4 * Derived from SoftFloat.
7 /*============================================================================
9 This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
36 =============================================================================*/
38 /* softfloat (and in particular the code in softfloat-specialize.h) is
39 * target-dependent and needs the TARGET_* macros.
43 #include "fpu/softfloat.h"
45 /*----------------------------------------------------------------------------
46 | Primitive arithmetic functions, including multi-word arithmetic, and
47 | division and square root approximations. (Can be specialized to target if
49 *----------------------------------------------------------------------------*/
50 #include "softfloat-macros.h"
52 /*----------------------------------------------------------------------------
53 | Functions and definitions to determine: (1) whether tininess for underflow
54 | is detected before or after rounding by default, (2) what (if anything)
55 | happens when exceptions are raised, (3) how signaling NaNs are distinguished
56 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
57 | are propagated from function inputs to output. These details are target-
59 *----------------------------------------------------------------------------*/
60 #include "softfloat-specialize.h"
62 void set_float_rounding_mode(int val STATUS_PARAM
)
64 STATUS(float_rounding_mode
) = val
;
67 void set_float_exception_flags(int val STATUS_PARAM
)
69 STATUS(float_exception_flags
) = val
;
72 void set_floatx80_rounding_precision(int val STATUS_PARAM
)
74 STATUS(floatx80_rounding_precision
) = val
;
77 /*----------------------------------------------------------------------------
78 | Returns the fraction bits of the half-precision floating-point value `a'.
79 *----------------------------------------------------------------------------*/
81 INLINE
uint32_t extractFloat16Frac(float16 a
)
83 return float16_val(a
) & 0x3ff;
86 /*----------------------------------------------------------------------------
87 | Returns the exponent bits of the half-precision floating-point value `a'.
88 *----------------------------------------------------------------------------*/
90 INLINE
int_fast16_t extractFloat16Exp(float16 a
)
92 return (float16_val(a
) >> 10) & 0x1f;
95 /*----------------------------------------------------------------------------
96 | Returns the sign bit of the single-precision floating-point value `a'.
97 *----------------------------------------------------------------------------*/
99 INLINE flag
extractFloat16Sign(float16 a
)
101 return float16_val(a
)>>15;
104 /*----------------------------------------------------------------------------
105 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
106 | and 7, and returns the properly rounded 32-bit integer corresponding to the
107 | input. If `zSign' is 1, the input is negated before being converted to an
108 | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
109 | is simply rounded to an integer, with the inexact exception raised if the
110 | input cannot be represented exactly as an integer. However, if the fixed-
111 | point input is too large, the invalid exception is raised and the largest
112 | positive or negative integer is returned.
113 *----------------------------------------------------------------------------*/
115 static int32
roundAndPackInt32( flag zSign
, uint64_t absZ STATUS_PARAM
)
118 flag roundNearestEven
;
119 int8 roundIncrement
, roundBits
;
122 roundingMode
= STATUS(float_rounding_mode
);
123 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
124 roundIncrement
= 0x40;
125 if ( ! roundNearestEven
) {
126 if ( roundingMode
== float_round_to_zero
) {
130 roundIncrement
= 0x7F;
132 if ( roundingMode
== float_round_up
) roundIncrement
= 0;
135 if ( roundingMode
== float_round_down
) roundIncrement
= 0;
139 roundBits
= absZ
& 0x7F;
140 absZ
= ( absZ
+ roundIncrement
)>>7;
141 absZ
&= ~ ( ( ( roundBits
^ 0x40 ) == 0 ) & roundNearestEven
);
143 if ( zSign
) z
= - z
;
144 if ( ( absZ
>>32 ) || ( z
&& ( ( z
< 0 ) ^ zSign
) ) ) {
145 float_raise( float_flag_invalid STATUS_VAR
);
146 return zSign
? (int32_t) 0x80000000 : 0x7FFFFFFF;
148 if ( roundBits
) STATUS(float_exception_flags
) |= float_flag_inexact
;
153 /*----------------------------------------------------------------------------
154 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
155 | `absZ1', with binary point between bits 63 and 64 (between the input words),
156 | and returns the properly rounded 64-bit integer corresponding to the input.
157 | If `zSign' is 1, the input is negated before being converted to an integer.
158 | Ordinarily, the fixed-point input is simply rounded to an integer, with
159 | the inexact exception raised if the input cannot be represented exactly as
160 | an integer. However, if the fixed-point input is too large, the invalid
161 | exception is raised and the largest positive or negative integer is
163 *----------------------------------------------------------------------------*/
165 static int64
roundAndPackInt64( flag zSign
, uint64_t absZ0
, uint64_t absZ1 STATUS_PARAM
)
168 flag roundNearestEven
, increment
;
171 roundingMode
= STATUS(float_rounding_mode
);
172 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
173 increment
= ( (int64_t) absZ1
< 0 );
174 if ( ! roundNearestEven
) {
175 if ( roundingMode
== float_round_to_zero
) {
180 increment
= ( roundingMode
== float_round_down
) && absZ1
;
183 increment
= ( roundingMode
== float_round_up
) && absZ1
;
189 if ( absZ0
== 0 ) goto overflow
;
190 absZ0
&= ~ ( ( (uint64_t) ( absZ1
<<1 ) == 0 ) & roundNearestEven
);
193 if ( zSign
) z
= - z
;
194 if ( z
&& ( ( z
< 0 ) ^ zSign
) ) {
196 float_raise( float_flag_invalid STATUS_VAR
);
198 zSign
? (int64_t) LIT64( 0x8000000000000000 )
199 : LIT64( 0x7FFFFFFFFFFFFFFF );
201 if ( absZ1
) STATUS(float_exception_flags
) |= float_flag_inexact
;
206 /*----------------------------------------------------------------------------
207 | Returns the fraction bits of the single-precision floating-point value `a'.
208 *----------------------------------------------------------------------------*/
210 INLINE
uint32_t extractFloat32Frac( float32 a
)
213 return float32_val(a
) & 0x007FFFFF;
217 /*----------------------------------------------------------------------------
218 | Returns the exponent bits of the single-precision floating-point value `a'.
219 *----------------------------------------------------------------------------*/
221 INLINE
int_fast16_t extractFloat32Exp(float32 a
)
224 return ( float32_val(a
)>>23 ) & 0xFF;
228 /*----------------------------------------------------------------------------
229 | Returns the sign bit of the single-precision floating-point value `a'.
230 *----------------------------------------------------------------------------*/
232 INLINE flag
extractFloat32Sign( float32 a
)
235 return float32_val(a
)>>31;
239 /*----------------------------------------------------------------------------
240 | If `a' is denormal and we are in flush-to-zero mode then set the
241 | input-denormal exception and return zero. Otherwise just return the value.
242 *----------------------------------------------------------------------------*/
243 static float32
float32_squash_input_denormal(float32 a STATUS_PARAM
)
245 if (STATUS(flush_inputs_to_zero
)) {
246 if (extractFloat32Exp(a
) == 0 && extractFloat32Frac(a
) != 0) {
247 float_raise(float_flag_input_denormal STATUS_VAR
);
248 return make_float32(float32_val(a
) & 0x80000000);
254 /*----------------------------------------------------------------------------
255 | Normalizes the subnormal single-precision floating-point value represented
256 | by the denormalized significand `aSig'. The normalized exponent and
257 | significand are stored at the locations pointed to by `zExpPtr' and
258 | `zSigPtr', respectively.
259 *----------------------------------------------------------------------------*/
262 normalizeFloat32Subnormal(uint32_t aSig
, int_fast16_t *zExpPtr
, uint32_t *zSigPtr
)
266 shiftCount
= countLeadingZeros32( aSig
) - 8;
267 *zSigPtr
= aSig
<<shiftCount
;
268 *zExpPtr
= 1 - shiftCount
;
272 /*----------------------------------------------------------------------------
273 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
274 | single-precision floating-point value, returning the result. After being
275 | shifted into the proper positions, the three fields are simply added
276 | together to form the result. This means that any integer portion of `zSig'
277 | will be added into the exponent. Since a properly normalized significand
278 | will have an integer portion equal to 1, the `zExp' input should be 1 less
279 | than the desired result exponent whenever `zSig' is a complete, normalized
281 *----------------------------------------------------------------------------*/
283 INLINE float32
packFloat32(flag zSign
, int_fast16_t zExp
, uint32_t zSig
)
287 ( ( (uint32_t) zSign
)<<31 ) + ( ( (uint32_t) zExp
)<<23 ) + zSig
);
291 /*----------------------------------------------------------------------------
292 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
293 | and significand `zSig', and returns the proper single-precision floating-
294 | point value corresponding to the abstract input. Ordinarily, the abstract
295 | value is simply rounded and packed into the single-precision format, with
296 | the inexact exception raised if the abstract input cannot be represented
297 | exactly. However, if the abstract value is too large, the overflow and
298 | inexact exceptions are raised and an infinity or maximal finite value is
299 | returned. If the abstract value is too small, the input value is rounded to
300 | a subnormal number, and the underflow and inexact exceptions are raised if
301 | the abstract input cannot be represented exactly as a subnormal single-
302 | precision floating-point number.
303 | The input significand `zSig' has its binary point between bits 30
304 | and 29, which is 7 bits to the left of the usual location. This shifted
305 | significand must be normalized or smaller. If `zSig' is not normalized,
306 | `zExp' must be 0; in that case, the result returned is a subnormal number,
307 | and it must not require rounding. In the usual case that `zSig' is
308 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
309 | The handling of underflow and overflow follows the IEC/IEEE Standard for
310 | Binary Floating-Point Arithmetic.
311 *----------------------------------------------------------------------------*/
313 static float32
roundAndPackFloat32(flag zSign
, int_fast16_t zExp
, uint32_t zSig STATUS_PARAM
)
316 flag roundNearestEven
;
317 int8 roundIncrement
, roundBits
;
320 roundingMode
= STATUS(float_rounding_mode
);
321 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
322 roundIncrement
= 0x40;
323 if ( ! roundNearestEven
) {
324 if ( roundingMode
== float_round_to_zero
) {
328 roundIncrement
= 0x7F;
330 if ( roundingMode
== float_round_up
) roundIncrement
= 0;
333 if ( roundingMode
== float_round_down
) roundIncrement
= 0;
337 roundBits
= zSig
& 0x7F;
338 if ( 0xFD <= (uint16_t) zExp
) {
340 || ( ( zExp
== 0xFD )
341 && ( (int32_t) ( zSig
+ roundIncrement
) < 0 ) )
343 float_raise( float_flag_overflow
| float_flag_inexact STATUS_VAR
);
344 return packFloat32( zSign
, 0xFF, - ( roundIncrement
== 0 ));
347 if (STATUS(flush_to_zero
)) {
348 float_raise(float_flag_output_denormal STATUS_VAR
);
349 return packFloat32(zSign
, 0, 0);
352 ( STATUS(float_detect_tininess
) == float_tininess_before_rounding
)
354 || ( zSig
+ roundIncrement
< 0x80000000 );
355 shift32RightJamming( zSig
, - zExp
, &zSig
);
357 roundBits
= zSig
& 0x7F;
358 if ( isTiny
&& roundBits
) float_raise( float_flag_underflow STATUS_VAR
);
361 if ( roundBits
) STATUS(float_exception_flags
) |= float_flag_inexact
;
362 zSig
= ( zSig
+ roundIncrement
)>>7;
363 zSig
&= ~ ( ( ( roundBits
^ 0x40 ) == 0 ) & roundNearestEven
);
364 if ( zSig
== 0 ) zExp
= 0;
365 return packFloat32( zSign
, zExp
, zSig
);
369 /*----------------------------------------------------------------------------
370 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
371 | and significand `zSig', and returns the proper single-precision floating-
372 | point value corresponding to the abstract input. This routine is just like
373 | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
374 | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
375 | floating-point exponent.
376 *----------------------------------------------------------------------------*/
379 normalizeRoundAndPackFloat32(flag zSign
, int_fast16_t zExp
, uint32_t zSig STATUS_PARAM
)
383 shiftCount
= countLeadingZeros32( zSig
) - 1;
384 return roundAndPackFloat32( zSign
, zExp
- shiftCount
, zSig
<<shiftCount STATUS_VAR
);
388 /*----------------------------------------------------------------------------
389 | Returns the fraction bits of the double-precision floating-point value `a'.
390 *----------------------------------------------------------------------------*/
392 INLINE
uint64_t extractFloat64Frac( float64 a
)
395 return float64_val(a
) & LIT64( 0x000FFFFFFFFFFFFF );
399 /*----------------------------------------------------------------------------
400 | Returns the exponent bits of the double-precision floating-point value `a'.
401 *----------------------------------------------------------------------------*/
403 INLINE
int_fast16_t extractFloat64Exp(float64 a
)
406 return ( float64_val(a
)>>52 ) & 0x7FF;
410 /*----------------------------------------------------------------------------
411 | Returns the sign bit of the double-precision floating-point value `a'.
412 *----------------------------------------------------------------------------*/
414 INLINE flag
extractFloat64Sign( float64 a
)
417 return float64_val(a
)>>63;
421 /*----------------------------------------------------------------------------
422 | If `a' is denormal and we are in flush-to-zero mode then set the
423 | input-denormal exception and return zero. Otherwise just return the value.
424 *----------------------------------------------------------------------------*/
425 static float64
float64_squash_input_denormal(float64 a STATUS_PARAM
)
427 if (STATUS(flush_inputs_to_zero
)) {
428 if (extractFloat64Exp(a
) == 0 && extractFloat64Frac(a
) != 0) {
429 float_raise(float_flag_input_denormal STATUS_VAR
);
430 return make_float64(float64_val(a
) & (1ULL << 63));
436 /*----------------------------------------------------------------------------
437 | Normalizes the subnormal double-precision floating-point value represented
438 | by the denormalized significand `aSig'. The normalized exponent and
439 | significand are stored at the locations pointed to by `zExpPtr' and
440 | `zSigPtr', respectively.
441 *----------------------------------------------------------------------------*/
444 normalizeFloat64Subnormal(uint64_t aSig
, int_fast16_t *zExpPtr
, uint64_t *zSigPtr
)
448 shiftCount
= countLeadingZeros64( aSig
) - 11;
449 *zSigPtr
= aSig
<<shiftCount
;
450 *zExpPtr
= 1 - shiftCount
;
454 /*----------------------------------------------------------------------------
455 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
456 | double-precision floating-point value, returning the result. After being
457 | shifted into the proper positions, the three fields are simply added
458 | together to form the result. This means that any integer portion of `zSig'
459 | will be added into the exponent. Since a properly normalized significand
460 | will have an integer portion equal to 1, the `zExp' input should be 1 less
461 | than the desired result exponent whenever `zSig' is a complete, normalized
463 *----------------------------------------------------------------------------*/
465 INLINE float64
packFloat64(flag zSign
, int_fast16_t zExp
, uint64_t zSig
)
469 ( ( (uint64_t) zSign
)<<63 ) + ( ( (uint64_t) zExp
)<<52 ) + zSig
);
473 /*----------------------------------------------------------------------------
474 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
475 | and significand `zSig', and returns the proper double-precision floating-
476 | point value corresponding to the abstract input. Ordinarily, the abstract
477 | value is simply rounded and packed into the double-precision format, with
478 | the inexact exception raised if the abstract input cannot be represented
479 | exactly. However, if the abstract value is too large, the overflow and
480 | inexact exceptions are raised and an infinity or maximal finite value is
481 | returned. If the abstract value is too small, the input value is rounded
482 | to a subnormal number, and the underflow and inexact exceptions are raised
483 | if the abstract input cannot be represented exactly as a subnormal double-
484 | precision floating-point number.
485 | The input significand `zSig' has its binary point between bits 62
486 | and 61, which is 10 bits to the left of the usual location. This shifted
487 | significand must be normalized or smaller. If `zSig' is not normalized,
488 | `zExp' must be 0; in that case, the result returned is a subnormal number,
489 | and it must not require rounding. In the usual case that `zSig' is
490 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
491 | The handling of underflow and overflow follows the IEC/IEEE Standard for
492 | Binary Floating-Point Arithmetic.
493 *----------------------------------------------------------------------------*/
495 static float64
roundAndPackFloat64(flag zSign
, int_fast16_t zExp
, uint64_t zSig STATUS_PARAM
)
498 flag roundNearestEven
;
499 int_fast16_t roundIncrement
, roundBits
;
502 roundingMode
= STATUS(float_rounding_mode
);
503 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
504 roundIncrement
= 0x200;
505 if ( ! roundNearestEven
) {
506 if ( roundingMode
== float_round_to_zero
) {
510 roundIncrement
= 0x3FF;
512 if ( roundingMode
== float_round_up
) roundIncrement
= 0;
515 if ( roundingMode
== float_round_down
) roundIncrement
= 0;
519 roundBits
= zSig
& 0x3FF;
520 if ( 0x7FD <= (uint16_t) zExp
) {
521 if ( ( 0x7FD < zExp
)
522 || ( ( zExp
== 0x7FD )
523 && ( (int64_t) ( zSig
+ roundIncrement
) < 0 ) )
525 float_raise( float_flag_overflow
| float_flag_inexact STATUS_VAR
);
526 return packFloat64( zSign
, 0x7FF, - ( roundIncrement
== 0 ));
529 if (STATUS(flush_to_zero
)) {
530 float_raise(float_flag_output_denormal STATUS_VAR
);
531 return packFloat64(zSign
, 0, 0);
534 ( STATUS(float_detect_tininess
) == float_tininess_before_rounding
)
536 || ( zSig
+ roundIncrement
< LIT64( 0x8000000000000000 ) );
537 shift64RightJamming( zSig
, - zExp
, &zSig
);
539 roundBits
= zSig
& 0x3FF;
540 if ( isTiny
&& roundBits
) float_raise( float_flag_underflow STATUS_VAR
);
543 if ( roundBits
) STATUS(float_exception_flags
) |= float_flag_inexact
;
544 zSig
= ( zSig
+ roundIncrement
)>>10;
545 zSig
&= ~ ( ( ( roundBits
^ 0x200 ) == 0 ) & roundNearestEven
);
546 if ( zSig
== 0 ) zExp
= 0;
547 return packFloat64( zSign
, zExp
, zSig
);
551 /*----------------------------------------------------------------------------
552 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
553 | and significand `zSig', and returns the proper double-precision floating-
554 | point value corresponding to the abstract input. This routine is just like
555 | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
556 | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
557 | floating-point exponent.
558 *----------------------------------------------------------------------------*/
561 normalizeRoundAndPackFloat64(flag zSign
, int_fast16_t zExp
, uint64_t zSig STATUS_PARAM
)
565 shiftCount
= countLeadingZeros64( zSig
) - 1;
566 return roundAndPackFloat64( zSign
, zExp
- shiftCount
, zSig
<<shiftCount STATUS_VAR
);
570 /*----------------------------------------------------------------------------
571 | Returns the fraction bits of the extended double-precision floating-point
573 *----------------------------------------------------------------------------*/
575 INLINE
uint64_t extractFloatx80Frac( floatx80 a
)
582 /*----------------------------------------------------------------------------
583 | Returns the exponent bits of the extended double-precision floating-point
585 *----------------------------------------------------------------------------*/
587 INLINE int32
extractFloatx80Exp( floatx80 a
)
590 return a
.high
& 0x7FFF;
594 /*----------------------------------------------------------------------------
595 | Returns the sign bit of the extended double-precision floating-point value
597 *----------------------------------------------------------------------------*/
599 INLINE flag
extractFloatx80Sign( floatx80 a
)
606 /*----------------------------------------------------------------------------
607 | Normalizes the subnormal extended double-precision floating-point value
608 | represented by the denormalized significand `aSig'. The normalized exponent
609 | and significand are stored at the locations pointed to by `zExpPtr' and
610 | `zSigPtr', respectively.
611 *----------------------------------------------------------------------------*/
614 normalizeFloatx80Subnormal( uint64_t aSig
, int32
*zExpPtr
, uint64_t *zSigPtr
)
618 shiftCount
= countLeadingZeros64( aSig
);
619 *zSigPtr
= aSig
<<shiftCount
;
620 *zExpPtr
= 1 - shiftCount
;
624 /*----------------------------------------------------------------------------
625 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
626 | extended double-precision floating-point value, returning the result.
627 *----------------------------------------------------------------------------*/
629 INLINE floatx80
packFloatx80( flag zSign
, int32 zExp
, uint64_t zSig
)
634 z
.high
= ( ( (uint16_t) zSign
)<<15 ) + zExp
;
639 /*----------------------------------------------------------------------------
640 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
641 | and extended significand formed by the concatenation of `zSig0' and `zSig1',
642 | and returns the proper extended double-precision floating-point value
643 | corresponding to the abstract input. Ordinarily, the abstract value is
644 | rounded and packed into the extended double-precision format, with the
645 | inexact exception raised if the abstract input cannot be represented
646 | exactly. However, if the abstract value is too large, the overflow and
647 | inexact exceptions are raised and an infinity or maximal finite value is
648 | returned. If the abstract value is too small, the input value is rounded to
649 | a subnormal number, and the underflow and inexact exceptions are raised if
650 | the abstract input cannot be represented exactly as a subnormal extended
651 | double-precision floating-point number.
652 | If `roundingPrecision' is 32 or 64, the result is rounded to the same
653 | number of bits as single or double precision, respectively. Otherwise, the
654 | result is rounded to the full precision of the extended double-precision
656 | The input significand must be normalized or smaller. If the input
657 | significand is not normalized, `zExp' must be 0; in that case, the result
658 | returned is a subnormal number, and it must not require rounding. The
659 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
660 | Floating-Point Arithmetic.
661 *----------------------------------------------------------------------------*/
664 roundAndPackFloatx80(
665 int8 roundingPrecision
, flag zSign
, int32 zExp
, uint64_t zSig0
, uint64_t zSig1
669 flag roundNearestEven
, increment
, isTiny
;
670 int64 roundIncrement
, roundMask
, roundBits
;
672 roundingMode
= STATUS(float_rounding_mode
);
673 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
674 if ( roundingPrecision
== 80 ) goto precision80
;
675 if ( roundingPrecision
== 64 ) {
676 roundIncrement
= LIT64( 0x0000000000000400 );
677 roundMask
= LIT64( 0x00000000000007FF );
679 else if ( roundingPrecision
== 32 ) {
680 roundIncrement
= LIT64( 0x0000008000000000 );
681 roundMask
= LIT64( 0x000000FFFFFFFFFF );
686 zSig0
|= ( zSig1
!= 0 );
687 if ( ! roundNearestEven
) {
688 if ( roundingMode
== float_round_to_zero
) {
692 roundIncrement
= roundMask
;
694 if ( roundingMode
== float_round_up
) roundIncrement
= 0;
697 if ( roundingMode
== float_round_down
) roundIncrement
= 0;
701 roundBits
= zSig0
& roundMask
;
702 if ( 0x7FFD <= (uint32_t) ( zExp
- 1 ) ) {
703 if ( ( 0x7FFE < zExp
)
704 || ( ( zExp
== 0x7FFE ) && ( zSig0
+ roundIncrement
< zSig0
) )
709 if (STATUS(flush_to_zero
)) {
710 float_raise(float_flag_output_denormal STATUS_VAR
);
711 return packFloatx80(zSign
, 0, 0);
714 ( STATUS(float_detect_tininess
) == float_tininess_before_rounding
)
716 || ( zSig0
<= zSig0
+ roundIncrement
);
717 shift64RightJamming( zSig0
, 1 - zExp
, &zSig0
);
719 roundBits
= zSig0
& roundMask
;
720 if ( isTiny
&& roundBits
) float_raise( float_flag_underflow STATUS_VAR
);
721 if ( roundBits
) STATUS(float_exception_flags
) |= float_flag_inexact
;
722 zSig0
+= roundIncrement
;
723 if ( (int64_t) zSig0
< 0 ) zExp
= 1;
724 roundIncrement
= roundMask
+ 1;
725 if ( roundNearestEven
&& ( roundBits
<<1 == roundIncrement
) ) {
726 roundMask
|= roundIncrement
;
728 zSig0
&= ~ roundMask
;
729 return packFloatx80( zSign
, zExp
, zSig0
);
732 if ( roundBits
) STATUS(float_exception_flags
) |= float_flag_inexact
;
733 zSig0
+= roundIncrement
;
734 if ( zSig0
< roundIncrement
) {
736 zSig0
= LIT64( 0x8000000000000000 );
738 roundIncrement
= roundMask
+ 1;
739 if ( roundNearestEven
&& ( roundBits
<<1 == roundIncrement
) ) {
740 roundMask
|= roundIncrement
;
742 zSig0
&= ~ roundMask
;
743 if ( zSig0
== 0 ) zExp
= 0;
744 return packFloatx80( zSign
, zExp
, zSig0
);
746 increment
= ( (int64_t) zSig1
< 0 );
747 if ( ! roundNearestEven
) {
748 if ( roundingMode
== float_round_to_zero
) {
753 increment
= ( roundingMode
== float_round_down
) && zSig1
;
756 increment
= ( roundingMode
== float_round_up
) && zSig1
;
760 if ( 0x7FFD <= (uint32_t) ( zExp
- 1 ) ) {
761 if ( ( 0x7FFE < zExp
)
762 || ( ( zExp
== 0x7FFE )
763 && ( zSig0
== LIT64( 0xFFFFFFFFFFFFFFFF ) )
769 float_raise( float_flag_overflow
| float_flag_inexact STATUS_VAR
);
770 if ( ( roundingMode
== float_round_to_zero
)
771 || ( zSign
&& ( roundingMode
== float_round_up
) )
772 || ( ! zSign
&& ( roundingMode
== float_round_down
) )
774 return packFloatx80( zSign
, 0x7FFE, ~ roundMask
);
776 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
780 ( STATUS(float_detect_tininess
) == float_tininess_before_rounding
)
783 || ( zSig0
< LIT64( 0xFFFFFFFFFFFFFFFF ) );
784 shift64ExtraRightJamming( zSig0
, zSig1
, 1 - zExp
, &zSig0
, &zSig1
);
786 if ( isTiny
&& zSig1
) float_raise( float_flag_underflow STATUS_VAR
);
787 if ( zSig1
) STATUS(float_exception_flags
) |= float_flag_inexact
;
788 if ( roundNearestEven
) {
789 increment
= ( (int64_t) zSig1
< 0 );
793 increment
= ( roundingMode
== float_round_down
) && zSig1
;
796 increment
= ( roundingMode
== float_round_up
) && zSig1
;
802 ~ ( ( (uint64_t) ( zSig1
<<1 ) == 0 ) & roundNearestEven
);
803 if ( (int64_t) zSig0
< 0 ) zExp
= 1;
805 return packFloatx80( zSign
, zExp
, zSig0
);
808 if ( zSig1
) STATUS(float_exception_flags
) |= float_flag_inexact
;
813 zSig0
= LIT64( 0x8000000000000000 );
816 zSig0
&= ~ ( ( (uint64_t) ( zSig1
<<1 ) == 0 ) & roundNearestEven
);
820 if ( zSig0
== 0 ) zExp
= 0;
822 return packFloatx80( zSign
, zExp
, zSig0
);
826 /*----------------------------------------------------------------------------
827 | Takes an abstract floating-point value having sign `zSign', exponent
828 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
829 | and returns the proper extended double-precision floating-point value
830 | corresponding to the abstract input. This routine is just like
831 | `roundAndPackFloatx80' except that the input significand does not have to be
833 *----------------------------------------------------------------------------*/
836 normalizeRoundAndPackFloatx80(
837 int8 roundingPrecision
, flag zSign
, int32 zExp
, uint64_t zSig0
, uint64_t zSig1
847 shiftCount
= countLeadingZeros64( zSig0
);
848 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
851 roundAndPackFloatx80( roundingPrecision
, zSign
, zExp
, zSig0
, zSig1 STATUS_VAR
);
855 /*----------------------------------------------------------------------------
856 | Returns the least-significant 64 fraction bits of the quadruple-precision
857 | floating-point value `a'.
858 *----------------------------------------------------------------------------*/
860 INLINE
uint64_t extractFloat128Frac1( float128 a
)
867 /*----------------------------------------------------------------------------
868 | Returns the most-significant 48 fraction bits of the quadruple-precision
869 | floating-point value `a'.
870 *----------------------------------------------------------------------------*/
872 INLINE
uint64_t extractFloat128Frac0( float128 a
)
875 return a
.high
& LIT64( 0x0000FFFFFFFFFFFF );
879 /*----------------------------------------------------------------------------
880 | Returns the exponent bits of the quadruple-precision floating-point value
882 *----------------------------------------------------------------------------*/
884 INLINE int32
extractFloat128Exp( float128 a
)
887 return ( a
.high
>>48 ) & 0x7FFF;
891 /*----------------------------------------------------------------------------
892 | Returns the sign bit of the quadruple-precision floating-point value `a'.
893 *----------------------------------------------------------------------------*/
895 INLINE flag
extractFloat128Sign( float128 a
)
902 /*----------------------------------------------------------------------------
903 | Normalizes the subnormal quadruple-precision floating-point value
904 | represented by the denormalized significand formed by the concatenation of
905 | `aSig0' and `aSig1'. The normalized exponent is stored at the location
906 | pointed to by `zExpPtr'. The most significant 49 bits of the normalized
907 | significand are stored at the location pointed to by `zSig0Ptr', and the
908 | least significant 64 bits of the normalized significand are stored at the
909 | location pointed to by `zSig1Ptr'.
910 *----------------------------------------------------------------------------*/
913 normalizeFloat128Subnormal(
924 shiftCount
= countLeadingZeros64( aSig1
) - 15;
925 if ( shiftCount
< 0 ) {
926 *zSig0Ptr
= aSig1
>>( - shiftCount
);
927 *zSig1Ptr
= aSig1
<<( shiftCount
& 63 );
930 *zSig0Ptr
= aSig1
<<shiftCount
;
933 *zExpPtr
= - shiftCount
- 63;
936 shiftCount
= countLeadingZeros64( aSig0
) - 15;
937 shortShift128Left( aSig0
, aSig1
, shiftCount
, zSig0Ptr
, zSig1Ptr
);
938 *zExpPtr
= 1 - shiftCount
;
943 /*----------------------------------------------------------------------------
944 | Packs the sign `zSign', the exponent `zExp', and the significand formed
945 | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
946 | floating-point value, returning the result. After being shifted into the
947 | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
948 | added together to form the most significant 32 bits of the result. This
949 | means that any integer portion of `zSig0' will be added into the exponent.
950 | Since a properly normalized significand will have an integer portion equal
951 | to 1, the `zExp' input should be 1 less than the desired result exponent
952 | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
954 *----------------------------------------------------------------------------*/
957 packFloat128( flag zSign
, int32 zExp
, uint64_t zSig0
, uint64_t zSig1
)
962 z
.high
= ( ( (uint64_t) zSign
)<<63 ) + ( ( (uint64_t) zExp
)<<48 ) + zSig0
;
967 /*----------------------------------------------------------------------------
968 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
969 | and extended significand formed by the concatenation of `zSig0', `zSig1',
970 | and `zSig2', and returns the proper quadruple-precision floating-point value
971 | corresponding to the abstract input. Ordinarily, the abstract value is
972 | simply rounded and packed into the quadruple-precision format, with the
973 | inexact exception raised if the abstract input cannot be represented
974 | exactly. However, if the abstract value is too large, the overflow and
975 | inexact exceptions are raised and an infinity or maximal finite value is
976 | returned. If the abstract value is too small, the input value is rounded to
977 | a subnormal number, and the underflow and inexact exceptions are raised if
978 | the abstract input cannot be represented exactly as a subnormal quadruple-
979 | precision floating-point number.
980 | The input significand must be normalized or smaller. If the input
981 | significand is not normalized, `zExp' must be 0; in that case, the result
982 | returned is a subnormal number, and it must not require rounding. In the
983 | usual case that the input significand is normalized, `zExp' must be 1 less
984 | than the ``true'' floating-point exponent. The handling of underflow and
985 | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
986 *----------------------------------------------------------------------------*/
989 roundAndPackFloat128(
990 flag zSign
, int32 zExp
, uint64_t zSig0
, uint64_t zSig1
, uint64_t zSig2 STATUS_PARAM
)
993 flag roundNearestEven
, increment
, isTiny
;
995 roundingMode
= STATUS(float_rounding_mode
);
996 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
997 increment
= ( (int64_t) zSig2
< 0 );
998 if ( ! roundNearestEven
) {
999 if ( roundingMode
== float_round_to_zero
) {
1004 increment
= ( roundingMode
== float_round_down
) && zSig2
;
1007 increment
= ( roundingMode
== float_round_up
) && zSig2
;
1011 if ( 0x7FFD <= (uint32_t) zExp
) {
1012 if ( ( 0x7FFD < zExp
)
1013 || ( ( zExp
== 0x7FFD )
1015 LIT64( 0x0001FFFFFFFFFFFF ),
1016 LIT64( 0xFFFFFFFFFFFFFFFF ),
1023 float_raise( float_flag_overflow
| float_flag_inexact STATUS_VAR
);
1024 if ( ( roundingMode
== float_round_to_zero
)
1025 || ( zSign
&& ( roundingMode
== float_round_up
) )
1026 || ( ! zSign
&& ( roundingMode
== float_round_down
) )
1032 LIT64( 0x0000FFFFFFFFFFFF ),
1033 LIT64( 0xFFFFFFFFFFFFFFFF )
1036 return packFloat128( zSign
, 0x7FFF, 0, 0 );
1039 if (STATUS(flush_to_zero
)) {
1040 float_raise(float_flag_output_denormal STATUS_VAR
);
1041 return packFloat128(zSign
, 0, 0, 0);
1044 ( STATUS(float_detect_tininess
) == float_tininess_before_rounding
)
1050 LIT64( 0x0001FFFFFFFFFFFF ),
1051 LIT64( 0xFFFFFFFFFFFFFFFF )
1053 shift128ExtraRightJamming(
1054 zSig0
, zSig1
, zSig2
, - zExp
, &zSig0
, &zSig1
, &zSig2
);
1056 if ( isTiny
&& zSig2
) float_raise( float_flag_underflow STATUS_VAR
);
1057 if ( roundNearestEven
) {
1058 increment
= ( (int64_t) zSig2
< 0 );
1062 increment
= ( roundingMode
== float_round_down
) && zSig2
;
1065 increment
= ( roundingMode
== float_round_up
) && zSig2
;
1070 if ( zSig2
) STATUS(float_exception_flags
) |= float_flag_inexact
;
1072 add128( zSig0
, zSig1
, 0, 1, &zSig0
, &zSig1
);
1073 zSig1
&= ~ ( ( zSig2
+ zSig2
== 0 ) & roundNearestEven
);
1076 if ( ( zSig0
| zSig1
) == 0 ) zExp
= 0;
1078 return packFloat128( zSign
, zExp
, zSig0
, zSig1
);
1082 /*----------------------------------------------------------------------------
1083 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1084 | and significand formed by the concatenation of `zSig0' and `zSig1', and
1085 | returns the proper quadruple-precision floating-point value corresponding
1086 | to the abstract input. This routine is just like `roundAndPackFloat128'
1087 | except that the input significand has fewer bits and does not have to be
1088 | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
1090 *----------------------------------------------------------------------------*/
1093 normalizeRoundAndPackFloat128(
1094 flag zSign
, int32 zExp
, uint64_t zSig0
, uint64_t zSig1 STATUS_PARAM
)
1104 shiftCount
= countLeadingZeros64( zSig0
) - 15;
1105 if ( 0 <= shiftCount
) {
1107 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
1110 shift128ExtraRightJamming(
1111 zSig0
, zSig1
, 0, - shiftCount
, &zSig0
, &zSig1
, &zSig2
);
1114 return roundAndPackFloat128( zSign
, zExp
, zSig0
, zSig1
, zSig2 STATUS_VAR
);
1118 /*----------------------------------------------------------------------------
1119 | Returns the result of converting the 32-bit two's complement integer `a'
1120 | to the single-precision floating-point format. The conversion is performed
1121 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1122 *----------------------------------------------------------------------------*/
1124 float32
int32_to_float32( int32 a STATUS_PARAM
)
1128 if ( a
== 0 ) return float32_zero
;
1129 if ( a
== (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
1131 return normalizeRoundAndPackFloat32( zSign
, 0x9C, zSign
? - a
: a STATUS_VAR
);
1135 /*----------------------------------------------------------------------------
1136 | Returns the result of converting the 32-bit two's complement integer `a'
1137 | to the double-precision floating-point format. The conversion is performed
1138 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1139 *----------------------------------------------------------------------------*/
1141 float64
int32_to_float64( int32 a STATUS_PARAM
)
1148 if ( a
== 0 ) return float64_zero
;
1150 absA
= zSign
? - a
: a
;
1151 shiftCount
= countLeadingZeros32( absA
) + 21;
1153 return packFloat64( zSign
, 0x432 - shiftCount
, zSig
<<shiftCount
);
1157 /*----------------------------------------------------------------------------
1158 | Returns the result of converting the 32-bit two's complement integer `a'
1159 | to the extended double-precision floating-point format. The conversion
1160 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1162 *----------------------------------------------------------------------------*/
1164 floatx80
int32_to_floatx80( int32 a STATUS_PARAM
)
1171 if ( a
== 0 ) return packFloatx80( 0, 0, 0 );
1173 absA
= zSign
? - a
: a
;
1174 shiftCount
= countLeadingZeros32( absA
) + 32;
1176 return packFloatx80( zSign
, 0x403E - shiftCount
, zSig
<<shiftCount
);
1180 /*----------------------------------------------------------------------------
1181 | Returns the result of converting the 32-bit two's complement integer `a' to
1182 | the quadruple-precision floating-point format. The conversion is performed
1183 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1184 *----------------------------------------------------------------------------*/
1186 float128
int32_to_float128( int32 a STATUS_PARAM
)
1193 if ( a
== 0 ) return packFloat128( 0, 0, 0, 0 );
1195 absA
= zSign
? - a
: a
;
1196 shiftCount
= countLeadingZeros32( absA
) + 17;
1198 return packFloat128( zSign
, 0x402E - shiftCount
, zSig0
<<shiftCount
, 0 );
1202 /*----------------------------------------------------------------------------
1203 | Returns the result of converting the 64-bit two's complement integer `a'
1204 | to the single-precision floating-point format. The conversion is performed
1205 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1206 *----------------------------------------------------------------------------*/
1208 float32
int64_to_float32( int64 a STATUS_PARAM
)
1214 if ( a
== 0 ) return float32_zero
;
1216 absA
= zSign
? - a
: a
;
1217 shiftCount
= countLeadingZeros64( absA
) - 40;
1218 if ( 0 <= shiftCount
) {
1219 return packFloat32( zSign
, 0x95 - shiftCount
, absA
<<shiftCount
);
1223 if ( shiftCount
< 0 ) {
1224 shift64RightJamming( absA
, - shiftCount
, &absA
);
1227 absA
<<= shiftCount
;
1229 return roundAndPackFloat32( zSign
, 0x9C - shiftCount
, absA STATUS_VAR
);
1234 float32
uint64_to_float32( uint64 a STATUS_PARAM
)
1238 if ( a
== 0 ) return float32_zero
;
1239 shiftCount
= countLeadingZeros64( a
) - 40;
1240 if ( 0 <= shiftCount
) {
1241 return packFloat32(0, 0x95 - shiftCount
, a
<<shiftCount
);
1245 if ( shiftCount
< 0 ) {
1246 shift64RightJamming( a
, - shiftCount
, &a
);
1251 return roundAndPackFloat32(0, 0x9C - shiftCount
, a STATUS_VAR
);
1255 /*----------------------------------------------------------------------------
1256 | Returns the result of converting the 64-bit two's complement integer `a'
1257 | to the double-precision floating-point format. The conversion is performed
1258 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1259 *----------------------------------------------------------------------------*/
1261 float64
int64_to_float64( int64 a STATUS_PARAM
)
1265 if ( a
== 0 ) return float64_zero
;
1266 if ( a
== (int64_t) LIT64( 0x8000000000000000 ) ) {
1267 return packFloat64( 1, 0x43E, 0 );
1270 return normalizeRoundAndPackFloat64( zSign
, 0x43C, zSign
? - a
: a STATUS_VAR
);
1274 float64
uint64_to_float64(uint64 a STATUS_PARAM
)
1279 return float64_zero
;
1281 if ((int64_t)a
< 0) {
1282 shift64RightJamming(a
, 1, &a
);
1285 return normalizeRoundAndPackFloat64(0, exp
, a STATUS_VAR
);
1288 /*----------------------------------------------------------------------------
1289 | Returns the result of converting the 64-bit two's complement integer `a'
1290 | to the extended double-precision floating-point format. The conversion
1291 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1293 *----------------------------------------------------------------------------*/
1295 floatx80
int64_to_floatx80( int64 a STATUS_PARAM
)
1301 if ( a
== 0 ) return packFloatx80( 0, 0, 0 );
1303 absA
= zSign
? - a
: a
;
1304 shiftCount
= countLeadingZeros64( absA
);
1305 return packFloatx80( zSign
, 0x403E - shiftCount
, absA
<<shiftCount
);
1309 /*----------------------------------------------------------------------------
1310 | Returns the result of converting the 64-bit two's complement integer `a' to
1311 | the quadruple-precision floating-point format. The conversion is performed
1312 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1313 *----------------------------------------------------------------------------*/
1315 float128
int64_to_float128( int64 a STATUS_PARAM
)
1321 uint64_t zSig0
, zSig1
;
1323 if ( a
== 0 ) return packFloat128( 0, 0, 0, 0 );
1325 absA
= zSign
? - a
: a
;
1326 shiftCount
= countLeadingZeros64( absA
) + 49;
1327 zExp
= 0x406E - shiftCount
;
1328 if ( 64 <= shiftCount
) {
1337 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
1338 return packFloat128( zSign
, zExp
, zSig0
, zSig1
);
1342 float128
uint64_to_float128(uint64 a STATUS_PARAM
)
1345 return float128_zero
;
1347 return normalizeRoundAndPackFloat128(0, 0x406E, a
, 0 STATUS_VAR
);
1350 /*----------------------------------------------------------------------------
1351 | Returns the result of converting the single-precision floating-point value
1352 | `a' to the 32-bit two's complement integer format. The conversion is
1353 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1354 | Arithmetic---which means in particular that the conversion is rounded
1355 | according to the current rounding mode. If `a' is a NaN, the largest
1356 | positive integer is returned. Otherwise, if the conversion overflows, the
1357 | largest integer with the same sign as `a' is returned.
1358 *----------------------------------------------------------------------------*/
1360 int32
float32_to_int32( float32 a STATUS_PARAM
)
1363 int_fast16_t aExp
, shiftCount
;
1367 a
= float32_squash_input_denormal(a STATUS_VAR
);
1368 aSig
= extractFloat32Frac( a
);
1369 aExp
= extractFloat32Exp( a
);
1370 aSign
= extractFloat32Sign( a
);
1371 if ( ( aExp
== 0xFF ) && aSig
) aSign
= 0;
1372 if ( aExp
) aSig
|= 0x00800000;
1373 shiftCount
= 0xAF - aExp
;
1376 if ( 0 < shiftCount
) shift64RightJamming( aSig64
, shiftCount
, &aSig64
);
1377 return roundAndPackInt32( aSign
, aSig64 STATUS_VAR
);
1381 /*----------------------------------------------------------------------------
1382 | Returns the result of converting the single-precision floating-point value
1383 | `a' to the 32-bit two's complement integer format. The conversion is
1384 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1385 | Arithmetic, except that the conversion is always rounded toward zero.
1386 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
1387 | the conversion overflows, the largest integer with the same sign as `a' is
1389 *----------------------------------------------------------------------------*/
1391 int32
float32_to_int32_round_to_zero( float32 a STATUS_PARAM
)
1394 int_fast16_t aExp
, shiftCount
;
1397 a
= float32_squash_input_denormal(a STATUS_VAR
);
1399 aSig
= extractFloat32Frac( a
);
1400 aExp
= extractFloat32Exp( a
);
1401 aSign
= extractFloat32Sign( a
);
1402 shiftCount
= aExp
- 0x9E;
1403 if ( 0 <= shiftCount
) {
1404 if ( float32_val(a
) != 0xCF000000 ) {
1405 float_raise( float_flag_invalid STATUS_VAR
);
1406 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) return 0x7FFFFFFF;
1408 return (int32_t) 0x80000000;
1410 else if ( aExp
<= 0x7E ) {
1411 if ( aExp
| aSig
) STATUS(float_exception_flags
) |= float_flag_inexact
;
1414 aSig
= ( aSig
| 0x00800000 )<<8;
1415 z
= aSig
>>( - shiftCount
);
1416 if ( (uint32_t) ( aSig
<<( shiftCount
& 31 ) ) ) {
1417 STATUS(float_exception_flags
) |= float_flag_inexact
;
1419 if ( aSign
) z
= - z
;
1424 /*----------------------------------------------------------------------------
1425 | Returns the result of converting the single-precision floating-point value
1426 | `a' to the 16-bit two's complement integer format. The conversion is
1427 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1428 | Arithmetic, except that the conversion is always rounded toward zero.
1429 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
1430 | the conversion overflows, the largest integer with the same sign as `a' is
1432 *----------------------------------------------------------------------------*/
1434 int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM
)
1437 int_fast16_t aExp
, shiftCount
;
1441 aSig
= extractFloat32Frac( a
);
1442 aExp
= extractFloat32Exp( a
);
1443 aSign
= extractFloat32Sign( a
);
1444 shiftCount
= aExp
- 0x8E;
1445 if ( 0 <= shiftCount
) {
1446 if ( float32_val(a
) != 0xC7000000 ) {
1447 float_raise( float_flag_invalid STATUS_VAR
);
1448 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1452 return (int32_t) 0xffff8000;
1454 else if ( aExp
<= 0x7E ) {
1455 if ( aExp
| aSig
) {
1456 STATUS(float_exception_flags
) |= float_flag_inexact
;
1461 aSig
= ( aSig
| 0x00800000 )<<8;
1462 z
= aSig
>>( - shiftCount
);
1463 if ( (uint32_t) ( aSig
<<( shiftCount
& 31 ) ) ) {
1464 STATUS(float_exception_flags
) |= float_flag_inexact
;
1473 /*----------------------------------------------------------------------------
1474 | Returns the result of converting the single-precision floating-point value
1475 | `a' to the 64-bit two's complement integer format. The conversion is
1476 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1477 | Arithmetic---which means in particular that the conversion is rounded
1478 | according to the current rounding mode. If `a' is a NaN, the largest
1479 | positive integer is returned. Otherwise, if the conversion overflows, the
1480 | largest integer with the same sign as `a' is returned.
1481 *----------------------------------------------------------------------------*/
1483 int64
float32_to_int64( float32 a STATUS_PARAM
)
1486 int_fast16_t aExp
, shiftCount
;
1488 uint64_t aSig64
, aSigExtra
;
1489 a
= float32_squash_input_denormal(a STATUS_VAR
);
1491 aSig
= extractFloat32Frac( a
);
1492 aExp
= extractFloat32Exp( a
);
1493 aSign
= extractFloat32Sign( a
);
1494 shiftCount
= 0xBE - aExp
;
1495 if ( shiftCount
< 0 ) {
1496 float_raise( float_flag_invalid STATUS_VAR
);
1497 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1498 return LIT64( 0x7FFFFFFFFFFFFFFF );
1500 return (int64_t) LIT64( 0x8000000000000000 );
1502 if ( aExp
) aSig
|= 0x00800000;
1505 shift64ExtraRightJamming( aSig64
, 0, shiftCount
, &aSig64
, &aSigExtra
);
1506 return roundAndPackInt64( aSign
, aSig64
, aSigExtra STATUS_VAR
);
1510 /*----------------------------------------------------------------------------
1511 | Returns the result of converting the single-precision floating-point value
1512 | `a' to the 64-bit two's complement integer format. The conversion is
1513 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1514 | Arithmetic, except that the conversion is always rounded toward zero. If
1515 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
1516 | conversion overflows, the largest integer with the same sign as `a' is
1518 *----------------------------------------------------------------------------*/
1520 int64
float32_to_int64_round_to_zero( float32 a STATUS_PARAM
)
1523 int_fast16_t aExp
, shiftCount
;
1527 a
= float32_squash_input_denormal(a STATUS_VAR
);
1529 aSig
= extractFloat32Frac( a
);
1530 aExp
= extractFloat32Exp( a
);
1531 aSign
= extractFloat32Sign( a
);
1532 shiftCount
= aExp
- 0xBE;
1533 if ( 0 <= shiftCount
) {
1534 if ( float32_val(a
) != 0xDF000000 ) {
1535 float_raise( float_flag_invalid STATUS_VAR
);
1536 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1537 return LIT64( 0x7FFFFFFFFFFFFFFF );
1540 return (int64_t) LIT64( 0x8000000000000000 );
1542 else if ( aExp
<= 0x7E ) {
1543 if ( aExp
| aSig
) STATUS(float_exception_flags
) |= float_flag_inexact
;
1546 aSig64
= aSig
| 0x00800000;
1548 z
= aSig64
>>( - shiftCount
);
1549 if ( (uint64_t) ( aSig64
<<( shiftCount
& 63 ) ) ) {
1550 STATUS(float_exception_flags
) |= float_flag_inexact
;
1552 if ( aSign
) z
= - z
;
1557 /*----------------------------------------------------------------------------
1558 | Returns the result of converting the single-precision floating-point value
1559 | `a' to the double-precision floating-point format. The conversion is
1560 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1562 *----------------------------------------------------------------------------*/
1564 float64
float32_to_float64( float32 a STATUS_PARAM
)
1569 a
= float32_squash_input_denormal(a STATUS_VAR
);
1571 aSig
= extractFloat32Frac( a
);
1572 aExp
= extractFloat32Exp( a
);
1573 aSign
= extractFloat32Sign( a
);
1574 if ( aExp
== 0xFF ) {
1575 if ( aSig
) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
1576 return packFloat64( aSign
, 0x7FF, 0 );
1579 if ( aSig
== 0 ) return packFloat64( aSign
, 0, 0 );
1580 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1583 return packFloat64( aSign
, aExp
+ 0x380, ( (uint64_t) aSig
)<<29 );
1587 /*----------------------------------------------------------------------------
1588 | Returns the result of converting the single-precision floating-point value
1589 | `a' to the extended double-precision floating-point format. The conversion
1590 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1592 *----------------------------------------------------------------------------*/
1594 floatx80
float32_to_floatx80( float32 a STATUS_PARAM
)
1600 a
= float32_squash_input_denormal(a STATUS_VAR
);
1601 aSig
= extractFloat32Frac( a
);
1602 aExp
= extractFloat32Exp( a
);
1603 aSign
= extractFloat32Sign( a
);
1604 if ( aExp
== 0xFF ) {
1605 if ( aSig
) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
1606 return packFloatx80( aSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
1609 if ( aSig
== 0 ) return packFloatx80( aSign
, 0, 0 );
1610 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1613 return packFloatx80( aSign
, aExp
+ 0x3F80, ( (uint64_t) aSig
)<<40 );
1617 /*----------------------------------------------------------------------------
1618 | Returns the result of converting the single-precision floating-point value
1619 | `a' to the double-precision floating-point format. The conversion is
1620 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1622 *----------------------------------------------------------------------------*/
1624 float128
float32_to_float128( float32 a STATUS_PARAM
)
1630 a
= float32_squash_input_denormal(a STATUS_VAR
);
1631 aSig
= extractFloat32Frac( a
);
1632 aExp
= extractFloat32Exp( a
);
1633 aSign
= extractFloat32Sign( a
);
1634 if ( aExp
== 0xFF ) {
1635 if ( aSig
) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
1636 return packFloat128( aSign
, 0x7FFF, 0, 0 );
1639 if ( aSig
== 0 ) return packFloat128( aSign
, 0, 0, 0 );
1640 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1643 return packFloat128( aSign
, aExp
+ 0x3F80, ( (uint64_t) aSig
)<<25, 0 );
1647 /*----------------------------------------------------------------------------
1648 | Rounds the single-precision floating-point value `a' to an integer, and
1649 | returns the result as a single-precision floating-point value. The
1650 | operation is performed according to the IEC/IEEE Standard for Binary
1651 | Floating-Point Arithmetic.
1652 *----------------------------------------------------------------------------*/
1654 float32
float32_round_to_int( float32 a STATUS_PARAM
)
1658 uint32_t lastBitMask
, roundBitsMask
;
1661 a
= float32_squash_input_denormal(a STATUS_VAR
);
1663 aExp
= extractFloat32Exp( a
);
1664 if ( 0x96 <= aExp
) {
1665 if ( ( aExp
== 0xFF ) && extractFloat32Frac( a
) ) {
1666 return propagateFloat32NaN( a
, a STATUS_VAR
);
1670 if ( aExp
<= 0x7E ) {
1671 if ( (uint32_t) ( float32_val(a
)<<1 ) == 0 ) return a
;
1672 STATUS(float_exception_flags
) |= float_flag_inexact
;
1673 aSign
= extractFloat32Sign( a
);
1674 switch ( STATUS(float_rounding_mode
) ) {
1675 case float_round_nearest_even
:
1676 if ( ( aExp
== 0x7E ) && extractFloat32Frac( a
) ) {
1677 return packFloat32( aSign
, 0x7F, 0 );
1680 case float_round_down
:
1681 return make_float32(aSign
? 0xBF800000 : 0);
1682 case float_round_up
:
1683 return make_float32(aSign
? 0x80000000 : 0x3F800000);
1685 return packFloat32( aSign
, 0, 0 );
1688 lastBitMask
<<= 0x96 - aExp
;
1689 roundBitsMask
= lastBitMask
- 1;
1691 roundingMode
= STATUS(float_rounding_mode
);
1692 if ( roundingMode
== float_round_nearest_even
) {
1693 z
+= lastBitMask
>>1;
1694 if ( ( z
& roundBitsMask
) == 0 ) z
&= ~ lastBitMask
;
1696 else if ( roundingMode
!= float_round_to_zero
) {
1697 if ( extractFloat32Sign( make_float32(z
) ) ^ ( roundingMode
== float_round_up
) ) {
1701 z
&= ~ roundBitsMask
;
1702 if ( z
!= float32_val(a
) ) STATUS(float_exception_flags
) |= float_flag_inexact
;
1703 return make_float32(z
);
1707 /*----------------------------------------------------------------------------
1708 | Returns the result of adding the absolute values of the single-precision
1709 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
1710 | before being returned. `zSign' is ignored if the result is a NaN.
1711 | The addition is performed according to the IEC/IEEE Standard for Binary
1712 | Floating-Point Arithmetic.
1713 *----------------------------------------------------------------------------*/
1715 static float32
addFloat32Sigs( float32 a
, float32 b
, flag zSign STATUS_PARAM
)
1717 int_fast16_t aExp
, bExp
, zExp
;
1718 uint32_t aSig
, bSig
, zSig
;
1719 int_fast16_t expDiff
;
1721 aSig
= extractFloat32Frac( a
);
1722 aExp
= extractFloat32Exp( a
);
1723 bSig
= extractFloat32Frac( b
);
1724 bExp
= extractFloat32Exp( b
);
1725 expDiff
= aExp
- bExp
;
1728 if ( 0 < expDiff
) {
1729 if ( aExp
== 0xFF ) {
1730 if ( aSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1739 shift32RightJamming( bSig
, expDiff
, &bSig
);
1742 else if ( expDiff
< 0 ) {
1743 if ( bExp
== 0xFF ) {
1744 if ( bSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1745 return packFloat32( zSign
, 0xFF, 0 );
1753 shift32RightJamming( aSig
, - expDiff
, &aSig
);
1757 if ( aExp
== 0xFF ) {
1758 if ( aSig
| bSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1762 if (STATUS(flush_to_zero
)) {
1764 float_raise(float_flag_output_denormal STATUS_VAR
);
1766 return packFloat32(zSign
, 0, 0);
1768 return packFloat32( zSign
, 0, ( aSig
+ bSig
)>>6 );
1770 zSig
= 0x40000000 + aSig
+ bSig
;
1775 zSig
= ( aSig
+ bSig
)<<1;
1777 if ( (int32_t) zSig
< 0 ) {
1782 return roundAndPackFloat32( zSign
, zExp
, zSig STATUS_VAR
);
1786 /*----------------------------------------------------------------------------
1787 | Returns the result of subtracting the absolute values of the single-
1788 | precision floating-point values `a' and `b'. If `zSign' is 1, the
1789 | difference is negated before being returned. `zSign' is ignored if the
1790 | result is a NaN. The subtraction is performed according to the IEC/IEEE
1791 | Standard for Binary Floating-Point Arithmetic.
1792 *----------------------------------------------------------------------------*/
1794 static float32
subFloat32Sigs( float32 a
, float32 b
, flag zSign STATUS_PARAM
)
1796 int_fast16_t aExp
, bExp
, zExp
;
1797 uint32_t aSig
, bSig
, zSig
;
1798 int_fast16_t expDiff
;
1800 aSig
= extractFloat32Frac( a
);
1801 aExp
= extractFloat32Exp( a
);
1802 bSig
= extractFloat32Frac( b
);
1803 bExp
= extractFloat32Exp( b
);
1804 expDiff
= aExp
- bExp
;
1807 if ( 0 < expDiff
) goto aExpBigger
;
1808 if ( expDiff
< 0 ) goto bExpBigger
;
1809 if ( aExp
== 0xFF ) {
1810 if ( aSig
| bSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1811 float_raise( float_flag_invalid STATUS_VAR
);
1812 return float32_default_nan
;
1818 if ( bSig
< aSig
) goto aBigger
;
1819 if ( aSig
< bSig
) goto bBigger
;
1820 return packFloat32( STATUS(float_rounding_mode
) == float_round_down
, 0, 0 );
1822 if ( bExp
== 0xFF ) {
1823 if ( bSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1824 return packFloat32( zSign
^ 1, 0xFF, 0 );
1832 shift32RightJamming( aSig
, - expDiff
, &aSig
);
1838 goto normalizeRoundAndPack
;
1840 if ( aExp
== 0xFF ) {
1841 if ( aSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1850 shift32RightJamming( bSig
, expDiff
, &bSig
);
1855 normalizeRoundAndPack
:
1857 return normalizeRoundAndPackFloat32( zSign
, zExp
, zSig STATUS_VAR
);
1861 /*----------------------------------------------------------------------------
1862 | Returns the result of adding the single-precision floating-point values `a'
1863 | and `b'. The operation is performed according to the IEC/IEEE Standard for
1864 | Binary Floating-Point Arithmetic.
1865 *----------------------------------------------------------------------------*/
1867 float32
float32_add( float32 a
, float32 b STATUS_PARAM
)
1870 a
= float32_squash_input_denormal(a STATUS_VAR
);
1871 b
= float32_squash_input_denormal(b STATUS_VAR
);
1873 aSign
= extractFloat32Sign( a
);
1874 bSign
= extractFloat32Sign( b
);
1875 if ( aSign
== bSign
) {
1876 return addFloat32Sigs( a
, b
, aSign STATUS_VAR
);
1879 return subFloat32Sigs( a
, b
, aSign STATUS_VAR
);
1884 /*----------------------------------------------------------------------------
1885 | Returns the result of subtracting the single-precision floating-point values
1886 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
1887 | for Binary Floating-Point Arithmetic.
1888 *----------------------------------------------------------------------------*/
1890 float32
float32_sub( float32 a
, float32 b STATUS_PARAM
)
1893 a
= float32_squash_input_denormal(a STATUS_VAR
);
1894 b
= float32_squash_input_denormal(b STATUS_VAR
);
1896 aSign
= extractFloat32Sign( a
);
1897 bSign
= extractFloat32Sign( b
);
1898 if ( aSign
== bSign
) {
1899 return subFloat32Sigs( a
, b
, aSign STATUS_VAR
);
1902 return addFloat32Sigs( a
, b
, aSign STATUS_VAR
);
1907 /*----------------------------------------------------------------------------
1908 | Returns the result of multiplying the single-precision floating-point values
1909 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
1910 | for Binary Floating-Point Arithmetic.
1911 *----------------------------------------------------------------------------*/
1913 float32
float32_mul( float32 a
, float32 b STATUS_PARAM
)
1915 flag aSign
, bSign
, zSign
;
1916 int_fast16_t aExp
, bExp
, zExp
;
1917 uint32_t aSig
, bSig
;
1921 a
= float32_squash_input_denormal(a STATUS_VAR
);
1922 b
= float32_squash_input_denormal(b STATUS_VAR
);
1924 aSig
= extractFloat32Frac( a
);
1925 aExp
= extractFloat32Exp( a
);
1926 aSign
= extractFloat32Sign( a
);
1927 bSig
= extractFloat32Frac( b
);
1928 bExp
= extractFloat32Exp( b
);
1929 bSign
= extractFloat32Sign( b
);
1930 zSign
= aSign
^ bSign
;
1931 if ( aExp
== 0xFF ) {
1932 if ( aSig
|| ( ( bExp
== 0xFF ) && bSig
) ) {
1933 return propagateFloat32NaN( a
, b STATUS_VAR
);
1935 if ( ( bExp
| bSig
) == 0 ) {
1936 float_raise( float_flag_invalid STATUS_VAR
);
1937 return float32_default_nan
;
1939 return packFloat32( zSign
, 0xFF, 0 );
1941 if ( bExp
== 0xFF ) {
1942 if ( bSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1943 if ( ( aExp
| aSig
) == 0 ) {
1944 float_raise( float_flag_invalid STATUS_VAR
);
1945 return float32_default_nan
;
1947 return packFloat32( zSign
, 0xFF, 0 );
1950 if ( aSig
== 0 ) return packFloat32( zSign
, 0, 0 );
1951 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1954 if ( bSig
== 0 ) return packFloat32( zSign
, 0, 0 );
1955 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
1957 zExp
= aExp
+ bExp
- 0x7F;
1958 aSig
= ( aSig
| 0x00800000 )<<7;
1959 bSig
= ( bSig
| 0x00800000 )<<8;
1960 shift64RightJamming( ( (uint64_t) aSig
) * bSig
, 32, &zSig64
);
1962 if ( 0 <= (int32_t) ( zSig
<<1 ) ) {
1966 return roundAndPackFloat32( zSign
, zExp
, zSig STATUS_VAR
);
1970 /*----------------------------------------------------------------------------
1971 | Returns the result of dividing the single-precision floating-point value `a'
1972 | by the corresponding value `b'. The operation is performed according to the
1973 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1974 *----------------------------------------------------------------------------*/
1976 float32
float32_div( float32 a
, float32 b STATUS_PARAM
)
1978 flag aSign
, bSign
, zSign
;
1979 int_fast16_t aExp
, bExp
, zExp
;
1980 uint32_t aSig
, bSig
, zSig
;
1981 a
= float32_squash_input_denormal(a STATUS_VAR
);
1982 b
= float32_squash_input_denormal(b STATUS_VAR
);
1984 aSig
= extractFloat32Frac( a
);
1985 aExp
= extractFloat32Exp( a
);
1986 aSign
= extractFloat32Sign( a
);
1987 bSig
= extractFloat32Frac( b
);
1988 bExp
= extractFloat32Exp( b
);
1989 bSign
= extractFloat32Sign( b
);
1990 zSign
= aSign
^ bSign
;
1991 if ( aExp
== 0xFF ) {
1992 if ( aSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1993 if ( bExp
== 0xFF ) {
1994 if ( bSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
1995 float_raise( float_flag_invalid STATUS_VAR
);
1996 return float32_default_nan
;
1998 return packFloat32( zSign
, 0xFF, 0 );
2000 if ( bExp
== 0xFF ) {
2001 if ( bSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
2002 return packFloat32( zSign
, 0, 0 );
2006 if ( ( aExp
| aSig
) == 0 ) {
2007 float_raise( float_flag_invalid STATUS_VAR
);
2008 return float32_default_nan
;
2010 float_raise( float_flag_divbyzero STATUS_VAR
);
2011 return packFloat32( zSign
, 0xFF, 0 );
2013 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
2016 if ( aSig
== 0 ) return packFloat32( zSign
, 0, 0 );
2017 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2019 zExp
= aExp
- bExp
+ 0x7D;
2020 aSig
= ( aSig
| 0x00800000 )<<7;
2021 bSig
= ( bSig
| 0x00800000 )<<8;
2022 if ( bSig
<= ( aSig
+ aSig
) ) {
2026 zSig
= ( ( (uint64_t) aSig
)<<32 ) / bSig
;
2027 if ( ( zSig
& 0x3F ) == 0 ) {
2028 zSig
|= ( (uint64_t) bSig
* zSig
!= ( (uint64_t) aSig
)<<32 );
2030 return roundAndPackFloat32( zSign
, zExp
, zSig STATUS_VAR
);
2034 /*----------------------------------------------------------------------------
2035 | Returns the remainder of the single-precision floating-point value `a'
2036 | with respect to the corresponding value `b'. The operation is performed
2037 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2038 *----------------------------------------------------------------------------*/
2040 float32
float32_rem( float32 a
, float32 b STATUS_PARAM
)
2043 int_fast16_t aExp
, bExp
, expDiff
;
2044 uint32_t aSig
, bSig
;
2046 uint64_t aSig64
, bSig64
, q64
;
2047 uint32_t alternateASig
;
2049 a
= float32_squash_input_denormal(a STATUS_VAR
);
2050 b
= float32_squash_input_denormal(b STATUS_VAR
);
2052 aSig
= extractFloat32Frac( a
);
2053 aExp
= extractFloat32Exp( a
);
2054 aSign
= extractFloat32Sign( a
);
2055 bSig
= extractFloat32Frac( b
);
2056 bExp
= extractFloat32Exp( b
);
2057 if ( aExp
== 0xFF ) {
2058 if ( aSig
|| ( ( bExp
== 0xFF ) && bSig
) ) {
2059 return propagateFloat32NaN( a
, b STATUS_VAR
);
2061 float_raise( float_flag_invalid STATUS_VAR
);
2062 return float32_default_nan
;
2064 if ( bExp
== 0xFF ) {
2065 if ( bSig
) return propagateFloat32NaN( a
, b STATUS_VAR
);
2070 float_raise( float_flag_invalid STATUS_VAR
);
2071 return float32_default_nan
;
2073 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
2076 if ( aSig
== 0 ) return a
;
2077 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2079 expDiff
= aExp
- bExp
;
2082 if ( expDiff
< 32 ) {
2085 if ( expDiff
< 0 ) {
2086 if ( expDiff
< -1 ) return a
;
2089 q
= ( bSig
<= aSig
);
2090 if ( q
) aSig
-= bSig
;
2091 if ( 0 < expDiff
) {
2092 q
= ( ( (uint64_t) aSig
)<<32 ) / bSig
;
2095 aSig
= ( ( aSig
>>1 )<<( expDiff
- 1 ) ) - bSig
* q
;
2103 if ( bSig
<= aSig
) aSig
-= bSig
;
2104 aSig64
= ( (uint64_t) aSig
)<<40;
2105 bSig64
= ( (uint64_t) bSig
)<<40;
2107 while ( 0 < expDiff
) {
2108 q64
= estimateDiv128To64( aSig64
, 0, bSig64
);
2109 q64
= ( 2 < q64
) ? q64
- 2 : 0;
2110 aSig64
= - ( ( bSig
* q64
)<<38 );
2114 q64
= estimateDiv128To64( aSig64
, 0, bSig64
);
2115 q64
= ( 2 < q64
) ? q64
- 2 : 0;
2116 q
= q64
>>( 64 - expDiff
);
2118 aSig
= ( ( aSig64
>>33 )<<( expDiff
- 1 ) ) - bSig
* q
;
2121 alternateASig
= aSig
;
2124 } while ( 0 <= (int32_t) aSig
);
2125 sigMean
= aSig
+ alternateASig
;
2126 if ( ( sigMean
< 0 ) || ( ( sigMean
== 0 ) && ( q
& 1 ) ) ) {
2127 aSig
= alternateASig
;
2129 zSign
= ( (int32_t) aSig
< 0 );
2130 if ( zSign
) aSig
= - aSig
;
2131 return normalizeRoundAndPackFloat32( aSign
^ zSign
, bExp
, aSig STATUS_VAR
);
2135 /*----------------------------------------------------------------------------
2136 | Returns the result of multiplying the single-precision floating-point values
2137 | `a' and `b' then adding 'c', with no intermediate rounding step after the
2138 | multiplication. The operation is performed according to the IEC/IEEE
2139 | Standard for Binary Floating-Point Arithmetic 754-2008.
2140 | The flags argument allows the caller to select negation of the
2141 | addend, the intermediate product, or the final result. (The difference
2142 | between this and having the caller do a separate negation is that negating
2143 | externally will flip the sign bit on NaNs.)
2144 *----------------------------------------------------------------------------*/
2146 float32
float32_muladd(float32 a
, float32 b
, float32 c
, int flags STATUS_PARAM
)
2148 flag aSign
, bSign
, cSign
, zSign
;
2149 int_fast16_t aExp
, bExp
, cExp
, pExp
, zExp
, expDiff
;
2150 uint32_t aSig
, bSig
, cSig
;
2151 flag pInf
, pZero
, pSign
;
2152 uint64_t pSig64
, cSig64
, zSig64
;
2155 flag signflip
, infzero
;
2157 a
= float32_squash_input_denormal(a STATUS_VAR
);
2158 b
= float32_squash_input_denormal(b STATUS_VAR
);
2159 c
= float32_squash_input_denormal(c STATUS_VAR
);
2160 aSig
= extractFloat32Frac(a
);
2161 aExp
= extractFloat32Exp(a
);
2162 aSign
= extractFloat32Sign(a
);
2163 bSig
= extractFloat32Frac(b
);
2164 bExp
= extractFloat32Exp(b
);
2165 bSign
= extractFloat32Sign(b
);
2166 cSig
= extractFloat32Frac(c
);
2167 cExp
= extractFloat32Exp(c
);
2168 cSign
= extractFloat32Sign(c
);
2170 infzero
= ((aExp
== 0 && aSig
== 0 && bExp
== 0xff && bSig
== 0) ||
2171 (aExp
== 0xff && aSig
== 0 && bExp
== 0 && bSig
== 0));
2173 /* It is implementation-defined whether the cases of (0,inf,qnan)
2174 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
2175 * they return if they do), so we have to hand this information
2176 * off to the target-specific pick-a-NaN routine.
2178 if (((aExp
== 0xff) && aSig
) ||
2179 ((bExp
== 0xff) && bSig
) ||
2180 ((cExp
== 0xff) && cSig
)) {
2181 return propagateFloat32MulAddNaN(a
, b
, c
, infzero STATUS_VAR
);
2185 float_raise(float_flag_invalid STATUS_VAR
);
2186 return float32_default_nan
;
2189 if (flags
& float_muladd_negate_c
) {
2193 signflip
= (flags
& float_muladd_negate_result
) ? 1 : 0;
2195 /* Work out the sign and type of the product */
2196 pSign
= aSign
^ bSign
;
2197 if (flags
& float_muladd_negate_product
) {
2200 pInf
= (aExp
== 0xff) || (bExp
== 0xff);
2201 pZero
= ((aExp
| aSig
) == 0) || ((bExp
| bSig
) == 0);
2204 if (pInf
&& (pSign
^ cSign
)) {
2205 /* addition of opposite-signed infinities => InvalidOperation */
2206 float_raise(float_flag_invalid STATUS_VAR
);
2207 return float32_default_nan
;
2209 /* Otherwise generate an infinity of the same sign */
2210 return packFloat32(cSign
^ signflip
, 0xff, 0);
2214 return packFloat32(pSign
^ signflip
, 0xff, 0);
2220 /* Adding two exact zeroes */
2221 if (pSign
== cSign
) {
2223 } else if (STATUS(float_rounding_mode
) == float_round_down
) {
2228 return packFloat32(zSign
^ signflip
, 0, 0);
2230 /* Exact zero plus a denorm */
2231 if (STATUS(flush_to_zero
)) {
2232 float_raise(float_flag_output_denormal STATUS_VAR
);
2233 return packFloat32(cSign
^ signflip
, 0, 0);
2236 /* Zero plus something non-zero : just return the something */
2237 return packFloat32(cSign
^ signflip
, cExp
, cSig
);
2241 normalizeFloat32Subnormal(aSig
, &aExp
, &aSig
);
2244 normalizeFloat32Subnormal(bSig
, &bExp
, &bSig
);
2247 /* Calculate the actual result a * b + c */
2249 /* Multiply first; this is easy. */
2250 /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
2251 * because we want the true exponent, not the "one-less-than"
2252 * flavour that roundAndPackFloat32() takes.
2254 pExp
= aExp
+ bExp
- 0x7e;
2255 aSig
= (aSig
| 0x00800000) << 7;
2256 bSig
= (bSig
| 0x00800000) << 8;
2257 pSig64
= (uint64_t)aSig
* bSig
;
2258 if ((int64_t)(pSig64
<< 1) >= 0) {
2263 zSign
= pSign
^ signflip
;
2265 /* Now pSig64 is the significand of the multiply, with the explicit bit in
2270 /* Throw out the special case of c being an exact zero now */
2271 shift64RightJamming(pSig64
, 32, &pSig64
);
2273 return roundAndPackFloat32(zSign
, pExp
- 1,
2276 normalizeFloat32Subnormal(cSig
, &cExp
, &cSig
);
2279 cSig64
= (uint64_t)cSig
<< (62 - 23);
2280 cSig64
|= LIT64(0x4000000000000000);
2281 expDiff
= pExp
- cExp
;
2283 if (pSign
== cSign
) {
2286 /* scale c to match p */
2287 shift64RightJamming(cSig64
, expDiff
, &cSig64
);
2289 } else if (expDiff
< 0) {
2290 /* scale p to match c */
2291 shift64RightJamming(pSig64
, -expDiff
, &pSig64
);
2294 /* no scaling needed */
2297 /* Add significands and make sure explicit bit ends up in posn 62 */
2298 zSig64
= pSig64
+ cSig64
;
2299 if ((int64_t)zSig64
< 0) {
2300 shift64RightJamming(zSig64
, 1, &zSig64
);
2307 shift64RightJamming(cSig64
, expDiff
, &cSig64
);
2308 zSig64
= pSig64
- cSig64
;
2310 } else if (expDiff
< 0) {
2311 shift64RightJamming(pSig64
, -expDiff
, &pSig64
);
2312 zSig64
= cSig64
- pSig64
;
2317 if (cSig64
< pSig64
) {
2318 zSig64
= pSig64
- cSig64
;
2319 } else if (pSig64
< cSig64
) {
2320 zSig64
= cSig64
- pSig64
;
2325 if (STATUS(float_rounding_mode
) == float_round_down
) {
2328 return packFloat32(zSign
, 0, 0);
2332 /* Normalize to put the explicit bit back into bit 62. */
2333 shiftcount
= countLeadingZeros64(zSig64
) - 1;
2334 zSig64
<<= shiftcount
;
2337 shift64RightJamming(zSig64
, 32, &zSig64
);
2338 return roundAndPackFloat32(zSign
, zExp
, zSig64 STATUS_VAR
);
2342 /*----------------------------------------------------------------------------
2343 | Returns the square root of the single-precision floating-point value `a'.
2344 | The operation is performed according to the IEC/IEEE Standard for Binary
2345 | Floating-Point Arithmetic.
2346 *----------------------------------------------------------------------------*/
2348 float32
float32_sqrt( float32 a STATUS_PARAM
)
2351 int_fast16_t aExp
, zExp
;
2352 uint32_t aSig
, zSig
;
2354 a
= float32_squash_input_denormal(a STATUS_VAR
);
2356 aSig
= extractFloat32Frac( a
);
2357 aExp
= extractFloat32Exp( a
);
2358 aSign
= extractFloat32Sign( a
);
2359 if ( aExp
== 0xFF ) {
2360 if ( aSig
) return propagateFloat32NaN( a
, float32_zero STATUS_VAR
);
2361 if ( ! aSign
) return a
;
2362 float_raise( float_flag_invalid STATUS_VAR
);
2363 return float32_default_nan
;
2366 if ( ( aExp
| aSig
) == 0 ) return a
;
2367 float_raise( float_flag_invalid STATUS_VAR
);
2368 return float32_default_nan
;
2371 if ( aSig
== 0 ) return float32_zero
;
2372 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2374 zExp
= ( ( aExp
- 0x7F )>>1 ) + 0x7E;
2375 aSig
= ( aSig
| 0x00800000 )<<8;
2376 zSig
= estimateSqrt32( aExp
, aSig
) + 2;
2377 if ( ( zSig
& 0x7F ) <= 5 ) {
2383 term
= ( (uint64_t) zSig
) * zSig
;
2384 rem
= ( ( (uint64_t) aSig
)<<32 ) - term
;
2385 while ( (int64_t) rem
< 0 ) {
2387 rem
+= ( ( (uint64_t) zSig
)<<1 ) | 1;
2389 zSig
|= ( rem
!= 0 );
2391 shift32RightJamming( zSig
, 1, &zSig
);
2393 return roundAndPackFloat32( 0, zExp
, zSig STATUS_VAR
);
2397 /*----------------------------------------------------------------------------
2398 | Returns the binary exponential of the single-precision floating-point value
2399 | `a'. The operation is performed according to the IEC/IEEE Standard for
2400 | Binary Floating-Point Arithmetic.
2402 | Uses the following identities:
2404 | 1. -------------------------------------------------------------------------
2408 | 2. -------------------------------------------------------------------------
2411 | e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
2413 *----------------------------------------------------------------------------*/
2415 static const float64 float32_exp2_coefficients
[15] =
2417 const_float64( 0x3ff0000000000000ll
), /* 1 */
2418 const_float64( 0x3fe0000000000000ll
), /* 2 */
2419 const_float64( 0x3fc5555555555555ll
), /* 3 */
2420 const_float64( 0x3fa5555555555555ll
), /* 4 */
2421 const_float64( 0x3f81111111111111ll
), /* 5 */
2422 const_float64( 0x3f56c16c16c16c17ll
), /* 6 */
2423 const_float64( 0x3f2a01a01a01a01all
), /* 7 */
2424 const_float64( 0x3efa01a01a01a01all
), /* 8 */
2425 const_float64( 0x3ec71de3a556c734ll
), /* 9 */
2426 const_float64( 0x3e927e4fb7789f5cll
), /* 10 */
2427 const_float64( 0x3e5ae64567f544e4ll
), /* 11 */
2428 const_float64( 0x3e21eed8eff8d898ll
), /* 12 */
2429 const_float64( 0x3de6124613a86d09ll
), /* 13 */
2430 const_float64( 0x3da93974a8c07c9dll
), /* 14 */
2431 const_float64( 0x3d6ae7f3e733b81fll
), /* 15 */
2434 float32
float32_exp2( float32 a STATUS_PARAM
)
2441 a
= float32_squash_input_denormal(a STATUS_VAR
);
2443 aSig
= extractFloat32Frac( a
);
2444 aExp
= extractFloat32Exp( a
);
2445 aSign
= extractFloat32Sign( a
);
2447 if ( aExp
== 0xFF) {
2448 if ( aSig
) return propagateFloat32NaN( a
, float32_zero STATUS_VAR
);
2449 return (aSign
) ? float32_zero
: a
;
2452 if (aSig
== 0) return float32_one
;
2455 float_raise( float_flag_inexact STATUS_VAR
);
2457 /* ******************************* */
2458 /* using float64 for approximation */
2459 /* ******************************* */
2460 x
= float32_to_float64(a STATUS_VAR
);
2461 x
= float64_mul(x
, float64_ln2 STATUS_VAR
);
2465 for (i
= 0 ; i
< 15 ; i
++) {
2468 f
= float64_mul(xn
, float32_exp2_coefficients
[i
] STATUS_VAR
);
2469 r
= float64_add(r
, f STATUS_VAR
);
2471 xn
= float64_mul(xn
, x STATUS_VAR
);
2474 return float64_to_float32(r
, status
);
2477 /*----------------------------------------------------------------------------
2478 | Returns the binary log of the single-precision floating-point value `a'.
2479 | The operation is performed according to the IEC/IEEE Standard for Binary
2480 | Floating-Point Arithmetic.
2481 *----------------------------------------------------------------------------*/
2482 float32
float32_log2( float32 a STATUS_PARAM
)
2486 uint32_t aSig
, zSig
, i
;
2488 a
= float32_squash_input_denormal(a STATUS_VAR
);
2489 aSig
= extractFloat32Frac( a
);
2490 aExp
= extractFloat32Exp( a
);
2491 aSign
= extractFloat32Sign( a
);
2494 if ( aSig
== 0 ) return packFloat32( 1, 0xFF, 0 );
2495 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2498 float_raise( float_flag_invalid STATUS_VAR
);
2499 return float32_default_nan
;
2501 if ( aExp
== 0xFF ) {
2502 if ( aSig
) return propagateFloat32NaN( a
, float32_zero STATUS_VAR
);
2511 for (i
= 1 << 22; i
> 0; i
>>= 1) {
2512 aSig
= ( (uint64_t)aSig
* aSig
) >> 23;
2513 if ( aSig
& 0x01000000 ) {
2522 return normalizeRoundAndPackFloat32( zSign
, 0x85, zSig STATUS_VAR
);
2525 /*----------------------------------------------------------------------------
2526 | Returns 1 if the single-precision floating-point value `a' is equal to
2527 | the corresponding value `b', and 0 otherwise. The invalid exception is
2528 | raised if either operand is a NaN. Otherwise, the comparison is performed
2529 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2530 *----------------------------------------------------------------------------*/
2532 int float32_eq( float32 a
, float32 b STATUS_PARAM
)
2535 a
= float32_squash_input_denormal(a STATUS_VAR
);
2536 b
= float32_squash_input_denormal(b STATUS_VAR
);
2538 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2539 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2541 float_raise( float_flag_invalid STATUS_VAR
);
2544 av
= float32_val(a
);
2545 bv
= float32_val(b
);
2546 return ( av
== bv
) || ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
2549 /*----------------------------------------------------------------------------
2550 | Returns 1 if the single-precision floating-point value `a' is less than
2551 | or equal to the corresponding value `b', and 0 otherwise. The invalid
2552 | exception is raised if either operand is a NaN. The comparison is performed
2553 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2554 *----------------------------------------------------------------------------*/
2556 int float32_le( float32 a
, float32 b STATUS_PARAM
)
2560 a
= float32_squash_input_denormal(a STATUS_VAR
);
2561 b
= float32_squash_input_denormal(b STATUS_VAR
);
2563 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2564 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2566 float_raise( float_flag_invalid STATUS_VAR
);
2569 aSign
= extractFloat32Sign( a
);
2570 bSign
= extractFloat32Sign( b
);
2571 av
= float32_val(a
);
2572 bv
= float32_val(b
);
2573 if ( aSign
!= bSign
) return aSign
|| ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
2574 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
2578 /*----------------------------------------------------------------------------
2579 | Returns 1 if the single-precision floating-point value `a' is less than
2580 | the corresponding value `b', and 0 otherwise. The invalid exception is
2581 | raised if either operand is a NaN. The comparison is performed according
2582 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2583 *----------------------------------------------------------------------------*/
2585 int float32_lt( float32 a
, float32 b STATUS_PARAM
)
2589 a
= float32_squash_input_denormal(a STATUS_VAR
);
2590 b
= float32_squash_input_denormal(b STATUS_VAR
);
2592 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2593 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2595 float_raise( float_flag_invalid STATUS_VAR
);
2598 aSign
= extractFloat32Sign( a
);
2599 bSign
= extractFloat32Sign( b
);
2600 av
= float32_val(a
);
2601 bv
= float32_val(b
);
2602 if ( aSign
!= bSign
) return aSign
&& ( (uint32_t) ( ( av
| bv
)<<1 ) != 0 );
2603 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
2607 /*----------------------------------------------------------------------------
2608 | Returns 1 if the single-precision floating-point values `a' and `b' cannot
2609 | be compared, and 0 otherwise. The invalid exception is raised if either
2610 | operand is a NaN. The comparison is performed according to the IEC/IEEE
2611 | Standard for Binary Floating-Point Arithmetic.
2612 *----------------------------------------------------------------------------*/
2614 int float32_unordered( float32 a
, float32 b STATUS_PARAM
)
2616 a
= float32_squash_input_denormal(a STATUS_VAR
);
2617 b
= float32_squash_input_denormal(b STATUS_VAR
);
2619 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2620 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2622 float_raise( float_flag_invalid STATUS_VAR
);
2628 /*----------------------------------------------------------------------------
2629 | Returns 1 if the single-precision floating-point value `a' is equal to
2630 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
2631 | exception. The comparison is performed according to the IEC/IEEE Standard
2632 | for Binary Floating-Point Arithmetic.
2633 *----------------------------------------------------------------------------*/
2635 int float32_eq_quiet( float32 a
, float32 b STATUS_PARAM
)
2637 a
= float32_squash_input_denormal(a STATUS_VAR
);
2638 b
= float32_squash_input_denormal(b STATUS_VAR
);
2640 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2641 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2643 if ( float32_is_signaling_nan( a
) || float32_is_signaling_nan( b
) ) {
2644 float_raise( float_flag_invalid STATUS_VAR
);
2648 return ( float32_val(a
) == float32_val(b
) ) ||
2649 ( (uint32_t) ( ( float32_val(a
) | float32_val(b
) )<<1 ) == 0 );
2652 /*----------------------------------------------------------------------------
2653 | Returns 1 if the single-precision floating-point value `a' is less than or
2654 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
2655 | cause an exception. Otherwise, the comparison is performed according to the
2656 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2657 *----------------------------------------------------------------------------*/
2659 int float32_le_quiet( float32 a
, float32 b STATUS_PARAM
)
2663 a
= float32_squash_input_denormal(a STATUS_VAR
);
2664 b
= float32_squash_input_denormal(b STATUS_VAR
);
2666 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2667 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2669 if ( float32_is_signaling_nan( a
) || float32_is_signaling_nan( b
) ) {
2670 float_raise( float_flag_invalid STATUS_VAR
);
2674 aSign
= extractFloat32Sign( a
);
2675 bSign
= extractFloat32Sign( b
);
2676 av
= float32_val(a
);
2677 bv
= float32_val(b
);
2678 if ( aSign
!= bSign
) return aSign
|| ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
2679 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
2683 /*----------------------------------------------------------------------------
2684 | Returns 1 if the single-precision floating-point value `a' is less than
2685 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
2686 | exception. Otherwise, the comparison is performed according to the IEC/IEEE
2687 | Standard for Binary Floating-Point Arithmetic.
2688 *----------------------------------------------------------------------------*/
2690 int float32_lt_quiet( float32 a
, float32 b STATUS_PARAM
)
2694 a
= float32_squash_input_denormal(a STATUS_VAR
);
2695 b
= float32_squash_input_denormal(b STATUS_VAR
);
2697 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2698 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2700 if ( float32_is_signaling_nan( a
) || float32_is_signaling_nan( b
) ) {
2701 float_raise( float_flag_invalid STATUS_VAR
);
2705 aSign
= extractFloat32Sign( a
);
2706 bSign
= extractFloat32Sign( b
);
2707 av
= float32_val(a
);
2708 bv
= float32_val(b
);
2709 if ( aSign
!= bSign
) return aSign
&& ( (uint32_t) ( ( av
| bv
)<<1 ) != 0 );
2710 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
2714 /*----------------------------------------------------------------------------
2715 | Returns 1 if the single-precision floating-point values `a' and `b' cannot
2716 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
2717 | comparison is performed according to the IEC/IEEE Standard for Binary
2718 | Floating-Point Arithmetic.
2719 *----------------------------------------------------------------------------*/
2721 int float32_unordered_quiet( float32 a
, float32 b STATUS_PARAM
)
2723 a
= float32_squash_input_denormal(a STATUS_VAR
);
2724 b
= float32_squash_input_denormal(b STATUS_VAR
);
2726 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2727 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2729 if ( float32_is_signaling_nan( a
) || float32_is_signaling_nan( b
) ) {
2730 float_raise( float_flag_invalid STATUS_VAR
);
2737 /*----------------------------------------------------------------------------
2738 | Returns the result of converting the double-precision floating-point value
2739 | `a' to the 32-bit two's complement integer format. The conversion is
2740 | performed according to the IEC/IEEE Standard for Binary Floating-Point
2741 | Arithmetic---which means in particular that the conversion is rounded
2742 | according to the current rounding mode. If `a' is a NaN, the largest
2743 | positive integer is returned. Otherwise, if the conversion overflows, the
2744 | largest integer with the same sign as `a' is returned.
2745 *----------------------------------------------------------------------------*/
2747 int32
float64_to_int32( float64 a STATUS_PARAM
)
2750 int_fast16_t aExp
, shiftCount
;
2752 a
= float64_squash_input_denormal(a STATUS_VAR
);
2754 aSig
= extractFloat64Frac( a
);
2755 aExp
= extractFloat64Exp( a
);
2756 aSign
= extractFloat64Sign( a
);
2757 if ( ( aExp
== 0x7FF ) && aSig
) aSign
= 0;
2758 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
2759 shiftCount
= 0x42C - aExp
;
2760 if ( 0 < shiftCount
) shift64RightJamming( aSig
, shiftCount
, &aSig
);
2761 return roundAndPackInt32( aSign
, aSig STATUS_VAR
);
2765 /*----------------------------------------------------------------------------
2766 | Returns the result of converting the double-precision floating-point value
2767 | `a' to the 32-bit two's complement integer format. The conversion is
2768 | performed according to the IEC/IEEE Standard for Binary Floating-Point
2769 | Arithmetic, except that the conversion is always rounded toward zero.
2770 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
2771 | the conversion overflows, the largest integer with the same sign as `a' is
2773 *----------------------------------------------------------------------------*/
2775 int32
float64_to_int32_round_to_zero( float64 a STATUS_PARAM
)
2778 int_fast16_t aExp
, shiftCount
;
2779 uint64_t aSig
, savedASig
;
2781 a
= float64_squash_input_denormal(a STATUS_VAR
);
2783 aSig
= extractFloat64Frac( a
);
2784 aExp
= extractFloat64Exp( a
);
2785 aSign
= extractFloat64Sign( a
);
2786 if ( 0x41E < aExp
) {
2787 if ( ( aExp
== 0x7FF ) && aSig
) aSign
= 0;
2790 else if ( aExp
< 0x3FF ) {
2791 if ( aExp
|| aSig
) STATUS(float_exception_flags
) |= float_flag_inexact
;
2794 aSig
|= LIT64( 0x0010000000000000 );
2795 shiftCount
= 0x433 - aExp
;
2797 aSig
>>= shiftCount
;
2799 if ( aSign
) z
= - z
;
2800 if ( ( z
< 0 ) ^ aSign
) {
2802 float_raise( float_flag_invalid STATUS_VAR
);
2803 return aSign
? (int32_t) 0x80000000 : 0x7FFFFFFF;
2805 if ( ( aSig
<<shiftCount
) != savedASig
) {
2806 STATUS(float_exception_flags
) |= float_flag_inexact
;
2812 /*----------------------------------------------------------------------------
2813 | Returns the result of converting the double-precision floating-point value
2814 | `a' to the 16-bit two's complement integer format. The conversion is
2815 | performed according to the IEC/IEEE Standard for Binary Floating-Point
2816 | Arithmetic, except that the conversion is always rounded toward zero.
2817 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
2818 | the conversion overflows, the largest integer with the same sign as `a' is
2820 *----------------------------------------------------------------------------*/
2822 int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM
)
2825 int_fast16_t aExp
, shiftCount
;
2826 uint64_t aSig
, savedASig
;
2829 aSig
= extractFloat64Frac( a
);
2830 aExp
= extractFloat64Exp( a
);
2831 aSign
= extractFloat64Sign( a
);
2832 if ( 0x40E < aExp
) {
2833 if ( ( aExp
== 0x7FF ) && aSig
) {
2838 else if ( aExp
< 0x3FF ) {
2839 if ( aExp
|| aSig
) {
2840 STATUS(float_exception_flags
) |= float_flag_inexact
;
2844 aSig
|= LIT64( 0x0010000000000000 );
2845 shiftCount
= 0x433 - aExp
;
2847 aSig
>>= shiftCount
;
2852 if ( ( (int16_t)z
< 0 ) ^ aSign
) {
2854 float_raise( float_flag_invalid STATUS_VAR
);
2855 return aSign
? (int32_t) 0xffff8000 : 0x7FFF;
2857 if ( ( aSig
<<shiftCount
) != savedASig
) {
2858 STATUS(float_exception_flags
) |= float_flag_inexact
;
2863 /*----------------------------------------------------------------------------
2864 | Returns the result of converting the double-precision floating-point value
2865 | `a' to the 64-bit two's complement integer format. The conversion is
2866 | performed according to the IEC/IEEE Standard for Binary Floating-Point
2867 | Arithmetic---which means in particular that the conversion is rounded
2868 | according to the current rounding mode. If `a' is a NaN, the largest
2869 | positive integer is returned. Otherwise, if the conversion overflows, the
2870 | largest integer with the same sign as `a' is returned.
2871 *----------------------------------------------------------------------------*/
2873 int64
float64_to_int64( float64 a STATUS_PARAM
)
2876 int_fast16_t aExp
, shiftCount
;
2877 uint64_t aSig
, aSigExtra
;
2878 a
= float64_squash_input_denormal(a STATUS_VAR
);
2880 aSig
= extractFloat64Frac( a
);
2881 aExp
= extractFloat64Exp( a
);
2882 aSign
= extractFloat64Sign( a
);
2883 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
2884 shiftCount
= 0x433 - aExp
;
2885 if ( shiftCount
<= 0 ) {
2886 if ( 0x43E < aExp
) {
2887 float_raise( float_flag_invalid STATUS_VAR
);
2889 || ( ( aExp
== 0x7FF )
2890 && ( aSig
!= LIT64( 0x0010000000000000 ) ) )
2892 return LIT64( 0x7FFFFFFFFFFFFFFF );
2894 return (int64_t) LIT64( 0x8000000000000000 );
2897 aSig
<<= - shiftCount
;
2900 shift64ExtraRightJamming( aSig
, 0, shiftCount
, &aSig
, &aSigExtra
);
2902 return roundAndPackInt64( aSign
, aSig
, aSigExtra STATUS_VAR
);
2906 /*----------------------------------------------------------------------------
2907 | Returns the result of converting the double-precision floating-point value
2908 | `a' to the 64-bit two's complement integer format. The conversion is
2909 | performed according to the IEC/IEEE Standard for Binary Floating-Point
2910 | Arithmetic, except that the conversion is always rounded toward zero.
2911 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
2912 | the conversion overflows, the largest integer with the same sign as `a' is
2914 *----------------------------------------------------------------------------*/
2916 int64
float64_to_int64_round_to_zero( float64 a STATUS_PARAM
)
2919 int_fast16_t aExp
, shiftCount
;
2922 a
= float64_squash_input_denormal(a STATUS_VAR
);
2924 aSig
= extractFloat64Frac( a
);
2925 aExp
= extractFloat64Exp( a
);
2926 aSign
= extractFloat64Sign( a
);
2927 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
2928 shiftCount
= aExp
- 0x433;
2929 if ( 0 <= shiftCount
) {
2930 if ( 0x43E <= aExp
) {
2931 if ( float64_val(a
) != LIT64( 0xC3E0000000000000 ) ) {
2932 float_raise( float_flag_invalid STATUS_VAR
);
2934 || ( ( aExp
== 0x7FF )
2935 && ( aSig
!= LIT64( 0x0010000000000000 ) ) )
2937 return LIT64( 0x7FFFFFFFFFFFFFFF );
2940 return (int64_t) LIT64( 0x8000000000000000 );
2942 z
= aSig
<<shiftCount
;
2945 if ( aExp
< 0x3FE ) {
2946 if ( aExp
| aSig
) STATUS(float_exception_flags
) |= float_flag_inexact
;
2949 z
= aSig
>>( - shiftCount
);
2950 if ( (uint64_t) ( aSig
<<( shiftCount
& 63 ) ) ) {
2951 STATUS(float_exception_flags
) |= float_flag_inexact
;
2954 if ( aSign
) z
= - z
;
2959 /*----------------------------------------------------------------------------
2960 | Returns the result of converting the double-precision floating-point value
2961 | `a' to the single-precision floating-point format. The conversion is
2962 | performed according to the IEC/IEEE Standard for Binary Floating-Point
2964 *----------------------------------------------------------------------------*/
2966 float32
float64_to_float32( float64 a STATUS_PARAM
)
2972 a
= float64_squash_input_denormal(a STATUS_VAR
);
2974 aSig
= extractFloat64Frac( a
);
2975 aExp
= extractFloat64Exp( a
);
2976 aSign
= extractFloat64Sign( a
);
2977 if ( aExp
== 0x7FF ) {
2978 if ( aSig
) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
2979 return packFloat32( aSign
, 0xFF, 0 );
2981 shift64RightJamming( aSig
, 22, &aSig
);
2983 if ( aExp
|| zSig
) {
2987 return roundAndPackFloat32( aSign
, aExp
, zSig STATUS_VAR
);
2992 /*----------------------------------------------------------------------------
2993 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
2994 | half-precision floating-point value, returning the result. After being
2995 | shifted into the proper positions, the three fields are simply added
2996 | together to form the result. This means that any integer portion of `zSig'
2997 | will be added into the exponent. Since a properly normalized significand
2998 | will have an integer portion equal to 1, the `zExp' input should be 1 less
2999 | than the desired result exponent whenever `zSig' is a complete, normalized
3001 *----------------------------------------------------------------------------*/
3002 static float16
packFloat16(flag zSign
, int_fast16_t zExp
, uint16_t zSig
)
3004 return make_float16(
3005 (((uint32_t)zSign
) << 15) + (((uint32_t)zExp
) << 10) + zSig
);
3008 /* Half precision floats come in two formats: standard IEEE and "ARM" format.
3009 The latter gains extra exponent range by omitting the NaN/Inf encodings. */
3011 float32
float16_to_float32(float16 a
, flag ieee STATUS_PARAM
)
3017 aSign
= extractFloat16Sign(a
);
3018 aExp
= extractFloat16Exp(a
);
3019 aSig
= extractFloat16Frac(a
);
3021 if (aExp
== 0x1f && ieee
) {
3023 return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR
) STATUS_VAR
);
3025 return packFloat32(aSign
, 0xff, 0);
3031 return packFloat32(aSign
, 0, 0);
3034 shiftCount
= countLeadingZeros32( aSig
) - 21;
3035 aSig
= aSig
<< shiftCount
;
3038 return packFloat32( aSign
, aExp
+ 0x70, aSig
<< 13);
3041 float16
float32_to_float16(float32 a
, flag ieee STATUS_PARAM
)
3049 a
= float32_squash_input_denormal(a STATUS_VAR
);
3051 aSig
= extractFloat32Frac( a
);
3052 aExp
= extractFloat32Exp( a
);
3053 aSign
= extractFloat32Sign( a
);
3054 if ( aExp
== 0xFF ) {
3056 /* Input is a NaN */
3057 float16 r
= commonNaNToFloat16( float32ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
3059 return packFloat16(aSign
, 0, 0);
3065 float_raise(float_flag_invalid STATUS_VAR
);
3066 return packFloat16(aSign
, 0x1f, 0x3ff);
3068 return packFloat16(aSign
, 0x1f, 0);
3070 if (aExp
== 0 && aSig
== 0) {
3071 return packFloat16(aSign
, 0, 0);
3073 /* Decimal point between bits 22 and 23. */
3085 float_raise( float_flag_underflow STATUS_VAR
);
3086 roundingMode
= STATUS(float_rounding_mode
);
3087 switch (roundingMode
) {
3088 case float_round_nearest_even
:
3089 increment
= (mask
+ 1) >> 1;
3090 if ((aSig
& mask
) == increment
) {
3091 increment
= aSig
& (increment
<< 1);
3094 case float_round_up
:
3095 increment
= aSign
? 0 : mask
;
3097 case float_round_down
:
3098 increment
= aSign
? mask
: 0;
3100 default: /* round_to_zero */
3105 if (aSig
>= 0x01000000) {
3109 } else if (aExp
< -14
3110 && STATUS(float_detect_tininess
) == float_tininess_before_rounding
) {
3111 float_raise( float_flag_underflow STATUS_VAR
);
3116 float_raise( float_flag_overflow
| float_flag_inexact STATUS_VAR
);
3117 return packFloat16(aSign
, 0x1f, 0);
3121 float_raise(float_flag_invalid
| float_flag_inexact STATUS_VAR
);
3122 return packFloat16(aSign
, 0x1f, 0x3ff);
3126 return packFloat16(aSign
, 0, 0);
3129 aSig
>>= -14 - aExp
;
3132 return packFloat16(aSign
, aExp
+ 14, aSig
>> 13);
3135 /*----------------------------------------------------------------------------
3136 | Returns the result of converting the double-precision floating-point value
3137 | `a' to the extended double-precision floating-point format. The conversion
3138 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
3140 *----------------------------------------------------------------------------*/
3142 floatx80
float64_to_floatx80( float64 a STATUS_PARAM
)
3148 a
= float64_squash_input_denormal(a STATUS_VAR
);
3149 aSig
= extractFloat64Frac( a
);
3150 aExp
= extractFloat64Exp( a
);
3151 aSign
= extractFloat64Sign( a
);
3152 if ( aExp
== 0x7FF ) {
3153 if ( aSig
) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
3154 return packFloatx80( aSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
3157 if ( aSig
== 0 ) return packFloatx80( aSign
, 0, 0 );
3158 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3162 aSign
, aExp
+ 0x3C00, ( aSig
| LIT64( 0x0010000000000000 ) )<<11 );
3166 /*----------------------------------------------------------------------------
3167 | Returns the result of converting the double-precision floating-point value
3168 | `a' to the quadruple-precision floating-point format. The conversion is
3169 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3171 *----------------------------------------------------------------------------*/
3173 float128
float64_to_float128( float64 a STATUS_PARAM
)
3177 uint64_t aSig
, zSig0
, zSig1
;
3179 a
= float64_squash_input_denormal(a STATUS_VAR
);
3180 aSig
= extractFloat64Frac( a
);
3181 aExp
= extractFloat64Exp( a
);
3182 aSign
= extractFloat64Sign( a
);
3183 if ( aExp
== 0x7FF ) {
3184 if ( aSig
) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
3185 return packFloat128( aSign
, 0x7FFF, 0, 0 );
3188 if ( aSig
== 0 ) return packFloat128( aSign
, 0, 0, 0 );
3189 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3192 shift128Right( aSig
, 0, 4, &zSig0
, &zSig1
);
3193 return packFloat128( aSign
, aExp
+ 0x3C00, zSig0
, zSig1
);
3197 /*----------------------------------------------------------------------------
3198 | Rounds the double-precision floating-point value `a' to an integer, and
3199 | returns the result as a double-precision floating-point value. The
3200 | operation is performed according to the IEC/IEEE Standard for Binary
3201 | Floating-Point Arithmetic.
3202 *----------------------------------------------------------------------------*/
3204 float64
float64_round_to_int( float64 a STATUS_PARAM
)
3208 uint64_t lastBitMask
, roundBitsMask
;
3211 a
= float64_squash_input_denormal(a STATUS_VAR
);
3213 aExp
= extractFloat64Exp( a
);
3214 if ( 0x433 <= aExp
) {
3215 if ( ( aExp
== 0x7FF ) && extractFloat64Frac( a
) ) {
3216 return propagateFloat64NaN( a
, a STATUS_VAR
);
3220 if ( aExp
< 0x3FF ) {
3221 if ( (uint64_t) ( float64_val(a
)<<1 ) == 0 ) return a
;
3222 STATUS(float_exception_flags
) |= float_flag_inexact
;
3223 aSign
= extractFloat64Sign( a
);
3224 switch ( STATUS(float_rounding_mode
) ) {
3225 case float_round_nearest_even
:
3226 if ( ( aExp
== 0x3FE ) && extractFloat64Frac( a
) ) {
3227 return packFloat64( aSign
, 0x3FF, 0 );
3230 case float_round_down
:
3231 return make_float64(aSign
? LIT64( 0xBFF0000000000000 ) : 0);
3232 case float_round_up
:
3233 return make_float64(
3234 aSign
? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
3236 return packFloat64( aSign
, 0, 0 );
3239 lastBitMask
<<= 0x433 - aExp
;
3240 roundBitsMask
= lastBitMask
- 1;
3242 roundingMode
= STATUS(float_rounding_mode
);
3243 if ( roundingMode
== float_round_nearest_even
) {
3244 z
+= lastBitMask
>>1;
3245 if ( ( z
& roundBitsMask
) == 0 ) z
&= ~ lastBitMask
;
3247 else if ( roundingMode
!= float_round_to_zero
) {
3248 if ( extractFloat64Sign( make_float64(z
) ) ^ ( roundingMode
== float_round_up
) ) {
3252 z
&= ~ roundBitsMask
;
3253 if ( z
!= float64_val(a
) )
3254 STATUS(float_exception_flags
) |= float_flag_inexact
;
3255 return make_float64(z
);
3259 float64
float64_trunc_to_int( float64 a STATUS_PARAM
)
3263 oldmode
= STATUS(float_rounding_mode
);
3264 STATUS(float_rounding_mode
) = float_round_to_zero
;
3265 res
= float64_round_to_int(a STATUS_VAR
);
3266 STATUS(float_rounding_mode
) = oldmode
;
3270 /*----------------------------------------------------------------------------
3271 | Returns the result of adding the absolute values of the double-precision
3272 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
3273 | before being returned. `zSign' is ignored if the result is a NaN.
3274 | The addition is performed according to the IEC/IEEE Standard for Binary
3275 | Floating-Point Arithmetic.
3276 *----------------------------------------------------------------------------*/
3278 static float64
addFloat64Sigs( float64 a
, float64 b
, flag zSign STATUS_PARAM
)
3280 int_fast16_t aExp
, bExp
, zExp
;
3281 uint64_t aSig
, bSig
, zSig
;
3282 int_fast16_t expDiff
;
3284 aSig
= extractFloat64Frac( a
);
3285 aExp
= extractFloat64Exp( a
);
3286 bSig
= extractFloat64Frac( b
);
3287 bExp
= extractFloat64Exp( b
);
3288 expDiff
= aExp
- bExp
;
3291 if ( 0 < expDiff
) {
3292 if ( aExp
== 0x7FF ) {
3293 if ( aSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3300 bSig
|= LIT64( 0x2000000000000000 );
3302 shift64RightJamming( bSig
, expDiff
, &bSig
);
3305 else if ( expDiff
< 0 ) {
3306 if ( bExp
== 0x7FF ) {
3307 if ( bSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3308 return packFloat64( zSign
, 0x7FF, 0 );
3314 aSig
|= LIT64( 0x2000000000000000 );
3316 shift64RightJamming( aSig
, - expDiff
, &aSig
);
3320 if ( aExp
== 0x7FF ) {
3321 if ( aSig
| bSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3325 if (STATUS(flush_to_zero
)) {
3327 float_raise(float_flag_output_denormal STATUS_VAR
);
3329 return packFloat64(zSign
, 0, 0);
3331 return packFloat64( zSign
, 0, ( aSig
+ bSig
)>>9 );
3333 zSig
= LIT64( 0x4000000000000000 ) + aSig
+ bSig
;
3337 aSig
|= LIT64( 0x2000000000000000 );
3338 zSig
= ( aSig
+ bSig
)<<1;
3340 if ( (int64_t) zSig
< 0 ) {
3345 return roundAndPackFloat64( zSign
, zExp
, zSig STATUS_VAR
);
3349 /*----------------------------------------------------------------------------
3350 | Returns the result of subtracting the absolute values of the double-
3351 | precision floating-point values `a' and `b'. If `zSign' is 1, the
3352 | difference is negated before being returned. `zSign' is ignored if the
3353 | result is a NaN. The subtraction is performed according to the IEC/IEEE
3354 | Standard for Binary Floating-Point Arithmetic.
3355 *----------------------------------------------------------------------------*/
3357 static float64
subFloat64Sigs( float64 a
, float64 b
, flag zSign STATUS_PARAM
)
3359 int_fast16_t aExp
, bExp
, zExp
;
3360 uint64_t aSig
, bSig
, zSig
;
3361 int_fast16_t expDiff
;
3363 aSig
= extractFloat64Frac( a
);
3364 aExp
= extractFloat64Exp( a
);
3365 bSig
= extractFloat64Frac( b
);
3366 bExp
= extractFloat64Exp( b
);
3367 expDiff
= aExp
- bExp
;
3370 if ( 0 < expDiff
) goto aExpBigger
;
3371 if ( expDiff
< 0 ) goto bExpBigger
;
3372 if ( aExp
== 0x7FF ) {
3373 if ( aSig
| bSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3374 float_raise( float_flag_invalid STATUS_VAR
);
3375 return float64_default_nan
;
3381 if ( bSig
< aSig
) goto aBigger
;
3382 if ( aSig
< bSig
) goto bBigger
;
3383 return packFloat64( STATUS(float_rounding_mode
) == float_round_down
, 0, 0 );
3385 if ( bExp
== 0x7FF ) {
3386 if ( bSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3387 return packFloat64( zSign
^ 1, 0x7FF, 0 );
3393 aSig
|= LIT64( 0x4000000000000000 );
3395 shift64RightJamming( aSig
, - expDiff
, &aSig
);
3396 bSig
|= LIT64( 0x4000000000000000 );
3401 goto normalizeRoundAndPack
;
3403 if ( aExp
== 0x7FF ) {
3404 if ( aSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3411 bSig
|= LIT64( 0x4000000000000000 );
3413 shift64RightJamming( bSig
, expDiff
, &bSig
);
3414 aSig
|= LIT64( 0x4000000000000000 );
3418 normalizeRoundAndPack
:
3420 return normalizeRoundAndPackFloat64( zSign
, zExp
, zSig STATUS_VAR
);
3424 /*----------------------------------------------------------------------------
3425 | Returns the result of adding the double-precision floating-point values `a'
3426 | and `b'. The operation is performed according to the IEC/IEEE Standard for
3427 | Binary Floating-Point Arithmetic.
3428 *----------------------------------------------------------------------------*/
3430 float64
float64_add( float64 a
, float64 b STATUS_PARAM
)
3433 a
= float64_squash_input_denormal(a STATUS_VAR
);
3434 b
= float64_squash_input_denormal(b STATUS_VAR
);
3436 aSign
= extractFloat64Sign( a
);
3437 bSign
= extractFloat64Sign( b
);
3438 if ( aSign
== bSign
) {
3439 return addFloat64Sigs( a
, b
, aSign STATUS_VAR
);
3442 return subFloat64Sigs( a
, b
, aSign STATUS_VAR
);
3447 /*----------------------------------------------------------------------------
3448 | Returns the result of subtracting the double-precision floating-point values
3449 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
3450 | for Binary Floating-Point Arithmetic.
3451 *----------------------------------------------------------------------------*/
3453 float64
float64_sub( float64 a
, float64 b STATUS_PARAM
)
3456 a
= float64_squash_input_denormal(a STATUS_VAR
);
3457 b
= float64_squash_input_denormal(b STATUS_VAR
);
3459 aSign
= extractFloat64Sign( a
);
3460 bSign
= extractFloat64Sign( b
);
3461 if ( aSign
== bSign
) {
3462 return subFloat64Sigs( a
, b
, aSign STATUS_VAR
);
3465 return addFloat64Sigs( a
, b
, aSign STATUS_VAR
);
3470 /*----------------------------------------------------------------------------
3471 | Returns the result of multiplying the double-precision floating-point values
3472 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
3473 | for Binary Floating-Point Arithmetic.
3474 *----------------------------------------------------------------------------*/
3476 float64
float64_mul( float64 a
, float64 b STATUS_PARAM
)
3478 flag aSign
, bSign
, zSign
;
3479 int_fast16_t aExp
, bExp
, zExp
;
3480 uint64_t aSig
, bSig
, zSig0
, zSig1
;
3482 a
= float64_squash_input_denormal(a STATUS_VAR
);
3483 b
= float64_squash_input_denormal(b STATUS_VAR
);
3485 aSig
= extractFloat64Frac( a
);
3486 aExp
= extractFloat64Exp( a
);
3487 aSign
= extractFloat64Sign( a
);
3488 bSig
= extractFloat64Frac( b
);
3489 bExp
= extractFloat64Exp( b
);
3490 bSign
= extractFloat64Sign( b
);
3491 zSign
= aSign
^ bSign
;
3492 if ( aExp
== 0x7FF ) {
3493 if ( aSig
|| ( ( bExp
== 0x7FF ) && bSig
) ) {
3494 return propagateFloat64NaN( a
, b STATUS_VAR
);
3496 if ( ( bExp
| bSig
) == 0 ) {
3497 float_raise( float_flag_invalid STATUS_VAR
);
3498 return float64_default_nan
;
3500 return packFloat64( zSign
, 0x7FF, 0 );
3502 if ( bExp
== 0x7FF ) {
3503 if ( bSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3504 if ( ( aExp
| aSig
) == 0 ) {
3505 float_raise( float_flag_invalid STATUS_VAR
);
3506 return float64_default_nan
;
3508 return packFloat64( zSign
, 0x7FF, 0 );
3511 if ( aSig
== 0 ) return packFloat64( zSign
, 0, 0 );
3512 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3515 if ( bSig
== 0 ) return packFloat64( zSign
, 0, 0 );
3516 normalizeFloat64Subnormal( bSig
, &bExp
, &bSig
);
3518 zExp
= aExp
+ bExp
- 0x3FF;
3519 aSig
= ( aSig
| LIT64( 0x0010000000000000 ) )<<10;
3520 bSig
= ( bSig
| LIT64( 0x0010000000000000 ) )<<11;
3521 mul64To128( aSig
, bSig
, &zSig0
, &zSig1
);
3522 zSig0
|= ( zSig1
!= 0 );
3523 if ( 0 <= (int64_t) ( zSig0
<<1 ) ) {
3527 return roundAndPackFloat64( zSign
, zExp
, zSig0 STATUS_VAR
);
3531 /*----------------------------------------------------------------------------
3532 | Returns the result of dividing the double-precision floating-point value `a'
3533 | by the corresponding value `b'. The operation is performed according to
3534 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
3535 *----------------------------------------------------------------------------*/
3537 float64
float64_div( float64 a
, float64 b STATUS_PARAM
)
3539 flag aSign
, bSign
, zSign
;
3540 int_fast16_t aExp
, bExp
, zExp
;
3541 uint64_t aSig
, bSig
, zSig
;
3542 uint64_t rem0
, rem1
;
3543 uint64_t term0
, term1
;
3544 a
= float64_squash_input_denormal(a STATUS_VAR
);
3545 b
= float64_squash_input_denormal(b STATUS_VAR
);
3547 aSig
= extractFloat64Frac( a
);
3548 aExp
= extractFloat64Exp( a
);
3549 aSign
= extractFloat64Sign( a
);
3550 bSig
= extractFloat64Frac( b
);
3551 bExp
= extractFloat64Exp( b
);
3552 bSign
= extractFloat64Sign( b
);
3553 zSign
= aSign
^ bSign
;
3554 if ( aExp
== 0x7FF ) {
3555 if ( aSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3556 if ( bExp
== 0x7FF ) {
3557 if ( bSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3558 float_raise( float_flag_invalid STATUS_VAR
);
3559 return float64_default_nan
;
3561 return packFloat64( zSign
, 0x7FF, 0 );
3563 if ( bExp
== 0x7FF ) {
3564 if ( bSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3565 return packFloat64( zSign
, 0, 0 );
3569 if ( ( aExp
| aSig
) == 0 ) {
3570 float_raise( float_flag_invalid STATUS_VAR
);
3571 return float64_default_nan
;
3573 float_raise( float_flag_divbyzero STATUS_VAR
);
3574 return packFloat64( zSign
, 0x7FF, 0 );
3576 normalizeFloat64Subnormal( bSig
, &bExp
, &bSig
);
3579 if ( aSig
== 0 ) return packFloat64( zSign
, 0, 0 );
3580 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3582 zExp
= aExp
- bExp
+ 0x3FD;
3583 aSig
= ( aSig
| LIT64( 0x0010000000000000 ) )<<10;
3584 bSig
= ( bSig
| LIT64( 0x0010000000000000 ) )<<11;
3585 if ( bSig
<= ( aSig
+ aSig
) ) {
3589 zSig
= estimateDiv128To64( aSig
, 0, bSig
);
3590 if ( ( zSig
& 0x1FF ) <= 2 ) {
3591 mul64To128( bSig
, zSig
, &term0
, &term1
);
3592 sub128( aSig
, 0, term0
, term1
, &rem0
, &rem1
);
3593 while ( (int64_t) rem0
< 0 ) {
3595 add128( rem0
, rem1
, 0, bSig
, &rem0
, &rem1
);
3597 zSig
|= ( rem1
!= 0 );
3599 return roundAndPackFloat64( zSign
, zExp
, zSig STATUS_VAR
);
3603 /*----------------------------------------------------------------------------
3604 | Returns the remainder of the double-precision floating-point value `a'
3605 | with respect to the corresponding value `b'. The operation is performed
3606 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
3607 *----------------------------------------------------------------------------*/
3609 float64
float64_rem( float64 a
, float64 b STATUS_PARAM
)
3612 int_fast16_t aExp
, bExp
, expDiff
;
3613 uint64_t aSig
, bSig
;
3614 uint64_t q
, alternateASig
;
3617 a
= float64_squash_input_denormal(a STATUS_VAR
);
3618 b
= float64_squash_input_denormal(b STATUS_VAR
);
3619 aSig
= extractFloat64Frac( a
);
3620 aExp
= extractFloat64Exp( a
);
3621 aSign
= extractFloat64Sign( a
);
3622 bSig
= extractFloat64Frac( b
);
3623 bExp
= extractFloat64Exp( b
);
3624 if ( aExp
== 0x7FF ) {
3625 if ( aSig
|| ( ( bExp
== 0x7FF ) && bSig
) ) {
3626 return propagateFloat64NaN( a
, b STATUS_VAR
);
3628 float_raise( float_flag_invalid STATUS_VAR
);
3629 return float64_default_nan
;
3631 if ( bExp
== 0x7FF ) {
3632 if ( bSig
) return propagateFloat64NaN( a
, b STATUS_VAR
);
3637 float_raise( float_flag_invalid STATUS_VAR
);
3638 return float64_default_nan
;
3640 normalizeFloat64Subnormal( bSig
, &bExp
, &bSig
);
3643 if ( aSig
== 0 ) return a
;
3644 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3646 expDiff
= aExp
- bExp
;
3647 aSig
= ( aSig
| LIT64( 0x0010000000000000 ) )<<11;
3648 bSig
= ( bSig
| LIT64( 0x0010000000000000 ) )<<11;
3649 if ( expDiff
< 0 ) {
3650 if ( expDiff
< -1 ) return a
;
3653 q
= ( bSig
<= aSig
);
3654 if ( q
) aSig
-= bSig
;
3656 while ( 0 < expDiff
) {
3657 q
= estimateDiv128To64( aSig
, 0, bSig
);
3658 q
= ( 2 < q
) ? q
- 2 : 0;
3659 aSig
= - ( ( bSig
>>2 ) * q
);
3663 if ( 0 < expDiff
) {
3664 q
= estimateDiv128To64( aSig
, 0, bSig
);
3665 q
= ( 2 < q
) ? q
- 2 : 0;
3668 aSig
= ( ( aSig
>>1 )<<( expDiff
- 1 ) ) - bSig
* q
;
3675 alternateASig
= aSig
;
3678 } while ( 0 <= (int64_t) aSig
);
3679 sigMean
= aSig
+ alternateASig
;
3680 if ( ( sigMean
< 0 ) || ( ( sigMean
== 0 ) && ( q
& 1 ) ) ) {
3681 aSig
= alternateASig
;
3683 zSign
= ( (int64_t) aSig
< 0 );
3684 if ( zSign
) aSig
= - aSig
;
3685 return normalizeRoundAndPackFloat64( aSign
^ zSign
, bExp
, aSig STATUS_VAR
);
3689 /*----------------------------------------------------------------------------
3690 | Returns the result of multiplying the double-precision floating-point values
3691 | `a' and `b' then adding 'c', with no intermediate rounding step after the
3692 | multiplication. The operation is performed according to the IEC/IEEE
3693 | Standard for Binary Floating-Point Arithmetic 754-2008.
3694 | The flags argument allows the caller to select negation of the
3695 | addend, the intermediate product, or the final result. (The difference
3696 | between this and having the caller do a separate negation is that negating
3697 | externally will flip the sign bit on NaNs.)
3698 *----------------------------------------------------------------------------*/
3700 float64
float64_muladd(float64 a
, float64 b
, float64 c
, int flags STATUS_PARAM
)
3702 flag aSign
, bSign
, cSign
, zSign
;
3703 int_fast16_t aExp
, bExp
, cExp
, pExp
, zExp
, expDiff
;
3704 uint64_t aSig
, bSig
, cSig
;
3705 flag pInf
, pZero
, pSign
;
3706 uint64_t pSig0
, pSig1
, cSig0
, cSig1
, zSig0
, zSig1
;
3708 flag signflip
, infzero
;
3710 a
= float64_squash_input_denormal(a STATUS_VAR
);
3711 b
= float64_squash_input_denormal(b STATUS_VAR
);
3712 c
= float64_squash_input_denormal(c STATUS_VAR
);
3713 aSig
= extractFloat64Frac(a
);
3714 aExp
= extractFloat64Exp(a
);
3715 aSign
= extractFloat64Sign(a
);
3716 bSig
= extractFloat64Frac(b
);
3717 bExp
= extractFloat64Exp(b
);
3718 bSign
= extractFloat64Sign(b
);
3719 cSig
= extractFloat64Frac(c
);
3720 cExp
= extractFloat64Exp(c
);
3721 cSign
= extractFloat64Sign(c
);
3723 infzero
= ((aExp
== 0 && aSig
== 0 && bExp
== 0x7ff && bSig
== 0) ||
3724 (aExp
== 0x7ff && aSig
== 0 && bExp
== 0 && bSig
== 0));
3726 /* It is implementation-defined whether the cases of (0,inf,qnan)
3727 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
3728 * they return if they do), so we have to hand this information
3729 * off to the target-specific pick-a-NaN routine.
3731 if (((aExp
== 0x7ff) && aSig
) ||
3732 ((bExp
== 0x7ff) && bSig
) ||
3733 ((cExp
== 0x7ff) && cSig
)) {
3734 return propagateFloat64MulAddNaN(a
, b
, c
, infzero STATUS_VAR
);
3738 float_raise(float_flag_invalid STATUS_VAR
);
3739 return float64_default_nan
;
3742 if (flags
& float_muladd_negate_c
) {
3746 signflip
= (flags
& float_muladd_negate_result
) ? 1 : 0;
3748 /* Work out the sign and type of the product */
3749 pSign
= aSign
^ bSign
;
3750 if (flags
& float_muladd_negate_product
) {
3753 pInf
= (aExp
== 0x7ff) || (bExp
== 0x7ff);
3754 pZero
= ((aExp
| aSig
) == 0) || ((bExp
| bSig
) == 0);
3756 if (cExp
== 0x7ff) {
3757 if (pInf
&& (pSign
^ cSign
)) {
3758 /* addition of opposite-signed infinities => InvalidOperation */
3759 float_raise(float_flag_invalid STATUS_VAR
);
3760 return float64_default_nan
;
3762 /* Otherwise generate an infinity of the same sign */
3763 return packFloat64(cSign
^ signflip
, 0x7ff, 0);
3767 return packFloat64(pSign
^ signflip
, 0x7ff, 0);
3773 /* Adding two exact zeroes */
3774 if (pSign
== cSign
) {
3776 } else if (STATUS(float_rounding_mode
) == float_round_down
) {
3781 return packFloat64(zSign
^ signflip
, 0, 0);
3783 /* Exact zero plus a denorm */
3784 if (STATUS(flush_to_zero
)) {
3785 float_raise(float_flag_output_denormal STATUS_VAR
);
3786 return packFloat64(cSign
^ signflip
, 0, 0);
3789 /* Zero plus something non-zero : just return the something */
3790 return packFloat64(cSign
^ signflip
, cExp
, cSig
);
3794 normalizeFloat64Subnormal(aSig
, &aExp
, &aSig
);
3797 normalizeFloat64Subnormal(bSig
, &bExp
, &bSig
);
3800 /* Calculate the actual result a * b + c */
3802 /* Multiply first; this is easy. */
3803 /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
3804 * because we want the true exponent, not the "one-less-than"
3805 * flavour that roundAndPackFloat64() takes.
3807 pExp
= aExp
+ bExp
- 0x3fe;
3808 aSig
= (aSig
| LIT64(0x0010000000000000))<<10;
3809 bSig
= (bSig
| LIT64(0x0010000000000000))<<11;
3810 mul64To128(aSig
, bSig
, &pSig0
, &pSig1
);
3811 if ((int64_t)(pSig0
<< 1) >= 0) {
3812 shortShift128Left(pSig0
, pSig1
, 1, &pSig0
, &pSig1
);
3816 zSign
= pSign
^ signflip
;
3818 /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
3819 * bit in position 126.
3823 /* Throw out the special case of c being an exact zero now */
3824 shift128RightJamming(pSig0
, pSig1
, 64, &pSig0
, &pSig1
);
3825 return roundAndPackFloat64(zSign
, pExp
- 1,
3828 normalizeFloat64Subnormal(cSig
, &cExp
, &cSig
);
3831 /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
3832 * significand of the addend, with the explicit bit in position 126.
3834 cSig0
= cSig
<< (126 - 64 - 52);
3836 cSig0
|= LIT64(0x4000000000000000);
3837 expDiff
= pExp
- cExp
;
3839 if (pSign
== cSign
) {
3842 /* scale c to match p */
3843 shift128RightJamming(cSig0
, cSig1
, expDiff
, &cSig0
, &cSig1
);
3845 } else if (expDiff
< 0) {
3846 /* scale p to match c */
3847 shift128RightJamming(pSig0
, pSig1
, -expDiff
, &pSig0
, &pSig1
);
3850 /* no scaling needed */
3853 /* Add significands and make sure explicit bit ends up in posn 126 */
3854 add128(pSig0
, pSig1
, cSig0
, cSig1
, &zSig0
, &zSig1
);
3855 if ((int64_t)zSig0
< 0) {
3856 shift128RightJamming(zSig0
, zSig1
, 1, &zSig0
, &zSig1
);
3860 shift128RightJamming(zSig0
, zSig1
, 64, &zSig0
, &zSig1
);
3861 return roundAndPackFloat64(zSign
, zExp
, zSig1 STATUS_VAR
);
3865 shift128RightJamming(cSig0
, cSig1
, expDiff
, &cSig0
, &cSig1
);
3866 sub128(pSig0
, pSig1
, cSig0
, cSig1
, &zSig0
, &zSig1
);
3868 } else if (expDiff
< 0) {
3869 shift128RightJamming(pSig0
, pSig1
, -expDiff
, &pSig0
, &pSig1
);
3870 sub128(cSig0
, cSig1
, pSig0
, pSig1
, &zSig0
, &zSig1
);
3875 if (lt128(cSig0
, cSig1
, pSig0
, pSig1
)) {
3876 sub128(pSig0
, pSig1
, cSig0
, cSig1
, &zSig0
, &zSig1
);
3877 } else if (lt128(pSig0
, pSig1
, cSig0
, cSig1
)) {
3878 sub128(cSig0
, cSig1
, pSig0
, pSig1
, &zSig0
, &zSig1
);
3883 if (STATUS(float_rounding_mode
) == float_round_down
) {
3886 return packFloat64(zSign
, 0, 0);
3890 /* Do the equivalent of normalizeRoundAndPackFloat64() but
3891 * starting with the significand in a pair of uint64_t.
3894 shiftcount
= countLeadingZeros64(zSig0
) - 1;
3895 shortShift128Left(zSig0
, zSig1
, shiftcount
, &zSig0
, &zSig1
);
3901 shiftcount
= countLeadingZeros64(zSig1
) - 1;
3902 zSig0
= zSig1
<< shiftcount
;
3903 zExp
-= (shiftcount
+ 64);
3905 return roundAndPackFloat64(zSign
, zExp
, zSig0 STATUS_VAR
);
3909 /*----------------------------------------------------------------------------
3910 | Returns the square root of the double-precision floating-point value `a'.
3911 | The operation is performed according to the IEC/IEEE Standard for Binary
3912 | Floating-Point Arithmetic.
3913 *----------------------------------------------------------------------------*/
3915 float64
float64_sqrt( float64 a STATUS_PARAM
)
3918 int_fast16_t aExp
, zExp
;
3919 uint64_t aSig
, zSig
, doubleZSig
;
3920 uint64_t rem0
, rem1
, term0
, term1
;
3921 a
= float64_squash_input_denormal(a STATUS_VAR
);
3923 aSig
= extractFloat64Frac( a
);
3924 aExp
= extractFloat64Exp( a
);
3925 aSign
= extractFloat64Sign( a
);
3926 if ( aExp
== 0x7FF ) {
3927 if ( aSig
) return propagateFloat64NaN( a
, a STATUS_VAR
);
3928 if ( ! aSign
) return a
;
3929 float_raise( float_flag_invalid STATUS_VAR
);
3930 return float64_default_nan
;
3933 if ( ( aExp
| aSig
) == 0 ) return a
;
3934 float_raise( float_flag_invalid STATUS_VAR
);
3935 return float64_default_nan
;
3938 if ( aSig
== 0 ) return float64_zero
;
3939 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3941 zExp
= ( ( aExp
- 0x3FF )>>1 ) + 0x3FE;
3942 aSig
|= LIT64( 0x0010000000000000 );
3943 zSig
= estimateSqrt32( aExp
, aSig
>>21 );
3944 aSig
<<= 9 - ( aExp
& 1 );
3945 zSig
= estimateDiv128To64( aSig
, 0, zSig
<<32 ) + ( zSig
<<30 );
3946 if ( ( zSig
& 0x1FF ) <= 5 ) {
3947 doubleZSig
= zSig
<<1;
3948 mul64To128( zSig
, zSig
, &term0
, &term1
);
3949 sub128( aSig
, 0, term0
, term1
, &rem0
, &rem1
);
3950 while ( (int64_t) rem0
< 0 ) {
3953 add128( rem0
, rem1
, zSig
>>63, doubleZSig
| 1, &rem0
, &rem1
);
3955 zSig
|= ( ( rem0
| rem1
) != 0 );
3957 return roundAndPackFloat64( 0, zExp
, zSig STATUS_VAR
);
3961 /*----------------------------------------------------------------------------
3962 | Returns the binary log of the double-precision floating-point value `a'.
3963 | The operation is performed according to the IEC/IEEE Standard for Binary
3964 | Floating-Point Arithmetic.
3965 *----------------------------------------------------------------------------*/
3966 float64
float64_log2( float64 a STATUS_PARAM
)
3970 uint64_t aSig
, aSig0
, aSig1
, zSig
, i
;
3971 a
= float64_squash_input_denormal(a STATUS_VAR
);
3973 aSig
= extractFloat64Frac( a
);
3974 aExp
= extractFloat64Exp( a
);
3975 aSign
= extractFloat64Sign( a
);
3978 if ( aSig
== 0 ) return packFloat64( 1, 0x7FF, 0 );
3979 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3982 float_raise( float_flag_invalid STATUS_VAR
);
3983 return float64_default_nan
;
3985 if ( aExp
== 0x7FF ) {
3986 if ( aSig
) return propagateFloat64NaN( a
, float64_zero STATUS_VAR
);
3991 aSig
|= LIT64( 0x0010000000000000 );
3993 zSig
= (uint64_t)aExp
<< 52;
3994 for (i
= 1LL << 51; i
> 0; i
>>= 1) {
3995 mul64To128( aSig
, aSig
, &aSig0
, &aSig1
);
3996 aSig
= ( aSig0
<< 12 ) | ( aSig1
>> 52 );
3997 if ( aSig
& LIT64( 0x0020000000000000 ) ) {
4005 return normalizeRoundAndPackFloat64( zSign
, 0x408, zSig STATUS_VAR
);
4008 /*----------------------------------------------------------------------------
4009 | Returns 1 if the double-precision floating-point value `a' is equal to the
4010 | corresponding value `b', and 0 otherwise. The invalid exception is raised
4011 | if either operand is a NaN. Otherwise, the comparison is performed
4012 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4013 *----------------------------------------------------------------------------*/
4015 int float64_eq( float64 a
, float64 b STATUS_PARAM
)
4018 a
= float64_squash_input_denormal(a STATUS_VAR
);
4019 b
= float64_squash_input_denormal(b STATUS_VAR
);
4021 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4022 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4024 float_raise( float_flag_invalid STATUS_VAR
);
4027 av
= float64_val(a
);
4028 bv
= float64_val(b
);
4029 return ( av
== bv
) || ( (uint64_t) ( ( av
| bv
)<<1 ) == 0 );
4033 /*----------------------------------------------------------------------------
4034 | Returns 1 if the double-precision floating-point value `a' is less than or
4035 | equal to the corresponding value `b', and 0 otherwise. The invalid
4036 | exception is raised if either operand is a NaN. The comparison is performed
4037 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4038 *----------------------------------------------------------------------------*/
4040 int float64_le( float64 a
, float64 b STATUS_PARAM
)
4044 a
= float64_squash_input_denormal(a STATUS_VAR
);
4045 b
= float64_squash_input_denormal(b STATUS_VAR
);
4047 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4048 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4050 float_raise( float_flag_invalid STATUS_VAR
);
4053 aSign
= extractFloat64Sign( a
);
4054 bSign
= extractFloat64Sign( b
);
4055 av
= float64_val(a
);
4056 bv
= float64_val(b
);
4057 if ( aSign
!= bSign
) return aSign
|| ( (uint64_t) ( ( av
| bv
)<<1 ) == 0 );
4058 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
4062 /*----------------------------------------------------------------------------
4063 | Returns 1 if the double-precision floating-point value `a' is less than
4064 | the corresponding value `b', and 0 otherwise. The invalid exception is
4065 | raised if either operand is a NaN. The comparison is performed according
4066 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4067 *----------------------------------------------------------------------------*/
4069 int float64_lt( float64 a
, float64 b STATUS_PARAM
)
4074 a
= float64_squash_input_denormal(a STATUS_VAR
);
4075 b
= float64_squash_input_denormal(b STATUS_VAR
);
4076 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4077 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4079 float_raise( float_flag_invalid STATUS_VAR
);
4082 aSign
= extractFloat64Sign( a
);
4083 bSign
= extractFloat64Sign( b
);
4084 av
= float64_val(a
);
4085 bv
= float64_val(b
);
4086 if ( aSign
!= bSign
) return aSign
&& ( (uint64_t) ( ( av
| bv
)<<1 ) != 0 );
4087 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
4091 /*----------------------------------------------------------------------------
4092 | Returns 1 if the double-precision floating-point values `a' and `b' cannot
4093 | be compared, and 0 otherwise. The invalid exception is raised if either
4094 | operand is a NaN. The comparison is performed according to the IEC/IEEE
4095 | Standard for Binary Floating-Point Arithmetic.
4096 *----------------------------------------------------------------------------*/
4098 int float64_unordered( float64 a
, float64 b STATUS_PARAM
)
4100 a
= float64_squash_input_denormal(a STATUS_VAR
);
4101 b
= float64_squash_input_denormal(b STATUS_VAR
);
4103 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4104 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4106 float_raise( float_flag_invalid STATUS_VAR
);
4112 /*----------------------------------------------------------------------------
4113 | Returns 1 if the double-precision floating-point value `a' is equal to the
4114 | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
4115 | exception.The comparison is performed according to the IEC/IEEE Standard
4116 | for Binary Floating-Point Arithmetic.
4117 *----------------------------------------------------------------------------*/
4119 int float64_eq_quiet( float64 a
, float64 b STATUS_PARAM
)
4122 a
= float64_squash_input_denormal(a STATUS_VAR
);
4123 b
= float64_squash_input_denormal(b STATUS_VAR
);
4125 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4126 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4128 if ( float64_is_signaling_nan( a
) || float64_is_signaling_nan( b
) ) {
4129 float_raise( float_flag_invalid STATUS_VAR
);
4133 av
= float64_val(a
);
4134 bv
= float64_val(b
);
4135 return ( av
== bv
) || ( (uint64_t) ( ( av
| bv
)<<1 ) == 0 );
4139 /*----------------------------------------------------------------------------
4140 | Returns 1 if the double-precision floating-point value `a' is less than or
4141 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
4142 | cause an exception. Otherwise, the comparison is performed according to the
4143 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4144 *----------------------------------------------------------------------------*/
4146 int float64_le_quiet( float64 a
, float64 b STATUS_PARAM
)
4150 a
= float64_squash_input_denormal(a STATUS_VAR
);
4151 b
= float64_squash_input_denormal(b STATUS_VAR
);
4153 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4154 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4156 if ( float64_is_signaling_nan( a
) || float64_is_signaling_nan( b
) ) {
4157 float_raise( float_flag_invalid STATUS_VAR
);
4161 aSign
= extractFloat64Sign( a
);
4162 bSign
= extractFloat64Sign( b
);
4163 av
= float64_val(a
);
4164 bv
= float64_val(b
);
4165 if ( aSign
!= bSign
) return aSign
|| ( (uint64_t) ( ( av
| bv
)<<1 ) == 0 );
4166 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
4170 /*----------------------------------------------------------------------------
4171 | Returns 1 if the double-precision floating-point value `a' is less than
4172 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
4173 | exception. Otherwise, the comparison is performed according to the IEC/IEEE
4174 | Standard for Binary Floating-Point Arithmetic.
4175 *----------------------------------------------------------------------------*/
4177 int float64_lt_quiet( float64 a
, float64 b STATUS_PARAM
)
4181 a
= float64_squash_input_denormal(a STATUS_VAR
);
4182 b
= float64_squash_input_denormal(b STATUS_VAR
);
4184 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4185 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4187 if ( float64_is_signaling_nan( a
) || float64_is_signaling_nan( b
) ) {
4188 float_raise( float_flag_invalid STATUS_VAR
);
4192 aSign
= extractFloat64Sign( a
);
4193 bSign
= extractFloat64Sign( b
);
4194 av
= float64_val(a
);
4195 bv
= float64_val(b
);
4196 if ( aSign
!= bSign
) return aSign
&& ( (uint64_t) ( ( av
| bv
)<<1 ) != 0 );
4197 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
4201 /*----------------------------------------------------------------------------
4202 | Returns 1 if the double-precision floating-point values `a' and `b' cannot
4203 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
4204 | comparison is performed according to the IEC/IEEE Standard for Binary
4205 | Floating-Point Arithmetic.
4206 *----------------------------------------------------------------------------*/
4208 int float64_unordered_quiet( float64 a
, float64 b STATUS_PARAM
)
4210 a
= float64_squash_input_denormal(a STATUS_VAR
);
4211 b
= float64_squash_input_denormal(b STATUS_VAR
);
4213 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4214 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4216 if ( float64_is_signaling_nan( a
) || float64_is_signaling_nan( b
) ) {
4217 float_raise( float_flag_invalid STATUS_VAR
);
4224 /*----------------------------------------------------------------------------
4225 | Returns the result of converting the extended double-precision floating-
4226 | point value `a' to the 32-bit two's complement integer format. The
4227 | conversion is performed according to the IEC/IEEE Standard for Binary
4228 | Floating-Point Arithmetic---which means in particular that the conversion
4229 | is rounded according to the current rounding mode. If `a' is a NaN, the
4230 | largest positive integer is returned. Otherwise, if the conversion
4231 | overflows, the largest integer with the same sign as `a' is returned.
4232 *----------------------------------------------------------------------------*/
4234 int32
floatx80_to_int32( floatx80 a STATUS_PARAM
)
4237 int32 aExp
, shiftCount
;
4240 aSig
= extractFloatx80Frac( a
);
4241 aExp
= extractFloatx80Exp( a
);
4242 aSign
= extractFloatx80Sign( a
);
4243 if ( ( aExp
== 0x7FFF ) && (uint64_t) ( aSig
<<1 ) ) aSign
= 0;
4244 shiftCount
= 0x4037 - aExp
;
4245 if ( shiftCount
<= 0 ) shiftCount
= 1;
4246 shift64RightJamming( aSig
, shiftCount
, &aSig
);
4247 return roundAndPackInt32( aSign
, aSig STATUS_VAR
);
4251 /*----------------------------------------------------------------------------
4252 | Returns the result of converting the extended double-precision floating-
4253 | point value `a' to the 32-bit two's complement integer format. The
4254 | conversion is performed according to the IEC/IEEE Standard for Binary
4255 | Floating-Point Arithmetic, except that the conversion is always rounded
4256 | toward zero. If `a' is a NaN, the largest positive integer is returned.
4257 | Otherwise, if the conversion overflows, the largest integer with the same
4258 | sign as `a' is returned.
4259 *----------------------------------------------------------------------------*/
4261 int32
floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM
)
4264 int32 aExp
, shiftCount
;
4265 uint64_t aSig
, savedASig
;
4268 aSig
= extractFloatx80Frac( a
);
4269 aExp
= extractFloatx80Exp( a
);
4270 aSign
= extractFloatx80Sign( a
);
4271 if ( 0x401E < aExp
) {
4272 if ( ( aExp
== 0x7FFF ) && (uint64_t) ( aSig
<<1 ) ) aSign
= 0;
4275 else if ( aExp
< 0x3FFF ) {
4276 if ( aExp
|| aSig
) STATUS(float_exception_flags
) |= float_flag_inexact
;
4279 shiftCount
= 0x403E - aExp
;
4281 aSig
>>= shiftCount
;
4283 if ( aSign
) z
= - z
;
4284 if ( ( z
< 0 ) ^ aSign
) {
4286 float_raise( float_flag_invalid STATUS_VAR
);
4287 return aSign
? (int32_t) 0x80000000 : 0x7FFFFFFF;
4289 if ( ( aSig
<<shiftCount
) != savedASig
) {
4290 STATUS(float_exception_flags
) |= float_flag_inexact
;
4296 /*----------------------------------------------------------------------------
4297 | Returns the result of converting the extended double-precision floating-
4298 | point value `a' to the 64-bit two's complement integer format. The
4299 | conversion is performed according to the IEC/IEEE Standard for Binary
4300 | Floating-Point Arithmetic---which means in particular that the conversion
4301 | is rounded according to the current rounding mode. If `a' is a NaN,
4302 | the largest positive integer is returned. Otherwise, if the conversion
4303 | overflows, the largest integer with the same sign as `a' is returned.
4304 *----------------------------------------------------------------------------*/
4306 int64
floatx80_to_int64( floatx80 a STATUS_PARAM
)
4309 int32 aExp
, shiftCount
;
4310 uint64_t aSig
, aSigExtra
;
4312 aSig
= extractFloatx80Frac( a
);
4313 aExp
= extractFloatx80Exp( a
);
4314 aSign
= extractFloatx80Sign( a
);
4315 shiftCount
= 0x403E - aExp
;
4316 if ( shiftCount
<= 0 ) {
4318 float_raise( float_flag_invalid STATUS_VAR
);
4320 || ( ( aExp
== 0x7FFF )
4321 && ( aSig
!= LIT64( 0x8000000000000000 ) ) )
4323 return LIT64( 0x7FFFFFFFFFFFFFFF );
4325 return (int64_t) LIT64( 0x8000000000000000 );
4330 shift64ExtraRightJamming( aSig
, 0, shiftCount
, &aSig
, &aSigExtra
);
4332 return roundAndPackInt64( aSign
, aSig
, aSigExtra STATUS_VAR
);
4336 /*----------------------------------------------------------------------------
4337 | Returns the result of converting the extended double-precision floating-
4338 | point value `a' to the 64-bit two's complement integer format. The
4339 | conversion is performed according to the IEC/IEEE Standard for Binary
4340 | Floating-Point Arithmetic, except that the conversion is always rounded
4341 | toward zero. If `a' is a NaN, the largest positive integer is returned.
4342 | Otherwise, if the conversion overflows, the largest integer with the same
4343 | sign as `a' is returned.
4344 *----------------------------------------------------------------------------*/
4346 int64
floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM
)
4349 int32 aExp
, shiftCount
;
4353 aSig
= extractFloatx80Frac( a
);
4354 aExp
= extractFloatx80Exp( a
);
4355 aSign
= extractFloatx80Sign( a
);
4356 shiftCount
= aExp
- 0x403E;
4357 if ( 0 <= shiftCount
) {
4358 aSig
&= LIT64( 0x7FFFFFFFFFFFFFFF );
4359 if ( ( a
.high
!= 0xC03E ) || aSig
) {
4360 float_raise( float_flag_invalid STATUS_VAR
);
4361 if ( ! aSign
|| ( ( aExp
== 0x7FFF ) && aSig
) ) {
4362 return LIT64( 0x7FFFFFFFFFFFFFFF );
4365 return (int64_t) LIT64( 0x8000000000000000 );
4367 else if ( aExp
< 0x3FFF ) {
4368 if ( aExp
| aSig
) STATUS(float_exception_flags
) |= float_flag_inexact
;
4371 z
= aSig
>>( - shiftCount
);
4372 if ( (uint64_t) ( aSig
<<( shiftCount
& 63 ) ) ) {
4373 STATUS(float_exception_flags
) |= float_flag_inexact
;
4375 if ( aSign
) z
= - z
;
4380 /*----------------------------------------------------------------------------
4381 | Returns the result of converting the extended double-precision floating-
4382 | point value `a' to the single-precision floating-point format. The
4383 | conversion is performed according to the IEC/IEEE Standard for Binary
4384 | Floating-Point Arithmetic.
4385 *----------------------------------------------------------------------------*/
4387 float32
floatx80_to_float32( floatx80 a STATUS_PARAM
)
4393 aSig
= extractFloatx80Frac( a
);
4394 aExp
= extractFloatx80Exp( a
);
4395 aSign
= extractFloatx80Sign( a
);
4396 if ( aExp
== 0x7FFF ) {
4397 if ( (uint64_t) ( aSig
<<1 ) ) {
4398 return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
4400 return packFloat32( aSign
, 0xFF, 0 );
4402 shift64RightJamming( aSig
, 33, &aSig
);
4403 if ( aExp
|| aSig
) aExp
-= 0x3F81;
4404 return roundAndPackFloat32( aSign
, aExp
, aSig STATUS_VAR
);
4408 /*----------------------------------------------------------------------------
4409 | Returns the result of converting the extended double-precision floating-
4410 | point value `a' to the double-precision floating-point format. The
4411 | conversion is performed according to the IEC/IEEE Standard for Binary
4412 | Floating-Point Arithmetic.
4413 *----------------------------------------------------------------------------*/
4415 float64
floatx80_to_float64( floatx80 a STATUS_PARAM
)
4419 uint64_t aSig
, zSig
;
4421 aSig
= extractFloatx80Frac( a
);
4422 aExp
= extractFloatx80Exp( a
);
4423 aSign
= extractFloatx80Sign( a
);
4424 if ( aExp
== 0x7FFF ) {
4425 if ( (uint64_t) ( aSig
<<1 ) ) {
4426 return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
4428 return packFloat64( aSign
, 0x7FF, 0 );
4430 shift64RightJamming( aSig
, 1, &zSig
);
4431 if ( aExp
|| aSig
) aExp
-= 0x3C01;
4432 return roundAndPackFloat64( aSign
, aExp
, zSig STATUS_VAR
);
4436 /*----------------------------------------------------------------------------
4437 | Returns the result of converting the extended double-precision floating-
4438 | point value `a' to the quadruple-precision floating-point format. The
4439 | conversion is performed according to the IEC/IEEE Standard for Binary
4440 | Floating-Point Arithmetic.
4441 *----------------------------------------------------------------------------*/
4443 float128
floatx80_to_float128( floatx80 a STATUS_PARAM
)
4447 uint64_t aSig
, zSig0
, zSig1
;
4449 aSig
= extractFloatx80Frac( a
);
4450 aExp
= extractFloatx80Exp( a
);
4451 aSign
= extractFloatx80Sign( a
);
4452 if ( ( aExp
== 0x7FFF ) && (uint64_t) ( aSig
<<1 ) ) {
4453 return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
4455 shift128Right( aSig
<<1, 0, 16, &zSig0
, &zSig1
);
4456 return packFloat128( aSign
, aExp
, zSig0
, zSig1
);
4460 /*----------------------------------------------------------------------------
4461 | Rounds the extended double-precision floating-point value `a' to an integer,
4462 | and returns the result as an extended quadruple-precision floating-point
4463 | value. The operation is performed according to the IEC/IEEE Standard for
4464 | Binary Floating-Point Arithmetic.
4465 *----------------------------------------------------------------------------*/
4467 floatx80
floatx80_round_to_int( floatx80 a STATUS_PARAM
)
4471 uint64_t lastBitMask
, roundBitsMask
;
4475 aExp
= extractFloatx80Exp( a
);
4476 if ( 0x403E <= aExp
) {
4477 if ( ( aExp
== 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) ) {
4478 return propagateFloatx80NaN( a
, a STATUS_VAR
);
4482 if ( aExp
< 0x3FFF ) {
4484 && ( (uint64_t) ( extractFloatx80Frac( a
)<<1 ) == 0 ) ) {
4487 STATUS(float_exception_flags
) |= float_flag_inexact
;
4488 aSign
= extractFloatx80Sign( a
);
4489 switch ( STATUS(float_rounding_mode
) ) {
4490 case float_round_nearest_even
:
4491 if ( ( aExp
== 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a
)<<1 )
4494 packFloatx80( aSign
, 0x3FFF, LIT64( 0x8000000000000000 ) );
4497 case float_round_down
:
4500 packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
4501 : packFloatx80( 0, 0, 0 );
4502 case float_round_up
:
4504 aSign
? packFloatx80( 1, 0, 0 )
4505 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
4507 return packFloatx80( aSign
, 0, 0 );
4510 lastBitMask
<<= 0x403E - aExp
;
4511 roundBitsMask
= lastBitMask
- 1;
4513 roundingMode
= STATUS(float_rounding_mode
);
4514 if ( roundingMode
== float_round_nearest_even
) {
4515 z
.low
+= lastBitMask
>>1;
4516 if ( ( z
.low
& roundBitsMask
) == 0 ) z
.low
&= ~ lastBitMask
;
4518 else if ( roundingMode
!= float_round_to_zero
) {
4519 if ( extractFloatx80Sign( z
) ^ ( roundingMode
== float_round_up
) ) {
4520 z
.low
+= roundBitsMask
;
4523 z
.low
&= ~ roundBitsMask
;
4526 z
.low
= LIT64( 0x8000000000000000 );
4528 if ( z
.low
!= a
.low
) STATUS(float_exception_flags
) |= float_flag_inexact
;
4533 /*----------------------------------------------------------------------------
4534 | Returns the result of adding the absolute values of the extended double-
4535 | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
4536 | negated before being returned. `zSign' is ignored if the result is a NaN.
4537 | The addition is performed according to the IEC/IEEE Standard for Binary
4538 | Floating-Point Arithmetic.
4539 *----------------------------------------------------------------------------*/
4541 static floatx80
addFloatx80Sigs( floatx80 a
, floatx80 b
, flag zSign STATUS_PARAM
)
4543 int32 aExp
, bExp
, zExp
;
4544 uint64_t aSig
, bSig
, zSig0
, zSig1
;
4547 aSig
= extractFloatx80Frac( a
);
4548 aExp
= extractFloatx80Exp( a
);
4549 bSig
= extractFloatx80Frac( b
);
4550 bExp
= extractFloatx80Exp( b
);
4551 expDiff
= aExp
- bExp
;
4552 if ( 0 < expDiff
) {
4553 if ( aExp
== 0x7FFF ) {
4554 if ( (uint64_t) ( aSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4557 if ( bExp
== 0 ) --expDiff
;
4558 shift64ExtraRightJamming( bSig
, 0, expDiff
, &bSig
, &zSig1
);
4561 else if ( expDiff
< 0 ) {
4562 if ( bExp
== 0x7FFF ) {
4563 if ( (uint64_t) ( bSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4564 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
4566 if ( aExp
== 0 ) ++expDiff
;
4567 shift64ExtraRightJamming( aSig
, 0, - expDiff
, &aSig
, &zSig1
);
4571 if ( aExp
== 0x7FFF ) {
4572 if ( (uint64_t) ( ( aSig
| bSig
)<<1 ) ) {
4573 return propagateFloatx80NaN( a
, b STATUS_VAR
);
4578 zSig0
= aSig
+ bSig
;
4580 normalizeFloatx80Subnormal( zSig0
, &zExp
, &zSig0
);
4586 zSig0
= aSig
+ bSig
;
4587 if ( (int64_t) zSig0
< 0 ) goto roundAndPack
;
4589 shift64ExtraRightJamming( zSig0
, zSig1
, 1, &zSig0
, &zSig1
);
4590 zSig0
|= LIT64( 0x8000000000000000 );
4594 roundAndPackFloatx80(
4595 STATUS(floatx80_rounding_precision
), zSign
, zExp
, zSig0
, zSig1 STATUS_VAR
);
4599 /*----------------------------------------------------------------------------
4600 | Returns the result of subtracting the absolute values of the extended
4601 | double-precision floating-point values `a' and `b'. If `zSign' is 1, the
4602 | difference is negated before being returned. `zSign' is ignored if the
4603 | result is a NaN. The subtraction is performed according to the IEC/IEEE
4604 | Standard for Binary Floating-Point Arithmetic.
4605 *----------------------------------------------------------------------------*/
4607 static floatx80
subFloatx80Sigs( floatx80 a
, floatx80 b
, flag zSign STATUS_PARAM
)
4609 int32 aExp
, bExp
, zExp
;
4610 uint64_t aSig
, bSig
, zSig0
, zSig1
;
4614 aSig
= extractFloatx80Frac( a
);
4615 aExp
= extractFloatx80Exp( a
);
4616 bSig
= extractFloatx80Frac( b
);
4617 bExp
= extractFloatx80Exp( b
);
4618 expDiff
= aExp
- bExp
;
4619 if ( 0 < expDiff
) goto aExpBigger
;
4620 if ( expDiff
< 0 ) goto bExpBigger
;
4621 if ( aExp
== 0x7FFF ) {
4622 if ( (uint64_t) ( ( aSig
| bSig
)<<1 ) ) {
4623 return propagateFloatx80NaN( a
, b STATUS_VAR
);
4625 float_raise( float_flag_invalid STATUS_VAR
);
4626 z
.low
= floatx80_default_nan_low
;
4627 z
.high
= floatx80_default_nan_high
;
4635 if ( bSig
< aSig
) goto aBigger
;
4636 if ( aSig
< bSig
) goto bBigger
;
4637 return packFloatx80( STATUS(float_rounding_mode
) == float_round_down
, 0, 0 );
4639 if ( bExp
== 0x7FFF ) {
4640 if ( (uint64_t) ( bSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4641 return packFloatx80( zSign
^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
4643 if ( aExp
== 0 ) ++expDiff
;
4644 shift128RightJamming( aSig
, 0, - expDiff
, &aSig
, &zSig1
);
4646 sub128( bSig
, 0, aSig
, zSig1
, &zSig0
, &zSig1
);
4649 goto normalizeRoundAndPack
;
4651 if ( aExp
== 0x7FFF ) {
4652 if ( (uint64_t) ( aSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4655 if ( bExp
== 0 ) --expDiff
;
4656 shift128RightJamming( bSig
, 0, expDiff
, &bSig
, &zSig1
);
4658 sub128( aSig
, 0, bSig
, zSig1
, &zSig0
, &zSig1
);
4660 normalizeRoundAndPack
:
4662 normalizeRoundAndPackFloatx80(
4663 STATUS(floatx80_rounding_precision
), zSign
, zExp
, zSig0
, zSig1 STATUS_VAR
);
4667 /*----------------------------------------------------------------------------
4668 | Returns the result of adding the extended double-precision floating-point
4669 | values `a' and `b'. The operation is performed according to the IEC/IEEE
4670 | Standard for Binary Floating-Point Arithmetic.
4671 *----------------------------------------------------------------------------*/
4673 floatx80
floatx80_add( floatx80 a
, floatx80 b STATUS_PARAM
)
4677 aSign
= extractFloatx80Sign( a
);
4678 bSign
= extractFloatx80Sign( b
);
4679 if ( aSign
== bSign
) {
4680 return addFloatx80Sigs( a
, b
, aSign STATUS_VAR
);
4683 return subFloatx80Sigs( a
, b
, aSign STATUS_VAR
);
4688 /*----------------------------------------------------------------------------
4689 | Returns the result of subtracting the extended double-precision floating-
4690 | point values `a' and `b'. The operation is performed according to the
4691 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4692 *----------------------------------------------------------------------------*/
4694 floatx80
floatx80_sub( floatx80 a
, floatx80 b STATUS_PARAM
)
4698 aSign
= extractFloatx80Sign( a
);
4699 bSign
= extractFloatx80Sign( b
);
4700 if ( aSign
== bSign
) {
4701 return subFloatx80Sigs( a
, b
, aSign STATUS_VAR
);
4704 return addFloatx80Sigs( a
, b
, aSign STATUS_VAR
);
4709 /*----------------------------------------------------------------------------
4710 | Returns the result of multiplying the extended double-precision floating-
4711 | point values `a' and `b'. The operation is performed according to the
4712 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4713 *----------------------------------------------------------------------------*/
4715 floatx80
floatx80_mul( floatx80 a
, floatx80 b STATUS_PARAM
)
4717 flag aSign
, bSign
, zSign
;
4718 int32 aExp
, bExp
, zExp
;
4719 uint64_t aSig
, bSig
, zSig0
, zSig1
;
4722 aSig
= extractFloatx80Frac( a
);
4723 aExp
= extractFloatx80Exp( a
);
4724 aSign
= extractFloatx80Sign( a
);
4725 bSig
= extractFloatx80Frac( b
);
4726 bExp
= extractFloatx80Exp( b
);
4727 bSign
= extractFloatx80Sign( b
);
4728 zSign
= aSign
^ bSign
;
4729 if ( aExp
== 0x7FFF ) {
4730 if ( (uint64_t) ( aSig
<<1 )
4731 || ( ( bExp
== 0x7FFF ) && (uint64_t) ( bSig
<<1 ) ) ) {
4732 return propagateFloatx80NaN( a
, b STATUS_VAR
);
4734 if ( ( bExp
| bSig
) == 0 ) goto invalid
;
4735 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
4737 if ( bExp
== 0x7FFF ) {
4738 if ( (uint64_t) ( bSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4739 if ( ( aExp
| aSig
) == 0 ) {
4741 float_raise( float_flag_invalid STATUS_VAR
);
4742 z
.low
= floatx80_default_nan_low
;
4743 z
.high
= floatx80_default_nan_high
;
4746 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
4749 if ( aSig
== 0 ) return packFloatx80( zSign
, 0, 0 );
4750 normalizeFloatx80Subnormal( aSig
, &aExp
, &aSig
);
4753 if ( bSig
== 0 ) return packFloatx80( zSign
, 0, 0 );
4754 normalizeFloatx80Subnormal( bSig
, &bExp
, &bSig
);
4756 zExp
= aExp
+ bExp
- 0x3FFE;
4757 mul64To128( aSig
, bSig
, &zSig0
, &zSig1
);
4758 if ( 0 < (int64_t) zSig0
) {
4759 shortShift128Left( zSig0
, zSig1
, 1, &zSig0
, &zSig1
);
4763 roundAndPackFloatx80(
4764 STATUS(floatx80_rounding_precision
), zSign
, zExp
, zSig0
, zSig1 STATUS_VAR
);
4768 /*----------------------------------------------------------------------------
4769 | Returns the result of dividing the extended double-precision floating-point
4770 | value `a' by the corresponding value `b'. The operation is performed
4771 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4772 *----------------------------------------------------------------------------*/
4774 floatx80
floatx80_div( floatx80 a
, floatx80 b STATUS_PARAM
)
4776 flag aSign
, bSign
, zSign
;
4777 int32 aExp
, bExp
, zExp
;
4778 uint64_t aSig
, bSig
, zSig0
, zSig1
;
4779 uint64_t rem0
, rem1
, rem2
, term0
, term1
, term2
;
4782 aSig
= extractFloatx80Frac( a
);
4783 aExp
= extractFloatx80Exp( a
);
4784 aSign
= extractFloatx80Sign( a
);
4785 bSig
= extractFloatx80Frac( b
);
4786 bExp
= extractFloatx80Exp( b
);
4787 bSign
= extractFloatx80Sign( b
);
4788 zSign
= aSign
^ bSign
;
4789 if ( aExp
== 0x7FFF ) {
4790 if ( (uint64_t) ( aSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4791 if ( bExp
== 0x7FFF ) {
4792 if ( (uint64_t) ( bSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4795 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
4797 if ( bExp
== 0x7FFF ) {
4798 if ( (uint64_t) ( bSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4799 return packFloatx80( zSign
, 0, 0 );
4803 if ( ( aExp
| aSig
) == 0 ) {
4805 float_raise( float_flag_invalid STATUS_VAR
);
4806 z
.low
= floatx80_default_nan_low
;
4807 z
.high
= floatx80_default_nan_high
;
4810 float_raise( float_flag_divbyzero STATUS_VAR
);
4811 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
4813 normalizeFloatx80Subnormal( bSig
, &bExp
, &bSig
);
4816 if ( aSig
== 0 ) return packFloatx80( zSign
, 0, 0 );
4817 normalizeFloatx80Subnormal( aSig
, &aExp
, &aSig
);
4819 zExp
= aExp
- bExp
+ 0x3FFE;
4821 if ( bSig
<= aSig
) {
4822 shift128Right( aSig
, 0, 1, &aSig
, &rem1
);
4825 zSig0
= estimateDiv128To64( aSig
, rem1
, bSig
);
4826 mul64To128( bSig
, zSig0
, &term0
, &term1
);
4827 sub128( aSig
, rem1
, term0
, term1
, &rem0
, &rem1
);
4828 while ( (int64_t) rem0
< 0 ) {
4830 add128( rem0
, rem1
, 0, bSig
, &rem0
, &rem1
);
4832 zSig1
= estimateDiv128To64( rem1
, 0, bSig
);
4833 if ( (uint64_t) ( zSig1
<<1 ) <= 8 ) {
4834 mul64To128( bSig
, zSig1
, &term1
, &term2
);
4835 sub128( rem1
, 0, term1
, term2
, &rem1
, &rem2
);
4836 while ( (int64_t) rem1
< 0 ) {
4838 add128( rem1
, rem2
, 0, bSig
, &rem1
, &rem2
);
4840 zSig1
|= ( ( rem1
| rem2
) != 0 );
4843 roundAndPackFloatx80(
4844 STATUS(floatx80_rounding_precision
), zSign
, zExp
, zSig0
, zSig1 STATUS_VAR
);
4848 /*----------------------------------------------------------------------------
4849 | Returns the remainder of the extended double-precision floating-point value
4850 | `a' with respect to the corresponding value `b'. The operation is performed
4851 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4852 *----------------------------------------------------------------------------*/
4854 floatx80
floatx80_rem( floatx80 a
, floatx80 b STATUS_PARAM
)
4857 int32 aExp
, bExp
, expDiff
;
4858 uint64_t aSig0
, aSig1
, bSig
;
4859 uint64_t q
, term0
, term1
, alternateASig0
, alternateASig1
;
4862 aSig0
= extractFloatx80Frac( a
);
4863 aExp
= extractFloatx80Exp( a
);
4864 aSign
= extractFloatx80Sign( a
);
4865 bSig
= extractFloatx80Frac( b
);
4866 bExp
= extractFloatx80Exp( b
);
4867 if ( aExp
== 0x7FFF ) {
4868 if ( (uint64_t) ( aSig0
<<1 )
4869 || ( ( bExp
== 0x7FFF ) && (uint64_t) ( bSig
<<1 ) ) ) {
4870 return propagateFloatx80NaN( a
, b STATUS_VAR
);
4874 if ( bExp
== 0x7FFF ) {
4875 if ( (uint64_t) ( bSig
<<1 ) ) return propagateFloatx80NaN( a
, b STATUS_VAR
);
4881 float_raise( float_flag_invalid STATUS_VAR
);
4882 z
.low
= floatx80_default_nan_low
;
4883 z
.high
= floatx80_default_nan_high
;
4886 normalizeFloatx80Subnormal( bSig
, &bExp
, &bSig
);
4889 if ( (uint64_t) ( aSig0
<<1 ) == 0 ) return a
;
4890 normalizeFloatx80Subnormal( aSig0
, &aExp
, &aSig0
);
4892 bSig
|= LIT64( 0x8000000000000000 );
4894 expDiff
= aExp
- bExp
;
4896 if ( expDiff
< 0 ) {
4897 if ( expDiff
< -1 ) return a
;
4898 shift128Right( aSig0
, 0, 1, &aSig0
, &aSig1
);
4901 q
= ( bSig
<= aSig0
);
4902 if ( q
) aSig0
-= bSig
;
4904 while ( 0 < expDiff
) {
4905 q
= estimateDiv128To64( aSig0
, aSig1
, bSig
);
4906 q
= ( 2 < q
) ? q
- 2 : 0;
4907 mul64To128( bSig
, q
, &term0
, &term1
);
4908 sub128( aSig0
, aSig1
, term0
, term1
, &aSig0
, &aSig1
);
4909 shortShift128Left( aSig0
, aSig1
, 62, &aSig0
, &aSig1
);
4913 if ( 0 < expDiff
) {
4914 q
= estimateDiv128To64( aSig0
, aSig1
, bSig
);
4915 q
= ( 2 < q
) ? q
- 2 : 0;
4917 mul64To128( bSig
, q
<<( 64 - expDiff
), &term0
, &term1
);
4918 sub128( aSig0
, aSig1
, term0
, term1
, &aSig0
, &aSig1
);
4919 shortShift128Left( 0, bSig
, 64 - expDiff
, &term0
, &term1
);
4920 while ( le128( term0
, term1
, aSig0
, aSig1
) ) {
4922 sub128( aSig0
, aSig1
, term0
, term1
, &aSig0
, &aSig1
);
4929 sub128( term0
, term1
, aSig0
, aSig1
, &alternateASig0
, &alternateASig1
);
4930 if ( lt128( alternateASig0
, alternateASig1
, aSig0
, aSig1
)
4931 || ( eq128( alternateASig0
, alternateASig1
, aSig0
, aSig1
)
4934 aSig0
= alternateASig0
;
4935 aSig1
= alternateASig1
;
4939 normalizeRoundAndPackFloatx80(
4940 80, zSign
, bExp
+ expDiff
, aSig0
, aSig1 STATUS_VAR
);
4944 /*----------------------------------------------------------------------------
4945 | Returns the square root of the extended double-precision floating-point
4946 | value `a'. The operation is performed according to the IEC/IEEE Standard
4947 | for Binary Floating-Point Arithmetic.
4948 *----------------------------------------------------------------------------*/
4950 floatx80
floatx80_sqrt( floatx80 a STATUS_PARAM
)
4954 uint64_t aSig0
, aSig1
, zSig0
, zSig1
, doubleZSig0
;
4955 uint64_t rem0
, rem1
, rem2
, rem3
, term0
, term1
, term2
, term3
;
4958 aSig0
= extractFloatx80Frac( a
);
4959 aExp
= extractFloatx80Exp( a
);
4960 aSign
= extractFloatx80Sign( a
);
4961 if ( aExp
== 0x7FFF ) {
4962 if ( (uint64_t) ( aSig0
<<1 ) ) return propagateFloatx80NaN( a
, a STATUS_VAR
);
4963 if ( ! aSign
) return a
;
4967 if ( ( aExp
| aSig0
) == 0 ) return a
;
4969 float_raise( float_flag_invalid STATUS_VAR
);
4970 z
.low
= floatx80_default_nan_low
;
4971 z
.high
= floatx80_default_nan_high
;
4975 if ( aSig0
== 0 ) return packFloatx80( 0, 0, 0 );
4976 normalizeFloatx80Subnormal( aSig0
, &aExp
, &aSig0
);
4978 zExp
= ( ( aExp
- 0x3FFF )>>1 ) + 0x3FFF;
4979 zSig0
= estimateSqrt32( aExp
, aSig0
>>32 );
4980 shift128Right( aSig0
, 0, 2 + ( aExp
& 1 ), &aSig0
, &aSig1
);
4981 zSig0
= estimateDiv128To64( aSig0
, aSig1
, zSig0
<<32 ) + ( zSig0
<<30 );
4982 doubleZSig0
= zSig0
<<1;
4983 mul64To128( zSig0
, zSig0
, &term0
, &term1
);
4984 sub128( aSig0
, aSig1
, term0
, term1
, &rem0
, &rem1
);
4985 while ( (int64_t) rem0
< 0 ) {
4988 add128( rem0
, rem1
, zSig0
>>63, doubleZSig0
| 1, &rem0
, &rem1
);
4990 zSig1
= estimateDiv128To64( rem1
, 0, doubleZSig0
);
4991 if ( ( zSig1
& LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
4992 if ( zSig1
== 0 ) zSig1
= 1;
4993 mul64To128( doubleZSig0
, zSig1
, &term1
, &term2
);
4994 sub128( rem1
, 0, term1
, term2
, &rem1
, &rem2
);
4995 mul64To128( zSig1
, zSig1
, &term2
, &term3
);
4996 sub192( rem1
, rem2
, 0, 0, term2
, term3
, &rem1
, &rem2
, &rem3
);
4997 while ( (int64_t) rem1
< 0 ) {
4999 shortShift128Left( 0, zSig1
, 1, &term2
, &term3
);
5001 term2
|= doubleZSig0
;
5002 add192( rem1
, rem2
, rem3
, 0, term2
, term3
, &rem1
, &rem2
, &rem3
);
5004 zSig1
|= ( ( rem1
| rem2
| rem3
) != 0 );
5006 shortShift128Left( 0, zSig1
, 1, &zSig0
, &zSig1
);
5007 zSig0
|= doubleZSig0
;
5009 roundAndPackFloatx80(
5010 STATUS(floatx80_rounding_precision
), 0, zExp
, zSig0
, zSig1 STATUS_VAR
);
5014 /*----------------------------------------------------------------------------
5015 | Returns 1 if the extended double-precision floating-point value `a' is equal
5016 | to the corresponding value `b', and 0 otherwise. The invalid exception is
5017 | raised if either operand is a NaN. Otherwise, the comparison is performed
5018 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5019 *----------------------------------------------------------------------------*/
5021 int floatx80_eq( floatx80 a
, floatx80 b STATUS_PARAM
)
5024 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5025 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5026 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5027 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5029 float_raise( float_flag_invalid STATUS_VAR
);
5034 && ( ( a
.high
== b
.high
)
5036 && ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) == 0 ) )
5041 /*----------------------------------------------------------------------------
5042 | Returns 1 if the extended double-precision floating-point value `a' is
5043 | less than or equal to the corresponding value `b', and 0 otherwise. The
5044 | invalid exception is raised if either operand is a NaN. The comparison is
5045 | performed according to the IEC/IEEE Standard for Binary Floating-Point
5047 *----------------------------------------------------------------------------*/
5049 int floatx80_le( floatx80 a
, floatx80 b STATUS_PARAM
)
5053 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5054 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5055 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5056 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5058 float_raise( float_flag_invalid STATUS_VAR
);
5061 aSign
= extractFloatx80Sign( a
);
5062 bSign
= extractFloatx80Sign( b
);
5063 if ( aSign
!= bSign
) {
5066 || ( ( ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
5070 aSign
? le128( b
.high
, b
.low
, a
.high
, a
.low
)
5071 : le128( a
.high
, a
.low
, b
.high
, b
.low
);
5075 /*----------------------------------------------------------------------------
5076 | Returns 1 if the extended double-precision floating-point value `a' is
5077 | less than the corresponding value `b', and 0 otherwise. The invalid
5078 | exception is raised if either operand is a NaN. The comparison is performed
5079 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5080 *----------------------------------------------------------------------------*/
5082 int floatx80_lt( floatx80 a
, floatx80 b STATUS_PARAM
)
5086 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5087 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5088 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5089 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5091 float_raise( float_flag_invalid STATUS_VAR
);
5094 aSign
= extractFloatx80Sign( a
);
5095 bSign
= extractFloatx80Sign( b
);
5096 if ( aSign
!= bSign
) {
5099 && ( ( ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
5103 aSign
? lt128( b
.high
, b
.low
, a
.high
, a
.low
)
5104 : lt128( a
.high
, a
.low
, b
.high
, b
.low
);
5108 /*----------------------------------------------------------------------------
5109 | Returns 1 if the extended double-precision floating-point values `a' and `b'
5110 | cannot be compared, and 0 otherwise. The invalid exception is raised if
5111 | either operand is a NaN. The comparison is performed according to the
5112 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5113 *----------------------------------------------------------------------------*/
5114 int floatx80_unordered( floatx80 a
, floatx80 b STATUS_PARAM
)
5116 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5117 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5118 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5119 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5121 float_raise( float_flag_invalid STATUS_VAR
);
5127 /*----------------------------------------------------------------------------
5128 | Returns 1 if the extended double-precision floating-point value `a' is
5129 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
5130 | cause an exception. The comparison is performed according to the IEC/IEEE
5131 | Standard for Binary Floating-Point Arithmetic.
5132 *----------------------------------------------------------------------------*/
5134 int floatx80_eq_quiet( floatx80 a
, floatx80 b STATUS_PARAM
)
5137 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5138 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5139 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5140 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5142 if ( floatx80_is_signaling_nan( a
)
5143 || floatx80_is_signaling_nan( b
) ) {
5144 float_raise( float_flag_invalid STATUS_VAR
);
5150 && ( ( a
.high
== b
.high
)
5152 && ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) == 0 ) )
5157 /*----------------------------------------------------------------------------
5158 | Returns 1 if the extended double-precision floating-point value `a' is less
5159 | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
5160 | do not cause an exception. Otherwise, the comparison is performed according
5161 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5162 *----------------------------------------------------------------------------*/
5164 int floatx80_le_quiet( floatx80 a
, floatx80 b STATUS_PARAM
)
5168 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5169 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5170 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5171 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5173 if ( floatx80_is_signaling_nan( a
)
5174 || floatx80_is_signaling_nan( b
) ) {
5175 float_raise( float_flag_invalid STATUS_VAR
);
5179 aSign
= extractFloatx80Sign( a
);
5180 bSign
= extractFloatx80Sign( b
);
5181 if ( aSign
!= bSign
) {
5184 || ( ( ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
5188 aSign
? le128( b
.high
, b
.low
, a
.high
, a
.low
)
5189 : le128( a
.high
, a
.low
, b
.high
, b
.low
);
5193 /*----------------------------------------------------------------------------
5194 | Returns 1 if the extended double-precision floating-point value `a' is less
5195 | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
5196 | an exception. Otherwise, the comparison is performed according to the
5197 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5198 *----------------------------------------------------------------------------*/
5200 int floatx80_lt_quiet( floatx80 a
, floatx80 b STATUS_PARAM
)
5204 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5205 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5206 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5207 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5209 if ( floatx80_is_signaling_nan( a
)
5210 || floatx80_is_signaling_nan( b
) ) {
5211 float_raise( float_flag_invalid STATUS_VAR
);
5215 aSign
= extractFloatx80Sign( a
);
5216 bSign
= extractFloatx80Sign( b
);
5217 if ( aSign
!= bSign
) {
5220 && ( ( ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
5224 aSign
? lt128( b
.high
, b
.low
, a
.high
, a
.low
)
5225 : lt128( a
.high
, a
.low
, b
.high
, b
.low
);
5229 /*----------------------------------------------------------------------------
5230 | Returns 1 if the extended double-precision floating-point values `a' and `b'
5231 | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
5232 | The comparison is performed according to the IEC/IEEE Standard for Binary
5233 | Floating-Point Arithmetic.
5234 *----------------------------------------------------------------------------*/
5235 int floatx80_unordered_quiet( floatx80 a
, floatx80 b STATUS_PARAM
)
5237 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5238 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5239 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5240 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5242 if ( floatx80_is_signaling_nan( a
)
5243 || floatx80_is_signaling_nan( b
) ) {
5244 float_raise( float_flag_invalid STATUS_VAR
);
5251 /*----------------------------------------------------------------------------
5252 | Returns the result of converting the quadruple-precision floating-point
5253 | value `a' to the 32-bit two's complement integer format. The conversion
5254 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5255 | Arithmetic---which means in particular that the conversion is rounded
5256 | according to the current rounding mode. If `a' is a NaN, the largest
5257 | positive integer is returned. Otherwise, if the conversion overflows, the
5258 | largest integer with the same sign as `a' is returned.
5259 *----------------------------------------------------------------------------*/
5261 int32
float128_to_int32( float128 a STATUS_PARAM
)
5264 int32 aExp
, shiftCount
;
5265 uint64_t aSig0
, aSig1
;
5267 aSig1
= extractFloat128Frac1( a
);
5268 aSig0
= extractFloat128Frac0( a
);
5269 aExp
= extractFloat128Exp( a
);
5270 aSign
= extractFloat128Sign( a
);
5271 if ( ( aExp
== 0x7FFF ) && ( aSig0
| aSig1
) ) aSign
= 0;
5272 if ( aExp
) aSig0
|= LIT64( 0x0001000000000000 );
5273 aSig0
|= ( aSig1
!= 0 );
5274 shiftCount
= 0x4028 - aExp
;
5275 if ( 0 < shiftCount
) shift64RightJamming( aSig0
, shiftCount
, &aSig0
);
5276 return roundAndPackInt32( aSign
, aSig0 STATUS_VAR
);
5280 /*----------------------------------------------------------------------------
5281 | Returns the result of converting the quadruple-precision floating-point
5282 | value `a' to the 32-bit two's complement integer format. The conversion
5283 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5284 | Arithmetic, except that the conversion is always rounded toward zero. If
5285 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
5286 | conversion overflows, the largest integer with the same sign as `a' is
5288 *----------------------------------------------------------------------------*/
5290 int32
float128_to_int32_round_to_zero( float128 a STATUS_PARAM
)
5293 int32 aExp
, shiftCount
;
5294 uint64_t aSig0
, aSig1
, savedASig
;
5297 aSig1
= extractFloat128Frac1( a
);
5298 aSig0
= extractFloat128Frac0( a
);
5299 aExp
= extractFloat128Exp( a
);
5300 aSign
= extractFloat128Sign( a
);
5301 aSig0
|= ( aSig1
!= 0 );
5302 if ( 0x401E < aExp
) {
5303 if ( ( aExp
== 0x7FFF ) && aSig0
) aSign
= 0;
5306 else if ( aExp
< 0x3FFF ) {
5307 if ( aExp
|| aSig0
) STATUS(float_exception_flags
) |= float_flag_inexact
;
5310 aSig0
|= LIT64( 0x0001000000000000 );
5311 shiftCount
= 0x402F - aExp
;
5313 aSig0
>>= shiftCount
;
5315 if ( aSign
) z
= - z
;
5316 if ( ( z
< 0 ) ^ aSign
) {
5318 float_raise( float_flag_invalid STATUS_VAR
);
5319 return aSign
? (int32_t) 0x80000000 : 0x7FFFFFFF;
5321 if ( ( aSig0
<<shiftCount
) != savedASig
) {
5322 STATUS(float_exception_flags
) |= float_flag_inexact
;
5328 /*----------------------------------------------------------------------------
5329 | Returns the result of converting the quadruple-precision floating-point
5330 | value `a' to the 64-bit two's complement integer format. The conversion
5331 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5332 | Arithmetic---which means in particular that the conversion is rounded
5333 | according to the current rounding mode. If `a' is a NaN, the largest
5334 | positive integer is returned. Otherwise, if the conversion overflows, the
5335 | largest integer with the same sign as `a' is returned.
5336 *----------------------------------------------------------------------------*/
5338 int64
float128_to_int64( float128 a STATUS_PARAM
)
5341 int32 aExp
, shiftCount
;
5342 uint64_t aSig0
, aSig1
;
5344 aSig1
= extractFloat128Frac1( a
);
5345 aSig0
= extractFloat128Frac0( a
);
5346 aExp
= extractFloat128Exp( a
);
5347 aSign
= extractFloat128Sign( a
);
5348 if ( aExp
) aSig0
|= LIT64( 0x0001000000000000 );
5349 shiftCount
= 0x402F - aExp
;
5350 if ( shiftCount
<= 0 ) {
5351 if ( 0x403E < aExp
) {
5352 float_raise( float_flag_invalid STATUS_VAR
);
5354 || ( ( aExp
== 0x7FFF )
5355 && ( aSig1
|| ( aSig0
!= LIT64( 0x0001000000000000 ) ) )
5358 return LIT64( 0x7FFFFFFFFFFFFFFF );
5360 return (int64_t) LIT64( 0x8000000000000000 );
5362 shortShift128Left( aSig0
, aSig1
, - shiftCount
, &aSig0
, &aSig1
);
5365 shift64ExtraRightJamming( aSig0
, aSig1
, shiftCount
, &aSig0
, &aSig1
);
5367 return roundAndPackInt64( aSign
, aSig0
, aSig1 STATUS_VAR
);
5371 /*----------------------------------------------------------------------------
5372 | Returns the result of converting the quadruple-precision floating-point
5373 | value `a' to the 64-bit two's complement integer format. The conversion
5374 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5375 | Arithmetic, except that the conversion is always rounded toward zero.
5376 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
5377 | the conversion overflows, the largest integer with the same sign as `a' is
5379 *----------------------------------------------------------------------------*/
5381 int64
float128_to_int64_round_to_zero( float128 a STATUS_PARAM
)
5384 int32 aExp
, shiftCount
;
5385 uint64_t aSig0
, aSig1
;
5388 aSig1
= extractFloat128Frac1( a
);
5389 aSig0
= extractFloat128Frac0( a
);
5390 aExp
= extractFloat128Exp( a
);
5391 aSign
= extractFloat128Sign( a
);
5392 if ( aExp
) aSig0
|= LIT64( 0x0001000000000000 );
5393 shiftCount
= aExp
- 0x402F;
5394 if ( 0 < shiftCount
) {
5395 if ( 0x403E <= aExp
) {
5396 aSig0
&= LIT64( 0x0000FFFFFFFFFFFF );
5397 if ( ( a
.high
== LIT64( 0xC03E000000000000 ) )
5398 && ( aSig1
< LIT64( 0x0002000000000000 ) ) ) {
5399 if ( aSig1
) STATUS(float_exception_flags
) |= float_flag_inexact
;
5402 float_raise( float_flag_invalid STATUS_VAR
);
5403 if ( ! aSign
|| ( ( aExp
== 0x7FFF ) && ( aSig0
| aSig1
) ) ) {
5404 return LIT64( 0x7FFFFFFFFFFFFFFF );
5407 return (int64_t) LIT64( 0x8000000000000000 );
5409 z
= ( aSig0
<<shiftCount
) | ( aSig1
>>( ( - shiftCount
) & 63 ) );
5410 if ( (uint64_t) ( aSig1
<<shiftCount
) ) {
5411 STATUS(float_exception_flags
) |= float_flag_inexact
;
5415 if ( aExp
< 0x3FFF ) {
5416 if ( aExp
| aSig0
| aSig1
) {
5417 STATUS(float_exception_flags
) |= float_flag_inexact
;
5421 z
= aSig0
>>( - shiftCount
);
5423 || ( shiftCount
&& (uint64_t) ( aSig0
<<( shiftCount
& 63 ) ) ) ) {
5424 STATUS(float_exception_flags
) |= float_flag_inexact
;
5427 if ( aSign
) z
= - z
;
5432 /*----------------------------------------------------------------------------
5433 | Returns the result of converting the quadruple-precision floating-point
5434 | value `a' to the single-precision floating-point format. The conversion
5435 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5437 *----------------------------------------------------------------------------*/
5439 float32
float128_to_float32( float128 a STATUS_PARAM
)
5443 uint64_t aSig0
, aSig1
;
5446 aSig1
= extractFloat128Frac1( a
);
5447 aSig0
= extractFloat128Frac0( a
);
5448 aExp
= extractFloat128Exp( a
);
5449 aSign
= extractFloat128Sign( a
);
5450 if ( aExp
== 0x7FFF ) {
5451 if ( aSig0
| aSig1
) {
5452 return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
5454 return packFloat32( aSign
, 0xFF, 0 );
5456 aSig0
|= ( aSig1
!= 0 );
5457 shift64RightJamming( aSig0
, 18, &aSig0
);
5459 if ( aExp
|| zSig
) {
5463 return roundAndPackFloat32( aSign
, aExp
, zSig STATUS_VAR
);
5467 /*----------------------------------------------------------------------------
5468 | Returns the result of converting the quadruple-precision floating-point
5469 | value `a' to the double-precision floating-point format. The conversion
5470 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5472 *----------------------------------------------------------------------------*/
5474 float64
float128_to_float64( float128 a STATUS_PARAM
)
5478 uint64_t aSig0
, aSig1
;
5480 aSig1
= extractFloat128Frac1( a
);
5481 aSig0
= extractFloat128Frac0( a
);
5482 aExp
= extractFloat128Exp( a
);
5483 aSign
= extractFloat128Sign( a
);
5484 if ( aExp
== 0x7FFF ) {
5485 if ( aSig0
| aSig1
) {
5486 return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
5488 return packFloat64( aSign
, 0x7FF, 0 );
5490 shortShift128Left( aSig0
, aSig1
, 14, &aSig0
, &aSig1
);
5491 aSig0
|= ( aSig1
!= 0 );
5492 if ( aExp
|| aSig0
) {
5493 aSig0
|= LIT64( 0x4000000000000000 );
5496 return roundAndPackFloat64( aSign
, aExp
, aSig0 STATUS_VAR
);
5500 /*----------------------------------------------------------------------------
5501 | Returns the result of converting the quadruple-precision floating-point
5502 | value `a' to the extended double-precision floating-point format. The
5503 | conversion is performed according to the IEC/IEEE Standard for Binary
5504 | Floating-Point Arithmetic.
5505 *----------------------------------------------------------------------------*/
5507 floatx80
float128_to_floatx80( float128 a STATUS_PARAM
)
5511 uint64_t aSig0
, aSig1
;
5513 aSig1
= extractFloat128Frac1( a
);
5514 aSig0
= extractFloat128Frac0( a
);
5515 aExp
= extractFloat128Exp( a
);
5516 aSign
= extractFloat128Sign( a
);
5517 if ( aExp
== 0x7FFF ) {
5518 if ( aSig0
| aSig1
) {
5519 return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR
) STATUS_VAR
);
5521 return packFloatx80( aSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
5524 if ( ( aSig0
| aSig1
) == 0 ) return packFloatx80( aSign
, 0, 0 );
5525 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
5528 aSig0
|= LIT64( 0x0001000000000000 );
5530 shortShift128Left( aSig0
, aSig1
, 15, &aSig0
, &aSig1
);
5531 return roundAndPackFloatx80( 80, aSign
, aExp
, aSig0
, aSig1 STATUS_VAR
);
5535 /*----------------------------------------------------------------------------
5536 | Rounds the quadruple-precision floating-point value `a' to an integer, and
5537 | returns the result as a quadruple-precision floating-point value. The
5538 | operation is performed according to the IEC/IEEE Standard for Binary
5539 | Floating-Point Arithmetic.
5540 *----------------------------------------------------------------------------*/
5542 float128
float128_round_to_int( float128 a STATUS_PARAM
)
5546 uint64_t lastBitMask
, roundBitsMask
;
5550 aExp
= extractFloat128Exp( a
);
5551 if ( 0x402F <= aExp
) {
5552 if ( 0x406F <= aExp
) {
5553 if ( ( aExp
== 0x7FFF )
5554 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) )
5556 return propagateFloat128NaN( a
, a STATUS_VAR
);
5561 lastBitMask
= ( lastBitMask
<<( 0x406E - aExp
) )<<1;
5562 roundBitsMask
= lastBitMask
- 1;
5564 roundingMode
= STATUS(float_rounding_mode
);
5565 if ( roundingMode
== float_round_nearest_even
) {
5566 if ( lastBitMask
) {
5567 add128( z
.high
, z
.low
, 0, lastBitMask
>>1, &z
.high
, &z
.low
);
5568 if ( ( z
.low
& roundBitsMask
) == 0 ) z
.low
&= ~ lastBitMask
;
5571 if ( (int64_t) z
.low
< 0 ) {
5573 if ( (uint64_t) ( z
.low
<<1 ) == 0 ) z
.high
&= ~1;
5577 else if ( roundingMode
!= float_round_to_zero
) {
5578 if ( extractFloat128Sign( z
)
5579 ^ ( roundingMode
== float_round_up
) ) {
5580 add128( z
.high
, z
.low
, 0, roundBitsMask
, &z
.high
, &z
.low
);
5583 z
.low
&= ~ roundBitsMask
;
5586 if ( aExp
< 0x3FFF ) {
5587 if ( ( ( (uint64_t) ( a
.high
<<1 ) ) | a
.low
) == 0 ) return a
;
5588 STATUS(float_exception_flags
) |= float_flag_inexact
;
5589 aSign
= extractFloat128Sign( a
);
5590 switch ( STATUS(float_rounding_mode
) ) {
5591 case float_round_nearest_even
:
5592 if ( ( aExp
== 0x3FFE )
5593 && ( extractFloat128Frac0( a
)
5594 | extractFloat128Frac1( a
) )
5596 return packFloat128( aSign
, 0x3FFF, 0, 0 );
5599 case float_round_down
:
5601 aSign
? packFloat128( 1, 0x3FFF, 0, 0 )
5602 : packFloat128( 0, 0, 0, 0 );
5603 case float_round_up
:
5605 aSign
? packFloat128( 1, 0, 0, 0 )
5606 : packFloat128( 0, 0x3FFF, 0, 0 );
5608 return packFloat128( aSign
, 0, 0, 0 );
5611 lastBitMask
<<= 0x402F - aExp
;
5612 roundBitsMask
= lastBitMask
- 1;
5615 roundingMode
= STATUS(float_rounding_mode
);
5616 if ( roundingMode
== float_round_nearest_even
) {
5617 z
.high
+= lastBitMask
>>1;
5618 if ( ( ( z
.high
& roundBitsMask
) | a
.low
) == 0 ) {
5619 z
.high
&= ~ lastBitMask
;
5622 else if ( roundingMode
!= float_round_to_zero
) {
5623 if ( extractFloat128Sign( z
)
5624 ^ ( roundingMode
== float_round_up
) ) {
5625 z
.high
|= ( a
.low
!= 0 );
5626 z
.high
+= roundBitsMask
;
5629 z
.high
&= ~ roundBitsMask
;
5631 if ( ( z
.low
!= a
.low
) || ( z
.high
!= a
.high
) ) {
5632 STATUS(float_exception_flags
) |= float_flag_inexact
;
5638 /*----------------------------------------------------------------------------
5639 | Returns the result of adding the absolute values of the quadruple-precision
5640 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
5641 | before being returned. `zSign' is ignored if the result is a NaN.
5642 | The addition is performed according to the IEC/IEEE Standard for Binary
5643 | Floating-Point Arithmetic.
5644 *----------------------------------------------------------------------------*/
5646 static float128
addFloat128Sigs( float128 a
, float128 b
, flag zSign STATUS_PARAM
)
5648 int32 aExp
, bExp
, zExp
;
5649 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, zSig0
, zSig1
, zSig2
;
5652 aSig1
= extractFloat128Frac1( a
);
5653 aSig0
= extractFloat128Frac0( a
);
5654 aExp
= extractFloat128Exp( a
);
5655 bSig1
= extractFloat128Frac1( b
);
5656 bSig0
= extractFloat128Frac0( b
);
5657 bExp
= extractFloat128Exp( b
);
5658 expDiff
= aExp
- bExp
;
5659 if ( 0 < expDiff
) {
5660 if ( aExp
== 0x7FFF ) {
5661 if ( aSig0
| aSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
5668 bSig0
|= LIT64( 0x0001000000000000 );
5670 shift128ExtraRightJamming(
5671 bSig0
, bSig1
, 0, expDiff
, &bSig0
, &bSig1
, &zSig2
);
5674 else if ( expDiff
< 0 ) {
5675 if ( bExp
== 0x7FFF ) {
5676 if ( bSig0
| bSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
5677 return packFloat128( zSign
, 0x7FFF, 0, 0 );
5683 aSig0
|= LIT64( 0x0001000000000000 );
5685 shift128ExtraRightJamming(
5686 aSig0
, aSig1
, 0, - expDiff
, &aSig0
, &aSig1
, &zSig2
);
5690 if ( aExp
== 0x7FFF ) {
5691 if ( aSig0
| aSig1
| bSig0
| bSig1
) {
5692 return propagateFloat128NaN( a
, b STATUS_VAR
);
5696 add128( aSig0
, aSig1
, bSig0
, bSig1
, &zSig0
, &zSig1
);
5698 if (STATUS(flush_to_zero
)) {
5699 if (zSig0
| zSig1
) {
5700 float_raise(float_flag_output_denormal STATUS_VAR
);
5702 return packFloat128(zSign
, 0, 0, 0);
5704 return packFloat128( zSign
, 0, zSig0
, zSig1
);
5707 zSig0
|= LIT64( 0x0002000000000000 );
5711 aSig0
|= LIT64( 0x0001000000000000 );
5712 add128( aSig0
, aSig1
, bSig0
, bSig1
, &zSig0
, &zSig1
);
5714 if ( zSig0
< LIT64( 0x0002000000000000 ) ) goto roundAndPack
;
5717 shift128ExtraRightJamming(
5718 zSig0
, zSig1
, zSig2
, 1, &zSig0
, &zSig1
, &zSig2
);
5720 return roundAndPackFloat128( zSign
, zExp
, zSig0
, zSig1
, zSig2 STATUS_VAR
);
5724 /*----------------------------------------------------------------------------
5725 | Returns the result of subtracting the absolute values of the quadruple-
5726 | precision floating-point values `a' and `b'. If `zSign' is 1, the
5727 | difference is negated before being returned. `zSign' is ignored if the
5728 | result is a NaN. The subtraction is performed according to the IEC/IEEE
5729 | Standard for Binary Floating-Point Arithmetic.
5730 *----------------------------------------------------------------------------*/
5732 static float128
subFloat128Sigs( float128 a
, float128 b
, flag zSign STATUS_PARAM
)
5734 int32 aExp
, bExp
, zExp
;
5735 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, zSig0
, zSig1
;
5739 aSig1
= extractFloat128Frac1( a
);
5740 aSig0
= extractFloat128Frac0( a
);
5741 aExp
= extractFloat128Exp( a
);
5742 bSig1
= extractFloat128Frac1( b
);
5743 bSig0
= extractFloat128Frac0( b
);
5744 bExp
= extractFloat128Exp( b
);
5745 expDiff
= aExp
- bExp
;
5746 shortShift128Left( aSig0
, aSig1
, 14, &aSig0
, &aSig1
);
5747 shortShift128Left( bSig0
, bSig1
, 14, &bSig0
, &bSig1
);
5748 if ( 0 < expDiff
) goto aExpBigger
;
5749 if ( expDiff
< 0 ) goto bExpBigger
;
5750 if ( aExp
== 0x7FFF ) {
5751 if ( aSig0
| aSig1
| bSig0
| bSig1
) {
5752 return propagateFloat128NaN( a
, b STATUS_VAR
);
5754 float_raise( float_flag_invalid STATUS_VAR
);
5755 z
.low
= float128_default_nan_low
;
5756 z
.high
= float128_default_nan_high
;
5763 if ( bSig0
< aSig0
) goto aBigger
;
5764 if ( aSig0
< bSig0
) goto bBigger
;
5765 if ( bSig1
< aSig1
) goto aBigger
;
5766 if ( aSig1
< bSig1
) goto bBigger
;
5767 return packFloat128( STATUS(float_rounding_mode
) == float_round_down
, 0, 0, 0 );
5769 if ( bExp
== 0x7FFF ) {
5770 if ( bSig0
| bSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
5771 return packFloat128( zSign
^ 1, 0x7FFF, 0, 0 );
5777 aSig0
|= LIT64( 0x4000000000000000 );
5779 shift128RightJamming( aSig0
, aSig1
, - expDiff
, &aSig0
, &aSig1
);
5780 bSig0
|= LIT64( 0x4000000000000000 );
5782 sub128( bSig0
, bSig1
, aSig0
, aSig1
, &zSig0
, &zSig1
);
5785 goto normalizeRoundAndPack
;
5787 if ( aExp
== 0x7FFF ) {
5788 if ( aSig0
| aSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
5795 bSig0
|= LIT64( 0x4000000000000000 );
5797 shift128RightJamming( bSig0
, bSig1
, expDiff
, &bSig0
, &bSig1
);
5798 aSig0
|= LIT64( 0x4000000000000000 );
5800 sub128( aSig0
, aSig1
, bSig0
, bSig1
, &zSig0
, &zSig1
);
5802 normalizeRoundAndPack
:
5804 return normalizeRoundAndPackFloat128( zSign
, zExp
- 14, zSig0
, zSig1 STATUS_VAR
);
5808 /*----------------------------------------------------------------------------
5809 | Returns the result of adding the quadruple-precision floating-point values
5810 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
5811 | for Binary Floating-Point Arithmetic.
5812 *----------------------------------------------------------------------------*/
5814 float128
float128_add( float128 a
, float128 b STATUS_PARAM
)
5818 aSign
= extractFloat128Sign( a
);
5819 bSign
= extractFloat128Sign( b
);
5820 if ( aSign
== bSign
) {
5821 return addFloat128Sigs( a
, b
, aSign STATUS_VAR
);
5824 return subFloat128Sigs( a
, b
, aSign STATUS_VAR
);
5829 /*----------------------------------------------------------------------------
5830 | Returns the result of subtracting the quadruple-precision floating-point
5831 | values `a' and `b'. The operation is performed according to the IEC/IEEE
5832 | Standard for Binary Floating-Point Arithmetic.
5833 *----------------------------------------------------------------------------*/
5835 float128
float128_sub( float128 a
, float128 b STATUS_PARAM
)
5839 aSign
= extractFloat128Sign( a
);
5840 bSign
= extractFloat128Sign( b
);
5841 if ( aSign
== bSign
) {
5842 return subFloat128Sigs( a
, b
, aSign STATUS_VAR
);
5845 return addFloat128Sigs( a
, b
, aSign STATUS_VAR
);
5850 /*----------------------------------------------------------------------------
5851 | Returns the result of multiplying the quadruple-precision floating-point
5852 | values `a' and `b'. The operation is performed according to the IEC/IEEE
5853 | Standard for Binary Floating-Point Arithmetic.
5854 *----------------------------------------------------------------------------*/
5856 float128
float128_mul( float128 a
, float128 b STATUS_PARAM
)
5858 flag aSign
, bSign
, zSign
;
5859 int32 aExp
, bExp
, zExp
;
5860 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, zSig0
, zSig1
, zSig2
, zSig3
;
5863 aSig1
= extractFloat128Frac1( a
);
5864 aSig0
= extractFloat128Frac0( a
);
5865 aExp
= extractFloat128Exp( a
);
5866 aSign
= extractFloat128Sign( a
);
5867 bSig1
= extractFloat128Frac1( b
);
5868 bSig0
= extractFloat128Frac0( b
);
5869 bExp
= extractFloat128Exp( b
);
5870 bSign
= extractFloat128Sign( b
);
5871 zSign
= aSign
^ bSign
;
5872 if ( aExp
== 0x7FFF ) {
5873 if ( ( aSig0
| aSig1
)
5874 || ( ( bExp
== 0x7FFF ) && ( bSig0
| bSig1
) ) ) {
5875 return propagateFloat128NaN( a
, b STATUS_VAR
);
5877 if ( ( bExp
| bSig0
| bSig1
) == 0 ) goto invalid
;
5878 return packFloat128( zSign
, 0x7FFF, 0, 0 );
5880 if ( bExp
== 0x7FFF ) {
5881 if ( bSig0
| bSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
5882 if ( ( aExp
| aSig0
| aSig1
) == 0 ) {
5884 float_raise( float_flag_invalid STATUS_VAR
);
5885 z
.low
= float128_default_nan_low
;
5886 z
.high
= float128_default_nan_high
;
5889 return packFloat128( zSign
, 0x7FFF, 0, 0 );
5892 if ( ( aSig0
| aSig1
) == 0 ) return packFloat128( zSign
, 0, 0, 0 );
5893 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
5896 if ( ( bSig0
| bSig1
) == 0 ) return packFloat128( zSign
, 0, 0, 0 );
5897 normalizeFloat128Subnormal( bSig0
, bSig1
, &bExp
, &bSig0
, &bSig1
);
5899 zExp
= aExp
+ bExp
- 0x4000;
5900 aSig0
|= LIT64( 0x0001000000000000 );
5901 shortShift128Left( bSig0
, bSig1
, 16, &bSig0
, &bSig1
);
5902 mul128To256( aSig0
, aSig1
, bSig0
, bSig1
, &zSig0
, &zSig1
, &zSig2
, &zSig3
);
5903 add128( zSig0
, zSig1
, aSig0
, aSig1
, &zSig0
, &zSig1
);
5904 zSig2
|= ( zSig3
!= 0 );
5905 if ( LIT64( 0x0002000000000000 ) <= zSig0
) {
5906 shift128ExtraRightJamming(
5907 zSig0
, zSig1
, zSig2
, 1, &zSig0
, &zSig1
, &zSig2
);
5910 return roundAndPackFloat128( zSign
, zExp
, zSig0
, zSig1
, zSig2 STATUS_VAR
);
5914 /*----------------------------------------------------------------------------
5915 | Returns the result of dividing the quadruple-precision floating-point value
5916 | `a' by the corresponding value `b'. The operation is performed according to
5917 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5918 *----------------------------------------------------------------------------*/
5920 float128
float128_div( float128 a
, float128 b STATUS_PARAM
)
5922 flag aSign
, bSign
, zSign
;
5923 int32 aExp
, bExp
, zExp
;
5924 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, zSig0
, zSig1
, zSig2
;
5925 uint64_t rem0
, rem1
, rem2
, rem3
, term0
, term1
, term2
, term3
;
5928 aSig1
= extractFloat128Frac1( a
);
5929 aSig0
= extractFloat128Frac0( a
);
5930 aExp
= extractFloat128Exp( a
);
5931 aSign
= extractFloat128Sign( a
);
5932 bSig1
= extractFloat128Frac1( b
);
5933 bSig0
= extractFloat128Frac0( b
);
5934 bExp
= extractFloat128Exp( b
);
5935 bSign
= extractFloat128Sign( b
);
5936 zSign
= aSign
^ bSign
;
5937 if ( aExp
== 0x7FFF ) {
5938 if ( aSig0
| aSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
5939 if ( bExp
== 0x7FFF ) {
5940 if ( bSig0
| bSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
5943 return packFloat128( zSign
, 0x7FFF, 0, 0 );
5945 if ( bExp
== 0x7FFF ) {
5946 if ( bSig0
| bSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
5947 return packFloat128( zSign
, 0, 0, 0 );
5950 if ( ( bSig0
| bSig1
) == 0 ) {
5951 if ( ( aExp
| aSig0
| aSig1
) == 0 ) {
5953 float_raise( float_flag_invalid STATUS_VAR
);
5954 z
.low
= float128_default_nan_low
;
5955 z
.high
= float128_default_nan_high
;
5958 float_raise( float_flag_divbyzero STATUS_VAR
);
5959 return packFloat128( zSign
, 0x7FFF, 0, 0 );
5961 normalizeFloat128Subnormal( bSig0
, bSig1
, &bExp
, &bSig0
, &bSig1
);
5964 if ( ( aSig0
| aSig1
) == 0 ) return packFloat128( zSign
, 0, 0, 0 );
5965 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
5967 zExp
= aExp
- bExp
+ 0x3FFD;
5969 aSig0
| LIT64( 0x0001000000000000 ), aSig1
, 15, &aSig0
, &aSig1
);
5971 bSig0
| LIT64( 0x0001000000000000 ), bSig1
, 15, &bSig0
, &bSig1
);
5972 if ( le128( bSig0
, bSig1
, aSig0
, aSig1
) ) {
5973 shift128Right( aSig0
, aSig1
, 1, &aSig0
, &aSig1
);
5976 zSig0
= estimateDiv128To64( aSig0
, aSig1
, bSig0
);
5977 mul128By64To192( bSig0
, bSig1
, zSig0
, &term0
, &term1
, &term2
);
5978 sub192( aSig0
, aSig1
, 0, term0
, term1
, term2
, &rem0
, &rem1
, &rem2
);
5979 while ( (int64_t) rem0
< 0 ) {
5981 add192( rem0
, rem1
, rem2
, 0, bSig0
, bSig1
, &rem0
, &rem1
, &rem2
);
5983 zSig1
= estimateDiv128To64( rem1
, rem2
, bSig0
);
5984 if ( ( zSig1
& 0x3FFF ) <= 4 ) {
5985 mul128By64To192( bSig0
, bSig1
, zSig1
, &term1
, &term2
, &term3
);
5986 sub192( rem1
, rem2
, 0, term1
, term2
, term3
, &rem1
, &rem2
, &rem3
);
5987 while ( (int64_t) rem1
< 0 ) {
5989 add192( rem1
, rem2
, rem3
, 0, bSig0
, bSig1
, &rem1
, &rem2
, &rem3
);
5991 zSig1
|= ( ( rem1
| rem2
| rem3
) != 0 );
5993 shift128ExtraRightJamming( zSig0
, zSig1
, 0, 15, &zSig0
, &zSig1
, &zSig2
);
5994 return roundAndPackFloat128( zSign
, zExp
, zSig0
, zSig1
, zSig2 STATUS_VAR
);
5998 /*----------------------------------------------------------------------------
5999 | Returns the remainder of the quadruple-precision floating-point value `a'
6000 | with respect to the corresponding value `b'. The operation is performed
6001 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6002 *----------------------------------------------------------------------------*/
6004 float128
float128_rem( float128 a
, float128 b STATUS_PARAM
)
6007 int32 aExp
, bExp
, expDiff
;
6008 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, q
, term0
, term1
, term2
;
6009 uint64_t allZero
, alternateASig0
, alternateASig1
, sigMean1
;
6013 aSig1
= extractFloat128Frac1( a
);
6014 aSig0
= extractFloat128Frac0( a
);
6015 aExp
= extractFloat128Exp( a
);
6016 aSign
= extractFloat128Sign( a
);
6017 bSig1
= extractFloat128Frac1( b
);
6018 bSig0
= extractFloat128Frac0( b
);
6019 bExp
= extractFloat128Exp( b
);
6020 if ( aExp
== 0x7FFF ) {
6021 if ( ( aSig0
| aSig1
)
6022 || ( ( bExp
== 0x7FFF ) && ( bSig0
| bSig1
) ) ) {
6023 return propagateFloat128NaN( a
, b STATUS_VAR
);
6027 if ( bExp
== 0x7FFF ) {
6028 if ( bSig0
| bSig1
) return propagateFloat128NaN( a
, b STATUS_VAR
);
6032 if ( ( bSig0
| bSig1
) == 0 ) {
6034 float_raise( float_flag_invalid STATUS_VAR
);
6035 z
.low
= float128_default_nan_low
;
6036 z
.high
= float128_default_nan_high
;
6039 normalizeFloat128Subnormal( bSig0
, bSig1
, &bExp
, &bSig0
, &bSig1
);
6042 if ( ( aSig0
| aSig1
) == 0 ) return a
;
6043 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
6045 expDiff
= aExp
- bExp
;
6046 if ( expDiff
< -1 ) return a
;
6048 aSig0
| LIT64( 0x0001000000000000 ),
6050 15 - ( expDiff
< 0 ),
6055 bSig0
| LIT64( 0x0001000000000000 ), bSig1
, 15, &bSig0
, &bSig1
);
6056 q
= le128( bSig0
, bSig1
, aSig0
, aSig1
);
6057 if ( q
) sub128( aSig0
, aSig1
, bSig0
, bSig1
, &aSig0
, &aSig1
);
6059 while ( 0 < expDiff
) {
6060 q
= estimateDiv128To64( aSig0
, aSig1
, bSig0
);
6061 q
= ( 4 < q
) ? q
- 4 : 0;
6062 mul128By64To192( bSig0
, bSig1
, q
, &term0
, &term1
, &term2
);
6063 shortShift192Left( term0
, term1
, term2
, 61, &term1
, &term2
, &allZero
);
6064 shortShift128Left( aSig0
, aSig1
, 61, &aSig0
, &allZero
);
6065 sub128( aSig0
, 0, term1
, term2
, &aSig0
, &aSig1
);
6068 if ( -64 < expDiff
) {
6069 q
= estimateDiv128To64( aSig0
, aSig1
, bSig0
);
6070 q
= ( 4 < q
) ? q
- 4 : 0;
6072 shift128Right( bSig0
, bSig1
, 12, &bSig0
, &bSig1
);
6074 if ( expDiff
< 0 ) {
6075 shift128Right( aSig0
, aSig1
, - expDiff
, &aSig0
, &aSig1
);
6078 shortShift128Left( aSig0
, aSig1
, expDiff
, &aSig0
, &aSig1
);
6080 mul128By64To192( bSig0
, bSig1
, q
, &term0
, &term1
, &term2
);
6081 sub128( aSig0
, aSig1
, term1
, term2
, &aSig0
, &aSig1
);
6084 shift128Right( aSig0
, aSig1
, 12, &aSig0
, &aSig1
);
6085 shift128Right( bSig0
, bSig1
, 12, &bSig0
, &bSig1
);
6088 alternateASig0
= aSig0
;
6089 alternateASig1
= aSig1
;
6091 sub128( aSig0
, aSig1
, bSig0
, bSig1
, &aSig0
, &aSig1
);
6092 } while ( 0 <= (int64_t) aSig0
);
6094 aSig0
, aSig1
, alternateASig0
, alternateASig1
, (uint64_t *)&sigMean0
, &sigMean1
);
6095 if ( ( sigMean0
< 0 )
6096 || ( ( ( sigMean0
| sigMean1
) == 0 ) && ( q
& 1 ) ) ) {
6097 aSig0
= alternateASig0
;
6098 aSig1
= alternateASig1
;
6100 zSign
= ( (int64_t) aSig0
< 0 );
6101 if ( zSign
) sub128( 0, 0, aSig0
, aSig1
, &aSig0
, &aSig1
);
6103 normalizeRoundAndPackFloat128( aSign
^ zSign
, bExp
- 4, aSig0
, aSig1 STATUS_VAR
);
6107 /*----------------------------------------------------------------------------
6108 | Returns the square root of the quadruple-precision floating-point value `a'.
6109 | The operation is performed according to the IEC/IEEE Standard for Binary
6110 | Floating-Point Arithmetic.
6111 *----------------------------------------------------------------------------*/
6113 float128
float128_sqrt( float128 a STATUS_PARAM
)
6117 uint64_t aSig0
, aSig1
, zSig0
, zSig1
, zSig2
, doubleZSig0
;
6118 uint64_t rem0
, rem1
, rem2
, rem3
, term0
, term1
, term2
, term3
;
6121 aSig1
= extractFloat128Frac1( a
);
6122 aSig0
= extractFloat128Frac0( a
);
6123 aExp
= extractFloat128Exp( a
);
6124 aSign
= extractFloat128Sign( a
);
6125 if ( aExp
== 0x7FFF ) {
6126 if ( aSig0
| aSig1
) return propagateFloat128NaN( a
, a STATUS_VAR
);
6127 if ( ! aSign
) return a
;
6131 if ( ( aExp
| aSig0
| aSig1
) == 0 ) return a
;
6133 float_raise( float_flag_invalid STATUS_VAR
);
6134 z
.low
= float128_default_nan_low
;
6135 z
.high
= float128_default_nan_high
;
6139 if ( ( aSig0
| aSig1
) == 0 ) return packFloat128( 0, 0, 0, 0 );
6140 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
6142 zExp
= ( ( aExp
- 0x3FFF )>>1 ) + 0x3FFE;
6143 aSig0
|= LIT64( 0x0001000000000000 );
6144 zSig0
= estimateSqrt32( aExp
, aSig0
>>17 );
6145 shortShift128Left( aSig0
, aSig1
, 13 - ( aExp
& 1 ), &aSig0
, &aSig1
);
6146 zSig0
= estimateDiv128To64( aSig0
, aSig1
, zSig0
<<32 ) + ( zSig0
<<30 );
6147 doubleZSig0
= zSig0
<<1;
6148 mul64To128( zSig0
, zSig0
, &term0
, &term1
);
6149 sub128( aSig0
, aSig1
, term0
, term1
, &rem0
, &rem1
);
6150 while ( (int64_t) rem0
< 0 ) {
6153 add128( rem0
, rem1
, zSig0
>>63, doubleZSig0
| 1, &rem0
, &rem1
);
6155 zSig1
= estimateDiv128To64( rem1
, 0, doubleZSig0
);
6156 if ( ( zSig1
& 0x1FFF ) <= 5 ) {
6157 if ( zSig1
== 0 ) zSig1
= 1;
6158 mul64To128( doubleZSig0
, zSig1
, &term1
, &term2
);
6159 sub128( rem1
, 0, term1
, term2
, &rem1
, &rem2
);
6160 mul64To128( zSig1
, zSig1
, &term2
, &term3
);
6161 sub192( rem1
, rem2
, 0, 0, term2
, term3
, &rem1
, &rem2
, &rem3
);
6162 while ( (int64_t) rem1
< 0 ) {
6164 shortShift128Left( 0, zSig1
, 1, &term2
, &term3
);
6166 term2
|= doubleZSig0
;
6167 add192( rem1
, rem2
, rem3
, 0, term2
, term3
, &rem1
, &rem2
, &rem3
);
6169 zSig1
|= ( ( rem1
| rem2
| rem3
) != 0 );
6171 shift128ExtraRightJamming( zSig0
, zSig1
, 0, 14, &zSig0
, &zSig1
, &zSig2
);
6172 return roundAndPackFloat128( 0, zExp
, zSig0
, zSig1
, zSig2 STATUS_VAR
);
6176 /*----------------------------------------------------------------------------
6177 | Returns 1 if the quadruple-precision floating-point value `a' is equal to
6178 | the corresponding value `b', and 0 otherwise. The invalid exception is
6179 | raised if either operand is a NaN. Otherwise, the comparison is performed
6180 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6181 *----------------------------------------------------------------------------*/
6183 int float128_eq( float128 a
, float128 b STATUS_PARAM
)
6186 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
6187 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
6188 || ( ( extractFloat128Exp( b
) == 0x7FFF )
6189 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
6191 float_raise( float_flag_invalid STATUS_VAR
);
6196 && ( ( a
.high
== b
.high
)
6198 && ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) == 0 ) )
6203 /*----------------------------------------------------------------------------
6204 | Returns 1 if the quadruple-precision floating-point value `a' is less than
6205 | or equal to the corresponding value `b', and 0 otherwise. The invalid
6206 | exception is raised if either operand is a NaN. The comparison is performed
6207 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6208 *----------------------------------------------------------------------------*/
6210 int float128_le( float128 a
, float128 b STATUS_PARAM
)
6214 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
6215 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
6216 || ( ( extractFloat128Exp( b
) == 0x7FFF )
6217 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
6219 float_raise( float_flag_invalid STATUS_VAR
);
6222 aSign
= extractFloat128Sign( a
);
6223 bSign
= extractFloat128Sign( b
);
6224 if ( aSign
!= bSign
) {
6227 || ( ( ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
6231 aSign
? le128( b
.high
, b
.low
, a
.high
, a
.low
)
6232 : le128( a
.high
, a
.low
, b
.high
, b
.low
);
6236 /*----------------------------------------------------------------------------
6237 | Returns 1 if the quadruple-precision floating-point value `a' is less than
6238 | the corresponding value `b', and 0 otherwise. The invalid exception is
6239 | raised if either operand is a NaN. The comparison is performed according
6240 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6241 *----------------------------------------------------------------------------*/
6243 int float128_lt( float128 a
, float128 b STATUS_PARAM
)
6247 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
6248 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
6249 || ( ( extractFloat128Exp( b
) == 0x7FFF )
6250 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
6252 float_raise( float_flag_invalid STATUS_VAR
);
6255 aSign
= extractFloat128Sign( a
);
6256 bSign
= extractFloat128Sign( b
);
6257 if ( aSign
!= bSign
) {
6260 && ( ( ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
6264 aSign
? lt128( b
.high
, b
.low
, a
.high
, a
.low
)
6265 : lt128( a
.high
, a
.low
, b
.high
, b
.low
);
6269 /*----------------------------------------------------------------------------
6270 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6271 | be compared, and 0 otherwise. The invalid exception is raised if either
6272 | operand is a NaN. The comparison is performed according to the IEC/IEEE
6273 | Standard for Binary Floating-Point Arithmetic.
6274 *----------------------------------------------------------------------------*/
6276 int float128_unordered( float128 a
, float128 b STATUS_PARAM
)
6278 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
6279 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
6280 || ( ( extractFloat128Exp( b
) == 0x7FFF )
6281 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
6283 float_raise( float_flag_invalid STATUS_VAR
);
6289 /*----------------------------------------------------------------------------
6290 | Returns 1 if the quadruple-precision floating-point value `a' is equal to
6291 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
6292 | exception. The comparison is performed according to the IEC/IEEE Standard
6293 | for Binary Floating-Point Arithmetic.
6294 *----------------------------------------------------------------------------*/
6296 int float128_eq_quiet( float128 a
, float128 b STATUS_PARAM
)
6299 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
6300 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
6301 || ( ( extractFloat128Exp( b
) == 0x7FFF )
6302 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
6304 if ( float128_is_signaling_nan( a
)
6305 || float128_is_signaling_nan( b
) ) {
6306 float_raise( float_flag_invalid STATUS_VAR
);
6312 && ( ( a
.high
== b
.high
)
6314 && ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) == 0 ) )
6319 /*----------------------------------------------------------------------------
6320 | Returns 1 if the quadruple-precision floating-point value `a' is less than
6321 | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
6322 | cause an exception. Otherwise, the comparison is performed according to the
6323 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6324 *----------------------------------------------------------------------------*/
6326 int float128_le_quiet( float128 a
, float128 b STATUS_PARAM
)
6330 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
6331 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
6332 || ( ( extractFloat128Exp( b
) == 0x7FFF )
6333 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
6335 if ( float128_is_signaling_nan( a
)
6336 || float128_is_signaling_nan( b
) ) {
6337 float_raise( float_flag_invalid STATUS_VAR
);
6341 aSign
= extractFloat128Sign( a
);
6342 bSign
= extractFloat128Sign( b
);
6343 if ( aSign
!= bSign
) {
6346 || ( ( ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
6350 aSign
? le128( b
.high
, b
.low
, a
.high
, a
.low
)
6351 : le128( a
.high
, a
.low
, b
.high
, b
.low
);
6355 /*----------------------------------------------------------------------------
6356 | Returns 1 if the quadruple-precision floating-point value `a' is less than
6357 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
6358 | exception. Otherwise, the comparison is performed according to the IEC/IEEE
6359 | Standard for Binary Floating-Point Arithmetic.
6360 *----------------------------------------------------------------------------*/
6362 int float128_lt_quiet( float128 a
, float128 b STATUS_PARAM
)
6366 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
6367 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
6368 || ( ( extractFloat128Exp( b
) == 0x7FFF )
6369 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
6371 if ( float128_is_signaling_nan( a
)
6372 || float128_is_signaling_nan( b
) ) {
6373 float_raise( float_flag_invalid STATUS_VAR
);
6377 aSign
= extractFloat128Sign( a
);
6378 bSign
= extractFloat128Sign( b
);
6379 if ( aSign
!= bSign
) {
6382 && ( ( ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
6386 aSign
? lt128( b
.high
, b
.low
, a
.high
, a
.low
)
6387 : lt128( a
.high
, a
.low
, b
.high
, b
.low
);
6391 /*----------------------------------------------------------------------------
6392 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6393 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
6394 | comparison is performed according to the IEC/IEEE Standard for Binary
6395 | Floating-Point Arithmetic.
6396 *----------------------------------------------------------------------------*/
6398 int float128_unordered_quiet( float128 a
, float128 b STATUS_PARAM
)
6400 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
6401 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
6402 || ( ( extractFloat128Exp( b
) == 0x7FFF )
6403 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
6405 if ( float128_is_signaling_nan( a
)
6406 || float128_is_signaling_nan( b
) ) {
6407 float_raise( float_flag_invalid STATUS_VAR
);
6414 /* misc functions */
6415 float32
uint32_to_float32( uint32 a STATUS_PARAM
)
6417 return int64_to_float32(a STATUS_VAR
);
6420 float64
uint32_to_float64( uint32 a STATUS_PARAM
)
6422 return int64_to_float64(a STATUS_VAR
);
6425 uint32
float32_to_uint32( float32 a STATUS_PARAM
)
6430 v
= float32_to_int64(a STATUS_VAR
);
6433 float_raise( float_flag_invalid STATUS_VAR
);
6434 } else if (v
> 0xffffffff) {
6436 float_raise( float_flag_invalid STATUS_VAR
);
6443 uint32
float32_to_uint32_round_to_zero( float32 a STATUS_PARAM
)
6448 v
= float32_to_int64_round_to_zero(a STATUS_VAR
);
6451 float_raise( float_flag_invalid STATUS_VAR
);
6452 } else if (v
> 0xffffffff) {
6454 float_raise( float_flag_invalid STATUS_VAR
);
6461 uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM
)
6466 v
= float32_to_int64_round_to_zero(a STATUS_VAR
);
6469 float_raise( float_flag_invalid STATUS_VAR
);
6470 } else if (v
> 0xffff) {
6472 float_raise( float_flag_invalid STATUS_VAR
);
6479 uint32
float64_to_uint32( float64 a STATUS_PARAM
)
6484 v
= float64_to_int64(a STATUS_VAR
);
6487 float_raise( float_flag_invalid STATUS_VAR
);
6488 } else if (v
> 0xffffffff) {
6490 float_raise( float_flag_invalid STATUS_VAR
);
6497 uint32
float64_to_uint32_round_to_zero( float64 a STATUS_PARAM
)
6502 v
= float64_to_int64_round_to_zero(a STATUS_VAR
);
6505 float_raise( float_flag_invalid STATUS_VAR
);
6506 } else if (v
> 0xffffffff) {
6508 float_raise( float_flag_invalid STATUS_VAR
);
6515 uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM
)
6520 v
= float64_to_int64_round_to_zero(a STATUS_VAR
);
6523 float_raise( float_flag_invalid STATUS_VAR
);
6524 } else if (v
> 0xffff) {
6526 float_raise( float_flag_invalid STATUS_VAR
);
6533 /* FIXME: This looks broken. */
6534 uint64_t float64_to_uint64 (float64 a STATUS_PARAM
)
6538 v
= float64_val(int64_to_float64(INT64_MIN STATUS_VAR
));
6539 v
+= float64_val(a
);
6540 v
= float64_to_int64(make_float64(v
) STATUS_VAR
);
6542 return v
- INT64_MIN
;
6545 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM
)
6549 v
= float64_val(int64_to_float64(INT64_MIN STATUS_VAR
));
6550 v
+= float64_val(a
);
6551 v
= float64_to_int64_round_to_zero(make_float64(v
) STATUS_VAR
);
6553 return v
- INT64_MIN
;
6556 #define COMPARE(s, nan_exp) \
6557 INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \
6558 int is_quiet STATUS_PARAM ) \
6560 flag aSign, bSign; \
6561 uint ## s ## _t av, bv; \
6562 a = float ## s ## _squash_input_denormal(a STATUS_VAR); \
6563 b = float ## s ## _squash_input_denormal(b STATUS_VAR); \
6565 if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
6566 extractFloat ## s ## Frac( a ) ) || \
6567 ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
6568 extractFloat ## s ## Frac( b ) )) { \
6570 float ## s ## _is_signaling_nan( a ) || \
6571 float ## s ## _is_signaling_nan( b ) ) { \
6572 float_raise( float_flag_invalid STATUS_VAR); \
6574 return float_relation_unordered; \
6576 aSign = extractFloat ## s ## Sign( a ); \
6577 bSign = extractFloat ## s ## Sign( b ); \
6578 av = float ## s ## _val(a); \
6579 bv = float ## s ## _val(b); \
6580 if ( aSign != bSign ) { \
6581 if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \
6583 return float_relation_equal; \
6585 return 1 - (2 * aSign); \
6589 return float_relation_equal; \
6591 return 1 - 2 * (aSign ^ ( av < bv )); \
6596 int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \
6598 return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \
6601 int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \
6603 return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \
6609 INLINE
int floatx80_compare_internal( floatx80 a
, floatx80 b
,
6610 int is_quiet STATUS_PARAM
)
6614 if (( ( extractFloatx80Exp( a
) == 0x7fff ) &&
6615 ( extractFloatx80Frac( a
)<<1 ) ) ||
6616 ( ( extractFloatx80Exp( b
) == 0x7fff ) &&
6617 ( extractFloatx80Frac( b
)<<1 ) )) {
6619 floatx80_is_signaling_nan( a
) ||
6620 floatx80_is_signaling_nan( b
) ) {
6621 float_raise( float_flag_invalid STATUS_VAR
);
6623 return float_relation_unordered
;
6625 aSign
= extractFloatx80Sign( a
);
6626 bSign
= extractFloatx80Sign( b
);
6627 if ( aSign
!= bSign
) {
6629 if ( ( ( (uint16_t) ( ( a
.high
| b
.high
) << 1 ) ) == 0) &&
6630 ( ( a
.low
| b
.low
) == 0 ) ) {
6632 return float_relation_equal
;
6634 return 1 - (2 * aSign
);
6637 if (a
.low
== b
.low
&& a
.high
== b
.high
) {
6638 return float_relation_equal
;
6640 return 1 - 2 * (aSign
^ ( lt128( a
.high
, a
.low
, b
.high
, b
.low
) ));
6645 int floatx80_compare( floatx80 a
, floatx80 b STATUS_PARAM
)
6647 return floatx80_compare_internal(a
, b
, 0 STATUS_VAR
);
6650 int floatx80_compare_quiet( floatx80 a
, floatx80 b STATUS_PARAM
)
6652 return floatx80_compare_internal(a
, b
, 1 STATUS_VAR
);
6655 INLINE
int float128_compare_internal( float128 a
, float128 b
,
6656 int is_quiet STATUS_PARAM
)
6660 if (( ( extractFloat128Exp( a
) == 0x7fff ) &&
6661 ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) ) ||
6662 ( ( extractFloat128Exp( b
) == 0x7fff ) &&
6663 ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )) {
6665 float128_is_signaling_nan( a
) ||
6666 float128_is_signaling_nan( b
) ) {
6667 float_raise( float_flag_invalid STATUS_VAR
);
6669 return float_relation_unordered
;
6671 aSign
= extractFloat128Sign( a
);
6672 bSign
= extractFloat128Sign( b
);
6673 if ( aSign
!= bSign
) {
6674 if ( ( ( ( a
.high
| b
.high
)<<1 ) | a
.low
| b
.low
) == 0 ) {
6676 return float_relation_equal
;
6678 return 1 - (2 * aSign
);
6681 if (a
.low
== b
.low
&& a
.high
== b
.high
) {
6682 return float_relation_equal
;
6684 return 1 - 2 * (aSign
^ ( lt128( a
.high
, a
.low
, b
.high
, b
.low
) ));
6689 int float128_compare( float128 a
, float128 b STATUS_PARAM
)
6691 return float128_compare_internal(a
, b
, 0 STATUS_VAR
);
6694 int float128_compare_quiet( float128 a
, float128 b STATUS_PARAM
)
6696 return float128_compare_internal(a
, b
, 1 STATUS_VAR
);
6699 /* min() and max() functions. These can't be implemented as
6700 * 'compare and pick one input' because that would mishandle
6701 * NaNs and +0 vs -0.
6703 #define MINMAX(s, nan_exp) \
6704 INLINE float ## s float ## s ## _minmax(float ## s a, float ## s b, \
6705 int ismin STATUS_PARAM ) \
6707 flag aSign, bSign; \
6708 uint ## s ## _t av, bv; \
6709 a = float ## s ## _squash_input_denormal(a STATUS_VAR); \
6710 b = float ## s ## _squash_input_denormal(b STATUS_VAR); \
6711 if (float ## s ## _is_any_nan(a) || \
6712 float ## s ## _is_any_nan(b)) { \
6713 return propagateFloat ## s ## NaN(a, b STATUS_VAR); \
6715 aSign = extractFloat ## s ## Sign(a); \
6716 bSign = extractFloat ## s ## Sign(b); \
6717 av = float ## s ## _val(a); \
6718 bv = float ## s ## _val(b); \
6719 if (aSign != bSign) { \
6721 return aSign ? a : b; \
6723 return aSign ? b : a; \
6727 return (aSign ^ (av < bv)) ? a : b; \
6729 return (aSign ^ (av < bv)) ? b : a; \
6734 float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM) \
6736 return float ## s ## _minmax(a, b, 1 STATUS_VAR); \
6739 float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM) \
6741 return float ## s ## _minmax(a, b, 0 STATUS_VAR); \
6748 /* Multiply A by 2 raised to the power N. */
6749 float32
float32_scalbn( float32 a
, int n STATUS_PARAM
)
6755 a
= float32_squash_input_denormal(a STATUS_VAR
);
6756 aSig
= extractFloat32Frac( a
);
6757 aExp
= extractFloat32Exp( a
);
6758 aSign
= extractFloat32Sign( a
);
6760 if ( aExp
== 0xFF ) {
6762 return propagateFloat32NaN( a
, a STATUS_VAR
);
6768 else if ( aSig
== 0 )
6773 } else if (n
< -0x200) {
6779 return normalizeRoundAndPackFloat32( aSign
, aExp
, aSig STATUS_VAR
);
6782 float64
float64_scalbn( float64 a
, int n STATUS_PARAM
)
6788 a
= float64_squash_input_denormal(a STATUS_VAR
);
6789 aSig
= extractFloat64Frac( a
);
6790 aExp
= extractFloat64Exp( a
);
6791 aSign
= extractFloat64Sign( a
);
6793 if ( aExp
== 0x7FF ) {
6795 return propagateFloat64NaN( a
, a STATUS_VAR
);
6800 aSig
|= LIT64( 0x0010000000000000 );
6801 else if ( aSig
== 0 )
6806 } else if (n
< -0x1000) {
6812 return normalizeRoundAndPackFloat64( aSign
, aExp
, aSig STATUS_VAR
);
6815 floatx80
floatx80_scalbn( floatx80 a
, int n STATUS_PARAM
)
6821 aSig
= extractFloatx80Frac( a
);
6822 aExp
= extractFloatx80Exp( a
);
6823 aSign
= extractFloatx80Sign( a
);
6825 if ( aExp
== 0x7FFF ) {
6827 return propagateFloatx80NaN( a
, a STATUS_VAR
);
6832 if (aExp
== 0 && aSig
== 0)
6837 } else if (n
< -0x10000) {
6842 return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision
),
6843 aSign
, aExp
, aSig
, 0 STATUS_VAR
);
6846 float128
float128_scalbn( float128 a
, int n STATUS_PARAM
)
6850 uint64_t aSig0
, aSig1
;
6852 aSig1
= extractFloat128Frac1( a
);
6853 aSig0
= extractFloat128Frac0( a
);
6854 aExp
= extractFloat128Exp( a
);
6855 aSign
= extractFloat128Sign( a
);
6856 if ( aExp
== 0x7FFF ) {
6857 if ( aSig0
| aSig1
) {
6858 return propagateFloat128NaN( a
, a STATUS_VAR
);
6863 aSig0
|= LIT64( 0x0001000000000000 );
6864 else if ( aSig0
== 0 && aSig1
== 0 )
6869 } else if (n
< -0x10000) {
6874 return normalizeRoundAndPackFloat128( aSign
, aExp
, aSig0
, aSig1