2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include "qemu-common.h"
30 #include "exec/tb-context.h"
31 #include "qemu/bitops.h"
32 #include "qemu/queue.h"
34 #include "tcg-target.h"
35 #include "qemu/int128.h"
37 /* XXX: make safe guess about sizes */
38 #define MAX_OP_PER_INSTR 266
40 #if HOST_LONG_BITS == 32
41 #define MAX_OPC_PARAM_PER_ARG 2
43 #define MAX_OPC_PARAM_PER_ARG 1
45 #define MAX_OPC_PARAM_IARGS 6
46 #define MAX_OPC_PARAM_OARGS 1
47 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS)
49 /* A Call op needs up to 4 + 2N parameters on 32-bit archs,
50 * and up to 4 + N parameters on 64-bit archs
51 * (N = number of input arguments + output arguments). */
52 #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS))
54 #define CPU_TEMP_BUF_NLONGS 128
56 /* Default target word size to pointer size. */
57 #ifndef TCG_TARGET_REG_BITS
58 # if UINTPTR_MAX == UINT32_MAX
59 # define TCG_TARGET_REG_BITS 32
60 # elif UINTPTR_MAX == UINT64_MAX
61 # define TCG_TARGET_REG_BITS 64
63 # error Unknown pointer size for tcg target
67 #if TCG_TARGET_REG_BITS == 32
68 typedef int32_t tcg_target_long
;
69 typedef uint32_t tcg_target_ulong
;
70 #define TCG_PRIlx PRIx32
71 #define TCG_PRIld PRId32
72 #elif TCG_TARGET_REG_BITS == 64
73 typedef int64_t tcg_target_long
;
74 typedef uint64_t tcg_target_ulong
;
75 #define TCG_PRIlx PRIx64
76 #define TCG_PRIld PRId64
81 /* Oversized TCG guests make things like MTTCG hard
82 * as we can't use atomics for cputlb updates.
84 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
85 #define TCG_OVERSIZED_GUEST 1
87 #define TCG_OVERSIZED_GUEST 0
90 #if TCG_TARGET_NB_REGS <= 32
91 typedef uint32_t TCGRegSet
;
92 #elif TCG_TARGET_NB_REGS <= 64
93 typedef uint64_t TCGRegSet
;
98 #if TCG_TARGET_REG_BITS == 32
99 /* Turn some undef macros into false macros. */
100 #define TCG_TARGET_HAS_extrl_i64_i32 0
101 #define TCG_TARGET_HAS_extrh_i64_i32 0
102 #define TCG_TARGET_HAS_div_i64 0
103 #define TCG_TARGET_HAS_rem_i64 0
104 #define TCG_TARGET_HAS_div2_i64 0
105 #define TCG_TARGET_HAS_rot_i64 0
106 #define TCG_TARGET_HAS_ext8s_i64 0
107 #define TCG_TARGET_HAS_ext16s_i64 0
108 #define TCG_TARGET_HAS_ext32s_i64 0
109 #define TCG_TARGET_HAS_ext8u_i64 0
110 #define TCG_TARGET_HAS_ext16u_i64 0
111 #define TCG_TARGET_HAS_ext32u_i64 0
112 #define TCG_TARGET_HAS_bswap16_i64 0
113 #define TCG_TARGET_HAS_bswap32_i64 0
114 #define TCG_TARGET_HAS_bswap64_i64 0
115 #define TCG_TARGET_HAS_neg_i64 0
116 #define TCG_TARGET_HAS_not_i64 0
117 #define TCG_TARGET_HAS_andc_i64 0
118 #define TCG_TARGET_HAS_orc_i64 0
119 #define TCG_TARGET_HAS_eqv_i64 0
120 #define TCG_TARGET_HAS_nand_i64 0
121 #define TCG_TARGET_HAS_nor_i64 0
122 #define TCG_TARGET_HAS_clz_i64 0
123 #define TCG_TARGET_HAS_ctz_i64 0
124 #define TCG_TARGET_HAS_ctpop_i64 0
125 #define TCG_TARGET_HAS_deposit_i64 0
126 #define TCG_TARGET_HAS_extract_i64 0
127 #define TCG_TARGET_HAS_sextract_i64 0
128 #define TCG_TARGET_HAS_movcond_i64 0
129 #define TCG_TARGET_HAS_add2_i64 0
130 #define TCG_TARGET_HAS_sub2_i64 0
131 #define TCG_TARGET_HAS_mulu2_i64 0
132 #define TCG_TARGET_HAS_muls2_i64 0
133 #define TCG_TARGET_HAS_muluh_i64 0
134 #define TCG_TARGET_HAS_mulsh_i64 0
135 /* Turn some undef macros into true macros. */
136 #define TCG_TARGET_HAS_add2_i32 1
137 #define TCG_TARGET_HAS_sub2_i32 1
140 #ifndef TCG_TARGET_deposit_i32_valid
141 #define TCG_TARGET_deposit_i32_valid(ofs, len) 1
143 #ifndef TCG_TARGET_deposit_i64_valid
144 #define TCG_TARGET_deposit_i64_valid(ofs, len) 1
146 #ifndef TCG_TARGET_extract_i32_valid
147 #define TCG_TARGET_extract_i32_valid(ofs, len) 1
149 #ifndef TCG_TARGET_extract_i64_valid
150 #define TCG_TARGET_extract_i64_valid(ofs, len) 1
153 /* Only one of DIV or DIV2 should be defined. */
154 #if defined(TCG_TARGET_HAS_div_i32)
155 #define TCG_TARGET_HAS_div2_i32 0
156 #elif defined(TCG_TARGET_HAS_div2_i32)
157 #define TCG_TARGET_HAS_div_i32 0
158 #define TCG_TARGET_HAS_rem_i32 0
160 #if defined(TCG_TARGET_HAS_div_i64)
161 #define TCG_TARGET_HAS_div2_i64 0
162 #elif defined(TCG_TARGET_HAS_div2_i64)
163 #define TCG_TARGET_HAS_div_i64 0
164 #define TCG_TARGET_HAS_rem_i64 0
167 /* For 32-bit targets, some sort of unsigned widening multiply is required. */
168 #if TCG_TARGET_REG_BITS == 32 \
169 && !(defined(TCG_TARGET_HAS_mulu2_i32) \
170 || defined(TCG_TARGET_HAS_muluh_i32))
171 # error "Missing unsigned widening multiply"
174 #if !defined(TCG_TARGET_HAS_v64) \
175 && !defined(TCG_TARGET_HAS_v128) \
176 && !defined(TCG_TARGET_HAS_v256)
177 #define TCG_TARGET_MAYBE_vec 0
178 #define TCG_TARGET_HAS_neg_vec 0
179 #define TCG_TARGET_HAS_not_vec 0
180 #define TCG_TARGET_HAS_andc_vec 0
181 #define TCG_TARGET_HAS_orc_vec 0
182 #define TCG_TARGET_HAS_shi_vec 0
183 #define TCG_TARGET_HAS_shs_vec 0
184 #define TCG_TARGET_HAS_shv_vec 0
185 #define TCG_TARGET_HAS_mul_vec 0
187 #define TCG_TARGET_MAYBE_vec 1
189 #ifndef TCG_TARGET_HAS_v64
190 #define TCG_TARGET_HAS_v64 0
192 #ifndef TCG_TARGET_HAS_v128
193 #define TCG_TARGET_HAS_v128 0
195 #ifndef TCG_TARGET_HAS_v256
196 #define TCG_TARGET_HAS_v256 0
199 #ifndef TARGET_INSN_START_EXTRA_WORDS
200 # define TARGET_INSN_START_WORDS 1
202 # define TARGET_INSN_START_WORDS (1 + TARGET_INSN_START_EXTRA_WORDS)
205 typedef enum TCGOpcode
{
206 #define DEF(name, oargs, iargs, cargs, flags) INDEX_op_ ## name,
212 #define tcg_regset_set_reg(d, r) ((d) |= (TCGRegSet)1 << (r))
213 #define tcg_regset_reset_reg(d, r) ((d) &= ~((TCGRegSet)1 << (r)))
214 #define tcg_regset_test_reg(d, r) (((d) >> (r)) & 1)
216 #ifndef TCG_TARGET_INSN_UNIT_SIZE
217 # error "Missing TCG_TARGET_INSN_UNIT_SIZE"
218 #elif TCG_TARGET_INSN_UNIT_SIZE == 1
219 typedef uint8_t tcg_insn_unit
;
220 #elif TCG_TARGET_INSN_UNIT_SIZE == 2
221 typedef uint16_t tcg_insn_unit
;
222 #elif TCG_TARGET_INSN_UNIT_SIZE == 4
223 typedef uint32_t tcg_insn_unit
;
224 #elif TCG_TARGET_INSN_UNIT_SIZE == 8
225 typedef uint64_t tcg_insn_unit
;
227 /* The port better have done this. */
231 #if defined CONFIG_DEBUG_TCG || defined QEMU_STATIC_ANALYSIS
232 # define tcg_debug_assert(X) do { assert(X); } while (0)
234 # define tcg_debug_assert(X) \
235 do { if (!(X)) { __builtin_unreachable(); } } while (0)
238 typedef struct TCGRelocation
{
239 struct TCGRelocation
*next
;
245 typedef struct TCGLabel
{
246 unsigned has_value
: 1;
251 tcg_insn_unit
*value_ptr
;
252 TCGRelocation
*first_reloc
;
256 typedef struct TCGPool
{
257 struct TCGPool
*next
;
259 uint8_t data
[0] __attribute__ ((aligned
));
262 #define TCG_POOL_CHUNK_SIZE 32768
264 #define TCG_MAX_TEMPS 512
265 #define TCG_MAX_INSNS 512
267 /* when the size of the arguments of a called function is smaller than
268 this value, they are statically allocated in the TB stack frame */
269 #define TCG_STATIC_CALL_ARGS_SIZE 128
271 typedef enum TCGType
{
279 TCG_TYPE_COUNT
, /* number of different types */
281 /* An alias for the size of the host register. */
282 #if TCG_TARGET_REG_BITS == 32
283 TCG_TYPE_REG
= TCG_TYPE_I32
,
285 TCG_TYPE_REG
= TCG_TYPE_I64
,
288 /* An alias for the size of the native pointer. */
289 #if UINTPTR_MAX == UINT32_MAX
290 TCG_TYPE_PTR
= TCG_TYPE_I32
,
292 TCG_TYPE_PTR
= TCG_TYPE_I64
,
295 /* An alias for the size of the target "long", aka register. */
296 #if TARGET_LONG_BITS == 64
297 TCG_TYPE_TL
= TCG_TYPE_I64
,
299 TCG_TYPE_TL
= TCG_TYPE_I32
,
303 /* Constants for qemu_ld and qemu_st for the Memory Operation field. */
304 typedef enum TCGMemOp
{
309 MO_SIZE
= 3, /* Mask for the above. */
311 MO_SIGN
= 4, /* Sign-extended, otherwise zero-extended. */
313 MO_BSWAP
= 8, /* Host reverse endian. */
314 #ifdef HOST_WORDS_BIGENDIAN
321 #ifdef TARGET_WORDS_BIGENDIAN
327 /* MO_UNALN accesses are never checked for alignment.
328 * MO_ALIGN accesses will result in a call to the CPU's
329 * do_unaligned_access hook if the guest address is not aligned.
330 * The default depends on whether the target CPU defines ALIGNED_ONLY.
332 * Some architectures (e.g. ARMv8) need the address which is aligned
333 * to a size more than the size of the memory access.
334 * Some architectures (e.g. SPARCv9) need an address which is aligned,
335 * but less strictly than the natural alignment.
337 * MO_ALIGN supposes the alignment size is the size of a memory access.
339 * There are three options:
340 * - unaligned access permitted (MO_UNALN).
341 * - an alignment to the size of an access (MO_ALIGN);
342 * - an alignment to a specified size, which may be more or less than
343 * the access size (MO_ALIGN_x where 'x' is a size in bytes);
346 MO_AMASK
= 7 << MO_ASHIFT
,
354 MO_ALIGN_2
= 1 << MO_ASHIFT
,
355 MO_ALIGN_4
= 2 << MO_ASHIFT
,
356 MO_ALIGN_8
= 3 << MO_ASHIFT
,
357 MO_ALIGN_16
= 4 << MO_ASHIFT
,
358 MO_ALIGN_32
= 5 << MO_ASHIFT
,
359 MO_ALIGN_64
= 6 << MO_ASHIFT
,
361 /* Combinations of the above, for ease of use. */
365 MO_SB
= MO_SIGN
| MO_8
,
366 MO_SW
= MO_SIGN
| MO_16
,
367 MO_SL
= MO_SIGN
| MO_32
,
370 MO_LEUW
= MO_LE
| MO_UW
,
371 MO_LEUL
= MO_LE
| MO_UL
,
372 MO_LESW
= MO_LE
| MO_SW
,
373 MO_LESL
= MO_LE
| MO_SL
,
374 MO_LEQ
= MO_LE
| MO_Q
,
376 MO_BEUW
= MO_BE
| MO_UW
,
377 MO_BEUL
= MO_BE
| MO_UL
,
378 MO_BESW
= MO_BE
| MO_SW
,
379 MO_BESL
= MO_BE
| MO_SL
,
380 MO_BEQ
= MO_BE
| MO_Q
,
382 MO_TEUW
= MO_TE
| MO_UW
,
383 MO_TEUL
= MO_TE
| MO_UL
,
384 MO_TESW
= MO_TE
| MO_SW
,
385 MO_TESL
= MO_TE
| MO_SL
,
386 MO_TEQ
= MO_TE
| MO_Q
,
388 MO_SSIZE
= MO_SIZE
| MO_SIGN
,
393 * @memop: TCGMemOp value
395 * Extract the alignment size from the memop.
397 static inline unsigned get_alignment_bits(TCGMemOp memop
)
399 unsigned a
= memop
& MO_AMASK
;
402 /* No alignment required. */
404 } else if (a
== MO_ALIGN
) {
405 /* A natural alignment requirement. */
408 /* A specific alignment requirement. */
411 #if defined(CONFIG_SOFTMMU)
412 /* The requested alignment cannot overlap the TLB flags. */
413 tcg_debug_assert((TLB_FLAGS_MASK
& ((1 << a
) - 1)) == 0);
418 typedef tcg_target_ulong TCGArg
;
420 /* Define type and accessor macros for TCG variables.
422 TCG variables are the inputs and outputs of TCG ops, as described
423 in tcg/README. Target CPU front-end code uses these types to deal
424 with TCG variables as it emits TCG code via the tcg_gen_* functions.
425 They come in several flavours:
426 * TCGv_i32 : 32 bit integer type
427 * TCGv_i64 : 64 bit integer type
428 * TCGv_ptr : a host pointer type
429 * TCGv_vec : a host vector type; the exact size is not exposed
430 to the CPU front-end code.
431 * TCGv : an integer type the same size as target_ulong
432 (an alias for either TCGv_i32 or TCGv_i64)
433 The compiler's type checking will complain if you mix them
434 up and pass the wrong sized TCGv to a function.
436 Users of tcg_gen_* don't need to know about any of the internal
437 details of these, and should treat them as opaque types.
438 You won't be able to look inside them in a debugger either.
440 Internal implementation details follow:
442 Note that there is no definition of the structs TCGv_i32_d etc anywhere.
443 This is deliberate, because the values we store in variables of type
444 TCGv_i32 are not really pointers-to-structures. They're just small
445 integers, but keeping them in pointer types like this means that the
446 compiler will complain if you accidentally pass a TCGv_i32 to a
447 function which takes a TCGv_i64, and so on. Only the internals of
448 TCG need to care about the actual contents of the types. */
450 typedef struct TCGv_i32_d
*TCGv_i32
;
451 typedef struct TCGv_i64_d
*TCGv_i64
;
452 typedef struct TCGv_ptr_d
*TCGv_ptr
;
453 typedef struct TCGv_vec_d
*TCGv_vec
;
454 typedef TCGv_ptr TCGv_env
;
455 #if TARGET_LONG_BITS == 32
456 #define TCGv TCGv_i32
457 #elif TARGET_LONG_BITS == 64
458 #define TCGv TCGv_i64
460 #error Unhandled TARGET_LONG_BITS value
464 /* Helper does not read globals (either directly or through an exception). It
465 implies TCG_CALL_NO_WRITE_GLOBALS. */
466 #define TCG_CALL_NO_READ_GLOBALS 0x0001
467 /* Helper does not write globals */
468 #define TCG_CALL_NO_WRITE_GLOBALS 0x0002
469 /* Helper can be safely suppressed if the return value is not used. */
470 #define TCG_CALL_NO_SIDE_EFFECTS 0x0004
471 /* Helper is QEMU_NORETURN. */
472 #define TCG_CALL_NO_RETURN 0x0008
474 /* convenience version of most used call flags */
475 #define TCG_CALL_NO_RWG TCG_CALL_NO_READ_GLOBALS
476 #define TCG_CALL_NO_WG TCG_CALL_NO_WRITE_GLOBALS
477 #define TCG_CALL_NO_SE TCG_CALL_NO_SIDE_EFFECTS
478 #define TCG_CALL_NO_RWG_SE (TCG_CALL_NO_RWG | TCG_CALL_NO_SE)
479 #define TCG_CALL_NO_WG_SE (TCG_CALL_NO_WG | TCG_CALL_NO_SE)
481 /* Used to align parameters. See the comment before tcgv_i32_temp. */
482 #define TCG_CALL_DUMMY_ARG ((TCGArg)0)
484 /* Conditions. Note that these are laid out for easy manipulation by
486 bit 0 is used for inverting;
489 bit 3 is used with bit 0 for swapping signed/unsigned. */
492 TCG_COND_NEVER
= 0 | 0 | 0 | 0,
493 TCG_COND_ALWAYS
= 0 | 0 | 0 | 1,
494 TCG_COND_EQ
= 8 | 0 | 0 | 0,
495 TCG_COND_NE
= 8 | 0 | 0 | 1,
497 TCG_COND_LT
= 0 | 0 | 2 | 0,
498 TCG_COND_GE
= 0 | 0 | 2 | 1,
499 TCG_COND_LE
= 8 | 0 | 2 | 0,
500 TCG_COND_GT
= 8 | 0 | 2 | 1,
502 TCG_COND_LTU
= 0 | 4 | 0 | 0,
503 TCG_COND_GEU
= 0 | 4 | 0 | 1,
504 TCG_COND_LEU
= 8 | 4 | 0 | 0,
505 TCG_COND_GTU
= 8 | 4 | 0 | 1,
508 /* Invert the sense of the comparison. */
509 static inline TCGCond
tcg_invert_cond(TCGCond c
)
511 return (TCGCond
)(c
^ 1);
514 /* Swap the operands in a comparison. */
515 static inline TCGCond
tcg_swap_cond(TCGCond c
)
517 return c
& 6 ? (TCGCond
)(c
^ 9) : c
;
520 /* Create an "unsigned" version of a "signed" comparison. */
521 static inline TCGCond
tcg_unsigned_cond(TCGCond c
)
523 return c
& 2 ? (TCGCond
)(c
^ 6) : c
;
526 /* Create a "signed" version of an "unsigned" comparison. */
527 static inline TCGCond
tcg_signed_cond(TCGCond c
)
529 return c
& 4 ? (TCGCond
)(c
^ 6) : c
;
532 /* Must a comparison be considered unsigned? */
533 static inline bool is_unsigned_cond(TCGCond c
)
538 /* Create a "high" version of a double-word comparison.
539 This removes equality from a LTE or GTE comparison. */
540 static inline TCGCond
tcg_high_cond(TCGCond c
)
547 return (TCGCond
)(c
^ 8);
553 typedef enum TCGTempVal
{
560 typedef struct TCGTemp
{
562 TCGTempVal val_type
:8;
565 unsigned int fixed_reg
:1;
566 unsigned int indirect_reg
:1;
567 unsigned int indirect_base
:1;
568 unsigned int mem_coherent
:1;
569 unsigned int mem_allocated
:1;
570 /* If true, the temp is saved across both basic blocks and
571 translation blocks. */
572 unsigned int temp_global
:1;
573 /* If true, the temp is saved across basic blocks but dead
574 at the end of translation blocks. If false, the temp is
575 dead at the end of basic blocks. */
576 unsigned int temp_local
:1;
577 unsigned int temp_allocated
:1;
580 struct TCGTemp
*mem_base
;
584 /* Pass-specific information that can be stored for a temporary.
585 One word worth of integer data, and one pointer to data
586 allocated separately. */
591 typedef struct TCGContext TCGContext
;
593 typedef struct TCGTempSet
{
594 unsigned long l
[BITS_TO_LONGS(TCG_MAX_TEMPS
)];
597 /* While we limit helpers to 6 arguments, for 32-bit hosts, with padding,
598 this imples a max of 6*2 (64-bit in) + 2 (64-bit out) = 14 operands.
599 There are never more than 2 outputs, which means that we can store all
600 dead + sync data within 16 bits. */
603 typedef uint16_t TCGLifeData
;
605 /* The layout here is designed to avoid a bitfield crossing of
606 a 32-bit boundary, which would cause GCC to add extra padding. */
607 typedef struct TCGOp
{
608 TCGOpcode opc
: 8; /* 8 */
610 /* Parameters for this opcode. See below. */
611 unsigned param1
: 4; /* 12 */
612 unsigned param2
: 4; /* 16 */
614 /* Lifetime data of the operands. */
615 unsigned life
: 16; /* 32 */
617 /* Next and previous opcodes. */
618 QTAILQ_ENTRY(TCGOp
) link
;
620 /* Arguments for the opcode. */
621 TCGArg args
[MAX_OPC_PARAM
];
623 /* Register preferences for the output(s). */
624 TCGRegSet output_pref
[2];
627 #define TCGOP_CALLI(X) (X)->param1
628 #define TCGOP_CALLO(X) (X)->param2
630 #define TCGOP_VECL(X) (X)->param1
631 #define TCGOP_VECE(X) (X)->param2
633 /* Make sure operands fit in the bitfields above. */
634 QEMU_BUILD_BUG_ON(NB_OPS
> (1 << 8));
636 typedef struct TCGProfile
{
637 int64_t cpu_exec_time
;
640 int64_t op_count
; /* total insn count */
641 int op_count_max
; /* max insn per TB */
644 int64_t del_op_count
;
646 int64_t code_out_len
;
647 int64_t search_out_len
;
652 int64_t restore_count
;
653 int64_t restore_time
;
654 int64_t table_op_count
[NB_OPS
];
658 uint8_t *pool_cur
, *pool_end
;
659 TCGPool
*pool_first
, *pool_current
, *pool_first_large
;
666 /* goto_tb support */
667 tcg_insn_unit
*code_buf
;
668 uint16_t *tb_jmp_reset_offset
; /* tb->jmp_reset_offset */
669 uintptr_t *tb_jmp_insn_offset
; /* tb->jmp_target_arg if direct_jump */
670 uintptr_t *tb_jmp_target_addr
; /* tb->jmp_target_arg if !direct_jump */
672 TCGRegSet reserved_regs
;
673 uint32_t tb_cflags
; /* cflags of the current TB */
674 intptr_t current_frame_offset
;
675 intptr_t frame_start
;
679 tcg_insn_unit
*code_ptr
;
681 #ifdef CONFIG_PROFILER
685 #ifdef CONFIG_DEBUG_TCG
687 int goto_tb_issue_mask
;
690 /* Code generation. Note that we specifically do not use tcg_insn_unit
691 here, because there's too much arithmetic throughout that relies
692 on addition and subtraction working on bytes. Rely on the GCC
693 extension that allows arithmetic on void*. */
694 void *code_gen_prologue
;
695 void *code_gen_epilogue
;
696 void *code_gen_buffer
;
697 size_t code_gen_buffer_size
;
701 /* Threshold to flush the translated code buffer. */
702 void *code_gen_highwater
;
704 size_t tb_phys_invalidate_count
;
706 /* Track which vCPU triggers events */
707 CPUState
*cpu
; /* *_trans */
709 /* These structures are private to tcg-target.inc.c. */
710 #ifdef TCG_TARGET_NEED_LDST_LABELS
711 QSIMPLEQ_HEAD(, TCGLabelQemuLdst
) ldst_labels
;
713 #ifdef TCG_TARGET_NEED_POOL_LABELS
714 struct TCGLabelPoolData
*pool_labels
;
717 TCGLabel
*exitreq_label
;
719 TCGTempSet free_temps
[TCG_TYPE_COUNT
* 2];
720 TCGTemp temps
[TCG_MAX_TEMPS
]; /* globals first, temps after */
722 QTAILQ_HEAD(, TCGOp
) ops
, free_ops
;
724 /* Tells which temporary holds a given register.
725 It does not take into account fixed registers */
726 TCGTemp
*reg_to_temp
[TCG_TARGET_NB_REGS
];
728 uint16_t gen_insn_end_off
[TCG_MAX_INSNS
];
729 target_ulong gen_insn_data
[TCG_MAX_INSNS
][TARGET_INSN_START_WORDS
];
732 extern TCGContext tcg_init_ctx
;
733 extern __thread TCGContext
*tcg_ctx
;
734 extern TCGv_env cpu_env
;
736 static inline size_t temp_idx(TCGTemp
*ts
)
738 ptrdiff_t n
= ts
- tcg_ctx
->temps
;
739 tcg_debug_assert(n
>= 0 && n
< tcg_ctx
->nb_temps
);
743 static inline TCGArg
temp_arg(TCGTemp
*ts
)
745 return (uintptr_t)ts
;
748 static inline TCGTemp
*arg_temp(TCGArg a
)
750 return (TCGTemp
*)(uintptr_t)a
;
753 /* Using the offset of a temporary, relative to TCGContext, rather than
754 its index means that we don't use 0. That leaves offset 0 free for
755 a NULL representation without having to leave index 0 unused. */
756 static inline TCGTemp
*tcgv_i32_temp(TCGv_i32 v
)
758 uintptr_t o
= (uintptr_t)v
;
759 TCGTemp
*t
= (void *)tcg_ctx
+ o
;
760 tcg_debug_assert(offsetof(TCGContext
, temps
[temp_idx(t
)]) == o
);
764 static inline TCGTemp
*tcgv_i64_temp(TCGv_i64 v
)
766 return tcgv_i32_temp((TCGv_i32
)v
);
769 static inline TCGTemp
*tcgv_ptr_temp(TCGv_ptr v
)
771 return tcgv_i32_temp((TCGv_i32
)v
);
774 static inline TCGTemp
*tcgv_vec_temp(TCGv_vec v
)
776 return tcgv_i32_temp((TCGv_i32
)v
);
779 static inline TCGArg
tcgv_i32_arg(TCGv_i32 v
)
781 return temp_arg(tcgv_i32_temp(v
));
784 static inline TCGArg
tcgv_i64_arg(TCGv_i64 v
)
786 return temp_arg(tcgv_i64_temp(v
));
789 static inline TCGArg
tcgv_ptr_arg(TCGv_ptr v
)
791 return temp_arg(tcgv_ptr_temp(v
));
794 static inline TCGArg
tcgv_vec_arg(TCGv_vec v
)
796 return temp_arg(tcgv_vec_temp(v
));
799 static inline TCGv_i32
temp_tcgv_i32(TCGTemp
*t
)
801 (void)temp_idx(t
); /* trigger embedded assert */
802 return (TCGv_i32
)((void *)t
- (void *)tcg_ctx
);
805 static inline TCGv_i64
temp_tcgv_i64(TCGTemp
*t
)
807 return (TCGv_i64
)temp_tcgv_i32(t
);
810 static inline TCGv_ptr
temp_tcgv_ptr(TCGTemp
*t
)
812 return (TCGv_ptr
)temp_tcgv_i32(t
);
815 static inline TCGv_vec
temp_tcgv_vec(TCGTemp
*t
)
817 return (TCGv_vec
)temp_tcgv_i32(t
);
820 #if TCG_TARGET_REG_BITS == 32
821 static inline TCGv_i32
TCGV_LOW(TCGv_i64 t
)
823 return temp_tcgv_i32(tcgv_i64_temp(t
));
826 static inline TCGv_i32
TCGV_HIGH(TCGv_i64 t
)
828 return temp_tcgv_i32(tcgv_i64_temp(t
) + 1);
832 static inline void tcg_set_insn_param(TCGOp
*op
, int arg
, TCGArg v
)
837 static inline void tcg_set_insn_start_param(TCGOp
*op
, int arg
, target_ulong v
)
839 #if TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
840 tcg_set_insn_param(op
, arg
, v
);
842 tcg_set_insn_param(op
, arg
* 2, v
);
843 tcg_set_insn_param(op
, arg
* 2 + 1, v
>> 32);
847 /* The last op that was emitted. */
848 static inline TCGOp
*tcg_last_op(void)
850 return QTAILQ_LAST(&tcg_ctx
->ops
);
853 /* Test for whether to terminate the TB for using too many opcodes. */
854 static inline bool tcg_op_buf_full(void)
856 /* This is not a hard limit, it merely stops translation when
857 * we have produced "enough" opcodes. We want to limit TB size
858 * such that a RISC host can reasonably use a 16-bit signed
859 * branch within the TB. We also need to be mindful of the
860 * 16-bit unsigned offsets, TranslationBlock.jmp_reset_offset[]
861 * and TCGContext.gen_insn_end_off[].
863 return tcg_ctx
->nb_ops
>= 4000;
866 /* pool based memory allocation */
868 /* user-mode: mmap_lock must be held for tcg_malloc_internal. */
869 void *tcg_malloc_internal(TCGContext
*s
, int size
);
870 void tcg_pool_reset(TCGContext
*s
);
871 TranslationBlock
*tcg_tb_alloc(TCGContext
*s
);
873 void tcg_region_init(void);
874 void tcg_region_reset_all(void);
876 size_t tcg_code_size(void);
877 size_t tcg_code_capacity(void);
879 void tcg_tb_insert(TranslationBlock
*tb
);
880 void tcg_tb_remove(TranslationBlock
*tb
);
881 size_t tcg_tb_phys_invalidate_count(void);
882 TranslationBlock
*tcg_tb_lookup(uintptr_t tc_ptr
);
883 void tcg_tb_foreach(GTraverseFunc func
, gpointer user_data
);
884 size_t tcg_nb_tbs(void);
886 /* user-mode: Called with mmap_lock held. */
887 static inline void *tcg_malloc(int size
)
889 TCGContext
*s
= tcg_ctx
;
890 uint8_t *ptr
, *ptr_end
;
892 /* ??? This is a weak placeholder for minimum malloc alignment. */
893 size
= QEMU_ALIGN_UP(size
, 8);
896 ptr_end
= ptr
+ size
;
897 if (unlikely(ptr_end
> s
->pool_end
)) {
898 return tcg_malloc_internal(tcg_ctx
, size
);
900 s
->pool_cur
= ptr_end
;
905 void tcg_context_init(TCGContext
*s
);
906 void tcg_register_thread(void);
907 void tcg_prologue_init(TCGContext
*s
);
908 void tcg_func_start(TCGContext
*s
);
910 int tcg_gen_code(TCGContext
*s
, TranslationBlock
*tb
);
912 void tcg_set_frame(TCGContext
*s
, TCGReg reg
, intptr_t start
, intptr_t size
);
914 TCGTemp
*tcg_global_mem_new_internal(TCGType
, TCGv_ptr
,
915 intptr_t, const char *);
916 TCGTemp
*tcg_temp_new_internal(TCGType
, bool);
917 void tcg_temp_free_internal(TCGTemp
*);
918 TCGv_vec
tcg_temp_new_vec(TCGType type
);
919 TCGv_vec
tcg_temp_new_vec_matching(TCGv_vec match
);
921 static inline void tcg_temp_free_i32(TCGv_i32 arg
)
923 tcg_temp_free_internal(tcgv_i32_temp(arg
));
926 static inline void tcg_temp_free_i64(TCGv_i64 arg
)
928 tcg_temp_free_internal(tcgv_i64_temp(arg
));
931 static inline void tcg_temp_free_ptr(TCGv_ptr arg
)
933 tcg_temp_free_internal(tcgv_ptr_temp(arg
));
936 static inline void tcg_temp_free_vec(TCGv_vec arg
)
938 tcg_temp_free_internal(tcgv_vec_temp(arg
));
941 static inline TCGv_i32
tcg_global_mem_new_i32(TCGv_ptr reg
, intptr_t offset
,
944 TCGTemp
*t
= tcg_global_mem_new_internal(TCG_TYPE_I32
, reg
, offset
, name
);
945 return temp_tcgv_i32(t
);
948 static inline TCGv_i32
tcg_temp_new_i32(void)
950 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_I32
, false);
951 return temp_tcgv_i32(t
);
954 static inline TCGv_i32
tcg_temp_local_new_i32(void)
956 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_I32
, true);
957 return temp_tcgv_i32(t
);
960 static inline TCGv_i64
tcg_global_mem_new_i64(TCGv_ptr reg
, intptr_t offset
,
963 TCGTemp
*t
= tcg_global_mem_new_internal(TCG_TYPE_I64
, reg
, offset
, name
);
964 return temp_tcgv_i64(t
);
967 static inline TCGv_i64
tcg_temp_new_i64(void)
969 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_I64
, false);
970 return temp_tcgv_i64(t
);
973 static inline TCGv_i64
tcg_temp_local_new_i64(void)
975 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_I64
, true);
976 return temp_tcgv_i64(t
);
979 static inline TCGv_ptr
tcg_global_mem_new_ptr(TCGv_ptr reg
, intptr_t offset
,
982 TCGTemp
*t
= tcg_global_mem_new_internal(TCG_TYPE_PTR
, reg
, offset
, name
);
983 return temp_tcgv_ptr(t
);
986 static inline TCGv_ptr
tcg_temp_new_ptr(void)
988 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_PTR
, false);
989 return temp_tcgv_ptr(t
);
992 static inline TCGv_ptr
tcg_temp_local_new_ptr(void)
994 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_PTR
, true);
995 return temp_tcgv_ptr(t
);
998 #if defined(CONFIG_DEBUG_TCG)
999 /* If you call tcg_clear_temp_count() at the start of a section of
1000 * code which is not supposed to leak any TCG temporaries, then
1001 * calling tcg_check_temp_count() at the end of the section will
1002 * return 1 if the section did in fact leak a temporary.
1004 void tcg_clear_temp_count(void);
1005 int tcg_check_temp_count(void);
1007 #define tcg_clear_temp_count() do { } while (0)
1008 #define tcg_check_temp_count() 0
1011 int64_t tcg_cpu_exec_time(void);
1012 void tcg_dump_info(FILE *f
, fprintf_function cpu_fprintf
);
1013 void tcg_dump_op_count(FILE *f
, fprintf_function cpu_fprintf
);
1015 #define TCG_CT_ALIAS 0x80
1016 #define TCG_CT_IALIAS 0x40
1017 #define TCG_CT_NEWREG 0x20 /* output requires a new register */
1018 #define TCG_CT_REG 0x01
1019 #define TCG_CT_CONST 0x02 /* any constant of register size */
1021 typedef struct TCGArgConstraint
{
1023 uint8_t alias_index
;
1029 #define TCG_MAX_OP_ARGS 16
1031 /* Bits for TCGOpDef->flags, 8 bits available. */
1033 /* Instruction exits the translation block. */
1034 TCG_OPF_BB_EXIT
= 0x01,
1035 /* Instruction defines the end of a basic block. */
1036 TCG_OPF_BB_END
= 0x02,
1037 /* Instruction clobbers call registers and potentially update globals. */
1038 TCG_OPF_CALL_CLOBBER
= 0x04,
1039 /* Instruction has side effects: it cannot be removed if its outputs
1040 are not used, and might trigger exceptions. */
1041 TCG_OPF_SIDE_EFFECTS
= 0x08,
1042 /* Instruction operands are 64-bits (otherwise 32-bits). */
1043 TCG_OPF_64BIT
= 0x10,
1044 /* Instruction is optional and not implemented by the host, or insn
1045 is generic and should not be implemened by the host. */
1046 TCG_OPF_NOT_PRESENT
= 0x20,
1047 /* Instruction operands are vectors. */
1048 TCG_OPF_VECTOR
= 0x40,
1051 typedef struct TCGOpDef
{
1053 uint8_t nb_oargs
, nb_iargs
, nb_cargs
, nb_args
;
1055 TCGArgConstraint
*args_ct
;
1057 #if defined(CONFIG_DEBUG_TCG)
1062 extern TCGOpDef tcg_op_defs
[];
1063 extern const size_t tcg_op_defs_max
;
1065 typedef struct TCGTargetOpDef
{
1067 const char *args_ct_str
[TCG_MAX_OP_ARGS
];
1070 #define tcg_abort() \
1072 fprintf(stderr, "%s:%d: tcg fatal error\n", __FILE__, __LINE__);\
1076 bool tcg_op_supported(TCGOpcode op
);
1078 void tcg_gen_callN(void *func
, TCGTemp
*ret
, int nargs
, TCGTemp
**args
);
1080 TCGOp
*tcg_emit_op(TCGOpcode opc
);
1081 void tcg_op_remove(TCGContext
*s
, TCGOp
*op
);
1082 TCGOp
*tcg_op_insert_before(TCGContext
*s
, TCGOp
*op
, TCGOpcode opc
);
1083 TCGOp
*tcg_op_insert_after(TCGContext
*s
, TCGOp
*op
, TCGOpcode opc
);
1085 void tcg_optimize(TCGContext
*s
);
1087 TCGv_i32
tcg_const_i32(int32_t val
);
1088 TCGv_i64
tcg_const_i64(int64_t val
);
1089 TCGv_i32
tcg_const_local_i32(int32_t val
);
1090 TCGv_i64
tcg_const_local_i64(int64_t val
);
1091 TCGv_vec
tcg_const_zeros_vec(TCGType
);
1092 TCGv_vec
tcg_const_ones_vec(TCGType
);
1093 TCGv_vec
tcg_const_zeros_vec_matching(TCGv_vec
);
1094 TCGv_vec
tcg_const_ones_vec_matching(TCGv_vec
);
1096 #if UINTPTR_MAX == UINT32_MAX
1097 # define tcg_const_ptr(x) ((TCGv_ptr)tcg_const_i32((intptr_t)(x)))
1098 # define tcg_const_local_ptr(x) ((TCGv_ptr)tcg_const_local_i32((intptr_t)(x)))
1100 # define tcg_const_ptr(x) ((TCGv_ptr)tcg_const_i64((intptr_t)(x)))
1101 # define tcg_const_local_ptr(x) ((TCGv_ptr)tcg_const_local_i64((intptr_t)(x)))
1104 TCGLabel
*gen_new_label(void);
1110 * Encode a label for storage in the TCG opcode stream.
1113 static inline TCGArg
label_arg(TCGLabel
*l
)
1115 return (uintptr_t)l
;
1122 * The opposite of label_arg. Retrieve a label from the
1123 * encoding of the TCG opcode stream.
1126 static inline TCGLabel
*arg_label(TCGArg i
)
1128 return (TCGLabel
*)(uintptr_t)i
;
1133 * @a, @b: addresses to be differenced
1135 * There are many places within the TCG backends where we need a byte
1136 * difference between two pointers. While this can be accomplished
1137 * with local casting, it's easy to get wrong -- especially if one is
1138 * concerned with the signedness of the result.
1140 * This version relies on GCC's void pointer arithmetic to get the
1144 static inline ptrdiff_t tcg_ptr_byte_diff(void *a
, void *b
)
1151 * @s: the tcg context
1152 * @target: address of the target
1154 * Produce a pc-relative difference, from the current code_ptr
1155 * to the destination address.
1158 static inline ptrdiff_t tcg_pcrel_diff(TCGContext
*s
, void *target
)
1160 return tcg_ptr_byte_diff(target
, s
->code_ptr
);
1164 * tcg_current_code_size
1165 * @s: the tcg context
1167 * Compute the current code size within the translation block.
1168 * This is used to fill in qemu's data structures for goto_tb.
1171 static inline size_t tcg_current_code_size(TCGContext
*s
)
1173 return tcg_ptr_byte_diff(s
->code_ptr
, s
->code_buf
);
1176 /* Combine the TCGMemOp and mmu_idx parameters into a single value. */
1177 typedef uint32_t TCGMemOpIdx
;
1181 * @op: memory operation
1184 * Encode these values into a single parameter.
1186 static inline TCGMemOpIdx
make_memop_idx(TCGMemOp op
, unsigned idx
)
1188 tcg_debug_assert(idx
<= 15);
1189 return (op
<< 4) | idx
;
1194 * @oi: combined op/idx parameter
1196 * Extract the memory operation from the combined value.
1198 static inline TCGMemOp
get_memop(TCGMemOpIdx oi
)
1205 * @oi: combined op/idx parameter
1207 * Extract the mmu index from the combined value.
1209 static inline unsigned get_mmuidx(TCGMemOpIdx oi
)
1216 * @env: pointer to CPUArchState for the CPU
1217 * @tb_ptr: address of generated code for the TB to execute
1219 * Start executing code from a given translation block.
1220 * Where translation blocks have been linked, execution
1221 * may proceed from the given TB into successive ones.
1222 * Control eventually returns only when some action is needed
1223 * from the top-level loop: either control must pass to a TB
1224 * which has not yet been directly linked, or an asynchronous
1225 * event such as an interrupt needs handling.
1227 * Return: The return value is the value passed to the corresponding
1228 * tcg_gen_exit_tb() at translation time of the last TB attempted to execute.
1229 * The value is either zero or a 4-byte aligned pointer to that TB combined
1230 * with additional information in its two least significant bits. The
1231 * additional information is encoded as follows:
1232 * 0, 1: the link between this TB and the next is via the specified
1233 * TB index (0 or 1). That is, we left the TB via (the equivalent
1234 * of) "goto_tb <index>". The main loop uses this to determine
1235 * how to link the TB just executed to the next.
1236 * 2: we are using instruction counting code generation, and we
1237 * did not start executing this TB because the instruction counter
1238 * would hit zero midway through it. In this case the pointer
1239 * returned is the TB we were about to execute, and the caller must
1240 * arrange to execute the remaining count of instructions.
1241 * 3: we stopped because the CPU's exit_request flag was set
1242 * (usually meaning that there is an interrupt that needs to be
1243 * handled). The pointer returned is the TB we were about to execute
1244 * when we noticed the pending exit request.
1246 * If the bottom two bits indicate an exit-via-index then the CPU
1247 * state is correctly synchronised and ready for execution of the next
1248 * TB (and in particular the guest PC is the address to execute next).
1249 * Otherwise, we gave up on execution of this TB before it started, and
1250 * the caller must fix up the CPU state by calling the CPU's
1251 * synchronize_from_tb() method with the TB pointer we return (falling
1252 * back to calling the CPU's set_pc method with tb->pb if no
1253 * synchronize_from_tb() method exists).
1255 * Note that TCG targets may use a different definition of tcg_qemu_tb_exec
1256 * to this default (which just calls the prologue.code emitted by
1257 * tcg_target_qemu_prologue()).
1259 #define TB_EXIT_MASK 3
1260 #define TB_EXIT_IDX0 0
1261 #define TB_EXIT_IDX1 1
1262 #define TB_EXIT_IDXMAX 1
1263 #define TB_EXIT_REQUESTED 3
1265 #ifdef HAVE_TCG_QEMU_TB_EXEC
1266 uintptr_t tcg_qemu_tb_exec(CPUArchState
*env
, uint8_t *tb_ptr
);
1268 # define tcg_qemu_tb_exec(env, tb_ptr) \
1269 ((uintptr_t (*)(void *, void *))tcg_ctx->code_gen_prologue)(env, tb_ptr)
1272 void tcg_register_jit(void *buf
, size_t buf_size
);
1274 #if TCG_TARGET_MAYBE_vec
1275 /* Return zero if the tuple (opc, type, vece) is unsupportable;
1276 return > 0 if it is directly supportable;
1277 return < 0 if we must call tcg_expand_vec_op. */
1278 int tcg_can_emit_vec_op(TCGOpcode
, TCGType
, unsigned);
1280 static inline int tcg_can_emit_vec_op(TCGOpcode o
, TCGType t
, unsigned ve
)
1286 /* Expand the tuple (opc, type, vece) on the given arguments. */
1287 void tcg_expand_vec_op(TCGOpcode
, TCGType
, unsigned, TCGArg
, ...);
1289 /* Replicate a constant C accoring to the log2 of the element size. */
1290 uint64_t dup_const(unsigned vece
, uint64_t c
);
1292 #define dup_const(VECE, C) \
1293 (__builtin_constant_p(VECE) \
1294 ? ( (VECE) == MO_8 ? 0x0101010101010101ull * (uint8_t)(C) \
1295 : (VECE) == MO_16 ? 0x0001000100010001ull * (uint16_t)(C) \
1296 : (VECE) == MO_32 ? 0x0000000100000001ull * (uint32_t)(C) \
1297 : dup_const(VECE, C)) \
1298 : dup_const(VECE, C))
1302 * Memory helpers that will be used by TCG generated code.
1304 #ifdef CONFIG_SOFTMMU
1305 /* Value zero-extended to tcg register size. */
1306 tcg_target_ulong
helper_ret_ldub_mmu(CPUArchState
*env
, target_ulong addr
,
1307 TCGMemOpIdx oi
, uintptr_t retaddr
);
1308 tcg_target_ulong
helper_le_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
1309 TCGMemOpIdx oi
, uintptr_t retaddr
);
1310 tcg_target_ulong
helper_le_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
1311 TCGMemOpIdx oi
, uintptr_t retaddr
);
1312 uint64_t helper_le_ldq_mmu(CPUArchState
*env
, target_ulong addr
,
1313 TCGMemOpIdx oi
, uintptr_t retaddr
);
1314 tcg_target_ulong
helper_be_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
1315 TCGMemOpIdx oi
, uintptr_t retaddr
);
1316 tcg_target_ulong
helper_be_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
1317 TCGMemOpIdx oi
, uintptr_t retaddr
);
1318 uint64_t helper_be_ldq_mmu(CPUArchState
*env
, target_ulong addr
,
1319 TCGMemOpIdx oi
, uintptr_t retaddr
);
1321 /* Value sign-extended to tcg register size. */
1322 tcg_target_ulong
helper_ret_ldsb_mmu(CPUArchState
*env
, target_ulong addr
,
1323 TCGMemOpIdx oi
, uintptr_t retaddr
);
1324 tcg_target_ulong
helper_le_ldsw_mmu(CPUArchState
*env
, target_ulong addr
,
1325 TCGMemOpIdx oi
, uintptr_t retaddr
);
1326 tcg_target_ulong
helper_le_ldsl_mmu(CPUArchState
*env
, target_ulong addr
,
1327 TCGMemOpIdx oi
, uintptr_t retaddr
);
1328 tcg_target_ulong
helper_be_ldsw_mmu(CPUArchState
*env
, target_ulong addr
,
1329 TCGMemOpIdx oi
, uintptr_t retaddr
);
1330 tcg_target_ulong
helper_be_ldsl_mmu(CPUArchState
*env
, target_ulong addr
,
1331 TCGMemOpIdx oi
, uintptr_t retaddr
);
1333 void helper_ret_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint8_t val
,
1334 TCGMemOpIdx oi
, uintptr_t retaddr
);
1335 void helper_le_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
1336 TCGMemOpIdx oi
, uintptr_t retaddr
);
1337 void helper_le_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
1338 TCGMemOpIdx oi
, uintptr_t retaddr
);
1339 void helper_le_stq_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
1340 TCGMemOpIdx oi
, uintptr_t retaddr
);
1341 void helper_be_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
1342 TCGMemOpIdx oi
, uintptr_t retaddr
);
1343 void helper_be_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
1344 TCGMemOpIdx oi
, uintptr_t retaddr
);
1345 void helper_be_stq_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
1346 TCGMemOpIdx oi
, uintptr_t retaddr
);
1348 uint8_t helper_ret_ldb_cmmu(CPUArchState
*env
, target_ulong addr
,
1349 TCGMemOpIdx oi
, uintptr_t retaddr
);
1350 uint16_t helper_le_ldw_cmmu(CPUArchState
*env
, target_ulong addr
,
1351 TCGMemOpIdx oi
, uintptr_t retaddr
);
1352 uint32_t helper_le_ldl_cmmu(CPUArchState
*env
, target_ulong addr
,
1353 TCGMemOpIdx oi
, uintptr_t retaddr
);
1354 uint64_t helper_le_ldq_cmmu(CPUArchState
*env
, target_ulong addr
,
1355 TCGMemOpIdx oi
, uintptr_t retaddr
);
1356 uint16_t helper_be_ldw_cmmu(CPUArchState
*env
, target_ulong addr
,
1357 TCGMemOpIdx oi
, uintptr_t retaddr
);
1358 uint32_t helper_be_ldl_cmmu(CPUArchState
*env
, target_ulong addr
,
1359 TCGMemOpIdx oi
, uintptr_t retaddr
);
1360 uint64_t helper_be_ldq_cmmu(CPUArchState
*env
, target_ulong addr
,
1361 TCGMemOpIdx oi
, uintptr_t retaddr
);
1363 /* Temporary aliases until backends are converted. */
1364 #ifdef TARGET_WORDS_BIGENDIAN
1365 # define helper_ret_ldsw_mmu helper_be_ldsw_mmu
1366 # define helper_ret_lduw_mmu helper_be_lduw_mmu
1367 # define helper_ret_ldsl_mmu helper_be_ldsl_mmu
1368 # define helper_ret_ldul_mmu helper_be_ldul_mmu
1369 # define helper_ret_ldl_mmu helper_be_ldul_mmu
1370 # define helper_ret_ldq_mmu helper_be_ldq_mmu
1371 # define helper_ret_stw_mmu helper_be_stw_mmu
1372 # define helper_ret_stl_mmu helper_be_stl_mmu
1373 # define helper_ret_stq_mmu helper_be_stq_mmu
1374 # define helper_ret_ldw_cmmu helper_be_ldw_cmmu
1375 # define helper_ret_ldl_cmmu helper_be_ldl_cmmu
1376 # define helper_ret_ldq_cmmu helper_be_ldq_cmmu
1378 # define helper_ret_ldsw_mmu helper_le_ldsw_mmu
1379 # define helper_ret_lduw_mmu helper_le_lduw_mmu
1380 # define helper_ret_ldsl_mmu helper_le_ldsl_mmu
1381 # define helper_ret_ldul_mmu helper_le_ldul_mmu
1382 # define helper_ret_ldl_mmu helper_le_ldul_mmu
1383 # define helper_ret_ldq_mmu helper_le_ldq_mmu
1384 # define helper_ret_stw_mmu helper_le_stw_mmu
1385 # define helper_ret_stl_mmu helper_le_stl_mmu
1386 # define helper_ret_stq_mmu helper_le_stq_mmu
1387 # define helper_ret_ldw_cmmu helper_le_ldw_cmmu
1388 # define helper_ret_ldl_cmmu helper_le_ldl_cmmu
1389 # define helper_ret_ldq_cmmu helper_le_ldq_cmmu
1392 uint32_t helper_atomic_cmpxchgb_mmu(CPUArchState
*env
, target_ulong addr
,
1393 uint32_t cmpv
, uint32_t newv
,
1394 TCGMemOpIdx oi
, uintptr_t retaddr
);
1395 uint32_t helper_atomic_cmpxchgw_le_mmu(CPUArchState
*env
, target_ulong addr
,
1396 uint32_t cmpv
, uint32_t newv
,
1397 TCGMemOpIdx oi
, uintptr_t retaddr
);
1398 uint32_t helper_atomic_cmpxchgl_le_mmu(CPUArchState
*env
, target_ulong addr
,
1399 uint32_t cmpv
, uint32_t newv
,
1400 TCGMemOpIdx oi
, uintptr_t retaddr
);
1401 uint64_t helper_atomic_cmpxchgq_le_mmu(CPUArchState
*env
, target_ulong addr
,
1402 uint64_t cmpv
, uint64_t newv
,
1403 TCGMemOpIdx oi
, uintptr_t retaddr
);
1404 uint32_t helper_atomic_cmpxchgw_be_mmu(CPUArchState
*env
, target_ulong addr
,
1405 uint32_t cmpv
, uint32_t newv
,
1406 TCGMemOpIdx oi
, uintptr_t retaddr
);
1407 uint32_t helper_atomic_cmpxchgl_be_mmu(CPUArchState
*env
, target_ulong addr
,
1408 uint32_t cmpv
, uint32_t newv
,
1409 TCGMemOpIdx oi
, uintptr_t retaddr
);
1410 uint64_t helper_atomic_cmpxchgq_be_mmu(CPUArchState
*env
, target_ulong addr
,
1411 uint64_t cmpv
, uint64_t newv
,
1412 TCGMemOpIdx oi
, uintptr_t retaddr
);
1414 #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \
1415 TYPE helper_atomic_ ## NAME ## SUFFIX ## _mmu \
1416 (CPUArchState *env, target_ulong addr, TYPE val, \
1417 TCGMemOpIdx oi, uintptr_t retaddr);
1419 #ifdef CONFIG_ATOMIC64
1420 #define GEN_ATOMIC_HELPER_ALL(NAME) \
1421 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
1422 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
1423 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
1424 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
1425 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \
1426 GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \
1427 GEN_ATOMIC_HELPER(NAME, uint64_t, q_be)
1429 #define GEN_ATOMIC_HELPER_ALL(NAME) \
1430 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
1431 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
1432 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
1433 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
1434 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be)
1437 GEN_ATOMIC_HELPER_ALL(fetch_add
)
1438 GEN_ATOMIC_HELPER_ALL(fetch_sub
)
1439 GEN_ATOMIC_HELPER_ALL(fetch_and
)
1440 GEN_ATOMIC_HELPER_ALL(fetch_or
)
1441 GEN_ATOMIC_HELPER_ALL(fetch_xor
)
1442 GEN_ATOMIC_HELPER_ALL(fetch_smin
)
1443 GEN_ATOMIC_HELPER_ALL(fetch_umin
)
1444 GEN_ATOMIC_HELPER_ALL(fetch_smax
)
1445 GEN_ATOMIC_HELPER_ALL(fetch_umax
)
1447 GEN_ATOMIC_HELPER_ALL(add_fetch
)
1448 GEN_ATOMIC_HELPER_ALL(sub_fetch
)
1449 GEN_ATOMIC_HELPER_ALL(and_fetch
)
1450 GEN_ATOMIC_HELPER_ALL(or_fetch
)
1451 GEN_ATOMIC_HELPER_ALL(xor_fetch
)
1452 GEN_ATOMIC_HELPER_ALL(smin_fetch
)
1453 GEN_ATOMIC_HELPER_ALL(umin_fetch
)
1454 GEN_ATOMIC_HELPER_ALL(smax_fetch
)
1455 GEN_ATOMIC_HELPER_ALL(umax_fetch
)
1457 GEN_ATOMIC_HELPER_ALL(xchg
)
1459 #undef GEN_ATOMIC_HELPER_ALL
1460 #undef GEN_ATOMIC_HELPER
1461 #endif /* CONFIG_SOFTMMU */
1464 * These aren't really a "proper" helpers because TCG cannot manage Int128.
1465 * However, use the same format as the others, for use by the backends.
1467 * The cmpxchg functions are only defined if HAVE_CMPXCHG128;
1468 * the ld/st functions are only defined if HAVE_ATOMIC128,
1469 * as defined by <qemu/atomic128.h>.
1471 Int128
helper_atomic_cmpxchgo_le_mmu(CPUArchState
*env
, target_ulong addr
,
1472 Int128 cmpv
, Int128 newv
,
1473 TCGMemOpIdx oi
, uintptr_t retaddr
);
1474 Int128
helper_atomic_cmpxchgo_be_mmu(CPUArchState
*env
, target_ulong addr
,
1475 Int128 cmpv
, Int128 newv
,
1476 TCGMemOpIdx oi
, uintptr_t retaddr
);
1478 Int128
helper_atomic_ldo_le_mmu(CPUArchState
*env
, target_ulong addr
,
1479 TCGMemOpIdx oi
, uintptr_t retaddr
);
1480 Int128
helper_atomic_ldo_be_mmu(CPUArchState
*env
, target_ulong addr
,
1481 TCGMemOpIdx oi
, uintptr_t retaddr
);
1482 void helper_atomic_sto_le_mmu(CPUArchState
*env
, target_ulong addr
, Int128 val
,
1483 TCGMemOpIdx oi
, uintptr_t retaddr
);
1484 void helper_atomic_sto_be_mmu(CPUArchState
*env
, target_ulong addr
, Int128 val
,
1485 TCGMemOpIdx oi
, uintptr_t retaddr
);