target/ppc: Implement core timebase state machine and TFMR
[qemu/ar7.git] / util / qemu-thread-win32.c
bloba7fe3cc345f087687822e32043a3eabebf1aad50
1 /*
2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qemu/thread.h"
16 #include "qemu/notify.h"
17 #include "qemu-thread-common.h"
18 #include <process.h>
20 static bool name_threads;
22 typedef HRESULT (WINAPI *pSetThreadDescription) (HANDLE hThread,
23 PCWSTR lpThreadDescription);
24 static pSetThreadDescription SetThreadDescriptionFunc;
25 static HMODULE kernel32_module;
27 static bool load_set_thread_description(void)
29 static gsize _init_once = 0;
31 if (g_once_init_enter(&_init_once)) {
32 kernel32_module = LoadLibrary("kernel32.dll");
33 if (kernel32_module) {
34 SetThreadDescriptionFunc =
35 (pSetThreadDescription)GetProcAddress(kernel32_module,
36 "SetThreadDescription");
37 if (!SetThreadDescriptionFunc) {
38 FreeLibrary(kernel32_module);
41 g_once_init_leave(&_init_once, 1);
44 return !!SetThreadDescriptionFunc;
47 void qemu_thread_naming(bool enable)
49 name_threads = enable;
51 if (enable && !load_set_thread_description()) {
52 fprintf(stderr, "qemu: thread naming not supported on this host\n");
53 name_threads = false;
57 static void error_exit(int err, const char *msg)
59 char *pstr;
61 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
62 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
63 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
64 LocalFree(pstr);
65 abort();
68 void qemu_mutex_init(QemuMutex *mutex)
70 InitializeSRWLock(&mutex->lock);
71 qemu_mutex_post_init(mutex);
74 void qemu_mutex_destroy(QemuMutex *mutex)
76 assert(mutex->initialized);
77 mutex->initialized = false;
78 InitializeSRWLock(&mutex->lock);
81 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
83 assert(mutex->initialized);
84 qemu_mutex_pre_lock(mutex, file, line);
85 AcquireSRWLockExclusive(&mutex->lock);
86 qemu_mutex_post_lock(mutex, file, line);
89 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
91 int owned;
93 assert(mutex->initialized);
94 owned = TryAcquireSRWLockExclusive(&mutex->lock);
95 if (owned) {
96 qemu_mutex_post_lock(mutex, file, line);
97 return 0;
99 return -EBUSY;
102 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
104 assert(mutex->initialized);
105 qemu_mutex_pre_unlock(mutex, file, line);
106 ReleaseSRWLockExclusive(&mutex->lock);
109 void qemu_rec_mutex_init(QemuRecMutex *mutex)
111 InitializeCriticalSection(&mutex->lock);
112 mutex->initialized = true;
115 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
117 assert(mutex->initialized);
118 mutex->initialized = false;
119 DeleteCriticalSection(&mutex->lock);
122 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
124 assert(mutex->initialized);
125 EnterCriticalSection(&mutex->lock);
128 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
130 assert(mutex->initialized);
131 return !TryEnterCriticalSection(&mutex->lock);
134 void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line)
136 assert(mutex->initialized);
137 LeaveCriticalSection(&mutex->lock);
140 void qemu_cond_init(QemuCond *cond)
142 memset(cond, 0, sizeof(*cond));
143 InitializeConditionVariable(&cond->var);
144 cond->initialized = true;
147 void qemu_cond_destroy(QemuCond *cond)
149 assert(cond->initialized);
150 cond->initialized = false;
151 InitializeConditionVariable(&cond->var);
154 void qemu_cond_signal(QemuCond *cond)
156 assert(cond->initialized);
157 WakeConditionVariable(&cond->var);
160 void qemu_cond_broadcast(QemuCond *cond)
162 assert(cond->initialized);
163 WakeAllConditionVariable(&cond->var);
166 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
168 assert(cond->initialized);
169 qemu_mutex_pre_unlock(mutex, file, line);
170 SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
171 qemu_mutex_post_lock(mutex, file, line);
174 bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms,
175 const char *file, const int line)
177 int rc = 0;
179 assert(cond->initialized);
180 trace_qemu_mutex_unlock(mutex, file, line);
181 if (!SleepConditionVariableSRW(&cond->var, &mutex->lock, ms, 0)) {
182 rc = GetLastError();
184 trace_qemu_mutex_locked(mutex, file, line);
185 if (rc && rc != ERROR_TIMEOUT) {
186 error_exit(rc, __func__);
188 return rc != ERROR_TIMEOUT;
191 void qemu_sem_init(QemuSemaphore *sem, int init)
193 /* Manual reset. */
194 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
195 sem->initialized = true;
198 void qemu_sem_destroy(QemuSemaphore *sem)
200 assert(sem->initialized);
201 sem->initialized = false;
202 CloseHandle(sem->sema);
205 void qemu_sem_post(QemuSemaphore *sem)
207 assert(sem->initialized);
208 ReleaseSemaphore(sem->sema, 1, NULL);
211 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
213 int rc;
215 assert(sem->initialized);
216 rc = WaitForSingleObject(sem->sema, ms);
217 if (rc == WAIT_OBJECT_0) {
218 return 0;
220 if (rc != WAIT_TIMEOUT) {
221 error_exit(GetLastError(), __func__);
223 return -1;
226 void qemu_sem_wait(QemuSemaphore *sem)
228 assert(sem->initialized);
229 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
230 error_exit(GetLastError(), __func__);
234 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
235 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
236 * sequence. Such a sequence is, indeed, how QemuEvents are used by
237 * RCU and other subsystems!
239 * Valid transitions:
240 * - free->set, when setting the event
241 * - busy->set, when setting the event, followed by SetEvent
242 * - set->free, when resetting the event
243 * - free->busy, when waiting
245 * set->busy does not happen (it can be observed from the outside but
246 * it really is set->free->busy).
248 * busy->free provably cannot happen; to enforce it, the set->free transition
249 * is done with an OR, which becomes a no-op if the event has concurrently
250 * transitioned to free or busy (and is faster than cmpxchg).
253 #define EV_SET 0
254 #define EV_FREE 1
255 #define EV_BUSY -1
257 void qemu_event_init(QemuEvent *ev, bool init)
259 /* Manual reset. */
260 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
261 ev->value = (init ? EV_SET : EV_FREE);
262 ev->initialized = true;
265 void qemu_event_destroy(QemuEvent *ev)
267 assert(ev->initialized);
268 ev->initialized = false;
269 CloseHandle(ev->event);
272 void qemu_event_set(QemuEvent *ev)
274 assert(ev->initialized);
277 * Pairs with both qemu_event_reset() and qemu_event_wait().
279 * qemu_event_set has release semantics, but because it *loads*
280 * ev->value we need a full memory barrier here.
282 smp_mb();
283 if (qatomic_read(&ev->value) != EV_SET) {
284 int old = qatomic_xchg(&ev->value, EV_SET);
286 /* Pairs with memory barrier after ResetEvent. */
287 smp_mb__after_rmw();
288 if (old == EV_BUSY) {
289 /* There were waiters, wake them up. */
290 SetEvent(ev->event);
295 void qemu_event_reset(QemuEvent *ev)
297 assert(ev->initialized);
300 * If there was a concurrent reset (or even reset+wait),
301 * do nothing. Otherwise change EV_SET->EV_FREE.
303 qatomic_or(&ev->value, EV_FREE);
306 * Order reset before checking the condition in the caller.
307 * Pairs with the first memory barrier in qemu_event_set().
309 smp_mb__after_rmw();
312 void qemu_event_wait(QemuEvent *ev)
314 unsigned value;
316 assert(ev->initialized);
319 * qemu_event_wait must synchronize with qemu_event_set even if it does
320 * not go down the slow path, so this load-acquire is needed that
321 * synchronizes with the first memory barrier in qemu_event_set().
323 * If we do go down the slow path, there is no requirement at all: we
324 * might miss a qemu_event_set() here but ultimately the memory barrier in
325 * qemu_futex_wait() will ensure the check is done correctly.
327 value = qatomic_load_acquire(&ev->value);
328 if (value != EV_SET) {
329 if (value == EV_FREE) {
331 * Here the underlying kernel event is reset, but qemu_event_set is
332 * not yet going to call SetEvent. However, there will be another
333 * check for EV_SET below when setting EV_BUSY. At that point it
334 * is safe to call WaitForSingleObject.
336 ResetEvent(ev->event);
339 * It is not clear whether ResetEvent provides this barrier; kernel
340 * APIs (KeResetEvent/KeClearEvent) do not. Better safe than sorry!
342 smp_mb();
345 * Leave the event reset and tell qemu_event_set that there are
346 * waiters. No need to retry, because there cannot be a concurrent
347 * busy->free transition. After the CAS, the event will be either
348 * set or busy.
350 if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
351 return;
356 * ev->value is now EV_BUSY. Since we didn't observe EV_SET,
357 * qemu_event_set() must observe EV_BUSY and call SetEvent().
359 WaitForSingleObject(ev->event, INFINITE);
363 struct QemuThreadData {
364 /* Passed to win32_start_routine. */
365 void *(*start_routine)(void *);
366 void *arg;
367 short mode;
368 NotifierList exit;
370 /* Only used for joinable threads. */
371 bool exited;
372 void *ret;
373 CRITICAL_SECTION cs;
376 static bool atexit_registered;
377 static NotifierList main_thread_exit;
379 static __thread QemuThreadData *qemu_thread_data;
381 static void run_main_thread_exit(void)
383 notifier_list_notify(&main_thread_exit, NULL);
386 void qemu_thread_atexit_add(Notifier *notifier)
388 if (!qemu_thread_data) {
389 if (!atexit_registered) {
390 atexit_registered = true;
391 atexit(run_main_thread_exit);
393 notifier_list_add(&main_thread_exit, notifier);
394 } else {
395 notifier_list_add(&qemu_thread_data->exit, notifier);
399 void qemu_thread_atexit_remove(Notifier *notifier)
401 notifier_remove(notifier);
404 static unsigned __stdcall win32_start_routine(void *arg)
406 QemuThreadData *data = (QemuThreadData *) arg;
407 void *(*start_routine)(void *) = data->start_routine;
408 void *thread_arg = data->arg;
410 qemu_thread_data = data;
411 qemu_thread_exit(start_routine(thread_arg));
412 abort();
415 void qemu_thread_exit(void *arg)
417 QemuThreadData *data = qemu_thread_data;
419 notifier_list_notify(&data->exit, NULL);
420 if (data->mode == QEMU_THREAD_JOINABLE) {
421 data->ret = arg;
422 EnterCriticalSection(&data->cs);
423 data->exited = true;
424 LeaveCriticalSection(&data->cs);
425 } else {
426 g_free(data);
428 _endthreadex(0);
431 void *qemu_thread_join(QemuThread *thread)
433 QemuThreadData *data;
434 void *ret;
435 HANDLE handle;
437 data = thread->data;
438 if (data->mode == QEMU_THREAD_DETACHED) {
439 return NULL;
443 * Because multiple copies of the QemuThread can exist via
444 * qemu_thread_get_self, we need to store a value that cannot
445 * leak there. The simplest, non racy way is to store the TID,
446 * discard the handle that _beginthreadex gives back, and
447 * get another copy of the handle here.
449 handle = qemu_thread_get_handle(thread);
450 if (handle) {
451 WaitForSingleObject(handle, INFINITE);
452 CloseHandle(handle);
454 ret = data->ret;
455 DeleteCriticalSection(&data->cs);
456 g_free(data);
457 return ret;
460 static bool set_thread_description(HANDLE h, const char *name)
462 HRESULT hr;
463 g_autofree wchar_t *namew = NULL;
465 if (!load_set_thread_description()) {
466 return false;
469 namew = g_utf8_to_utf16(name, -1, NULL, NULL, NULL);
470 if (!namew) {
471 return false;
474 hr = SetThreadDescriptionFunc(h, namew);
476 return SUCCEEDED(hr);
479 void qemu_thread_create(QemuThread *thread, const char *name,
480 void *(*start_routine)(void *),
481 void *arg, int mode)
483 HANDLE hThread;
484 struct QemuThreadData *data;
486 data = g_malloc(sizeof *data);
487 data->start_routine = start_routine;
488 data->arg = arg;
489 data->mode = mode;
490 data->exited = false;
491 notifier_list_init(&data->exit);
493 if (data->mode != QEMU_THREAD_DETACHED) {
494 InitializeCriticalSection(&data->cs);
497 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
498 data, 0, &thread->tid);
499 if (!hThread) {
500 error_exit(GetLastError(), __func__);
502 if (name_threads && name && !set_thread_description(hThread, name)) {
503 fprintf(stderr, "qemu: failed to set thread description: %s\n", name);
505 CloseHandle(hThread);
507 thread->data = data;
510 int qemu_thread_set_affinity(QemuThread *thread, unsigned long *host_cpus,
511 unsigned long nbits)
513 return -ENOSYS;
516 int qemu_thread_get_affinity(QemuThread *thread, unsigned long **host_cpus,
517 unsigned long *nbits)
519 return -ENOSYS;
522 void qemu_thread_get_self(QemuThread *thread)
524 thread->data = qemu_thread_data;
525 thread->tid = GetCurrentThreadId();
528 HANDLE qemu_thread_get_handle(QemuThread *thread)
530 QemuThreadData *data;
531 HANDLE handle;
533 data = thread->data;
534 if (data->mode == QEMU_THREAD_DETACHED) {
535 return NULL;
538 EnterCriticalSection(&data->cs);
539 if (!data->exited) {
540 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
541 THREAD_SET_CONTEXT, FALSE, thread->tid);
542 } else {
543 handle = NULL;
545 LeaveCriticalSection(&data->cs);
546 return handle;
549 bool qemu_thread_is_self(QemuThread *thread)
551 return GetCurrentThreadId() == thread->tid;