rdma->control_ready_expected = 1;
1793 return 0;
1797 * This is an 'atomic' high-level operation to receive a single, unified
1798 * control-channel message.
1800 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1801 int expecting)
1803 RDMAControlHeader ready = {
1804 .len = 0,
1805 .type = RDMA_CONTROL_READY,
1806 .repeat = 1,
1808 int ret;
1811 * Inform the source that we're ready to receive a message.
1813 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1815 if (ret < 0) {
1816 error_report("Failed to send control buffer!");
1817 return ret;
1821 * Block and wait for the message.
1823 ret = qemu_rdma_exchange_get_response(rdma, head,
1824 expecting, RDMA_WRID_READY);
1826 if (ret < 0) {
1827 return ret;
1830 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1833 * Post a new RECV work request to replace the one we just consumed.
1835 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1836 if (ret) {
1837 error_report("rdma migration: error posting second control recv!");
1838 return ret;
1841 return 0;
1845 * Write an actual chunk of memory using RDMA.
1847 * If we're using dynamic registration on the dest-side, we have to
1848 * send a registration command first.
1850 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1851 int current_index, uint64_t current_addr,
1852 uint64_t length)
1854 struct ibv_sge sge;
1855 struct ibv_send_wr send_wr = { 0 };
1856 struct ibv_send_wr *bad_wr;
1857 int reg_result_idx, ret, count = 0;
1858 uint64_t chunk, chunks;
1859 uint8_t *chunk_start, *chunk_end;
1860 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1861 RDMARegister reg;
1862 RDMARegisterResult *reg_result;
1863 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1864 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1865 .type = RDMA_CONTROL_REGISTER_REQUEST,
1866 .repeat = 1,
1869 retry:
1870 sge.addr = (uintptr_t)(block->local_host_addr +
1871 (current_addr - block->offset));
1872 sge.length = length;
1874 chunk = ram_chunk_index(block->local_host_addr,
1875 (uint8_t *)(uintptr_t)sge.addr);
1876 chunk_start = ram_chunk_start(block, chunk);
1878 if (block->is_ram_block) {
1879 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1881 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1882 chunks--;
1884 } else {
1885 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1887 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1888 chunks--;
1892 trace_qemu_rdma_write_one_top(chunks + 1,
1893 (chunks + 1) *
1894 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1896 chunk_end = ram_chunk_end(block, chunk + chunks);
1898 if (!rdma->pin_all) {
1899 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1900 qemu_rdma_unregister_waiting(rdma);
1901 #endif
1904 while (test_bit(chunk, block->transit_bitmap)) {
1905 (void)count;
1906 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1907 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1909 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1911 if (ret < 0) {
1912 error_report("Failed to Wait for previous write to complete "
1913 "block %d chunk %" PRIu64
1914 " current %" PRIu64 " len %" PRIu64 " %d",
1915 current_index, chunk, sge.addr, length, rdma->nb_sent);
1916 return ret;
1920 if (!rdma->pin_all || !block->is_ram_block) {
1921 if (!block->remote_keys[chunk]) {
1923 * This chunk has not yet been registered, so first check to see
1924 * if the entire chunk is zero. If so, tell the other size to
1925 * memset() + madvise() the entire chunk without RDMA.
1928 if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1929 length)
1930 && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1931 length) == length) {
1932 RDMACompress comp = {
1933 .offset = current_addr,
1934 .value = 0,
1935 .block_idx = current_index,
1936 .length = length,
1939 head.len = sizeof(comp);
1940 head.type = RDMA_CONTROL_COMPRESS;
1942 trace_qemu_rdma_write_one_zero(chunk, sge.length,
1943 current_index, current_addr);
1945 compress_to_network(rdma, &comp);
1946 ret = qemu_rdma_exchange_send(rdma, &head,
1947 (uint8_t *) &comp, NULL, NULL, NULL);
1949 if (ret < 0) {
1950 return -EIO;
1953 acct_update_position(f, sge.length, true);
1955 return 1;
1959 * Otherwise, tell other side to register.
1961 reg.current_index = current_index;
1962 if (block->is_ram_block) {
1963 reg.key.current_addr = current_addr;
1964 } else {
1965 reg.key.chunk = chunk;
1967 reg.chunks = chunks;
1969 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1970 current_addr);
1972 register_to_network(rdma, &reg);
1973 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1974 &resp, &reg_result_idx, NULL);
1975 if (ret < 0) {
1976 return ret;
1979 /* try to overlap this single registration with the one we sent. */
1980 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1981 &sge.lkey, NULL, chunk,
1982 chunk_start, chunk_end)) {
1983 error_report("cannot get lkey");
1984 return -EINVAL;
1987 reg_result = (RDMARegisterResult *)
1988 rdma->wr_data[reg_result_idx].control_curr;
1990 network_to_result(reg_result);
1992 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
1993 reg_result->rkey, chunk);
1995 block->remote_keys[chunk] = reg_result->rkey;
1996 block->remote_host_addr = reg_result->host_addr;
1997 } else {
1998 /* already registered before */
1999 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2000 &sge.lkey, NULL, chunk,
2001 chunk_start, chunk_end)) {
2002 error_report("cannot get lkey!");
2003 return -EINVAL;
2007 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2008 } else {
2009 send_wr.wr.rdma.rkey = block->remote_rkey;
2011 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2012 &sge.lkey, NULL, chunk,
2013 chunk_start, chunk_end)) {
2014 error_report("cannot get lkey!");
2015 return -EINVAL;
2020 * Encode the ram block index and chunk within this wrid.
2021 * We will use this information at the time of completion
2022 * to figure out which bitmap to check against and then which
2023 * chunk in the bitmap to look for.
2025 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2026 current_index, chunk);
2028 send_wr.opcode = IBV_WR_RDMA_WRITE;
2029 send_wr.send_flags = IBV_SEND_SIGNALED;
2030 send_wr.sg_list = &sge;
2031 send_wr.num_sge = 1;
2032 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2033 (current_addr - block->offset);
2035 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2036 sge.length);
2039 * ibv_post_send() does not return negative error numbers,
2040 * per the specification they are positive - no idea why.
2042 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2044 if (ret == ENOMEM) {
2045 trace_qemu_rdma_write_one_queue_full();
2046 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2047 if (ret < 0) {
2048 error_report("rdma migration: failed to make "
2049 "room in full send queue! %d", ret);
2050 return ret;
2053 goto retry;
2055 } else if (ret > 0) {
2056 perror("rdma migration: post rdma write failed");
2057 return -ret;
2060 set_bit(chunk, block->transit_bitmap);
2061 acct_update_position(f, sge.length, false);
2062 rdma->total_writes++;
2064 return 0;
2068 * Push out any unwritten RDMA operations.
2070 * We support sending out multiple chunks at the same time.
2071 * Not all of them need to get signaled in the completion queue.
2073 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2075 int ret;
2077 if (!rdma->current_length) {
2078 return 0;
2081 ret = qemu_rdma_write_one(f, rdma,
2082 rdma->current_index, rdma->current_addr, rdma->current_length);
2084 if (ret < 0) {
2085 return ret;
2088 if (ret == 0) {
2089 rdma->nb_sent++;
2090 trace_qemu_rdma_write_flush(rdma->nb_sent);
2093 rdma->current_length = 0;
2094 rdma->current_addr = 0;
2096 return 0;
2099 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2100 uint64_t offset, uint64_t len)
2102 RDMALocalBlock *block;
2103 uint8_t *host_addr;
2104 uint8_t *chunk_end;
2106 if (rdma->current_index < 0) {
2107 return 0;
2110 if (rdma->current_chunk < 0) {
2111 return 0;
2114 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2115 host_addr = block->local_host_addr + (offset - block->offset);
2116 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2118 if (rdma->current_length == 0) {
2119 return 0;
2123 * Only merge into chunk sequentially.
2125 if (offset != (rdma->current_addr + rdma->current_length)) {
2126 return 0;
2129 if (offset < block->offset) {
2130 return 0;
2133 if ((offset + len) > (block->offset + block->length)) {
2134 return 0;
2137 if ((host_addr + len) > chunk_end) {
2138 return 0;
2141 return 1;
2145 * We're not actually writing here, but doing three things:
2147 * 1. Identify the chunk the buffer belongs to.
2148 * 2. If the chunk is full or the buffer doesn't belong to the current
2149 * chunk, then start a new chunk and flush() the old chunk.
2150 * 3. To keep the hardware busy, we also group chunks into batches
2151 * and only require that a batch gets acknowledged in the completion
2152 * qeueue instead of each individual chunk.
2154 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2155 uint64_t block_offset, uint64_t offset,
2156 uint64_t len)
2158 uint64_t current_addr = block_offset + offset;
2159 uint64_t index = rdma->current_index;
2160 uint64_t chunk = rdma->current_chunk;
2161 int ret;
2163 /* If we cannot merge it, we flush the current buffer first. */
2164 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2165 ret = qemu_rdma_write_flush(f, rdma);
2166 if (ret) {
2167 return ret;
2169 rdma->current_length = 0;
2170 rdma->current_addr = current_addr;
2172 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2173 offset, len, &index, &chunk);
2174 if (ret) {
2175 error_report("ram block search failed");
2176 return ret;
2178 rdma->current_index = index;
2179 rdma->current_chunk = chunk;
2182 /* merge it */
2183 rdma->current_length += len;
2185 /* flush it if buffer is too large */
2186 if (rdma->current_length >= RDMA_MERGE_MAX) {
2187 return qemu_rdma_write_flush(f, rdma);
2190 return 0;
2193 static void qemu_rdma_cleanup(RDMAContext *rdma)
2195 struct rdma_cm_event *cm_event;
2196 int ret, idx;
2198 if (rdma->cm_id && rdma->connected) {
2199 if (rdma->error_state) {
2200 RDMAControlHeader head = { .len = 0,
2201 .type = RDMA_CONTROL_ERROR,
2202 .repeat = 1,
2204 error_report("Early error. Sending error.");
2205 qemu_rdma_post_send_control(rdma, NULL, &head);
2208 ret = rdma_disconnect(rdma->cm_id);
2209 if (!ret) {
2210 trace_qemu_rdma_cleanup_waiting_for_disconnect();
2211 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2212 if (!ret) {
2213 rdma_ack_cm_event(cm_event);
2216 trace_qemu_rdma_cleanup_disconnect();
2217 rdma->connected = false;
2220 g_free(rdma->dest_blocks);
2221 rdma->dest_blocks = NULL;
2223 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2224 if (rdma->wr_data[idx].control_mr) {
2225 rdma->total_registrations--;
2226 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2228 rdma->wr_data[idx].control_mr = NULL;
2231 if (rdma->local_ram_blocks.block) {
2232 while (rdma->local_ram_blocks.nb_blocks) {
2233 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2237 if (rdma->qp) {
2238 rdma_destroy_qp(rdma->cm_id);
2239 rdma->qp = NULL;
2241 if (rdma->cq) {
2242 ibv_destroy_cq(rdma->cq);
2243 rdma->cq = NULL;
2245 if (rdma->comp_channel) {
2246 ibv_destroy_comp_channel(rdma->comp_channel);
2247 rdma->comp_channel = NULL;
2249 if (rdma->pd) {
2250 ibv_dealloc_pd(rdma->pd);
2251 rdma->pd = NULL;
2253 if (rdma->cm_id) {
2254 rdma_destroy_id(rdma->cm_id);
2255 rdma->cm_id = NULL;
2257 if (rdma->listen_id) {
2258 rdma_destroy_id(rdma->listen_id);
2259 rdma->listen_id = NULL;
2261 if (rdma->channel) {
2262 rdma_destroy_event_channel(rdma->channel);
2263 rdma->channel = NULL;
2265 g_free(rdma->host);
2266 rdma->host = NULL;
2270 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2272 int ret, idx;
2273 Error *local_err = NULL, **temp = &local_err;
2276 * Will be validated against destination's actual capabilities
2277 * after the connect() completes.
2279 rdma->pin_all = pin_all;
2281 ret = qemu_rdma_resolve_host(rdma, temp);
2282 if (ret) {
2283 goto err_rdma_source_init;
2286 ret = qemu_rdma_alloc_pd_cq(rdma);
2287 if (ret) {
2288 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2289 " limits may be too low. Please check $ ulimit -a # and "
2290 "search for 'ulimit -l' in the output");
2291 goto err_rdma_source_init;
2294 ret = qemu_rdma_alloc_qp(rdma);
2295 if (ret) {
2296 ERROR(temp, "rdma migration: error allocating qp!");
2297 goto err_rdma_source_init;
2300 ret = qemu_rdma_init_ram_blocks(rdma);
2301 if (ret) {
2302 ERROR(temp, "rdma migration: error initializing ram blocks!");
2303 goto err_rdma_source_init;
2306 /* Build the hash that maps from offset to RAMBlock */
2307 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2308 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2309 g_hash_table_insert(rdma->blockmap,
2310 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2311 &rdma->local_ram_blocks.block[idx]);
2314 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2315 ret = qemu_rdma_reg_control(rdma, idx);
2316 if (ret) {
2317 ERROR(temp, "rdma migration: error registering %d control!",
2318 idx);
2319 goto err_rdma_source_init;
2323 return 0;
2325 err_rdma_source_init:
2326 error_propagate(errp, local_err);
2327 qemu_rdma_cleanup(rdma);
2328 return -1;
2331 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2333 RDMACapabilities cap = {
2334 .version = RDMA_CONTROL_VERSION_CURRENT,
2335 .flags = 0,
2337 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2338 .retry_count = 5,
2339 .private_data = &cap,
2340 .private_data_len = sizeof(cap),
2342 struct rdma_cm_event *cm_event;
2343 int ret;
2346 * Only negotiate the capability with destination if the user
2347 * on the source first requested the capability.
2349 if (rdma->pin_all) {
2350 trace_qemu_rdma_connect_pin_all_requested();
2351 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2354 caps_to_network(&cap);
2356 ret = rdma_connect(rdma->cm_id, &conn_param);
2357 if (ret) {
2358 perror("rdma_connect");
2359 ERROR(errp, "connecting to destination!");
2360 goto err_rdma_source_connect;
2363 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2364 if (ret) {
2365 perror("rdma_get_cm_event after rdma_connect");
2366 ERROR(errp, "connecting to destination!");
2367 rdma_ack_cm_event(cm_event);
2368 goto err_rdma_source_connect;
2371 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2372 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2373 ERROR(errp, "connecting to destination!");
2374 rdma_ack_cm_event(cm_event);
2375 goto err_rdma_source_connect;
2377 rdma->connected = true;
2379 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2380 network_to_caps(&cap);
2383 * Verify that the *requested* capabilities are supported by the destination
2384 * and disable them otherwise.
2386 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2387 ERROR(errp, "Server cannot support pinning all memory. "
2388 "Will register memory dynamically.");
2389 rdma->pin_all = false;
2392 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2394 rdma_ack_cm_event(cm_event);
2396 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2397 if (ret) {
2398 ERROR(errp, "posting second control recv!");
2399 goto err_rdma_source_connect;
2402 rdma->control_ready_expected = 1;
2403 rdma->nb_sent = 0;
2404 return 0;
2406 err_rdma_source_connect:
2407 qemu_rdma_cleanup(rdma);
2408 return -1;
2411 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2413 int ret, idx;
2414 struct rdma_cm_id *listen_id;
2415 char ip[40] = "unknown";
2416 struct rdma_addrinfo *res, *e;
2417 char port_str[16];
2419 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2420 rdma->wr_data[idx].control_len = 0;
2421 rdma->wr_data[idx].control_curr = NULL;
2424 if (!rdma->host || !rdma->host[0]) {
2425 ERROR(errp, "RDMA host is not set!");
2426 rdma->error_state = -EINVAL;
2427 return -1;
2429 /* create CM channel */
2430 rdma->channel = rdma_create_event_channel();
2431 if (!rdma->channel) {
2432 ERROR(errp, "could not create rdma event channel");
2433 rdma->error_state = -EINVAL;
2434 return -1;
2437 /* create CM id */
2438 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2439 if (ret) {
2440 ERROR(errp, "could not create cm_id!");
2441 goto err_dest_init_create_listen_id;
2444 snprintf(port_str, 16, "%d", rdma->port);
2445 port_str[15] = '\0';
2447 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2448 if (ret < 0) {
2449 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2450 goto err_dest_init_bind_addr;
2453 for (e = res; e != NULL; e = e->ai_next) {
2454 inet_ntop(e->ai_family,
2455 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2456 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2457 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2458 if (ret) {
2459 continue;
2461 if (e->ai_family == AF_INET6) {
2462 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2463 if (ret) {
2464 continue;
2467 break;
2470 if (!e) {
2471 ERROR(errp, "Error: could not rdma_bind_addr!");
2472 goto err_dest_init_bind_addr;
2475 rdma->listen_id = listen_id;
2476 qemu_rdma_dump_gid("dest_init", listen_id);
2477 return 0;
2479 err_dest_init_bind_addr:
2480 rdma_destroy_id(listen_id);
2481 err_dest_init_create_listen_id:
2482 rdma_destroy_event_channel(rdma->channel);
2483 rdma->channel = NULL;
2484 rdma->error_state = ret;
2485 return ret;
2489 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2491 RDMAContext *rdma = NULL;
2492 InetSocketAddress *addr;
2494 if (host_port) {
2495 rdma = g_new0(RDMAContext, 1);
2496 rdma->current_index = -1;
2497 rdma->current_chunk = -1;
2499 addr = inet_parse(host_port, NULL);
2500 if (addr != NULL) {
2501 rdma->port = atoi(addr->port);
2502 rdma->host = g_strdup(addr->host);
2503 } else {
2504 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2505 g_free(rdma);
2506 rdma = NULL;
2509 qapi_free_InetSocketAddress(addr);
2512 return rdma;
2516 * QEMUFile interface to the control channel.
2517 * SEND messages for control only.
2518 * VM's ram is handled with regular RDMA messages.
2520 static ssize_t qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2521 int64_t pos, size_t size)
2523 QEMUFileRDMA *r = opaque;
2524 QEMUFile *f = r->file;
2525 RDMAContext *rdma = r->rdma;
2526 size_t remaining = size;
2527 uint8_t * data = (void *) buf;
2528 int ret;
2530 CHECK_ERROR_STATE();
2533 * Push out any writes that
2534 * we're queued up for VM's ram.
2536 ret = qemu_rdma_write_flush(f, rdma);
2537 if (ret < 0) {
2538 rdma->error_state = ret;
2539 return ret;
2542 while (remaining) {
2543 RDMAControlHeader head;
2545 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2546 remaining -= r->len;
2548 /* Guaranteed to fit due to RDMA_SEND_INCREMENT MIN above */
2549 head.len = (uint32_t)r->len;
2550 head.type = RDMA_CONTROL_QEMU_FILE;
2552 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2554 if (ret < 0) {
2555 rdma->error_state = ret;
2556 return ret;
2559 data += r->len;
2562 return size;
2565 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2566 size_t size, int idx)
2568 size_t len = 0;
2570 if (rdma->wr_data[idx].control_len) {
2571 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2573 len = MIN(size, rdma->wr_data[idx].control_len);
2574 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2575 rdma->wr_data[idx].control_curr += len;
2576 rdma->wr_data[idx].control_len -= len;
2579 return len;
2583 * QEMUFile interface to the control channel.
2584 * RDMA links don't use bytestreams, so we have to
2585 * return bytes to QEMUFile opportunistically.
2587 static ssize_t qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2588 int64_t pos, size_t size)
2590 QEMUFileRDMA *r = opaque;
2591 RDMAContext *rdma = r->rdma;
2592 RDMAControlHeader head;
2593 int ret = 0;
2595 CHECK_ERROR_STATE();
2598 * First, we hold on to the last SEND message we
2599 * were given and dish out the bytes until we run
2600 * out of bytes.
2602 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2603 if (r->len) {
2604 return r->len;
2608 * Once we run out, we block and wait for another
2609 * SEND message to arrive.
2611 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2613 if (ret < 0) {
2614 rdma->error_state = ret;
2615 return ret;
2619 * SEND was received with new bytes, now try again.
2621 return qemu_rdma_fill(r->rdma, buf, size, 0);
2625 * Block until all the outstanding chunks have been delivered by the hardware.
2627 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2629 int ret;
2631 if (qemu_rdma_write_flush(f, rdma) < 0) {
2632 return -EIO;
2635 while (rdma->nb_sent) {
2636 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2637 if (ret < 0) {
2638 error_report("rdma migration: complete polling error!");
2639 return -EIO;
2643 qemu_rdma_unregister_waiting(rdma);
2645 return 0;
2648 static int qemu_rdma_close(void *opaque)
2650 trace_qemu_rdma_close();
2651 QEMUFileRDMA *r = opaque;
2652 if (r->rdma) {
2653 qemu_rdma_cleanup(r->rdma);
2654 g_free(r->rdma);
2656 g_free(r);
2657 return 0;
2661 * Parameters:
2662 * @offset == 0 :
2663 * This means that 'block_offset' is a full virtual address that does not
2664 * belong to a RAMBlock of the virtual machine and instead
2665 * represents a private malloc'd memory area that the caller wishes to
2666 * transfer.
2668 * @offset != 0 :
2669 * Offset is an offset to be added to block_offset and used
2670 * to also lookup the corresponding RAMBlock.
2672 * @size > 0 :
2673 * Initiate an transfer this size.
2675 * @size == 0 :
2676 * A 'hint' or 'advice' that means that we wish to speculatively
2677 * and asynchronously unregister this memory. In this case, there is no
2678 * guarantee that the unregister will actually happen, for example,
2679 * if the memory is being actively transmitted. Additionally, the memory
2680 * may be re-registered at any future time if a write within the same
2681 * chunk was requested again, even if you attempted to unregister it
2682 * here.
2684 * @size < 0 : TODO, not yet supported
2685 * Unregister the memory NOW. This means that the caller does not
2686 * expect there to be any future RDMA transfers and we just want to clean
2687 * things up. This is used in case the upper layer owns the memory and
2688 * cannot wait for qemu_fclose() to occur.
2690 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2691 * sent. Usually, this will not be more than a few bytes of
2692 * the protocol because most transfers are sent asynchronously.
2694 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2695 ram_addr_t block_offset, ram_addr_t offset,
2696 size_t size, uint64_t *bytes_sent)
2698 QEMUFileRDMA *rfile = opaque;
2699 RDMAContext *rdma = rfile->rdma;
2700 int ret;
2702 CHECK_ERROR_STATE();
2704 qemu_fflush(f);
2706 if (size > 0) {
2708 * Add this page to the current 'chunk'. If the chunk
2709 * is full, or the page doen't belong to the current chunk,
2710 * an actual RDMA write will occur and a new chunk will be formed.
2712 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2713 if (ret < 0) {
2714 error_report("rdma migration: write error! %d", ret);
2715 goto err;
2719 * We always return 1 bytes because the RDMA
2720 * protocol is completely asynchronous. We do not yet know
2721 * whether an identified chunk is zero or not because we're
2722 * waiting for other pages to potentially be merged with
2723 * the current chunk. So, we have to call qemu_update_position()
2724 * later on when the actual write occurs.
2726 if (bytes_sent) {
2727 *bytes_sent = 1;
2729 } else {
2730 uint64_t index, chunk;
2732 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2733 if (size < 0) {
2734 ret = qemu_rdma_drain_cq(f, rdma);
2735 if (ret < 0) {
2736 fprintf(stderr, "rdma: failed to synchronously drain"
2737 " completion queue before unregistration.\n");
2738 goto err;
2743 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2744 offset, size, &index, &chunk);
2746 if (ret) {
2747 error_report("ram block search failed");
2748 goto err;
2751 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2754 * TODO: Synchronous, guaranteed unregistration (should not occur during
2755 * fast-path). Otherwise, unregisters will process on the next call to
2756 * qemu_rdma_drain_cq()
2757 if (size < 0) {
2758 qemu_rdma_unregister_waiting(rdma);
2764 * Drain the Completion Queue if possible, but do not block,
2765 * just poll.
2767 * If nothing to poll, the end of the iteration will do this
2768 * again to make sure we don't overflow the request queue.
2770 while (1) {
2771 uint64_t wr_id, wr_id_in;
2772 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2773 if (ret < 0) {
2774 error_report("rdma migration: polling error! %d", ret);
2775 goto err;
2778 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2780 if (wr_id == RDMA_WRID_NONE) {
2781 break;
2785 return RAM_SAVE_CONTROL_DELAYED;
2786 err:
2787 rdma->error_state = ret;
2788 return ret;
2791 static int qemu_rdma_accept(RDMAContext *rdma)
2793 RDMACapabilities cap;
2794 struct rdma_conn_param conn_param = {
2795 .responder_resources = 2,
2796 .private_data = &cap,
2797 .private_data_len = sizeof(cap),
2799 struct rdma_cm_event *cm_event;
2800 struct ibv_context *verbs;
2801 int ret = -EINVAL;
2802 int idx;
2804 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2805 if (ret) {
2806 goto err_rdma_dest_wait;
2809 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2810 rdma_ack_cm_event(cm_event);
2811 goto err_rdma_dest_wait;
2814 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2816 network_to_caps(&cap);
2818 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2819 error_report("Unknown source RDMA version: %d, bailing...",
2820 cap.version);
2821 rdma_ack_cm_event(cm_event);
2822 goto err_rdma_dest_wait;
2826 * Respond with only the capabilities this version of QEMU knows about.
2828 cap.flags &= known_capabilities;
2831 * Enable the ones that we do know about.
2832 * Add other checks here as new ones are introduced.
2834 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2835 rdma->pin_all = true;
2838 rdma->cm_id = cm_event->id;
2839 verbs = cm_event->id->verbs;
2841 rdma_ack_cm_event(cm_event);
2843 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
2845 caps_to_network(&cap);
2847 trace_qemu_rdma_accept_pin_verbsc(verbs);
2849 if (!rdma->verbs) {
2850 rdma->verbs = verbs;
2851 } else if (rdma->verbs != verbs) {
2852 error_report("ibv context not matching %p, %p!", rdma->verbs,
2853 verbs);
2854 goto err_rdma_dest_wait;
2857 qemu_rdma_dump_id("dest_init", verbs);
2859 ret = qemu_rdma_alloc_pd_cq(rdma);
2860 if (ret) {
2861 error_report("rdma migration: error allocating pd and cq!");
2862 goto err_rdma_dest_wait;
2865 ret = qemu_rdma_alloc_qp(rdma);
2866 if (ret) {
2867 error_report("rdma migration: error allocating qp!");
2868 goto err_rdma_dest_wait;
2871 ret = qemu_rdma_init_ram_blocks(rdma);
2872 if (ret) {
2873 error_report("rdma migration: error initializing ram blocks!");
2874 goto err_rdma_dest_wait;
2877 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2878 ret = qemu_rdma_reg_control(rdma, idx);
2879 if (ret) {
2880 error_report("rdma: error registering %d control", idx);
2881 goto err_rdma_dest_wait;
2885 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2887 ret = rdma_accept(rdma->cm_id, &conn_param);
2888 if (ret) {
2889 error_report("rdma_accept returns %d", ret);
2890 goto err_rdma_dest_wait;
2893 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2894 if (ret) {
2895 error_report("rdma_accept get_cm_event failed %d", ret);
2896 goto err_rdma_dest_wait;
2899 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2900 error_report("rdma_accept not event established");
2901 rdma_ack_cm_event(cm_event);
2902 goto err_rdma_dest_wait;
2905 rdma_ack_cm_event(cm_event);
2906 rdma->connected = true;
2908 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2909 if (ret) {
2910 error_report("rdma migration: error posting second control recv");
2911 goto err_rdma_dest_wait;
2914 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2916 return 0;
2918 err_rdma_dest_wait:
2919 rdma->error_state = ret;
2920 qemu_rdma_cleanup(rdma);
2921 return ret;
2924 static int dest_ram_sort_func(const void *a, const void *b)
2926 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
2927 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
2929 return (a_index < b_index) ? -1 : (a_index != b_index);
2933 * During each iteration of the migration, we listen for instructions
2934 * by the source VM to perform dynamic page registrations before they
2935 * can perform RDMA operations.
2937 * We respond with the 'rkey'.
2939 * Keep doing this until the source tells us to stop.
2941 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
2943 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2944 .type = RDMA_CONTROL_REGISTER_RESULT,
2945 .repeat = 0,
2947 RDMAControlHeader unreg_resp = { .len = 0,
2948 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2949 .repeat = 0,
2951 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2952 .repeat = 1 };
2953 QEMUFileRDMA *rfile = opaque;
2954 RDMAContext *rdma = rfile->rdma;
2955 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2956 RDMAControlHeader head;
2957 RDMARegister *reg, *registers;
2958 RDMACompress *comp;
2959 RDMARegisterResult *reg_result;
2960 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2961 RDMALocalBlock *block;
2962 void *host_addr;
2963 int ret = 0;
2964 int idx = 0;
2965 int count = 0;
2966 int i = 0;
2968 CHECK_ERROR_STATE();
2970 do {
2971 trace_qemu_rdma_registration_handle_wait();
2973 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2975 if (ret < 0) {
2976 break;
2979 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2980 error_report("rdma: Too many requests in this message (%d)."
2981 "Bailing.", head.repeat);
2982 ret = -EIO;
2983 break;
2986 switch (head.type) {
2987 case RDMA_CONTROL_COMPRESS:
2988 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2989 network_to_compress(comp);
2991 trace_qemu_rdma_registration_handle_compress(comp->length,
2992 comp->block_idx,
2993 comp->offset);
2994 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
2995 error_report("rdma: 'compress' bad block index %u (vs %d)",
2996 (unsigned int)comp->block_idx,
2997 rdma->local_ram_blocks.nb_blocks);
2998 ret = -EIO;
2999 goto out;
3001 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3003 host_addr = block->local_host_addr +
3004 (comp->offset - block->offset);
3006 ram_handle_compressed(host_addr, comp->value, comp->length);
3007 break;
3009 case RDMA_CONTROL_REGISTER_FINISHED:
3010 trace_qemu_rdma_registration_handle_finished();
3011 goto out;
3013 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3014 trace_qemu_rdma_registration_handle_ram_blocks();
3016 /* Sort our local RAM Block list so it's the same as the source,
3017 * we can do this since we've filled in a src_index in the list
3018 * as we received the RAMBlock list earlier.
3020 qsort(rdma->local_ram_blocks.block,
3021 rdma->local_ram_blocks.nb_blocks,
3022 sizeof(RDMALocalBlock), dest_ram_sort_func);
3023 if (rdma->pin_all) {
3024 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3025 if (ret) {
3026 error_report("rdma migration: error dest "
3027 "registering ram blocks");
3028 goto out;
3033 * Dest uses this to prepare to transmit the RAMBlock descriptions
3034 * to the source VM after connection setup.
3035 * Both sides use the "remote" structure to communicate and update
3036 * their "local" descriptions with what was sent.
3038 for (i = 0; i < local->nb_blocks; i++) {
3039 rdma->dest_blocks[i].remote_host_addr =
3040 (uintptr_t)(local->block[i].local_host_addr);
3042 if (rdma->pin_all) {
3043 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3046 rdma->dest_blocks[i].offset = local->block[i].offset;
3047 rdma->dest_blocks[i].length = local->block[i].length;
3049 dest_block_to_network(&rdma->dest_blocks[i]);
3050 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3051 local->block[i].block_name,
3052 local->block[i].offset,
3053 local->block[i].length,
3054 local->block[i].local_host_addr,
3055 local->block[i].src_index);
3058 blocks.len = rdma->local_ram_blocks.nb_blocks
3059 * sizeof(RDMADestBlock);
3062 ret = qemu_rdma_post_send_control(rdma,
3063 (uint8_t *) rdma->dest_blocks, &blocks);
3065 if (ret < 0) {
3066 error_report("rdma migration: error sending remote info");
3067 goto out;
3070 break;
3071 case RDMA_CONTROL_REGISTER_REQUEST:
3072 trace_qemu_rdma_registration_handle_register(head.repeat);
3074 reg_resp.repeat = head.repeat;
3075 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3077 for (count = 0; count < head.repeat; count++) {
3078 uint64_t chunk;
3079 uint8_t *chunk_start, *chunk_end;
3081 reg = &registers[count];
3082 network_to_register(reg);
3084 reg_result = &results[count];
3086 trace_qemu_rdma_registration_handle_register_loop(count,
3087 reg->current_index, reg->key.current_addr, reg->chunks);
3089 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3090 error_report("rdma: 'register' bad block index %u (vs %d)",
3091 (unsigned int)reg->current_index,
3092 rdma->local_ram_blocks.nb_blocks);
3093 ret = -ENOENT;
3094 goto out;
3096 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3097 if (block->is_ram_block) {
3098 if (block->offset > reg->key.current_addr) {
3099 error_report("rdma: bad register address for block %s"
3100 " offset: %" PRIx64 " current_addr: %" PRIx64,
3101 block->block_name, block->offset,
3102 reg->key.current_addr);
3103 ret = -ERANGE;
3104 goto out;
3106 host_addr = (block->local_host_addr +
3107 (reg->key.current_addr - block->offset));
3108 chunk = ram_chunk_index(block->local_host_addr,
3109 (uint8_t *) host_addr);
3110 } else {
3111 chunk = reg->key.chunk;
3112 host_addr = block->local_host_addr +
3113 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3114 /* Check for particularly bad chunk value */
3115 if (host_addr < (void *)block->local_host_addr) {
3116 error_report("rdma: bad chunk for block %s"
3117 " chunk: %" PRIx64,
3118 block->block_name, reg->key.chunk);
3119 ret = -ERANGE;
3120 goto out;
3123 chunk_start = ram_chunk_start(block, chunk);
3124 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3125 if (qemu_rdma_register_and_get_keys(rdma, block,
3126 (uintptr_t)host_addr, NULL, &reg_result->rkey,
3127 chunk, chunk_start, chunk_end)) {
3128 error_report("cannot get rkey");
3129 ret = -EINVAL;
3130 goto out;
3133 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3135 trace_qemu_rdma_registration_handle_register_rkey(
3136 reg_result->rkey);
3138 result_to_network(reg_result);
3141 ret = qemu_rdma_post_send_control(rdma,
3142 (uint8_t *) results, &reg_resp);
3144 if (ret < 0) {
3145 error_report("Failed to send control buffer");
3146 goto out;
3148 break;
3149 case RDMA_CONTROL_UNREGISTER_REQUEST:
3150 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3151 unreg_resp.repeat = head.repeat;
3152 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3154 for (count = 0; count < head.repeat; count++) {
3155 reg = &registers[count];
3156 network_to_register(reg);
3158 trace_qemu_rdma_registration_handle_unregister_loop(count,
3159 reg->current_index, reg->key.chunk);
3161 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3163 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3164 block->pmr[reg->key.chunk] = NULL;
3166 if (ret != 0) {
3167 perror("rdma unregistration chunk failed");
3168 ret = -ret;
3169 goto out;
3172 rdma->total_registrations--;
3174 trace_qemu_rdma_registration_handle_unregister_success(
3175 reg->key.chunk);
3178 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3180 if (ret < 0) {
3181 error_report("Failed to send control buffer");
3182 goto out;
3184 break;
3185 case RDMA_CONTROL_REGISTER_RESULT:
3186 error_report("Invalid RESULT message at dest.");
3187 ret = -EIO;
3188 goto out;
3189 default:
3190 error_report("Unknown control message %s", control_desc[head.type]);
3191 ret = -EIO;
3192 goto out;
3194 } while (1);
3195 out:
3196 if (ret < 0) {
3197 rdma->error_state = ret;
3199 return ret;
3202 /* Destination:
3203 * Called via a ram_control_load_hook during the initial RAM load section which
3204 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3205 * on the source.
3206 * We've already built our local RAMBlock list, but not yet sent the list to
3207 * the source.
3209 static int rdma_block_notification_handle(QEMUFileRDMA *rfile, const char *name)
3211 RDMAContext *rdma = rfile->rdma;
3212 int curr;
3213 int found = -1;
3215 /* Find the matching RAMBlock in our local list */
3216 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3217 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3218 found = curr;
3219 break;
3223 if (found == -1) {
3224 error_report("RAMBlock '%s' not found on destination", name);
3225 return -ENOENT;
3228 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3229 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3230 rdma->next_src_index++;
3232 return 0;
3235 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3237 switch (flags) {
3238 case RAM_CONTROL_BLOCK_REG:
3239 return rdma_block_notification_handle(opaque, data);
3241 case RAM_CONTROL_HOOK:
3242 return qemu_rdma_registration_handle(f, opaque);
3244 default:
3245 /* Shouldn't be called with any other values */
3246 abort();
3250 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3251 uint64_t flags, void *data)
3253 QEMUFileRDMA *rfile = opaque;
3254 RDMAContext *rdma = rfile->rdma;
3256 CHECK_ERROR_STATE();
3258 trace_qemu_rdma_registration_start(flags);
3259 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3260 qemu_fflush(f);
3262 return 0;
3266 * Inform dest that dynamic registrations are done for now.
3267 * First, flush writes, if any.
3269 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3270 uint64_t flags, void *data)
3272 Error *local_err = NULL, **errp = &local_err;
3273 QEMUFileRDMA *rfile = opaque;
3274 RDMAContext *rdma = rfile->rdma;
3275 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3276 int ret = 0;
3278 CHECK_ERROR_STATE();
3280 qemu_fflush(f);
3281 ret = qemu_rdma_drain_cq(f, rdma);
3283 if (ret < 0) {
3284 goto err;
3287 if (flags == RAM_CONTROL_SETUP) {
3288 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3289 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3290 int reg_result_idx, i, nb_dest_blocks;
3292 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3293 trace_qemu_rdma_registration_stop_ram();
3296 * Make sure that we parallelize the pinning on both sides.
3297 * For very large guests, doing this serially takes a really
3298 * long time, so we have to 'interleave' the pinning locally
3299 * with the control messages by performing the pinning on this
3300 * side before we receive the control response from the other
3301 * side that the pinning has completed.
3303 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3304 &reg_result_idx, rdma->pin_all ?
3305 qemu_rdma_reg_whole_ram_blocks : NULL);
3306 if (ret < 0) {
3307 ERROR(errp, "receiving remote info!");
3308 return ret;
3311 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3314 * The protocol uses two different sets of rkeys (mutually exclusive):
3315 * 1. One key to represent the virtual address of the entire ram block.
3316 * (dynamic chunk registration disabled - pin everything with one rkey.)
3317 * 2. One to represent individual chunks within a ram block.
3318 * (dynamic chunk registration enabled - pin individual chunks.)
3320 * Once the capability is successfully negotiated, the destination transmits
3321 * the keys to use (or sends them later) including the virtual addresses
3322 * and then propagates the remote ram block descriptions to his local copy.
3325 if (local->nb_blocks != nb_dest_blocks) {
3326 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3327 "Your QEMU command line parameters are probably "
3328 "not identical on both the source and destination.",
3329 local->nb_blocks, nb_dest_blocks);
3330 rdma->error_state = -EINVAL;
3331 return -EINVAL;
3334 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3335 memcpy(rdma->dest_blocks,
3336 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3337 for (i = 0; i < nb_dest_blocks; i++) {
3338 network_to_dest_block(&rdma->dest_blocks[i]);
3340 /* We require that the blocks are in the same order */
3341 if (rdma->dest_blocks[i].length != local->block[i].length) {
3342 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3343 "vs %" PRIu64, local->block[i].block_name, i,
3344 local->block[i].length,
3345 rdma->dest_blocks[i].length);
3346 rdma->error_state = -EINVAL;
3347 return -EINVAL;
3349 local->block[i].remote_host_addr =
3350 rdma->dest_blocks[i].remote_host_addr;
3351 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3355 trace_qemu_rdma_registration_stop(flags);
3357 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3358 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3360 if (ret < 0) {
3361 goto err;
3364 return 0;
3365 err:
3366 rdma->error_state = ret;
3367 return ret;
3370 static int qemu_rdma_get_fd(void *opaque)
3372 QEMUFileRDMA *rfile = opaque;
3373 RDMAContext *rdma = rfile->rdma;
3375 return rdma->comp_channel->fd;
3378 static const QEMUFileOps rdma_read_ops = {
3379 .get_buffer = qemu_rdma_get_buffer,
3380 .get_fd = qemu_rdma_get_fd,
3381 .close = qemu_rdma_close,
3382 .hook_ram_load = rdma_load_hook,
3385 static const QEMUFileOps rdma_write_ops = {
3386 .put_buffer = qemu_rdma_put_buffer,
3387 .close = qemu_rdma_close,
3388 .before_ram_iterate = qemu_rdma_registration_start,
3389 .after_ram_iterate = qemu_rdma_registration_stop,
3390 .save_page = qemu_rdma_save_page,
3393 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3395 QEMUFileRDMA *r;
3397 if (qemu_file_mode_is_not_valid(mode)) {
3398 return NULL;
3401 r = g_new0(QEMUFileRDMA, 1);
3402 r->rdma = rdma;
3404 if (mode[0] == 'w') {
3405 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3406 } else {
3407 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3410 return r->file;
3413 static void rdma_accept_incoming_migration(void *opaque)
3415 RDMAContext *rdma = opaque;
3416 int ret;
3417 QEMUFile *f;
3418 Error *local_err = NULL, **errp = &local_err;
3420 trace_qemu_rdma_accept_incoming_migration();
3421 ret = qemu_rdma_accept(rdma);
3423 if (ret) {
3424 ERROR(errp, "RDMA Migration initialization failed!");
3425 return;
3428 trace_qemu_rdma_accept_incoming_migration_accepted();
3430 f = qemu_fopen_rdma(rdma, "rb");
3431 if (f == NULL) {
3432 ERROR(errp, "could not qemu_fopen_rdma!");
3433 qemu_rdma_cleanup(rdma);
3434 return;
3437 rdma->migration_started_on_destination = 1;
3438 process_incoming_migration(f);
3441 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3443 int ret;
3444 RDMAContext *rdma;
3445 Error *local_err = NULL;
3447 trace_rdma_start_incoming_migration();
3448 rdma = qemu_rdma_data_init(host_port, &local_err);
3450 if (rdma == NULL) {
3451 goto err;
3454 ret = qemu_rdma_dest_init(rdma, &local_err);
3456 if (ret) {
3457 goto err;
3460 trace_rdma_start_incoming_migration_after_dest_init();
3462 ret = rdma_listen(rdma->listen_id, 5);
3464 if (ret) {
3465 ERROR(errp, "listening on socket!");
3466 goto err;
3469 trace_rdma_start_incoming_migration_after_rdma_listen();
3471 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3472 NULL, (void *)(intptr_t)rdma);
3473 return;
3474 err:
3475 error_propagate(errp, local_err);
3476 g_free(rdma);
3479 void rdma_start_outgoing_migration(void *opaque,
3480 const char *host_port, Error **errp)
3482 MigrationState *s = opaque;
3483 Error *local_err = NULL, **temp = &local_err;
3484 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3485 int ret = 0;
3487 if (rdma == NULL) {
3488 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3489 goto err;
3492 ret = qemu_rdma_source_init(rdma, &local_err,
3493 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3495 if (ret) {
3496 goto err;
3499 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3500 ret = qemu_rdma_connect(rdma, &local_err);
3502 if (ret) {
3503 goto err;
3506 trace_rdma_start_outgoing_migration_after_rdma_connect();
3508 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
3509 migrate_fd_connect(s);
3510 return;
3511 err:
3512 error_propagate(errp, local_err);
3513 g_free(rdma);
3514 migrate_fd_error(s);