4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
30 #include "qemu/osdep.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/xen/xen.h"
34 #include "qemu/timer.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
52 #include "exec/ram_addr.h"
54 #include "qemu/range.h"
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 static bool in_migration
;
61 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
63 static MemoryRegion
*system_memory
;
64 static MemoryRegion
*system_io
;
66 AddressSpace address_space_io
;
67 AddressSpace address_space_memory
;
69 MemoryRegion io_mem_rom
, io_mem_notdirty
;
70 static MemoryRegion io_mem_unassigned
;
72 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
73 #define RAM_PREALLOC (1 << 0)
75 /* RAM is mmap-ed with MAP_SHARED */
76 #define RAM_SHARED (1 << 1)
80 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
81 /* current CPU in the current thread. It is only valid inside
83 DEFINE_TLS(CPUState
*, current_cpu
);
84 /* 0 = Do not count executed instructions.
85 1 = Precise instruction counting.
86 2 = Adaptive rate instruction counting. */
89 #if !defined(CONFIG_USER_ONLY)
91 typedef struct PhysPageEntry PhysPageEntry
;
93 struct PhysPageEntry
{
94 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
96 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
100 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define ADDR_SPACE_BITS 64
106 #define P_L2_SIZE (1 << P_L2_BITS)
108 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
110 typedef PhysPageEntry Node
[P_L2_SIZE
];
112 typedef struct PhysPageMap
{
113 unsigned sections_nb
;
114 unsigned sections_nb_alloc
;
116 unsigned nodes_nb_alloc
;
118 MemoryRegionSection
*sections
;
121 struct AddressSpaceDispatch
{
122 /* This is a multi-level map on the physical address space.
123 * The bottom level has pointers to MemoryRegionSections.
125 PhysPageEntry phys_map
;
130 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
131 typedef struct subpage_t
{
135 uint16_t sub_section
[TARGET_PAGE_SIZE
];
138 #define PHYS_SECTION_UNASSIGNED 0
139 #define PHYS_SECTION_NOTDIRTY 1
140 #define PHYS_SECTION_ROM 2
141 #define PHYS_SECTION_WATCH 3
143 static void io_mem_init(void);
144 static void memory_map_init(void);
145 static void tcg_commit(MemoryListener
*listener
);
147 static MemoryRegion io_mem_watch
;
150 #if !defined(CONFIG_USER_ONLY)
152 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
154 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
155 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
156 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
157 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
161 static uint32_t phys_map_node_alloc(PhysPageMap
*map
)
166 ret
= map
->nodes_nb
++;
167 assert(ret
!= PHYS_MAP_NODE_NIL
);
168 assert(ret
!= map
->nodes_nb_alloc
);
169 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
170 map
->nodes
[ret
][i
].skip
= 1;
171 map
->nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
176 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
177 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
182 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
184 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
185 lp
->ptr
= phys_map_node_alloc(map
);
186 p
= map
->nodes
[lp
->ptr
];
188 for (i
= 0; i
< P_L2_SIZE
; i
++) {
190 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
194 p
= map
->nodes
[lp
->ptr
];
196 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
198 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
199 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
205 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
211 static void phys_page_set(AddressSpaceDispatch
*d
,
212 hwaddr index
, hwaddr nb
,
215 /* Wildly overreserve - it doesn't matter much. */
216 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
218 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
221 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
222 * and update our entry so we can skip it and go directly to the destination.
224 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
226 unsigned valid_ptr
= P_L2_SIZE
;
231 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
236 for (i
= 0; i
< P_L2_SIZE
; i
++) {
237 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
244 phys_page_compact(&p
[i
], nodes
, compacted
);
248 /* We can only compress if there's only one child. */
253 assert(valid_ptr
< P_L2_SIZE
);
255 /* Don't compress if it won't fit in the # of bits we have. */
256 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
260 lp
->ptr
= p
[valid_ptr
].ptr
;
261 if (!p
[valid_ptr
].skip
) {
262 /* If our only child is a leaf, make this a leaf. */
263 /* By design, we should have made this node a leaf to begin with so we
264 * should never reach here.
265 * But since it's so simple to handle this, let's do it just in case we
270 lp
->skip
+= p
[valid_ptr
].skip
;
274 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
276 DECLARE_BITMAP(compacted
, nodes_nb
);
278 if (d
->phys_map
.skip
) {
279 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
283 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
284 Node
*nodes
, MemoryRegionSection
*sections
)
287 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
290 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
291 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
292 return §ions
[PHYS_SECTION_UNASSIGNED
];
295 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
298 if (sections
[lp
.ptr
].size
.hi
||
299 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
300 sections
[lp
.ptr
].size
.lo
, addr
)) {
301 return §ions
[lp
.ptr
];
303 return §ions
[PHYS_SECTION_UNASSIGNED
];
307 bool memory_region_is_unassigned(MemoryRegion
*mr
)
309 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
310 && mr
!= &io_mem_watch
;
313 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
315 bool resolve_subpage
)
317 MemoryRegionSection
*section
;
320 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
321 if (resolve_subpage
&& section
->mr
->subpage
) {
322 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
323 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
328 static MemoryRegionSection
*
329 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
330 hwaddr
*plen
, bool resolve_subpage
)
332 MemoryRegionSection
*section
;
335 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
336 /* Compute offset within MemoryRegionSection */
337 addr
-= section
->offset_within_address_space
;
339 /* Compute offset within MemoryRegion */
340 *xlat
= addr
+ section
->offset_within_region
;
342 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
343 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
347 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
349 if (memory_region_is_ram(mr
)) {
350 return !(is_write
&& mr
->readonly
);
352 if (memory_region_is_romd(mr
)) {
359 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
360 hwaddr
*xlat
, hwaddr
*plen
,
364 MemoryRegionSection
*section
;
369 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
372 if (!mr
->iommu_ops
) {
376 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
377 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
378 | (addr
& iotlb
.addr_mask
));
379 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
380 if (!(iotlb
.perm
& (1 << is_write
))) {
381 mr
= &io_mem_unassigned
;
385 as
= iotlb
.target_as
;
388 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
389 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
390 len
= MIN(page
, len
);
398 MemoryRegionSection
*
399 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
402 MemoryRegionSection
*section
;
403 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
405 assert(!section
->mr
->iommu_ops
);
410 void cpu_exec_init_all(void)
412 #if !defined(CONFIG_USER_ONLY)
413 qemu_mutex_init(&ram_list
.mutex
);
419 #if !defined(CONFIG_USER_ONLY)
421 static int cpu_common_post_load(void *opaque
, int version_id
)
423 CPUState
*cpu
= opaque
;
425 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
426 version_id is increased. */
427 cpu
->interrupt_request
&= ~0x01;
433 static int cpu_common_pre_load(void *opaque
)
435 CPUState
*cpu
= opaque
;
437 cpu
->exception_index
= 0;
442 static bool cpu_common_exception_index_needed(void *opaque
)
444 CPUState
*cpu
= opaque
;
446 return cpu
->exception_index
!= 0;
449 static const VMStateDescription vmstate_cpu_common_exception_index
= {
450 .name
= "cpu_common/exception_index",
452 .minimum_version_id
= 1,
453 .fields
= (VMStateField
[]) {
454 VMSTATE_INT32(exception_index
, CPUState
),
455 VMSTATE_END_OF_LIST()
459 const VMStateDescription vmstate_cpu_common
= {
460 .name
= "cpu_common",
462 .minimum_version_id
= 1,
463 .pre_load
= cpu_common_pre_load
,
464 .post_load
= cpu_common_post_load
,
465 .fields
= (VMStateField
[]) {
466 VMSTATE_UINT32(halted
, CPUState
),
467 VMSTATE_UINT32(interrupt_request
, CPUState
),
468 VMSTATE_END_OF_LIST()
470 .subsections
= (VMStateSubsection
[]) {
472 .vmsd
= &vmstate_cpu_common_exception_index
,
473 .needed
= cpu_common_exception_index_needed
,
482 CPUState
*qemu_get_cpu(int index
)
487 if (cpu
->cpu_index
== index
) {
495 #if !defined(CONFIG_USER_ONLY)
496 void tcg_cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
)
498 /* We only support one address space per cpu at the moment. */
499 assert(cpu
->as
== as
);
501 if (cpu
->tcg_as_listener
) {
502 memory_listener_unregister(cpu
->tcg_as_listener
);
504 cpu
->tcg_as_listener
= g_new0(MemoryListener
, 1);
506 cpu
->tcg_as_listener
->commit
= tcg_commit
;
507 memory_listener_register(cpu
->tcg_as_listener
, as
);
511 void cpu_exec_init(CPUArchState
*env
)
513 CPUState
*cpu
= ENV_GET_CPU(env
);
514 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
518 #if defined(CONFIG_USER_ONLY)
522 CPU_FOREACH(some_cpu
) {
525 cpu
->cpu_index
= cpu_index
;
527 QTAILQ_INIT(&cpu
->breakpoints
);
528 QTAILQ_INIT(&cpu
->watchpoints
);
529 #ifndef CONFIG_USER_ONLY
530 cpu
->as
= &address_space_memory
;
531 cpu
->thread_id
= qemu_get_thread_id();
533 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
534 #if defined(CONFIG_USER_ONLY)
537 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
538 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
540 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
541 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
542 cpu_save
, cpu_load
, env
);
543 assert(cc
->vmsd
== NULL
);
544 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
546 if (cc
->vmsd
!= NULL
) {
547 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
551 #if defined(TARGET_HAS_ICE)
552 #if defined(CONFIG_USER_ONLY)
553 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
555 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
558 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
560 hwaddr phys
= cpu_get_phys_page_debug(cpu
, pc
);
562 tb_invalidate_phys_addr(cpu
->as
,
563 phys
| (pc
& ~TARGET_PAGE_MASK
));
567 #endif /* TARGET_HAS_ICE */
569 #if defined(CONFIG_USER_ONLY)
570 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
575 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
581 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
585 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
586 int flags
, CPUWatchpoint
**watchpoint
)
591 /* Add a watchpoint. */
592 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
593 int flags
, CPUWatchpoint
**watchpoint
)
597 /* forbid ranges which are empty or run off the end of the address space */
598 if (len
== 0 || (addr
+ len
- 1) <= addr
) {
599 error_report("tried to set invalid watchpoint at %"
600 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
603 wp
= g_malloc(sizeof(*wp
));
609 /* keep all GDB-injected watchpoints in front */
610 if (flags
& BP_GDB
) {
611 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
613 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
616 tlb_flush_page(cpu
, addr
);
623 /* Remove a specific watchpoint. */
624 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
629 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
630 if (addr
== wp
->vaddr
&& len
== wp
->len
631 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
632 cpu_watchpoint_remove_by_ref(cpu
, wp
);
639 /* Remove a specific watchpoint by reference. */
640 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
642 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
644 tlb_flush_page(cpu
, watchpoint
->vaddr
);
649 /* Remove all matching watchpoints. */
650 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
652 CPUWatchpoint
*wp
, *next
;
654 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
655 if (wp
->flags
& mask
) {
656 cpu_watchpoint_remove_by_ref(cpu
, wp
);
661 /* Return true if this watchpoint address matches the specified
662 * access (ie the address range covered by the watchpoint overlaps
663 * partially or completely with the address range covered by the
666 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
670 /* We know the lengths are non-zero, but a little caution is
671 * required to avoid errors in the case where the range ends
672 * exactly at the top of the address space and so addr + len
673 * wraps round to zero.
675 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
676 vaddr addrend
= addr
+ len
- 1;
678 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
683 /* Add a breakpoint. */
684 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
685 CPUBreakpoint
**breakpoint
)
687 #if defined(TARGET_HAS_ICE)
690 bp
= g_malloc(sizeof(*bp
));
695 /* keep all GDB-injected breakpoints in front */
696 if (flags
& BP_GDB
) {
697 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
699 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
702 breakpoint_invalidate(cpu
, pc
);
713 /* Remove a specific breakpoint. */
714 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
716 #if defined(TARGET_HAS_ICE)
719 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
720 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
721 cpu_breakpoint_remove_by_ref(cpu
, bp
);
731 /* Remove a specific breakpoint by reference. */
732 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
734 #if defined(TARGET_HAS_ICE)
735 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
737 breakpoint_invalidate(cpu
, breakpoint
->pc
);
743 /* Remove all matching breakpoints. */
744 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
746 #if defined(TARGET_HAS_ICE)
747 CPUBreakpoint
*bp
, *next
;
749 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
750 if (bp
->flags
& mask
) {
751 cpu_breakpoint_remove_by_ref(cpu
, bp
);
757 /* enable or disable single step mode. EXCP_DEBUG is returned by the
758 CPU loop after each instruction */
759 void cpu_single_step(CPUState
*cpu
, int enabled
)
761 #if defined(TARGET_HAS_ICE)
762 if (cpu
->singlestep_enabled
!= enabled
) {
763 cpu
->singlestep_enabled
= enabled
;
765 kvm_update_guest_debug(cpu
, 0);
767 /* must flush all the translated code to avoid inconsistencies */
768 /* XXX: only flush what is necessary */
769 CPUArchState
*env
= cpu
->env_ptr
;
776 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
783 fprintf(stderr
, "qemu: fatal: ");
784 vfprintf(stderr
, fmt
, ap
);
785 fprintf(stderr
, "\n");
786 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
787 if (qemu_log_enabled()) {
788 qemu_log("qemu: fatal: ");
789 qemu_log_vprintf(fmt
, ap2
);
791 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
797 #if defined(CONFIG_USER_ONLY)
799 struct sigaction act
;
800 sigfillset(&act
.sa_mask
);
801 act
.sa_handler
= SIG_DFL
;
802 sigaction(SIGABRT
, &act
, NULL
);
808 #if !defined(CONFIG_USER_ONLY)
809 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
813 /* The list is protected by the iothread lock here. */
814 block
= ram_list
.mru_block
;
815 if (block
&& addr
- block
->offset
< block
->length
) {
818 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
819 if (addr
- block
->offset
< block
->length
) {
824 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
828 ram_list
.mru_block
= block
;
832 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
838 end
= TARGET_PAGE_ALIGN(start
+ length
);
839 start
&= TARGET_PAGE_MASK
;
841 block
= qemu_get_ram_block(start
);
842 assert(block
== qemu_get_ram_block(end
- 1));
843 start1
= (uintptr_t)block
->host
+ (start
- block
->offset
);
844 cpu_tlb_reset_dirty_all(start1
, length
);
847 /* Note: start and end must be within the same ram block. */
848 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t length
,
853 cpu_physical_memory_clear_dirty_range(start
, length
, client
);
856 tlb_reset_dirty_range_all(start
, length
);
860 static void cpu_physical_memory_set_dirty_tracking(bool enable
)
862 in_migration
= enable
;
865 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
866 MemoryRegionSection
*section
,
868 hwaddr paddr
, hwaddr xlat
,
870 target_ulong
*address
)
875 if (memory_region_is_ram(section
->mr
)) {
877 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
879 if (!section
->readonly
) {
880 iotlb
|= PHYS_SECTION_NOTDIRTY
;
882 iotlb
|= PHYS_SECTION_ROM
;
885 iotlb
= section
- section
->address_space
->dispatch
->map
.sections
;
889 /* Make accesses to pages with watchpoints go via the
890 watchpoint trap routines. */
891 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
892 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
893 /* Avoid trapping reads of pages with a write breakpoint. */
894 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
895 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
896 *address
|= TLB_MMIO
;
904 #endif /* defined(CONFIG_USER_ONLY) */
906 #if !defined(CONFIG_USER_ONLY)
908 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
910 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
912 static void *(*phys_mem_alloc
)(size_t size
) = qemu_anon_ram_alloc
;
915 * Set a custom physical guest memory alloator.
916 * Accelerators with unusual needs may need this. Hopefully, we can
917 * get rid of it eventually.
919 void phys_mem_set_alloc(void *(*alloc
)(size_t))
921 phys_mem_alloc
= alloc
;
924 static uint16_t phys_section_add(PhysPageMap
*map
,
925 MemoryRegionSection
*section
)
927 /* The physical section number is ORed with a page-aligned
928 * pointer to produce the iotlb entries. Thus it should
929 * never overflow into the page-aligned value.
931 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
933 if (map
->sections_nb
== map
->sections_nb_alloc
) {
934 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
935 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
936 map
->sections_nb_alloc
);
938 map
->sections
[map
->sections_nb
] = *section
;
939 memory_region_ref(section
->mr
);
940 return map
->sections_nb
++;
943 static void phys_section_destroy(MemoryRegion
*mr
)
945 memory_region_unref(mr
);
948 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
949 object_unref(OBJECT(&subpage
->iomem
));
954 static void phys_sections_free(PhysPageMap
*map
)
956 while (map
->sections_nb
> 0) {
957 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
958 phys_section_destroy(section
->mr
);
960 g_free(map
->sections
);
964 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
967 hwaddr base
= section
->offset_within_address_space
969 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
970 d
->map
.nodes
, d
->map
.sections
);
971 MemoryRegionSection subsection
= {
972 .offset_within_address_space
= base
,
973 .size
= int128_make64(TARGET_PAGE_SIZE
),
977 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
979 if (!(existing
->mr
->subpage
)) {
980 subpage
= subpage_init(d
->as
, base
);
981 subsection
.address_space
= d
->as
;
982 subsection
.mr
= &subpage
->iomem
;
983 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
984 phys_section_add(&d
->map
, &subsection
));
986 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
988 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
989 end
= start
+ int128_get64(section
->size
) - 1;
990 subpage_register(subpage
, start
, end
,
991 phys_section_add(&d
->map
, section
));
995 static void register_multipage(AddressSpaceDispatch
*d
,
996 MemoryRegionSection
*section
)
998 hwaddr start_addr
= section
->offset_within_address_space
;
999 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1000 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1004 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1007 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1009 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1010 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1011 MemoryRegionSection now
= *section
, remain
= *section
;
1012 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1014 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1015 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1016 - now
.offset_within_address_space
;
1018 now
.size
= int128_min(int128_make64(left
), now
.size
);
1019 register_subpage(d
, &now
);
1021 now
.size
= int128_zero();
1023 while (int128_ne(remain
.size
, now
.size
)) {
1024 remain
.size
= int128_sub(remain
.size
, now
.size
);
1025 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1026 remain
.offset_within_region
+= int128_get64(now
.size
);
1028 if (int128_lt(remain
.size
, page_size
)) {
1029 register_subpage(d
, &now
);
1030 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1031 now
.size
= page_size
;
1032 register_subpage(d
, &now
);
1034 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1035 register_multipage(d
, &now
);
1040 void qemu_flush_coalesced_mmio_buffer(void)
1043 kvm_flush_coalesced_mmio_buffer();
1046 void qemu_mutex_lock_ramlist(void)
1048 qemu_mutex_lock(&ram_list
.mutex
);
1051 void qemu_mutex_unlock_ramlist(void)
1053 qemu_mutex_unlock(&ram_list
.mutex
);
1058 #include <sys/vfs.h>
1060 #define HUGETLBFS_MAGIC 0x958458f6
1062 static long gethugepagesize(const char *path
)
1068 ret
= statfs(path
, &fs
);
1069 } while (ret
!= 0 && errno
== EINTR
);
1076 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
1077 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
1082 static void *file_ram_alloc(RAMBlock
*block
,
1088 char *sanitized_name
;
1092 unsigned long hpagesize
;
1094 hpagesize
= gethugepagesize(path
);
1099 if (memory
< hpagesize
) {
1103 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1105 "host lacks kvm mmu notifiers, -mem-path unsupported");
1109 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1110 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1111 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1116 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1118 g_free(sanitized_name
);
1120 fd
= mkstemp(filename
);
1122 error_setg_errno(errp
, errno
,
1123 "unable to create backing store for hugepages");
1130 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
1133 * ftruncate is not supported by hugetlbfs in older
1134 * hosts, so don't bother bailing out on errors.
1135 * If anything goes wrong with it under other filesystems,
1138 if (ftruncate(fd
, memory
)) {
1139 perror("ftruncate");
1142 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
,
1143 (block
->flags
& RAM_SHARED
? MAP_SHARED
: MAP_PRIVATE
),
1145 if (area
== MAP_FAILED
) {
1146 error_setg_errno(errp
, errno
,
1147 "unable to map backing store for hugepages");
1153 os_mem_prealloc(fd
, area
, memory
);
1167 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1169 RAMBlock
*block
, *next_block
;
1170 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1172 assert(size
!= 0); /* it would hand out same offset multiple times */
1174 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1177 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1178 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1180 end
= block
->offset
+ block
->length
;
1182 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1183 if (next_block
->offset
>= end
) {
1184 next
= MIN(next
, next_block
->offset
);
1187 if (next
- end
>= size
&& next
- end
< mingap
) {
1189 mingap
= next
- end
;
1193 if (offset
== RAM_ADDR_MAX
) {
1194 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1202 ram_addr_t
last_ram_offset(void)
1205 ram_addr_t last
= 0;
1207 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1208 last
= MAX(last
, block
->offset
+ block
->length
);
1213 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1217 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1218 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1219 "dump-guest-core", true)) {
1220 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1222 perror("qemu_madvise");
1223 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1224 "but dump_guest_core=off specified\n");
1229 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1233 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1234 if (block
->offset
== addr
) {
1242 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1244 RAMBlock
*new_block
= find_ram_block(addr
);
1248 assert(!new_block
->idstr
[0]);
1251 char *id
= qdev_get_dev_path(dev
);
1253 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1257 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1259 /* This assumes the iothread lock is taken here too. */
1260 qemu_mutex_lock_ramlist();
1261 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1262 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1263 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1268 qemu_mutex_unlock_ramlist();
1271 void qemu_ram_unset_idstr(ram_addr_t addr
)
1273 RAMBlock
*block
= find_ram_block(addr
);
1276 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1280 static int memory_try_enable_merging(void *addr
, size_t len
)
1282 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1283 /* disabled by the user */
1287 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1290 static ram_addr_t
ram_block_add(RAMBlock
*new_block
)
1293 ram_addr_t old_ram_size
, new_ram_size
;
1295 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1297 /* This assumes the iothread lock is taken here too. */
1298 qemu_mutex_lock_ramlist();
1299 new_block
->offset
= find_ram_offset(new_block
->length
);
1301 if (!new_block
->host
) {
1302 if (xen_enabled()) {
1303 xen_ram_alloc(new_block
->offset
, new_block
->length
, new_block
->mr
);
1305 new_block
->host
= phys_mem_alloc(new_block
->length
);
1306 if (!new_block
->host
) {
1307 fprintf(stderr
, "Cannot set up guest memory '%s': %s\n",
1308 memory_region_name(new_block
->mr
), strerror(errno
));
1311 memory_try_enable_merging(new_block
->host
, new_block
->length
);
1315 /* Keep the list sorted from biggest to smallest block. */
1316 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1317 if (block
->length
< new_block
->length
) {
1322 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1324 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1326 ram_list
.mru_block
= NULL
;
1329 qemu_mutex_unlock_ramlist();
1331 new_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1333 if (new_ram_size
> old_ram_size
) {
1335 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1336 ram_list
.dirty_memory
[i
] =
1337 bitmap_zero_extend(ram_list
.dirty_memory
[i
],
1338 old_ram_size
, new_ram_size
);
1341 cpu_physical_memory_set_dirty_range(new_block
->offset
, new_block
->length
);
1343 qemu_ram_setup_dump(new_block
->host
, new_block
->length
);
1344 qemu_madvise(new_block
->host
, new_block
->length
, QEMU_MADV_HUGEPAGE
);
1345 qemu_madvise(new_block
->host
, new_block
->length
, QEMU_MADV_DONTFORK
);
1347 if (kvm_enabled()) {
1348 kvm_setup_guest_memory(new_block
->host
, new_block
->length
);
1351 return new_block
->offset
;
1355 ram_addr_t
qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1356 bool share
, const char *mem_path
,
1359 RAMBlock
*new_block
;
1361 if (xen_enabled()) {
1362 error_setg(errp
, "-mem-path not supported with Xen");
1366 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1368 * file_ram_alloc() needs to allocate just like
1369 * phys_mem_alloc, but we haven't bothered to provide
1373 "-mem-path not supported with this accelerator");
1377 size
= TARGET_PAGE_ALIGN(size
);
1378 new_block
= g_malloc0(sizeof(*new_block
));
1380 new_block
->length
= size
;
1381 new_block
->flags
= share
? RAM_SHARED
: 0;
1382 new_block
->host
= file_ram_alloc(new_block
, size
,
1384 if (!new_block
->host
) {
1389 return ram_block_add(new_block
);
1393 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1396 RAMBlock
*new_block
;
1398 size
= TARGET_PAGE_ALIGN(size
);
1399 new_block
= g_malloc0(sizeof(*new_block
));
1401 new_block
->length
= size
;
1403 new_block
->host
= host
;
1405 new_block
->flags
|= RAM_PREALLOC
;
1407 return ram_block_add(new_block
);
1410 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1412 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1415 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1419 /* This assumes the iothread lock is taken here too. */
1420 qemu_mutex_lock_ramlist();
1421 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1422 if (addr
== block
->offset
) {
1423 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1424 ram_list
.mru_block
= NULL
;
1430 qemu_mutex_unlock_ramlist();
1433 void qemu_ram_free(ram_addr_t addr
)
1437 /* This assumes the iothread lock is taken here too. */
1438 qemu_mutex_lock_ramlist();
1439 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1440 if (addr
== block
->offset
) {
1441 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1442 ram_list
.mru_block
= NULL
;
1444 if (block
->flags
& RAM_PREALLOC
) {
1446 } else if (xen_enabled()) {
1447 xen_invalidate_map_cache_entry(block
->host
);
1449 } else if (block
->fd
>= 0) {
1450 munmap(block
->host
, block
->length
);
1454 qemu_anon_ram_free(block
->host
, block
->length
);
1460 qemu_mutex_unlock_ramlist();
1465 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1472 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1473 offset
= addr
- block
->offset
;
1474 if (offset
< block
->length
) {
1475 vaddr
= block
->host
+ offset
;
1476 if (block
->flags
& RAM_PREALLOC
) {
1478 } else if (xen_enabled()) {
1482 munmap(vaddr
, length
);
1483 if (block
->fd
>= 0) {
1484 flags
|= (block
->flags
& RAM_SHARED
?
1485 MAP_SHARED
: MAP_PRIVATE
);
1486 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1487 flags
, block
->fd
, offset
);
1490 * Remap needs to match alloc. Accelerators that
1491 * set phys_mem_alloc never remap. If they did,
1492 * we'd need a remap hook here.
1494 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1496 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1497 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1500 if (area
!= vaddr
) {
1501 fprintf(stderr
, "Could not remap addr: "
1502 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1506 memory_try_enable_merging(vaddr
, length
);
1507 qemu_ram_setup_dump(vaddr
, length
);
1513 #endif /* !_WIN32 */
1515 int qemu_get_ram_fd(ram_addr_t addr
)
1517 RAMBlock
*block
= qemu_get_ram_block(addr
);
1522 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1524 RAMBlock
*block
= qemu_get_ram_block(addr
);
1529 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1530 With the exception of the softmmu code in this file, this should
1531 only be used for local memory (e.g. video ram) that the device owns,
1532 and knows it isn't going to access beyond the end of the block.
1534 It should not be used for general purpose DMA.
1535 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1537 void *qemu_get_ram_ptr(ram_addr_t addr
)
1539 RAMBlock
*block
= qemu_get_ram_block(addr
);
1541 if (xen_enabled()) {
1542 /* We need to check if the requested address is in the RAM
1543 * because we don't want to map the entire memory in QEMU.
1544 * In that case just map until the end of the page.
1546 if (block
->offset
== 0) {
1547 return xen_map_cache(addr
, 0, 0);
1548 } else if (block
->host
== NULL
) {
1550 xen_map_cache(block
->offset
, block
->length
, 1);
1553 return block
->host
+ (addr
- block
->offset
);
1556 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1557 * but takes a size argument */
1558 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1563 if (xen_enabled()) {
1564 return xen_map_cache(addr
, *size
, 1);
1568 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1569 if (addr
- block
->offset
< block
->length
) {
1570 if (addr
- block
->offset
+ *size
> block
->length
)
1571 *size
= block
->length
- addr
+ block
->offset
;
1572 return block
->host
+ (addr
- block
->offset
);
1576 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1581 /* Some of the softmmu routines need to translate from a host pointer
1582 (typically a TLB entry) back to a ram offset. */
1583 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1586 uint8_t *host
= ptr
;
1588 if (xen_enabled()) {
1589 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1590 return qemu_get_ram_block(*ram_addr
)->mr
;
1593 block
= ram_list
.mru_block
;
1594 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1598 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1599 /* This case append when the block is not mapped. */
1600 if (block
->host
== NULL
) {
1603 if (host
- block
->host
< block
->length
) {
1611 *ram_addr
= block
->offset
+ (host
- block
->host
);
1615 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1616 uint64_t val
, unsigned size
)
1618 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1619 tb_invalidate_phys_page_fast(ram_addr
, size
);
1623 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1626 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1629 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1634 cpu_physical_memory_set_dirty_range_nocode(ram_addr
, size
);
1635 /* we remove the notdirty callback only if the code has been
1637 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1638 CPUArchState
*env
= current_cpu
->env_ptr
;
1639 tlb_set_dirty(env
, current_cpu
->mem_io_vaddr
);
1643 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1644 unsigned size
, bool is_write
)
1649 static const MemoryRegionOps notdirty_mem_ops
= {
1650 .write
= notdirty_mem_write
,
1651 .valid
.accepts
= notdirty_mem_accepts
,
1652 .endianness
= DEVICE_NATIVE_ENDIAN
,
1655 /* Generate a debug exception if a watchpoint has been hit. */
1656 static void check_watchpoint(int offset
, int len
, int flags
)
1658 CPUState
*cpu
= current_cpu
;
1659 CPUArchState
*env
= cpu
->env_ptr
;
1660 target_ulong pc
, cs_base
;
1665 if (cpu
->watchpoint_hit
) {
1666 /* We re-entered the check after replacing the TB. Now raise
1667 * the debug interrupt so that is will trigger after the
1668 * current instruction. */
1669 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
1672 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1673 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1674 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
1675 && (wp
->flags
& flags
)) {
1676 if (flags
== BP_MEM_READ
) {
1677 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
1679 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
1681 wp
->hitaddr
= vaddr
;
1682 if (!cpu
->watchpoint_hit
) {
1683 cpu
->watchpoint_hit
= wp
;
1684 tb_check_watchpoint(cpu
);
1685 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1686 cpu
->exception_index
= EXCP_DEBUG
;
1689 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1690 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
1691 cpu_resume_from_signal(cpu
, NULL
);
1695 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1700 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1701 so these check for a hit then pass through to the normal out-of-line
1703 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1706 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, BP_MEM_READ
);
1708 case 1: return ldub_phys(&address_space_memory
, addr
);
1709 case 2: return lduw_phys(&address_space_memory
, addr
);
1710 case 4: return ldl_phys(&address_space_memory
, addr
);
1715 static void watch_mem_write(void *opaque
, hwaddr addr
,
1716 uint64_t val
, unsigned size
)
1718 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, BP_MEM_WRITE
);
1721 stb_phys(&address_space_memory
, addr
, val
);
1724 stw_phys(&address_space_memory
, addr
, val
);
1727 stl_phys(&address_space_memory
, addr
, val
);
1733 static const MemoryRegionOps watch_mem_ops
= {
1734 .read
= watch_mem_read
,
1735 .write
= watch_mem_write
,
1736 .endianness
= DEVICE_NATIVE_ENDIAN
,
1739 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1742 subpage_t
*subpage
= opaque
;
1745 #if defined(DEBUG_SUBPAGE)
1746 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
1747 subpage
, len
, addr
);
1749 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1762 static void subpage_write(void *opaque
, hwaddr addr
,
1763 uint64_t value
, unsigned len
)
1765 subpage_t
*subpage
= opaque
;
1768 #if defined(DEBUG_SUBPAGE)
1769 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1770 " value %"PRIx64
"\n",
1771 __func__
, subpage
, len
, addr
, value
);
1786 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1789 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1790 unsigned len
, bool is_write
)
1792 subpage_t
*subpage
= opaque
;
1793 #if defined(DEBUG_SUBPAGE)
1794 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
1795 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1798 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1802 static const MemoryRegionOps subpage_ops
= {
1803 .read
= subpage_read
,
1804 .write
= subpage_write
,
1805 .valid
.accepts
= subpage_accepts
,
1806 .endianness
= DEVICE_NATIVE_ENDIAN
,
1809 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1814 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1816 idx
= SUBPAGE_IDX(start
);
1817 eidx
= SUBPAGE_IDX(end
);
1818 #if defined(DEBUG_SUBPAGE)
1819 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1820 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
1822 for (; idx
<= eidx
; idx
++) {
1823 mmio
->sub_section
[idx
] = section
;
1829 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1833 mmio
= g_malloc0(sizeof(subpage_t
));
1837 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1838 NULL
, TARGET_PAGE_SIZE
);
1839 mmio
->iomem
.subpage
= true;
1840 #if defined(DEBUG_SUBPAGE)
1841 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
1842 mmio
, base
, TARGET_PAGE_SIZE
);
1844 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1849 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
1853 MemoryRegionSection section
= {
1854 .address_space
= as
,
1856 .offset_within_address_space
= 0,
1857 .offset_within_region
= 0,
1858 .size
= int128_2_64(),
1861 return phys_section_add(map
, §ion
);
1864 MemoryRegion
*iotlb_to_region(AddressSpace
*as
, hwaddr index
)
1866 return as
->dispatch
->map
.sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1869 static void io_mem_init(void)
1871 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
1872 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1874 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1876 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1880 static void mem_begin(MemoryListener
*listener
)
1882 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1883 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
1886 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
1887 assert(n
== PHYS_SECTION_UNASSIGNED
);
1888 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
1889 assert(n
== PHYS_SECTION_NOTDIRTY
);
1890 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
1891 assert(n
== PHYS_SECTION_ROM
);
1892 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
1893 assert(n
== PHYS_SECTION_WATCH
);
1895 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
1897 as
->next_dispatch
= d
;
1900 static void mem_commit(MemoryListener
*listener
)
1902 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1903 AddressSpaceDispatch
*cur
= as
->dispatch
;
1904 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1906 phys_page_compact_all(next
, next
->map
.nodes_nb
);
1908 as
->dispatch
= next
;
1911 phys_sections_free(&cur
->map
);
1916 static void tcg_commit(MemoryListener
*listener
)
1920 /* since each CPU stores ram addresses in its TLB cache, we must
1921 reset the modified entries */
1924 /* FIXME: Disentangle the cpu.h circular files deps so we can
1925 directly get the right CPU from listener. */
1926 if (cpu
->tcg_as_listener
!= listener
) {
1933 static void core_log_global_start(MemoryListener
*listener
)
1935 cpu_physical_memory_set_dirty_tracking(true);
1938 static void core_log_global_stop(MemoryListener
*listener
)
1940 cpu_physical_memory_set_dirty_tracking(false);
1943 static MemoryListener core_memory_listener
= {
1944 .log_global_start
= core_log_global_start
,
1945 .log_global_stop
= core_log_global_stop
,
1949 void address_space_init_dispatch(AddressSpace
*as
)
1951 as
->dispatch
= NULL
;
1952 as
->dispatch_listener
= (MemoryListener
) {
1954 .commit
= mem_commit
,
1955 .region_add
= mem_add
,
1956 .region_nop
= mem_add
,
1959 memory_listener_register(&as
->dispatch_listener
, as
);
1962 void address_space_destroy_dispatch(AddressSpace
*as
)
1964 AddressSpaceDispatch
*d
= as
->dispatch
;
1966 memory_listener_unregister(&as
->dispatch_listener
);
1968 as
->dispatch
= NULL
;
1971 static void memory_map_init(void)
1973 system_memory
= g_malloc(sizeof(*system_memory
));
1975 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
1976 address_space_init(&address_space_memory
, system_memory
, "memory");
1978 system_io
= g_malloc(sizeof(*system_io
));
1979 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
1981 address_space_init(&address_space_io
, system_io
, "I/O");
1983 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1986 MemoryRegion
*get_system_memory(void)
1988 return system_memory
;
1991 MemoryRegion
*get_system_io(void)
1996 #endif /* !defined(CONFIG_USER_ONLY) */
1998 /* physical memory access (slow version, mainly for debug) */
1999 #if defined(CONFIG_USER_ONLY)
2000 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2001 uint8_t *buf
, int len
, int is_write
)
2008 page
= addr
& TARGET_PAGE_MASK
;
2009 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2012 flags
= page_get_flags(page
);
2013 if (!(flags
& PAGE_VALID
))
2016 if (!(flags
& PAGE_WRITE
))
2018 /* XXX: this code should not depend on lock_user */
2019 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2022 unlock_user(p
, addr
, l
);
2024 if (!(flags
& PAGE_READ
))
2026 /* XXX: this code should not depend on lock_user */
2027 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2030 unlock_user(p
, addr
, 0);
2041 static void invalidate_and_set_dirty(hwaddr addr
,
2044 if (cpu_physical_memory_is_clean(addr
)) {
2045 /* invalidate code */
2046 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
2048 cpu_physical_memory_set_dirty_range_nocode(addr
, length
);
2050 xen_modified_memory(addr
, length
);
2053 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2055 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2057 /* Regions are assumed to support 1-4 byte accesses unless
2058 otherwise specified. */
2059 if (access_size_max
== 0) {
2060 access_size_max
= 4;
2063 /* Bound the maximum access by the alignment of the address. */
2064 if (!mr
->ops
->impl
.unaligned
) {
2065 unsigned align_size_max
= addr
& -addr
;
2066 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2067 access_size_max
= align_size_max
;
2071 /* Don't attempt accesses larger than the maximum. */
2072 if (l
> access_size_max
) {
2073 l
= access_size_max
;
2076 l
= 1 << (qemu_fls(l
) - 1);
2082 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
2083 int len
, bool is_write
)
2094 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
2097 if (!memory_access_is_direct(mr
, is_write
)) {
2098 l
= memory_access_size(mr
, l
, addr1
);
2099 /* XXX: could force current_cpu to NULL to avoid
2103 /* 64 bit write access */
2105 error
|= io_mem_write(mr
, addr1
, val
, 8);
2108 /* 32 bit write access */
2110 error
|= io_mem_write(mr
, addr1
, val
, 4);
2113 /* 16 bit write access */
2115 error
|= io_mem_write(mr
, addr1
, val
, 2);
2118 /* 8 bit write access */
2120 error
|= io_mem_write(mr
, addr1
, val
, 1);
2126 addr1
+= memory_region_get_ram_addr(mr
);
2128 ptr
= qemu_get_ram_ptr(addr1
);
2129 memcpy(ptr
, buf
, l
);
2130 invalidate_and_set_dirty(addr1
, l
);
2133 if (!memory_access_is_direct(mr
, is_write
)) {
2135 l
= memory_access_size(mr
, l
, addr1
);
2138 /* 64 bit read access */
2139 error
|= io_mem_read(mr
, addr1
, &val
, 8);
2143 /* 32 bit read access */
2144 error
|= io_mem_read(mr
, addr1
, &val
, 4);
2148 /* 16 bit read access */
2149 error
|= io_mem_read(mr
, addr1
, &val
, 2);
2153 /* 8 bit read access */
2154 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2162 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2163 memcpy(buf
, ptr
, l
);
2174 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2175 const uint8_t *buf
, int len
)
2177 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2180 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2182 return address_space_rw(as
, addr
, buf
, len
, false);
2186 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2187 int len
, int is_write
)
2189 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2192 enum write_rom_type
{
2197 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2198 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2207 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2209 if (!(memory_region_is_ram(mr
) ||
2210 memory_region_is_romd(mr
))) {
2213 addr1
+= memory_region_get_ram_addr(mr
);
2215 ptr
= qemu_get_ram_ptr(addr1
);
2218 memcpy(ptr
, buf
, l
);
2219 invalidate_and_set_dirty(addr1
, l
);
2222 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2232 /* used for ROM loading : can write in RAM and ROM */
2233 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2234 const uint8_t *buf
, int len
)
2236 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2239 void cpu_flush_icache_range(hwaddr start
, int len
)
2242 * This function should do the same thing as an icache flush that was
2243 * triggered from within the guest. For TCG we are always cache coherent,
2244 * so there is no need to flush anything. For KVM / Xen we need to flush
2245 * the host's instruction cache at least.
2247 if (tcg_enabled()) {
2251 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2252 start
, NULL
, len
, FLUSH_CACHE
);
2262 static BounceBuffer bounce
;
2264 typedef struct MapClient
{
2266 void (*callback
)(void *opaque
);
2267 QLIST_ENTRY(MapClient
) link
;
2270 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2271 = QLIST_HEAD_INITIALIZER(map_client_list
);
2273 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2275 MapClient
*client
= g_malloc(sizeof(*client
));
2277 client
->opaque
= opaque
;
2278 client
->callback
= callback
;
2279 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2283 static void cpu_unregister_map_client(void *_client
)
2285 MapClient
*client
= (MapClient
*)_client
;
2287 QLIST_REMOVE(client
, link
);
2291 static void cpu_notify_map_clients(void)
2295 while (!QLIST_EMPTY(&map_client_list
)) {
2296 client
= QLIST_FIRST(&map_client_list
);
2297 client
->callback(client
->opaque
);
2298 cpu_unregister_map_client(client
);
2302 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2309 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2310 if (!memory_access_is_direct(mr
, is_write
)) {
2311 l
= memory_access_size(mr
, l
, addr
);
2312 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2323 /* Map a physical memory region into a host virtual address.
2324 * May map a subset of the requested range, given by and returned in *plen.
2325 * May return NULL if resources needed to perform the mapping are exhausted.
2326 * Use only for reads OR writes - not for read-modify-write operations.
2327 * Use cpu_register_map_client() to know when retrying the map operation is
2328 * likely to succeed.
2330 void *address_space_map(AddressSpace
*as
,
2337 hwaddr l
, xlat
, base
;
2338 MemoryRegion
*mr
, *this_mr
;
2346 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2347 if (!memory_access_is_direct(mr
, is_write
)) {
2348 if (bounce
.buffer
) {
2351 /* Avoid unbounded allocations */
2352 l
= MIN(l
, TARGET_PAGE_SIZE
);
2353 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2357 memory_region_ref(mr
);
2360 address_space_read(as
, addr
, bounce
.buffer
, l
);
2364 return bounce
.buffer
;
2368 raddr
= memory_region_get_ram_addr(mr
);
2379 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2380 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2385 memory_region_ref(mr
);
2387 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2390 /* Unmaps a memory region previously mapped by address_space_map().
2391 * Will also mark the memory as dirty if is_write == 1. access_len gives
2392 * the amount of memory that was actually read or written by the caller.
2394 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2395 int is_write
, hwaddr access_len
)
2397 if (buffer
!= bounce
.buffer
) {
2401 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2404 invalidate_and_set_dirty(addr1
, access_len
);
2406 if (xen_enabled()) {
2407 xen_invalidate_map_cache_entry(buffer
);
2409 memory_region_unref(mr
);
2413 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2415 qemu_vfree(bounce
.buffer
);
2416 bounce
.buffer
= NULL
;
2417 memory_region_unref(bounce
.mr
);
2418 cpu_notify_map_clients();
2421 void *cpu_physical_memory_map(hwaddr addr
,
2425 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2428 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2429 int is_write
, hwaddr access_len
)
2431 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2434 /* warning: addr must be aligned */
2435 static inline uint32_t ldl_phys_internal(AddressSpace
*as
, hwaddr addr
,
2436 enum device_endian endian
)
2444 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2445 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2447 io_mem_read(mr
, addr1
, &val
, 4);
2448 #if defined(TARGET_WORDS_BIGENDIAN)
2449 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2453 if (endian
== DEVICE_BIG_ENDIAN
) {
2459 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2463 case DEVICE_LITTLE_ENDIAN
:
2464 val
= ldl_le_p(ptr
);
2466 case DEVICE_BIG_ENDIAN
:
2467 val
= ldl_be_p(ptr
);
2477 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
2479 return ldl_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2482 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
2484 return ldl_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2487 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
2489 return ldl_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2492 /* warning: addr must be aligned */
2493 static inline uint64_t ldq_phys_internal(AddressSpace
*as
, hwaddr addr
,
2494 enum device_endian endian
)
2502 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2504 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2506 io_mem_read(mr
, addr1
, &val
, 8);
2507 #if defined(TARGET_WORDS_BIGENDIAN)
2508 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2512 if (endian
== DEVICE_BIG_ENDIAN
) {
2518 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2522 case DEVICE_LITTLE_ENDIAN
:
2523 val
= ldq_le_p(ptr
);
2525 case DEVICE_BIG_ENDIAN
:
2526 val
= ldq_be_p(ptr
);
2536 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
2538 return ldq_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2541 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
2543 return ldq_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2546 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
2548 return ldq_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2552 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
2555 address_space_rw(as
, addr
, &val
, 1, 0);
2559 /* warning: addr must be aligned */
2560 static inline uint32_t lduw_phys_internal(AddressSpace
*as
, hwaddr addr
,
2561 enum device_endian endian
)
2569 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2571 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2573 io_mem_read(mr
, addr1
, &val
, 2);
2574 #if defined(TARGET_WORDS_BIGENDIAN)
2575 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2579 if (endian
== DEVICE_BIG_ENDIAN
) {
2585 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2589 case DEVICE_LITTLE_ENDIAN
:
2590 val
= lduw_le_p(ptr
);
2592 case DEVICE_BIG_ENDIAN
:
2593 val
= lduw_be_p(ptr
);
2603 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
2605 return lduw_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2608 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
2610 return lduw_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2613 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
2615 return lduw_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2618 /* warning: addr must be aligned. The ram page is not masked as dirty
2619 and the code inside is not invalidated. It is useful if the dirty
2620 bits are used to track modified PTEs */
2621 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2628 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2630 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2631 io_mem_write(mr
, addr1
, val
, 4);
2633 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2634 ptr
= qemu_get_ram_ptr(addr1
);
2637 if (unlikely(in_migration
)) {
2638 if (cpu_physical_memory_is_clean(addr1
)) {
2639 /* invalidate code */
2640 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2642 cpu_physical_memory_set_dirty_range_nocode(addr1
, 4);
2648 /* warning: addr must be aligned */
2649 static inline void stl_phys_internal(AddressSpace
*as
,
2650 hwaddr addr
, uint32_t val
,
2651 enum device_endian endian
)
2658 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2660 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2661 #if defined(TARGET_WORDS_BIGENDIAN)
2662 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2666 if (endian
== DEVICE_BIG_ENDIAN
) {
2670 io_mem_write(mr
, addr1
, val
, 4);
2673 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2674 ptr
= qemu_get_ram_ptr(addr1
);
2676 case DEVICE_LITTLE_ENDIAN
:
2679 case DEVICE_BIG_ENDIAN
:
2686 invalidate_and_set_dirty(addr1
, 4);
2690 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2692 stl_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2695 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2697 stl_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2700 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2702 stl_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2706 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2709 address_space_rw(as
, addr
, &v
, 1, 1);
2712 /* warning: addr must be aligned */
2713 static inline void stw_phys_internal(AddressSpace
*as
,
2714 hwaddr addr
, uint32_t val
,
2715 enum device_endian endian
)
2722 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2723 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2724 #if defined(TARGET_WORDS_BIGENDIAN)
2725 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2729 if (endian
== DEVICE_BIG_ENDIAN
) {
2733 io_mem_write(mr
, addr1
, val
, 2);
2736 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2737 ptr
= qemu_get_ram_ptr(addr1
);
2739 case DEVICE_LITTLE_ENDIAN
:
2742 case DEVICE_BIG_ENDIAN
:
2749 invalidate_and_set_dirty(addr1
, 2);
2753 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2755 stw_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2758 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2760 stw_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2763 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2765 stw_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2769 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2772 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2775 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2777 val
= cpu_to_le64(val
);
2778 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2781 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2783 val
= cpu_to_be64(val
);
2784 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2787 /* virtual memory access for debug (includes writing to ROM) */
2788 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2789 uint8_t *buf
, int len
, int is_write
)
2796 page
= addr
& TARGET_PAGE_MASK
;
2797 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2798 /* if no physical page mapped, return an error */
2799 if (phys_addr
== -1)
2801 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2804 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2806 cpu_physical_memory_write_rom(cpu
->as
, phys_addr
, buf
, l
);
2808 address_space_rw(cpu
->as
, phys_addr
, buf
, l
, 0);
2819 * A helper function for the _utterly broken_ virtio device model to find out if
2820 * it's running on a big endian machine. Don't do this at home kids!
2822 bool target_words_bigendian(void);
2823 bool target_words_bigendian(void)
2825 #if defined(TARGET_WORDS_BIGENDIAN)
2832 #ifndef CONFIG_USER_ONLY
2833 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2838 mr
= address_space_translate(&address_space_memory
,
2839 phys_addr
, &phys_addr
, &l
, false);
2841 return !(memory_region_is_ram(mr
) ||
2842 memory_region_is_romd(mr
));
2845 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2849 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2850 func(block
->host
, block
->offset
, block
->length
, opaque
);