include/qemu/osdep.h: Don't include qapi/error.h
[qemu/ar7.git] / hw / char / serial.c
blob6f89f2c9e6a33198565abb386253f1e3d395c8e4
1 /*
2 * QEMU 16550A UART emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "sysemu/char.h"
29 #include "qapi/error.h"
30 #include "qemu/timer.h"
31 #include "exec/address-spaces.h"
32 #include "qemu/error-report.h"
34 //#define DEBUG_SERIAL
36 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
38 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
39 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
40 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
41 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
43 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
44 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
46 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
47 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
48 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
49 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
50 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
52 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
53 #define UART_IIR_FE 0xC0 /* Fifo enabled */
56 * These are the definitions for the Modem Control Register
58 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
59 #define UART_MCR_OUT2 0x08 /* Out2 complement */
60 #define UART_MCR_OUT1 0x04 /* Out1 complement */
61 #define UART_MCR_RTS 0x02 /* RTS complement */
62 #define UART_MCR_DTR 0x01 /* DTR complement */
65 * These are the definitions for the Modem Status Register
67 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
68 #define UART_MSR_RI 0x40 /* Ring Indicator */
69 #define UART_MSR_DSR 0x20 /* Data Set Ready */
70 #define UART_MSR_CTS 0x10 /* Clear to Send */
71 #define UART_MSR_DDCD 0x08 /* Delta DCD */
72 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
73 #define UART_MSR_DDSR 0x02 /* Delta DSR */
74 #define UART_MSR_DCTS 0x01 /* Delta CTS */
75 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
77 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
78 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
79 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
80 #define UART_LSR_FE 0x08 /* Frame error indicator */
81 #define UART_LSR_PE 0x04 /* Parity error indicator */
82 #define UART_LSR_OE 0x02 /* Overrun error indicator */
83 #define UART_LSR_DR 0x01 /* Receiver data ready */
84 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
86 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
88 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
89 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
90 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
91 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
93 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
94 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
95 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
96 #define UART_FCR_FE 0x01 /* FIFO Enable */
98 #define MAX_XMIT_RETRY 4
100 #ifdef DEBUG_SERIAL
101 #define DPRINTF(fmt, ...) \
102 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
103 #else
104 #define DPRINTF(fmt, ...) \
105 do {} while (0)
106 #endif
108 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
110 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
112 /* Receive overruns do not overwrite FIFO contents. */
113 if (!fifo8_is_full(&s->recv_fifo)) {
114 fifo8_push(&s->recv_fifo, chr);
115 } else {
116 s->lsr |= UART_LSR_OE;
120 static void serial_update_irq(SerialState *s)
122 uint8_t tmp_iir = UART_IIR_NO_INT;
124 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
125 tmp_iir = UART_IIR_RLSI;
126 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
127 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
128 * this is not in the specification but is observed on existing
129 * hardware. */
130 tmp_iir = UART_IIR_CTI;
131 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
132 (!(s->fcr & UART_FCR_FE) ||
133 s->recv_fifo.num >= s->recv_fifo_itl)) {
134 tmp_iir = UART_IIR_RDI;
135 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
136 tmp_iir = UART_IIR_THRI;
137 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
138 tmp_iir = UART_IIR_MSI;
141 s->iir = tmp_iir | (s->iir & 0xF0);
143 if (tmp_iir != UART_IIR_NO_INT) {
144 qemu_irq_raise(s->irq);
145 } else {
146 qemu_irq_lower(s->irq);
150 static void serial_update_parameters(SerialState *s)
152 int speed, parity, data_bits, stop_bits, frame_size;
153 QEMUSerialSetParams ssp;
155 if (s->divider == 0)
156 return;
158 /* Start bit. */
159 frame_size = 1;
160 if (s->lcr & 0x08) {
161 /* Parity bit. */
162 frame_size++;
163 if (s->lcr & 0x10)
164 parity = 'E';
165 else
166 parity = 'O';
167 } else {
168 parity = 'N';
170 if (s->lcr & 0x04)
171 stop_bits = 2;
172 else
173 stop_bits = 1;
175 data_bits = (s->lcr & 0x03) + 5;
176 frame_size += data_bits + stop_bits;
177 speed = s->baudbase / s->divider;
178 ssp.speed = speed;
179 ssp.parity = parity;
180 ssp.data_bits = data_bits;
181 ssp.stop_bits = stop_bits;
182 s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
183 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
185 DPRINTF("speed=%d parity=%c data=%d stop=%d\n",
186 speed, parity, data_bits, stop_bits);
189 static void serial_update_msl(SerialState *s)
191 uint8_t omsr;
192 int flags;
194 timer_del(s->modem_status_poll);
196 if (qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) {
197 s->poll_msl = -1;
198 return;
201 omsr = s->msr;
203 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
204 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
205 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
206 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
208 if (s->msr != omsr) {
209 /* Set delta bits */
210 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
211 /* UART_MSR_TERI only if change was from 1 -> 0 */
212 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
213 s->msr &= ~UART_MSR_TERI;
214 serial_update_irq(s);
217 /* The real 16550A apparently has a 250ns response latency to line status changes.
218 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
220 if (s->poll_msl)
221 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + get_ticks_per_sec() / 100);
224 static gboolean serial_xmit(GIOChannel *chan, GIOCondition cond, void *opaque)
226 SerialState *s = opaque;
228 do {
229 assert(!(s->lsr & UART_LSR_TEMT));
230 if (s->tsr_retry <= 0) {
231 assert(!(s->lsr & UART_LSR_THRE));
233 if (s->fcr & UART_FCR_FE) {
234 assert(!fifo8_is_empty(&s->xmit_fifo));
235 s->tsr = fifo8_pop(&s->xmit_fifo);
236 if (!s->xmit_fifo.num) {
237 s->lsr |= UART_LSR_THRE;
239 } else {
240 s->tsr = s->thr;
241 s->lsr |= UART_LSR_THRE;
243 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
244 s->thr_ipending = 1;
245 serial_update_irq(s);
249 if (s->mcr & UART_MCR_LOOP) {
250 /* in loopback mode, say that we just received a char */
251 serial_receive1(s, &s->tsr, 1);
252 } else if (qemu_chr_fe_write(s->chr, &s->tsr, 1) != 1) {
253 if (s->tsr_retry >= 0 && s->tsr_retry < MAX_XMIT_RETRY &&
254 qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
255 serial_xmit, s) > 0) {
256 s->tsr_retry++;
257 return FALSE;
259 s->tsr_retry = 0;
260 } else {
261 s->tsr_retry = 0;
264 /* Transmit another byte if it is already available. It is only
265 possible when FIFO is enabled and not empty. */
266 } while (!(s->lsr & UART_LSR_THRE));
268 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
269 s->lsr |= UART_LSR_TEMT;
271 return FALSE;
275 /* Setter for FCR.
276 is_load flag means, that value is set while loading VM state
277 and interrupt should not be invoked */
278 static void serial_write_fcr(SerialState *s, uint8_t val)
280 /* Set fcr - val only has the bits that are supposed to "stick" */
281 s->fcr = val;
283 if (val & UART_FCR_FE) {
284 s->iir |= UART_IIR_FE;
285 /* Set recv_fifo trigger Level */
286 switch (val & 0xC0) {
287 case UART_FCR_ITL_1:
288 s->recv_fifo_itl = 1;
289 break;
290 case UART_FCR_ITL_2:
291 s->recv_fifo_itl = 4;
292 break;
293 case UART_FCR_ITL_3:
294 s->recv_fifo_itl = 8;
295 break;
296 case UART_FCR_ITL_4:
297 s->recv_fifo_itl = 14;
298 break;
300 } else {
301 s->iir &= ~UART_IIR_FE;
305 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
306 unsigned size)
308 SerialState *s = opaque;
310 addr &= 7;
311 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val);
312 switch(addr) {
313 default:
314 case 0:
315 if (s->lcr & UART_LCR_DLAB) {
316 s->divider = (s->divider & 0xff00) | val;
317 serial_update_parameters(s);
318 } else {
319 s->thr = (uint8_t) val;
320 if(s->fcr & UART_FCR_FE) {
321 /* xmit overruns overwrite data, so make space if needed */
322 if (fifo8_is_full(&s->xmit_fifo)) {
323 fifo8_pop(&s->xmit_fifo);
325 fifo8_push(&s->xmit_fifo, s->thr);
327 s->thr_ipending = 0;
328 s->lsr &= ~UART_LSR_THRE;
329 s->lsr &= ~UART_LSR_TEMT;
330 serial_update_irq(s);
331 if (s->tsr_retry <= 0) {
332 serial_xmit(NULL, G_IO_OUT, s);
335 break;
336 case 1:
337 if (s->lcr & UART_LCR_DLAB) {
338 s->divider = (s->divider & 0x00ff) | (val << 8);
339 serial_update_parameters(s);
340 } else {
341 uint8_t changed = (s->ier ^ val) & 0x0f;
342 s->ier = val & 0x0f;
343 /* If the backend device is a real serial port, turn polling of the modem
344 * status lines on physical port on or off depending on UART_IER_MSI state.
346 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
347 if (s->ier & UART_IER_MSI) {
348 s->poll_msl = 1;
349 serial_update_msl(s);
350 } else {
351 timer_del(s->modem_status_poll);
352 s->poll_msl = 0;
356 /* Turning on the THRE interrupt on IER can trigger the interrupt
357 * if LSR.THRE=1, even if it had been masked before by reading IIR.
358 * This is not in the datasheet, but Windows relies on it. It is
359 * unclear if THRE has to be resampled every time THRI becomes
360 * 1, or only on the rising edge. Bochs does the latter, and Windows
361 * always toggles IER to all zeroes and back to all ones, so do the
362 * same.
364 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
365 * so that the thr_ipending subsection is not migrated.
367 if (changed & UART_IER_THRI) {
368 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
369 s->thr_ipending = 1;
370 } else {
371 s->thr_ipending = 0;
375 if (changed) {
376 serial_update_irq(s);
379 break;
380 case 2:
381 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
382 if ((val ^ s->fcr) & UART_FCR_FE) {
383 val |= UART_FCR_XFR | UART_FCR_RFR;
386 /* FIFO clear */
388 if (val & UART_FCR_RFR) {
389 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
390 timer_del(s->fifo_timeout_timer);
391 s->timeout_ipending = 0;
392 fifo8_reset(&s->recv_fifo);
395 if (val & UART_FCR_XFR) {
396 s->lsr |= UART_LSR_THRE;
397 s->thr_ipending = 1;
398 fifo8_reset(&s->xmit_fifo);
401 serial_write_fcr(s, val & 0xC9);
402 serial_update_irq(s);
403 break;
404 case 3:
406 int break_enable;
407 s->lcr = val;
408 serial_update_parameters(s);
409 break_enable = (val >> 6) & 1;
410 if (break_enable != s->last_break_enable) {
411 s->last_break_enable = break_enable;
412 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
413 &break_enable);
416 break;
417 case 4:
419 int flags;
420 int old_mcr = s->mcr;
421 s->mcr = val & 0x1f;
422 if (val & UART_MCR_LOOP)
423 break;
425 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
427 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
429 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
431 if (val & UART_MCR_RTS)
432 flags |= CHR_TIOCM_RTS;
433 if (val & UART_MCR_DTR)
434 flags |= CHR_TIOCM_DTR;
436 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
437 /* Update the modem status after a one-character-send wait-time, since there may be a response
438 from the device/computer at the other end of the serial line */
439 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
442 break;
443 case 5:
444 break;
445 case 6:
446 break;
447 case 7:
448 s->scr = val;
449 break;
453 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
455 SerialState *s = opaque;
456 uint32_t ret;
458 addr &= 7;
459 switch(addr) {
460 default:
461 case 0:
462 if (s->lcr & UART_LCR_DLAB) {
463 ret = s->divider & 0xff;
464 } else {
465 if(s->fcr & UART_FCR_FE) {
466 ret = fifo8_is_empty(&s->recv_fifo) ?
467 0 : fifo8_pop(&s->recv_fifo);
468 if (s->recv_fifo.num == 0) {
469 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
470 } else {
471 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
473 s->timeout_ipending = 0;
474 } else {
475 ret = s->rbr;
476 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
478 serial_update_irq(s);
479 if (!(s->mcr & UART_MCR_LOOP)) {
480 /* in loopback mode, don't receive any data */
481 qemu_chr_accept_input(s->chr);
484 break;
485 case 1:
486 if (s->lcr & UART_LCR_DLAB) {
487 ret = (s->divider >> 8) & 0xff;
488 } else {
489 ret = s->ier;
491 break;
492 case 2:
493 ret = s->iir;
494 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
495 s->thr_ipending = 0;
496 serial_update_irq(s);
498 break;
499 case 3:
500 ret = s->lcr;
501 break;
502 case 4:
503 ret = s->mcr;
504 break;
505 case 5:
506 ret = s->lsr;
507 /* Clear break and overrun interrupts */
508 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
509 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
510 serial_update_irq(s);
512 break;
513 case 6:
514 if (s->mcr & UART_MCR_LOOP) {
515 /* in loopback, the modem output pins are connected to the
516 inputs */
517 ret = (s->mcr & 0x0c) << 4;
518 ret |= (s->mcr & 0x02) << 3;
519 ret |= (s->mcr & 0x01) << 5;
520 } else {
521 if (s->poll_msl >= 0)
522 serial_update_msl(s);
523 ret = s->msr;
524 /* Clear delta bits & msr int after read, if they were set */
525 if (s->msr & UART_MSR_ANY_DELTA) {
526 s->msr &= 0xF0;
527 serial_update_irq(s);
530 break;
531 case 7:
532 ret = s->scr;
533 break;
535 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret);
536 return ret;
539 static int serial_can_receive(SerialState *s)
541 if(s->fcr & UART_FCR_FE) {
542 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
544 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
545 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
546 * effect will be to almost always fill the fifo completely before
547 * the guest has a chance to respond, effectively overriding the ITL
548 * that the guest has set.
550 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
551 s->recv_fifo_itl - s->recv_fifo.num : 1;
552 } else {
553 return 0;
555 } else {
556 return !(s->lsr & UART_LSR_DR);
560 static void serial_receive_break(SerialState *s)
562 s->rbr = 0;
563 /* When the LSR_DR is set a null byte is pushed into the fifo */
564 recv_fifo_put(s, '\0');
565 s->lsr |= UART_LSR_BI | UART_LSR_DR;
566 serial_update_irq(s);
569 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
570 static void fifo_timeout_int (void *opaque) {
571 SerialState *s = opaque;
572 if (s->recv_fifo.num) {
573 s->timeout_ipending = 1;
574 serial_update_irq(s);
578 static int serial_can_receive1(void *opaque)
580 SerialState *s = opaque;
581 return serial_can_receive(s);
584 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
586 SerialState *s = opaque;
588 if (s->wakeup) {
589 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER);
591 if(s->fcr & UART_FCR_FE) {
592 int i;
593 for (i = 0; i < size; i++) {
594 recv_fifo_put(s, buf[i]);
596 s->lsr |= UART_LSR_DR;
597 /* call the timeout receive callback in 4 char transmit time */
598 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
599 } else {
600 if (s->lsr & UART_LSR_DR)
601 s->lsr |= UART_LSR_OE;
602 s->rbr = buf[0];
603 s->lsr |= UART_LSR_DR;
605 serial_update_irq(s);
608 static void serial_event(void *opaque, int event)
610 SerialState *s = opaque;
611 DPRINTF("event %x\n", event);
612 if (event == CHR_EVENT_BREAK)
613 serial_receive_break(s);
616 static void serial_pre_save(void *opaque)
618 SerialState *s = opaque;
619 s->fcr_vmstate = s->fcr;
622 static int serial_pre_load(void *opaque)
624 SerialState *s = opaque;
625 s->thr_ipending = -1;
626 s->poll_msl = -1;
627 return 0;
630 static int serial_post_load(void *opaque, int version_id)
632 SerialState *s = opaque;
634 if (version_id < 3) {
635 s->fcr_vmstate = 0;
637 if (s->thr_ipending == -1) {
638 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
640 s->last_break_enable = (s->lcr >> 6) & 1;
641 /* Initialize fcr via setter to perform essential side-effects */
642 serial_write_fcr(s, s->fcr_vmstate);
643 serial_update_parameters(s);
644 return 0;
647 static bool serial_thr_ipending_needed(void *opaque)
649 SerialState *s = opaque;
651 if (s->ier & UART_IER_THRI) {
652 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
653 return s->thr_ipending != expected_value;
654 } else {
655 /* LSR.THRE will be sampled again when the interrupt is
656 * enabled. thr_ipending is not used in this case, do
657 * not migrate it.
659 return false;
663 static const VMStateDescription vmstate_serial_thr_ipending = {
664 .name = "serial/thr_ipending",
665 .version_id = 1,
666 .minimum_version_id = 1,
667 .needed = serial_thr_ipending_needed,
668 .fields = (VMStateField[]) {
669 VMSTATE_INT32(thr_ipending, SerialState),
670 VMSTATE_END_OF_LIST()
674 static bool serial_tsr_needed(void *opaque)
676 SerialState *s = (SerialState *)opaque;
677 return s->tsr_retry != 0;
680 static const VMStateDescription vmstate_serial_tsr = {
681 .name = "serial/tsr",
682 .version_id = 1,
683 .minimum_version_id = 1,
684 .needed = serial_tsr_needed,
685 .fields = (VMStateField[]) {
686 VMSTATE_INT32(tsr_retry, SerialState),
687 VMSTATE_UINT8(thr, SerialState),
688 VMSTATE_UINT8(tsr, SerialState),
689 VMSTATE_END_OF_LIST()
693 static bool serial_recv_fifo_needed(void *opaque)
695 SerialState *s = (SerialState *)opaque;
696 return !fifo8_is_empty(&s->recv_fifo);
700 static const VMStateDescription vmstate_serial_recv_fifo = {
701 .name = "serial/recv_fifo",
702 .version_id = 1,
703 .minimum_version_id = 1,
704 .needed = serial_recv_fifo_needed,
705 .fields = (VMStateField[]) {
706 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
707 VMSTATE_END_OF_LIST()
711 static bool serial_xmit_fifo_needed(void *opaque)
713 SerialState *s = (SerialState *)opaque;
714 return !fifo8_is_empty(&s->xmit_fifo);
717 static const VMStateDescription vmstate_serial_xmit_fifo = {
718 .name = "serial/xmit_fifo",
719 .version_id = 1,
720 .minimum_version_id = 1,
721 .needed = serial_xmit_fifo_needed,
722 .fields = (VMStateField[]) {
723 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
724 VMSTATE_END_OF_LIST()
728 static bool serial_fifo_timeout_timer_needed(void *opaque)
730 SerialState *s = (SerialState *)opaque;
731 return timer_pending(s->fifo_timeout_timer);
734 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
735 .name = "serial/fifo_timeout_timer",
736 .version_id = 1,
737 .minimum_version_id = 1,
738 .needed = serial_fifo_timeout_timer_needed,
739 .fields = (VMStateField[]) {
740 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
741 VMSTATE_END_OF_LIST()
745 static bool serial_timeout_ipending_needed(void *opaque)
747 SerialState *s = (SerialState *)opaque;
748 return s->timeout_ipending != 0;
751 static const VMStateDescription vmstate_serial_timeout_ipending = {
752 .name = "serial/timeout_ipending",
753 .version_id = 1,
754 .minimum_version_id = 1,
755 .needed = serial_timeout_ipending_needed,
756 .fields = (VMStateField[]) {
757 VMSTATE_INT32(timeout_ipending, SerialState),
758 VMSTATE_END_OF_LIST()
762 static bool serial_poll_needed(void *opaque)
764 SerialState *s = (SerialState *)opaque;
765 return s->poll_msl >= 0;
768 static const VMStateDescription vmstate_serial_poll = {
769 .name = "serial/poll",
770 .version_id = 1,
771 .needed = serial_poll_needed,
772 .minimum_version_id = 1,
773 .fields = (VMStateField[]) {
774 VMSTATE_INT32(poll_msl, SerialState),
775 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
776 VMSTATE_END_OF_LIST()
780 const VMStateDescription vmstate_serial = {
781 .name = "serial",
782 .version_id = 3,
783 .minimum_version_id = 2,
784 .pre_save = serial_pre_save,
785 .pre_load = serial_pre_load,
786 .post_load = serial_post_load,
787 .fields = (VMStateField[]) {
788 VMSTATE_UINT16_V(divider, SerialState, 2),
789 VMSTATE_UINT8(rbr, SerialState),
790 VMSTATE_UINT8(ier, SerialState),
791 VMSTATE_UINT8(iir, SerialState),
792 VMSTATE_UINT8(lcr, SerialState),
793 VMSTATE_UINT8(mcr, SerialState),
794 VMSTATE_UINT8(lsr, SerialState),
795 VMSTATE_UINT8(msr, SerialState),
796 VMSTATE_UINT8(scr, SerialState),
797 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
798 VMSTATE_END_OF_LIST()
800 .subsections = (const VMStateDescription*[]) {
801 &vmstate_serial_thr_ipending,
802 &vmstate_serial_tsr,
803 &vmstate_serial_recv_fifo,
804 &vmstate_serial_xmit_fifo,
805 &vmstate_serial_fifo_timeout_timer,
806 &vmstate_serial_timeout_ipending,
807 &vmstate_serial_poll,
808 NULL
812 static void serial_reset(void *opaque)
814 SerialState *s = opaque;
816 s->rbr = 0;
817 s->ier = 0;
818 s->iir = UART_IIR_NO_INT;
819 s->lcr = 0;
820 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
821 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
822 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
823 s->divider = 0x0C;
824 s->mcr = UART_MCR_OUT2;
825 s->scr = 0;
826 s->tsr_retry = 0;
827 s->char_transmit_time = (get_ticks_per_sec() / 9600) * 10;
828 s->poll_msl = 0;
830 s->timeout_ipending = 0;
831 timer_del(s->fifo_timeout_timer);
832 timer_del(s->modem_status_poll);
834 fifo8_reset(&s->recv_fifo);
835 fifo8_reset(&s->xmit_fifo);
837 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
839 s->thr_ipending = 0;
840 s->last_break_enable = 0;
841 qemu_irq_lower(s->irq);
843 serial_update_msl(s);
844 s->msr &= ~UART_MSR_ANY_DELTA;
847 void serial_realize_core(SerialState *s, Error **errp)
849 if (!s->chr) {
850 error_setg(errp, "Can't create serial device, empty char device");
851 return;
854 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
856 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
857 qemu_register_reset(serial_reset, s);
859 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1,
860 serial_event, s);
861 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
862 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
863 serial_reset(s);
866 void serial_exit_core(SerialState *s)
868 qemu_chr_add_handlers(s->chr, NULL, NULL, NULL, NULL);
869 qemu_unregister_reset(serial_reset, s);
872 /* Change the main reference oscillator frequency. */
873 void serial_set_frequency(SerialState *s, uint32_t frequency)
875 s->baudbase = frequency;
876 serial_update_parameters(s);
879 const MemoryRegionOps serial_io_ops = {
880 .read = serial_ioport_read,
881 .write = serial_ioport_write,
882 .impl = {
883 .min_access_size = 1,
884 .max_access_size = 1,
886 .endianness = DEVICE_LITTLE_ENDIAN,
889 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
890 CharDriverState *chr, MemoryRegion *system_io)
892 SerialState *s;
894 s = g_malloc0(sizeof(SerialState));
896 s->irq = irq;
897 s->baudbase = baudbase;
898 s->chr = chr;
899 serial_realize_core(s, &error_fatal);
901 vmstate_register(NULL, base, &vmstate_serial, s);
903 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
904 memory_region_add_subregion(system_io, base, &s->io);
906 return s;
909 /* Memory mapped interface */
910 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
911 unsigned size)
913 SerialState *s = opaque;
914 return serial_ioport_read(s, addr >> s->it_shift, 1);
917 static void serial_mm_write(void *opaque, hwaddr addr,
918 uint64_t value, unsigned size)
920 SerialState *s = opaque;
921 value &= ~0u >> (32 - (size * 8));
922 serial_ioport_write(s, addr >> s->it_shift, value, 1);
925 static const MemoryRegionOps serial_mm_ops[3] = {
926 [DEVICE_NATIVE_ENDIAN] = {
927 .read = serial_mm_read,
928 .write = serial_mm_write,
929 .endianness = DEVICE_NATIVE_ENDIAN,
931 [DEVICE_LITTLE_ENDIAN] = {
932 .read = serial_mm_read,
933 .write = serial_mm_write,
934 .endianness = DEVICE_LITTLE_ENDIAN,
936 [DEVICE_BIG_ENDIAN] = {
937 .read = serial_mm_read,
938 .write = serial_mm_write,
939 .endianness = DEVICE_BIG_ENDIAN,
943 SerialState *serial_mm_init(MemoryRegion *address_space,
944 hwaddr base, int it_shift,
945 qemu_irq irq, int baudbase,
946 CharDriverState *chr, enum device_endian end)
948 SerialState *s;
950 s = g_malloc0(sizeof(SerialState));
952 s->it_shift = it_shift;
953 s->irq = irq;
954 s->baudbase = baudbase;
955 s->chr = chr;
957 serial_realize_core(s, &error_fatal);
958 vmstate_register(NULL, base, &vmstate_serial, s);
960 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
961 "serial", 8 << it_shift);
962 memory_region_add_subregion(address_space, base, &s->io);
963 return s;