target-arm: Enable vPMU support under TCG mode
[qemu/ar7.git] / target / arm / cpu.c
blob4a069f69853f6c99527d8a6ab17840e333df2b66
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
39 ARMCPU *cpu = ARM_CPU(cs);
41 cpu->env.regs[15] = value;
44 static bool arm_cpu_has_work(CPUState *cs)
46 ARMCPU *cpu = ARM_CPU(cs);
48 return !cpu->powered_off
49 && cs->interrupt_request &
50 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52 | CPU_INTERRUPT_EXITTB);
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56 void *opaque)
58 /* We currently only support registering a single hook function */
59 assert(!cpu->el_change_hook);
60 cpu->el_change_hook = hook;
61 cpu->el_change_hook_opaque = opaque;
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
66 /* Reset a single ARMCPRegInfo register */
67 ARMCPRegInfo *ri = value;
68 ARMCPU *cpu = opaque;
70 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71 return;
74 if (ri->resetfn) {
75 ri->resetfn(&cpu->env, ri);
76 return;
79 /* A zero offset is never possible as it would be regs[0]
80 * so we use it to indicate that reset is being handled elsewhere.
81 * This is basically only used for fields in non-core coprocessors
82 * (like the pxa2xx ones).
84 if (!ri->fieldoffset) {
85 return;
88 if (cpreg_field_is_64bit(ri)) {
89 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90 } else {
91 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
95 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
97 /* Purely an assertion check: we've already done reset once,
98 * so now check that running the reset for the cpreg doesn't
99 * change its value. This traps bugs where two different cpregs
100 * both try to reset the same state field but to different values.
102 ARMCPRegInfo *ri = value;
103 ARMCPU *cpu = opaque;
104 uint64_t oldvalue, newvalue;
106 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107 return;
110 oldvalue = read_raw_cp_reg(&cpu->env, ri);
111 cp_reg_reset(key, value, opaque);
112 newvalue = read_raw_cp_reg(&cpu->env, ri);
113 assert(oldvalue == newvalue);
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
119 ARMCPU *cpu = ARM_CPU(s);
120 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121 CPUARMState *env = &cpu->env;
123 acc->parent_reset(s);
125 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
127 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
130 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
135 cpu->powered_off = cpu->start_powered_off;
136 s->halted = cpu->start_powered_off;
138 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
142 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143 /* 64 bit CPUs always start in 64 bit mode */
144 env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146 env->pstate = PSTATE_MODE_EL0t;
147 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149 /* and to the FP/Neon instructions */
150 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152 /* Reset into the highest available EL */
153 if (arm_feature(env, ARM_FEATURE_EL3)) {
154 env->pstate = PSTATE_MODE_EL3h;
155 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156 env->pstate = PSTATE_MODE_EL2h;
157 } else {
158 env->pstate = PSTATE_MODE_EL1h;
160 env->pc = cpu->rvbar;
161 #endif
162 } else {
163 #if defined(CONFIG_USER_ONLY)
164 /* Userspace expects access to cp10 and cp11 for FP/Neon */
165 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
169 #if defined(CONFIG_USER_ONLY)
170 env->uncached_cpsr = ARM_CPU_MODE_USR;
171 /* For user mode we must enable access to coprocessors */
172 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174 env->cp15.c15_cpar = 3;
175 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176 env->cp15.c15_cpar = 1;
178 #else
179 /* SVC mode with interrupts disabled. */
180 env->uncached_cpsr = ARM_CPU_MODE_SVC;
181 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
183 if (arm_feature(env, ARM_FEATURE_M)) {
184 uint32_t initial_msp; /* Loaded from 0x0 */
185 uint32_t initial_pc; /* Loaded from 0x4 */
186 uint8_t *rom;
188 /* For M profile we store FAULTMASK and PRIMASK in the
189 * PSTATE F and I bits; these are both clear at reset.
191 env->daif &= ~(PSTATE_I | PSTATE_F);
193 /* The reset value of this bit is IMPDEF, but ARM recommends
194 * that it resets to 1, so QEMU always does that rather than making
195 * it dependent on CPU model.
197 env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK;
199 /* Unlike A/R profile, M profile defines the reset LR value */
200 env->regs[14] = 0xffffffff;
202 /* Load the initial SP and PC from the vector table at address 0 */
203 rom = rom_ptr(0);
204 if (rom) {
205 /* Address zero is covered by ROM which hasn't yet been
206 * copied into physical memory.
208 initial_msp = ldl_p(rom);
209 initial_pc = ldl_p(rom + 4);
210 } else {
211 /* Address zero not covered by a ROM blob, or the ROM blob
212 * is in non-modifiable memory and this is a second reset after
213 * it got copied into memory. In the latter case, rom_ptr
214 * will return a NULL pointer and we should use ldl_phys instead.
216 initial_msp = ldl_phys(s->as, 0);
217 initial_pc = ldl_phys(s->as, 4);
220 env->regs[13] = initial_msp & 0xFFFFFFFC;
221 env->regs[15] = initial_pc & ~1;
222 env->thumb = initial_pc & 1;
225 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
226 * executing as AArch32 then check if highvecs are enabled and
227 * adjust the PC accordingly.
229 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
230 env->regs[15] = 0xFFFF0000;
233 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
234 #endif
235 set_flush_to_zero(1, &env->vfp.standard_fp_status);
236 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
237 set_default_nan_mode(1, &env->vfp.standard_fp_status);
238 set_float_detect_tininess(float_tininess_before_rounding,
239 &env->vfp.fp_status);
240 set_float_detect_tininess(float_tininess_before_rounding,
241 &env->vfp.standard_fp_status);
242 #ifndef CONFIG_USER_ONLY
243 if (kvm_enabled()) {
244 kvm_arm_reset_vcpu(cpu);
246 #endif
248 hw_breakpoint_update_all(cpu);
249 hw_watchpoint_update_all(cpu);
252 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
254 CPUClass *cc = CPU_GET_CLASS(cs);
255 CPUARMState *env = cs->env_ptr;
256 uint32_t cur_el = arm_current_el(env);
257 bool secure = arm_is_secure(env);
258 uint32_t target_el;
259 uint32_t excp_idx;
260 bool ret = false;
262 if (interrupt_request & CPU_INTERRUPT_FIQ) {
263 excp_idx = EXCP_FIQ;
264 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
265 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
266 cs->exception_index = excp_idx;
267 env->exception.target_el = target_el;
268 cc->do_interrupt(cs);
269 ret = true;
272 if (interrupt_request & CPU_INTERRUPT_HARD) {
273 excp_idx = EXCP_IRQ;
274 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
275 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
276 cs->exception_index = excp_idx;
277 env->exception.target_el = target_el;
278 cc->do_interrupt(cs);
279 ret = true;
282 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
283 excp_idx = EXCP_VIRQ;
284 target_el = 1;
285 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
286 cs->exception_index = excp_idx;
287 env->exception.target_el = target_el;
288 cc->do_interrupt(cs);
289 ret = true;
292 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
293 excp_idx = EXCP_VFIQ;
294 target_el = 1;
295 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
296 cs->exception_index = excp_idx;
297 env->exception.target_el = target_el;
298 cc->do_interrupt(cs);
299 ret = true;
303 return ret;
306 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
307 static void arm_v7m_unassigned_access(CPUState *cpu, hwaddr addr,
308 bool is_write, bool is_exec, int opaque,
309 unsigned size)
311 ARMCPU *arm = ARM_CPU(cpu);
312 CPUARMState *env = &arm->env;
314 /* ARMv7-M interrupt return works by loading a magic value into the PC.
315 * On real hardware the load causes the return to occur. The qemu
316 * implementation performs the jump normally, then does the exception
317 * return by throwing a special exception when when the CPU tries to
318 * execute code at the magic address.
320 if (env->v7m.exception != 0 && addr >= 0xfffffff0 && is_exec) {
321 cpu->exception_index = EXCP_EXCEPTION_EXIT;
322 cpu_loop_exit(cpu);
325 /* In real hardware an attempt to access parts of the address space
326 * with nothing there will usually cause an external abort.
327 * However our QEMU board models are often missing device models where
328 * the guest can boot anyway with the default read-as-zero/writes-ignored
329 * behaviour that you get without a QEMU unassigned_access hook.
330 * So just return here to retain that default behaviour.
334 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
336 CPUClass *cc = CPU_GET_CLASS(cs);
337 ARMCPU *cpu = ARM_CPU(cs);
338 CPUARMState *env = &cpu->env;
339 bool ret = false;
342 if (interrupt_request & CPU_INTERRUPT_FIQ
343 && !(env->daif & PSTATE_F)) {
344 cs->exception_index = EXCP_FIQ;
345 cc->do_interrupt(cs);
346 ret = true;
348 /* ARMv7-M interrupt return works by loading a magic value
349 * into the PC. On real hardware the load causes the
350 * return to occur. The qemu implementation performs the
351 * jump normally, then does the exception return when the
352 * CPU tries to execute code at the magic address.
353 * This will cause the magic PC value to be pushed to
354 * the stack if an interrupt occurred at the wrong time.
355 * We avoid this by disabling interrupts when
356 * pc contains a magic address.
358 if (interrupt_request & CPU_INTERRUPT_HARD
359 && !(env->daif & PSTATE_I)
360 && (env->regs[15] < 0xfffffff0)) {
361 cs->exception_index = EXCP_IRQ;
362 cc->do_interrupt(cs);
363 ret = true;
365 return ret;
367 #endif
369 #ifndef CONFIG_USER_ONLY
370 static void arm_cpu_set_irq(void *opaque, int irq, int level)
372 ARMCPU *cpu = opaque;
373 CPUARMState *env = &cpu->env;
374 CPUState *cs = CPU(cpu);
375 static const int mask[] = {
376 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
377 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
378 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
379 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
382 switch (irq) {
383 case ARM_CPU_VIRQ:
384 case ARM_CPU_VFIQ:
385 assert(arm_feature(env, ARM_FEATURE_EL2));
386 /* fall through */
387 case ARM_CPU_IRQ:
388 case ARM_CPU_FIQ:
389 if (level) {
390 cpu_interrupt(cs, mask[irq]);
391 } else {
392 cpu_reset_interrupt(cs, mask[irq]);
394 break;
395 default:
396 g_assert_not_reached();
400 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
402 #ifdef CONFIG_KVM
403 ARMCPU *cpu = opaque;
404 CPUState *cs = CPU(cpu);
405 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
407 switch (irq) {
408 case ARM_CPU_IRQ:
409 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
410 break;
411 case ARM_CPU_FIQ:
412 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
413 break;
414 default:
415 g_assert_not_reached();
417 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
418 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
419 #endif
422 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
424 ARMCPU *cpu = ARM_CPU(cs);
425 CPUARMState *env = &cpu->env;
427 cpu_synchronize_state(cs);
428 return arm_cpu_data_is_big_endian(env);
431 #endif
433 static inline void set_feature(CPUARMState *env, int feature)
435 env->features |= 1ULL << feature;
438 static inline void unset_feature(CPUARMState *env, int feature)
440 env->features &= ~(1ULL << feature);
443 static int
444 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
446 return print_insn_arm(pc | 1, info);
449 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
450 int length, struct disassemble_info *info)
452 assert(info->read_memory_inner_func);
453 assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
455 if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
456 assert(info->endian == BFD_ENDIAN_LITTLE);
457 return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
458 info);
459 } else {
460 return info->read_memory_inner_func(memaddr, b, length, info);
464 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
466 ARMCPU *ac = ARM_CPU(cpu);
467 CPUARMState *env = &ac->env;
469 if (is_a64(env)) {
470 /* We might not be compiled with the A64 disassembler
471 * because it needs a C++ compiler. Leave print_insn
472 * unset in this case to use the caller default behaviour.
474 #if defined(CONFIG_ARM_A64_DIS)
475 info->print_insn = print_insn_arm_a64;
476 #endif
477 } else if (env->thumb) {
478 info->print_insn = print_insn_thumb1;
479 } else {
480 info->print_insn = print_insn_arm;
482 if (bswap_code(arm_sctlr_b(env))) {
483 #ifdef TARGET_WORDS_BIGENDIAN
484 info->endian = BFD_ENDIAN_LITTLE;
485 #else
486 info->endian = BFD_ENDIAN_BIG;
487 #endif
489 if (info->read_memory_inner_func == NULL) {
490 info->read_memory_inner_func = info->read_memory_func;
491 info->read_memory_func = arm_read_memory_func;
493 info->flags &= ~INSN_ARM_BE32;
494 if (arm_sctlr_b(env)) {
495 info->flags |= INSN_ARM_BE32;
499 static void arm_cpu_initfn(Object *obj)
501 CPUState *cs = CPU(obj);
502 ARMCPU *cpu = ARM_CPU(obj);
503 static bool inited;
505 cs->env_ptr = &cpu->env;
506 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
507 g_free, g_free);
509 #ifndef CONFIG_USER_ONLY
510 /* Our inbound IRQ and FIQ lines */
511 if (kvm_enabled()) {
512 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
513 * the same interface as non-KVM CPUs.
515 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
516 } else {
517 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
520 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
521 arm_gt_ptimer_cb, cpu);
522 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
523 arm_gt_vtimer_cb, cpu);
524 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
525 arm_gt_htimer_cb, cpu);
526 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
527 arm_gt_stimer_cb, cpu);
528 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
529 ARRAY_SIZE(cpu->gt_timer_outputs));
531 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
532 "gicv3-maintenance-interrupt", 1);
533 #endif
535 /* DTB consumers generally don't in fact care what the 'compatible'
536 * string is, so always provide some string and trust that a hypothetical
537 * picky DTB consumer will also provide a helpful error message.
539 cpu->dtb_compatible = "qemu,unknown";
540 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
541 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
543 if (tcg_enabled()) {
544 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
545 if (!inited) {
546 inited = true;
547 arm_translate_init();
552 static Property arm_cpu_reset_cbar_property =
553 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
555 static Property arm_cpu_reset_hivecs_property =
556 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
558 static Property arm_cpu_rvbar_property =
559 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
561 static Property arm_cpu_has_el2_property =
562 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
564 static Property arm_cpu_has_el3_property =
565 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
567 static Property arm_cpu_cfgend_property =
568 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
570 /* use property name "pmu" to match other archs and virt tools */
571 static Property arm_cpu_has_pmu_property =
572 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
574 static Property arm_cpu_has_mpu_property =
575 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
577 static Property arm_cpu_pmsav7_dregion_property =
578 DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
580 static void arm_cpu_post_init(Object *obj)
582 ARMCPU *cpu = ARM_CPU(obj);
584 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
585 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
586 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
587 &error_abort);
590 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
591 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
592 &error_abort);
595 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
596 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
597 &error_abort);
600 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
601 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
602 * prevent "has_el3" from existing on CPUs which cannot support EL3.
604 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
605 &error_abort);
607 #ifndef CONFIG_USER_ONLY
608 object_property_add_link(obj, "secure-memory",
609 TYPE_MEMORY_REGION,
610 (Object **)&cpu->secure_memory,
611 qdev_prop_allow_set_link_before_realize,
612 OBJ_PROP_LINK_UNREF_ON_RELEASE,
613 &error_abort);
614 #endif
617 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
618 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
619 &error_abort);
622 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
623 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
624 &error_abort);
627 if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
628 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
629 &error_abort);
630 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
631 qdev_property_add_static(DEVICE(obj),
632 &arm_cpu_pmsav7_dregion_property,
633 &error_abort);
637 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
638 &error_abort);
641 static void arm_cpu_finalizefn(Object *obj)
643 ARMCPU *cpu = ARM_CPU(obj);
644 g_hash_table_destroy(cpu->cp_regs);
647 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
649 CPUState *cs = CPU(dev);
650 ARMCPU *cpu = ARM_CPU(dev);
651 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
652 CPUARMState *env = &cpu->env;
653 int pagebits;
654 Error *local_err = NULL;
656 cpu_exec_realizefn(cs, &local_err);
657 if (local_err != NULL) {
658 error_propagate(errp, local_err);
659 return;
662 /* Some features automatically imply others: */
663 if (arm_feature(env, ARM_FEATURE_V8)) {
664 set_feature(env, ARM_FEATURE_V7);
665 set_feature(env, ARM_FEATURE_ARM_DIV);
666 set_feature(env, ARM_FEATURE_LPAE);
668 if (arm_feature(env, ARM_FEATURE_V7)) {
669 set_feature(env, ARM_FEATURE_VAPA);
670 set_feature(env, ARM_FEATURE_THUMB2);
671 set_feature(env, ARM_FEATURE_MPIDR);
672 if (!arm_feature(env, ARM_FEATURE_M)) {
673 set_feature(env, ARM_FEATURE_V6K);
674 } else {
675 set_feature(env, ARM_FEATURE_V6);
678 /* Always define VBAR for V7 CPUs even if it doesn't exist in
679 * non-EL3 configs. This is needed by some legacy boards.
681 set_feature(env, ARM_FEATURE_VBAR);
683 if (arm_feature(env, ARM_FEATURE_V6K)) {
684 set_feature(env, ARM_FEATURE_V6);
685 set_feature(env, ARM_FEATURE_MVFR);
687 if (arm_feature(env, ARM_FEATURE_V6)) {
688 set_feature(env, ARM_FEATURE_V5);
689 if (!arm_feature(env, ARM_FEATURE_M)) {
690 set_feature(env, ARM_FEATURE_AUXCR);
693 if (arm_feature(env, ARM_FEATURE_V5)) {
694 set_feature(env, ARM_FEATURE_V4T);
696 if (arm_feature(env, ARM_FEATURE_M)) {
697 set_feature(env, ARM_FEATURE_THUMB_DIV);
699 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
700 set_feature(env, ARM_FEATURE_THUMB_DIV);
702 if (arm_feature(env, ARM_FEATURE_VFP4)) {
703 set_feature(env, ARM_FEATURE_VFP3);
704 set_feature(env, ARM_FEATURE_VFP_FP16);
706 if (arm_feature(env, ARM_FEATURE_VFP3)) {
707 set_feature(env, ARM_FEATURE_VFP);
709 if (arm_feature(env, ARM_FEATURE_LPAE)) {
710 set_feature(env, ARM_FEATURE_V7MP);
711 set_feature(env, ARM_FEATURE_PXN);
713 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
714 set_feature(env, ARM_FEATURE_CBAR);
716 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
717 !arm_feature(env, ARM_FEATURE_M)) {
718 set_feature(env, ARM_FEATURE_THUMB_DSP);
721 if (arm_feature(env, ARM_FEATURE_V7) &&
722 !arm_feature(env, ARM_FEATURE_M) &&
723 !arm_feature(env, ARM_FEATURE_MPU)) {
724 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
725 * can use 4K pages.
727 pagebits = 12;
728 } else {
729 /* For CPUs which might have tiny 1K pages, or which have an
730 * MPU and might have small region sizes, stick with 1K pages.
732 pagebits = 10;
734 if (!set_preferred_target_page_bits(pagebits)) {
735 /* This can only ever happen for hotplugging a CPU, or if
736 * the board code incorrectly creates a CPU which it has
737 * promised via minimum_page_size that it will not.
739 error_setg(errp, "This CPU requires a smaller page size than the "
740 "system is using");
741 return;
744 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
745 * We don't support setting cluster ID ([16..23]) (known as Aff2
746 * in later ARM ARM versions), or any of the higher affinity level fields,
747 * so these bits always RAZ.
749 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
750 uint32_t Aff1 = cs->cpu_index / ARM_DEFAULT_CPUS_PER_CLUSTER;
751 uint32_t Aff0 = cs->cpu_index % ARM_DEFAULT_CPUS_PER_CLUSTER;
752 cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0;
755 if (cpu->reset_hivecs) {
756 cpu->reset_sctlr |= (1 << 13);
759 if (cpu->cfgend) {
760 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
761 cpu->reset_sctlr |= SCTLR_EE;
762 } else {
763 cpu->reset_sctlr |= SCTLR_B;
767 if (!cpu->has_el3) {
768 /* If the has_el3 CPU property is disabled then we need to disable the
769 * feature.
771 unset_feature(env, ARM_FEATURE_EL3);
773 /* Disable the security extension feature bits in the processor feature
774 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
776 cpu->id_pfr1 &= ~0xf0;
777 cpu->id_aa64pfr0 &= ~0xf000;
780 if (!cpu->has_el2) {
781 unset_feature(env, ARM_FEATURE_EL2);
784 if (!cpu->has_pmu) {
785 cpu->has_pmu = false;
786 unset_feature(env, ARM_FEATURE_PMU);
789 if (!arm_feature(env, ARM_FEATURE_EL2)) {
790 /* Disable the hypervisor feature bits in the processor feature
791 * registers if we don't have EL2. These are id_pfr1[15:12] and
792 * id_aa64pfr0_el1[11:8].
794 cpu->id_aa64pfr0 &= ~0xf00;
795 cpu->id_pfr1 &= ~0xf000;
798 if (!cpu->has_mpu) {
799 unset_feature(env, ARM_FEATURE_MPU);
802 if (arm_feature(env, ARM_FEATURE_MPU) &&
803 arm_feature(env, ARM_FEATURE_V7)) {
804 uint32_t nr = cpu->pmsav7_dregion;
806 if (nr > 0xff) {
807 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
808 return;
811 if (nr) {
812 env->pmsav7.drbar = g_new0(uint32_t, nr);
813 env->pmsav7.drsr = g_new0(uint32_t, nr);
814 env->pmsav7.dracr = g_new0(uint32_t, nr);
818 if (arm_feature(env, ARM_FEATURE_EL3)) {
819 set_feature(env, ARM_FEATURE_VBAR);
822 register_cp_regs_for_features(cpu);
823 arm_cpu_register_gdb_regs_for_features(cpu);
825 init_cpreg_list(cpu);
827 #ifndef CONFIG_USER_ONLY
828 if (cpu->has_el3) {
829 cs->num_ases = 2;
830 } else {
831 cs->num_ases = 1;
834 if (cpu->has_el3) {
835 AddressSpace *as;
837 if (!cpu->secure_memory) {
838 cpu->secure_memory = cs->memory;
840 as = address_space_init_shareable(cpu->secure_memory,
841 "cpu-secure-memory");
842 cpu_address_space_init(cs, as, ARMASIdx_S);
844 cpu_address_space_init(cs,
845 address_space_init_shareable(cs->memory,
846 "cpu-memory"),
847 ARMASIdx_NS);
848 #endif
850 qemu_init_vcpu(cs);
851 cpu_reset(cs);
853 acc->parent_realize(dev, errp);
856 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
858 ObjectClass *oc;
859 char *typename;
860 char **cpuname;
862 if (!cpu_model) {
863 return NULL;
866 cpuname = g_strsplit(cpu_model, ",", 1);
867 typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
868 oc = object_class_by_name(typename);
869 g_strfreev(cpuname);
870 g_free(typename);
871 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
872 object_class_is_abstract(oc)) {
873 return NULL;
875 return oc;
878 /* CPU models. These are not needed for the AArch64 linux-user build. */
879 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
881 static void arm926_initfn(Object *obj)
883 ARMCPU *cpu = ARM_CPU(obj);
885 cpu->dtb_compatible = "arm,arm926";
886 set_feature(&cpu->env, ARM_FEATURE_V5);
887 set_feature(&cpu->env, ARM_FEATURE_VFP);
888 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
889 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
890 cpu->midr = 0x41069265;
891 cpu->reset_fpsid = 0x41011090;
892 cpu->ctr = 0x1dd20d2;
893 cpu->reset_sctlr = 0x00090078;
896 static void arm946_initfn(Object *obj)
898 ARMCPU *cpu = ARM_CPU(obj);
900 cpu->dtb_compatible = "arm,arm946";
901 set_feature(&cpu->env, ARM_FEATURE_V5);
902 set_feature(&cpu->env, ARM_FEATURE_MPU);
903 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
904 cpu->midr = 0x41059461;
905 cpu->ctr = 0x0f004006;
906 cpu->reset_sctlr = 0x00000078;
909 static void arm1026_initfn(Object *obj)
911 ARMCPU *cpu = ARM_CPU(obj);
913 cpu->dtb_compatible = "arm,arm1026";
914 set_feature(&cpu->env, ARM_FEATURE_V5);
915 set_feature(&cpu->env, ARM_FEATURE_VFP);
916 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
917 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
918 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
919 cpu->midr = 0x4106a262;
920 cpu->reset_fpsid = 0x410110a0;
921 cpu->ctr = 0x1dd20d2;
922 cpu->reset_sctlr = 0x00090078;
923 cpu->reset_auxcr = 1;
925 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
926 ARMCPRegInfo ifar = {
927 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
928 .access = PL1_RW,
929 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
930 .resetvalue = 0
932 define_one_arm_cp_reg(cpu, &ifar);
936 static void arm1136_r2_initfn(Object *obj)
938 ARMCPU *cpu = ARM_CPU(obj);
939 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
940 * older core than plain "arm1136". In particular this does not
941 * have the v6K features.
942 * These ID register values are correct for 1136 but may be wrong
943 * for 1136_r2 (in particular r0p2 does not actually implement most
944 * of the ID registers).
947 cpu->dtb_compatible = "arm,arm1136";
948 set_feature(&cpu->env, ARM_FEATURE_V6);
949 set_feature(&cpu->env, ARM_FEATURE_VFP);
950 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
951 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
952 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
953 cpu->midr = 0x4107b362;
954 cpu->reset_fpsid = 0x410120b4;
955 cpu->mvfr0 = 0x11111111;
956 cpu->mvfr1 = 0x00000000;
957 cpu->ctr = 0x1dd20d2;
958 cpu->reset_sctlr = 0x00050078;
959 cpu->id_pfr0 = 0x111;
960 cpu->id_pfr1 = 0x1;
961 cpu->id_dfr0 = 0x2;
962 cpu->id_afr0 = 0x3;
963 cpu->id_mmfr0 = 0x01130003;
964 cpu->id_mmfr1 = 0x10030302;
965 cpu->id_mmfr2 = 0x01222110;
966 cpu->id_isar0 = 0x00140011;
967 cpu->id_isar1 = 0x12002111;
968 cpu->id_isar2 = 0x11231111;
969 cpu->id_isar3 = 0x01102131;
970 cpu->id_isar4 = 0x141;
971 cpu->reset_auxcr = 7;
974 static void arm1136_initfn(Object *obj)
976 ARMCPU *cpu = ARM_CPU(obj);
978 cpu->dtb_compatible = "arm,arm1136";
979 set_feature(&cpu->env, ARM_FEATURE_V6K);
980 set_feature(&cpu->env, ARM_FEATURE_V6);
981 set_feature(&cpu->env, ARM_FEATURE_VFP);
982 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
983 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
984 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
985 cpu->midr = 0x4117b363;
986 cpu->reset_fpsid = 0x410120b4;
987 cpu->mvfr0 = 0x11111111;
988 cpu->mvfr1 = 0x00000000;
989 cpu->ctr = 0x1dd20d2;
990 cpu->reset_sctlr = 0x00050078;
991 cpu->id_pfr0 = 0x111;
992 cpu->id_pfr1 = 0x1;
993 cpu->id_dfr0 = 0x2;
994 cpu->id_afr0 = 0x3;
995 cpu->id_mmfr0 = 0x01130003;
996 cpu->id_mmfr1 = 0x10030302;
997 cpu->id_mmfr2 = 0x01222110;
998 cpu->id_isar0 = 0x00140011;
999 cpu->id_isar1 = 0x12002111;
1000 cpu->id_isar2 = 0x11231111;
1001 cpu->id_isar3 = 0x01102131;
1002 cpu->id_isar4 = 0x141;
1003 cpu->reset_auxcr = 7;
1006 static void arm1176_initfn(Object *obj)
1008 ARMCPU *cpu = ARM_CPU(obj);
1010 cpu->dtb_compatible = "arm,arm1176";
1011 set_feature(&cpu->env, ARM_FEATURE_V6K);
1012 set_feature(&cpu->env, ARM_FEATURE_VFP);
1013 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1014 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1015 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1016 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1017 set_feature(&cpu->env, ARM_FEATURE_EL3);
1018 cpu->midr = 0x410fb767;
1019 cpu->reset_fpsid = 0x410120b5;
1020 cpu->mvfr0 = 0x11111111;
1021 cpu->mvfr1 = 0x00000000;
1022 cpu->ctr = 0x1dd20d2;
1023 cpu->reset_sctlr = 0x00050078;
1024 cpu->id_pfr0 = 0x111;
1025 cpu->id_pfr1 = 0x11;
1026 cpu->id_dfr0 = 0x33;
1027 cpu->id_afr0 = 0;
1028 cpu->id_mmfr0 = 0x01130003;
1029 cpu->id_mmfr1 = 0x10030302;
1030 cpu->id_mmfr2 = 0x01222100;
1031 cpu->id_isar0 = 0x0140011;
1032 cpu->id_isar1 = 0x12002111;
1033 cpu->id_isar2 = 0x11231121;
1034 cpu->id_isar3 = 0x01102131;
1035 cpu->id_isar4 = 0x01141;
1036 cpu->reset_auxcr = 7;
1039 static void arm11mpcore_initfn(Object *obj)
1041 ARMCPU *cpu = ARM_CPU(obj);
1043 cpu->dtb_compatible = "arm,arm11mpcore";
1044 set_feature(&cpu->env, ARM_FEATURE_V6K);
1045 set_feature(&cpu->env, ARM_FEATURE_VFP);
1046 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1047 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1048 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1049 cpu->midr = 0x410fb022;
1050 cpu->reset_fpsid = 0x410120b4;
1051 cpu->mvfr0 = 0x11111111;
1052 cpu->mvfr1 = 0x00000000;
1053 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1054 cpu->id_pfr0 = 0x111;
1055 cpu->id_pfr1 = 0x1;
1056 cpu->id_dfr0 = 0;
1057 cpu->id_afr0 = 0x2;
1058 cpu->id_mmfr0 = 0x01100103;
1059 cpu->id_mmfr1 = 0x10020302;
1060 cpu->id_mmfr2 = 0x01222000;
1061 cpu->id_isar0 = 0x00100011;
1062 cpu->id_isar1 = 0x12002111;
1063 cpu->id_isar2 = 0x11221011;
1064 cpu->id_isar3 = 0x01102131;
1065 cpu->id_isar4 = 0x141;
1066 cpu->reset_auxcr = 1;
1069 static void cortex_m3_initfn(Object *obj)
1071 ARMCPU *cpu = ARM_CPU(obj);
1072 set_feature(&cpu->env, ARM_FEATURE_V7);
1073 set_feature(&cpu->env, ARM_FEATURE_M);
1074 cpu->midr = 0x410fc231;
1077 static void cortex_m4_initfn(Object *obj)
1079 ARMCPU *cpu = ARM_CPU(obj);
1081 set_feature(&cpu->env, ARM_FEATURE_V7);
1082 set_feature(&cpu->env, ARM_FEATURE_M);
1083 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1084 cpu->midr = 0x410fc240; /* r0p0 */
1086 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1088 CPUClass *cc = CPU_CLASS(oc);
1090 #ifndef CONFIG_USER_ONLY
1091 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1092 #endif
1094 cc->do_unassigned_access = arm_v7m_unassigned_access;
1095 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1098 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1099 /* Dummy the TCM region regs for the moment */
1100 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1101 .access = PL1_RW, .type = ARM_CP_CONST },
1102 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1103 .access = PL1_RW, .type = ARM_CP_CONST },
1104 REGINFO_SENTINEL
1107 static void cortex_r5_initfn(Object *obj)
1109 ARMCPU *cpu = ARM_CPU(obj);
1111 set_feature(&cpu->env, ARM_FEATURE_V7);
1112 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1113 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1114 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1115 set_feature(&cpu->env, ARM_FEATURE_MPU);
1116 cpu->midr = 0x411fc153; /* r1p3 */
1117 cpu->id_pfr0 = 0x0131;
1118 cpu->id_pfr1 = 0x001;
1119 cpu->id_dfr0 = 0x010400;
1120 cpu->id_afr0 = 0x0;
1121 cpu->id_mmfr0 = 0x0210030;
1122 cpu->id_mmfr1 = 0x00000000;
1123 cpu->id_mmfr2 = 0x01200000;
1124 cpu->id_mmfr3 = 0x0211;
1125 cpu->id_isar0 = 0x2101111;
1126 cpu->id_isar1 = 0x13112111;
1127 cpu->id_isar2 = 0x21232141;
1128 cpu->id_isar3 = 0x01112131;
1129 cpu->id_isar4 = 0x0010142;
1130 cpu->id_isar5 = 0x0;
1131 cpu->mp_is_up = true;
1132 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1135 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1136 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1137 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1138 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1139 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1140 REGINFO_SENTINEL
1143 static void cortex_a8_initfn(Object *obj)
1145 ARMCPU *cpu = ARM_CPU(obj);
1147 cpu->dtb_compatible = "arm,cortex-a8";
1148 set_feature(&cpu->env, ARM_FEATURE_V7);
1149 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1150 set_feature(&cpu->env, ARM_FEATURE_NEON);
1151 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1152 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1153 set_feature(&cpu->env, ARM_FEATURE_EL3);
1154 cpu->midr = 0x410fc080;
1155 cpu->reset_fpsid = 0x410330c0;
1156 cpu->mvfr0 = 0x11110222;
1157 cpu->mvfr1 = 0x00011111;
1158 cpu->ctr = 0x82048004;
1159 cpu->reset_sctlr = 0x00c50078;
1160 cpu->id_pfr0 = 0x1031;
1161 cpu->id_pfr1 = 0x11;
1162 cpu->id_dfr0 = 0x400;
1163 cpu->id_afr0 = 0;
1164 cpu->id_mmfr0 = 0x31100003;
1165 cpu->id_mmfr1 = 0x20000000;
1166 cpu->id_mmfr2 = 0x01202000;
1167 cpu->id_mmfr3 = 0x11;
1168 cpu->id_isar0 = 0x00101111;
1169 cpu->id_isar1 = 0x12112111;
1170 cpu->id_isar2 = 0x21232031;
1171 cpu->id_isar3 = 0x11112131;
1172 cpu->id_isar4 = 0x00111142;
1173 cpu->dbgdidr = 0x15141000;
1174 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1175 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1176 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1177 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1178 cpu->reset_auxcr = 2;
1179 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1182 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1183 /* power_control should be set to maximum latency. Again,
1184 * default to 0 and set by private hook
1186 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1187 .access = PL1_RW, .resetvalue = 0,
1188 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1189 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1190 .access = PL1_RW, .resetvalue = 0,
1191 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1192 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1193 .access = PL1_RW, .resetvalue = 0,
1194 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1195 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1196 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1197 /* TLB lockdown control */
1198 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1199 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1200 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1201 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1202 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1203 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1204 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1205 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1206 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1207 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1208 REGINFO_SENTINEL
1211 static void cortex_a9_initfn(Object *obj)
1213 ARMCPU *cpu = ARM_CPU(obj);
1215 cpu->dtb_compatible = "arm,cortex-a9";
1216 set_feature(&cpu->env, ARM_FEATURE_V7);
1217 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1218 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1219 set_feature(&cpu->env, ARM_FEATURE_NEON);
1220 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1221 set_feature(&cpu->env, ARM_FEATURE_EL3);
1222 /* Note that A9 supports the MP extensions even for
1223 * A9UP and single-core A9MP (which are both different
1224 * and valid configurations; we don't model A9UP).
1226 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1227 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1228 cpu->midr = 0x410fc090;
1229 cpu->reset_fpsid = 0x41033090;
1230 cpu->mvfr0 = 0x11110222;
1231 cpu->mvfr1 = 0x01111111;
1232 cpu->ctr = 0x80038003;
1233 cpu->reset_sctlr = 0x00c50078;
1234 cpu->id_pfr0 = 0x1031;
1235 cpu->id_pfr1 = 0x11;
1236 cpu->id_dfr0 = 0x000;
1237 cpu->id_afr0 = 0;
1238 cpu->id_mmfr0 = 0x00100103;
1239 cpu->id_mmfr1 = 0x20000000;
1240 cpu->id_mmfr2 = 0x01230000;
1241 cpu->id_mmfr3 = 0x00002111;
1242 cpu->id_isar0 = 0x00101111;
1243 cpu->id_isar1 = 0x13112111;
1244 cpu->id_isar2 = 0x21232041;
1245 cpu->id_isar3 = 0x11112131;
1246 cpu->id_isar4 = 0x00111142;
1247 cpu->dbgdidr = 0x35141000;
1248 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1249 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1250 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1251 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1254 #ifndef CONFIG_USER_ONLY
1255 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1257 /* Linux wants the number of processors from here.
1258 * Might as well set the interrupt-controller bit too.
1260 return ((smp_cpus - 1) << 24) | (1 << 23);
1262 #endif
1264 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1265 #ifndef CONFIG_USER_ONLY
1266 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1267 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1268 .writefn = arm_cp_write_ignore, },
1269 #endif
1270 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1271 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1272 REGINFO_SENTINEL
1275 static void cortex_a7_initfn(Object *obj)
1277 ARMCPU *cpu = ARM_CPU(obj);
1279 cpu->dtb_compatible = "arm,cortex-a7";
1280 set_feature(&cpu->env, ARM_FEATURE_V7);
1281 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1282 set_feature(&cpu->env, ARM_FEATURE_NEON);
1283 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1284 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1285 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1286 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1287 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1288 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1289 set_feature(&cpu->env, ARM_FEATURE_EL3);
1290 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1291 cpu->midr = 0x410fc075;
1292 cpu->reset_fpsid = 0x41023075;
1293 cpu->mvfr0 = 0x10110222;
1294 cpu->mvfr1 = 0x11111111;
1295 cpu->ctr = 0x84448003;
1296 cpu->reset_sctlr = 0x00c50078;
1297 cpu->id_pfr0 = 0x00001131;
1298 cpu->id_pfr1 = 0x00011011;
1299 cpu->id_dfr0 = 0x02010555;
1300 cpu->pmceid0 = 0x00000000;
1301 cpu->pmceid1 = 0x00000000;
1302 cpu->id_afr0 = 0x00000000;
1303 cpu->id_mmfr0 = 0x10101105;
1304 cpu->id_mmfr1 = 0x40000000;
1305 cpu->id_mmfr2 = 0x01240000;
1306 cpu->id_mmfr3 = 0x02102211;
1307 cpu->id_isar0 = 0x01101110;
1308 cpu->id_isar1 = 0x13112111;
1309 cpu->id_isar2 = 0x21232041;
1310 cpu->id_isar3 = 0x11112131;
1311 cpu->id_isar4 = 0x10011142;
1312 cpu->dbgdidr = 0x3515f005;
1313 cpu->clidr = 0x0a200023;
1314 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1315 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1316 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1317 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1320 static void cortex_a15_initfn(Object *obj)
1322 ARMCPU *cpu = ARM_CPU(obj);
1324 cpu->dtb_compatible = "arm,cortex-a15";
1325 set_feature(&cpu->env, ARM_FEATURE_V7);
1326 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1327 set_feature(&cpu->env, ARM_FEATURE_NEON);
1328 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1329 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1330 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1331 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1332 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1333 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1334 set_feature(&cpu->env, ARM_FEATURE_EL3);
1335 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1336 cpu->midr = 0x412fc0f1;
1337 cpu->reset_fpsid = 0x410430f0;
1338 cpu->mvfr0 = 0x10110222;
1339 cpu->mvfr1 = 0x11111111;
1340 cpu->ctr = 0x8444c004;
1341 cpu->reset_sctlr = 0x00c50078;
1342 cpu->id_pfr0 = 0x00001131;
1343 cpu->id_pfr1 = 0x00011011;
1344 cpu->id_dfr0 = 0x02010555;
1345 cpu->pmceid0 = 0x0000000;
1346 cpu->pmceid1 = 0x00000000;
1347 cpu->id_afr0 = 0x00000000;
1348 cpu->id_mmfr0 = 0x10201105;
1349 cpu->id_mmfr1 = 0x20000000;
1350 cpu->id_mmfr2 = 0x01240000;
1351 cpu->id_mmfr3 = 0x02102211;
1352 cpu->id_isar0 = 0x02101110;
1353 cpu->id_isar1 = 0x13112111;
1354 cpu->id_isar2 = 0x21232041;
1355 cpu->id_isar3 = 0x11112131;
1356 cpu->id_isar4 = 0x10011142;
1357 cpu->dbgdidr = 0x3515f021;
1358 cpu->clidr = 0x0a200023;
1359 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1360 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1361 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1362 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1365 static void ti925t_initfn(Object *obj)
1367 ARMCPU *cpu = ARM_CPU(obj);
1368 set_feature(&cpu->env, ARM_FEATURE_V4T);
1369 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1370 cpu->midr = ARM_CPUID_TI925T;
1371 cpu->ctr = 0x5109149;
1372 cpu->reset_sctlr = 0x00000070;
1375 static void sa1100_initfn(Object *obj)
1377 ARMCPU *cpu = ARM_CPU(obj);
1379 cpu->dtb_compatible = "intel,sa1100";
1380 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1381 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1382 cpu->midr = 0x4401A11B;
1383 cpu->reset_sctlr = 0x00000070;
1386 static void sa1110_initfn(Object *obj)
1388 ARMCPU *cpu = ARM_CPU(obj);
1389 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1390 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1391 cpu->midr = 0x6901B119;
1392 cpu->reset_sctlr = 0x00000070;
1395 static void pxa250_initfn(Object *obj)
1397 ARMCPU *cpu = ARM_CPU(obj);
1399 cpu->dtb_compatible = "marvell,xscale";
1400 set_feature(&cpu->env, ARM_FEATURE_V5);
1401 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1402 cpu->midr = 0x69052100;
1403 cpu->ctr = 0xd172172;
1404 cpu->reset_sctlr = 0x00000078;
1407 static void pxa255_initfn(Object *obj)
1409 ARMCPU *cpu = ARM_CPU(obj);
1411 cpu->dtb_compatible = "marvell,xscale";
1412 set_feature(&cpu->env, ARM_FEATURE_V5);
1413 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1414 cpu->midr = 0x69052d00;
1415 cpu->ctr = 0xd172172;
1416 cpu->reset_sctlr = 0x00000078;
1419 static void pxa260_initfn(Object *obj)
1421 ARMCPU *cpu = ARM_CPU(obj);
1423 cpu->dtb_compatible = "marvell,xscale";
1424 set_feature(&cpu->env, ARM_FEATURE_V5);
1425 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1426 cpu->midr = 0x69052903;
1427 cpu->ctr = 0xd172172;
1428 cpu->reset_sctlr = 0x00000078;
1431 static void pxa261_initfn(Object *obj)
1433 ARMCPU *cpu = ARM_CPU(obj);
1435 cpu->dtb_compatible = "marvell,xscale";
1436 set_feature(&cpu->env, ARM_FEATURE_V5);
1437 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1438 cpu->midr = 0x69052d05;
1439 cpu->ctr = 0xd172172;
1440 cpu->reset_sctlr = 0x00000078;
1443 static void pxa262_initfn(Object *obj)
1445 ARMCPU *cpu = ARM_CPU(obj);
1447 cpu->dtb_compatible = "marvell,xscale";
1448 set_feature(&cpu->env, ARM_FEATURE_V5);
1449 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1450 cpu->midr = 0x69052d06;
1451 cpu->ctr = 0xd172172;
1452 cpu->reset_sctlr = 0x00000078;
1455 static void pxa270a0_initfn(Object *obj)
1457 ARMCPU *cpu = ARM_CPU(obj);
1459 cpu->dtb_compatible = "marvell,xscale";
1460 set_feature(&cpu->env, ARM_FEATURE_V5);
1461 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1462 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1463 cpu->midr = 0x69054110;
1464 cpu->ctr = 0xd172172;
1465 cpu->reset_sctlr = 0x00000078;
1468 static void pxa270a1_initfn(Object *obj)
1470 ARMCPU *cpu = ARM_CPU(obj);
1472 cpu->dtb_compatible = "marvell,xscale";
1473 set_feature(&cpu->env, ARM_FEATURE_V5);
1474 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1475 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1476 cpu->midr = 0x69054111;
1477 cpu->ctr = 0xd172172;
1478 cpu->reset_sctlr = 0x00000078;
1481 static void pxa270b0_initfn(Object *obj)
1483 ARMCPU *cpu = ARM_CPU(obj);
1485 cpu->dtb_compatible = "marvell,xscale";
1486 set_feature(&cpu->env, ARM_FEATURE_V5);
1487 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1488 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1489 cpu->midr = 0x69054112;
1490 cpu->ctr = 0xd172172;
1491 cpu->reset_sctlr = 0x00000078;
1494 static void pxa270b1_initfn(Object *obj)
1496 ARMCPU *cpu = ARM_CPU(obj);
1498 cpu->dtb_compatible = "marvell,xscale";
1499 set_feature(&cpu->env, ARM_FEATURE_V5);
1500 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1501 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1502 cpu->midr = 0x69054113;
1503 cpu->ctr = 0xd172172;
1504 cpu->reset_sctlr = 0x00000078;
1507 static void pxa270c0_initfn(Object *obj)
1509 ARMCPU *cpu = ARM_CPU(obj);
1511 cpu->dtb_compatible = "marvell,xscale";
1512 set_feature(&cpu->env, ARM_FEATURE_V5);
1513 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1514 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1515 cpu->midr = 0x69054114;
1516 cpu->ctr = 0xd172172;
1517 cpu->reset_sctlr = 0x00000078;
1520 static void pxa270c5_initfn(Object *obj)
1522 ARMCPU *cpu = ARM_CPU(obj);
1524 cpu->dtb_compatible = "marvell,xscale";
1525 set_feature(&cpu->env, ARM_FEATURE_V5);
1526 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1527 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1528 cpu->midr = 0x69054117;
1529 cpu->ctr = 0xd172172;
1530 cpu->reset_sctlr = 0x00000078;
1533 #ifdef CONFIG_USER_ONLY
1534 static void arm_any_initfn(Object *obj)
1536 ARMCPU *cpu = ARM_CPU(obj);
1537 set_feature(&cpu->env, ARM_FEATURE_V8);
1538 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1539 set_feature(&cpu->env, ARM_FEATURE_NEON);
1540 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1541 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1542 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1543 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1544 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1545 set_feature(&cpu->env, ARM_FEATURE_CRC);
1546 cpu->midr = 0xffffffff;
1548 #endif
1550 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1552 typedef struct ARMCPUInfo {
1553 const char *name;
1554 void (*initfn)(Object *obj);
1555 void (*class_init)(ObjectClass *oc, void *data);
1556 } ARMCPUInfo;
1558 static const ARMCPUInfo arm_cpus[] = {
1559 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1560 { .name = "arm926", .initfn = arm926_initfn },
1561 { .name = "arm946", .initfn = arm946_initfn },
1562 { .name = "arm1026", .initfn = arm1026_initfn },
1563 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1564 * older core than plain "arm1136". In particular this does not
1565 * have the v6K features.
1567 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1568 { .name = "arm1136", .initfn = arm1136_initfn },
1569 { .name = "arm1176", .initfn = arm1176_initfn },
1570 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1571 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1572 .class_init = arm_v7m_class_init },
1573 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1574 .class_init = arm_v7m_class_init },
1575 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1576 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1577 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1578 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1579 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1580 { .name = "ti925t", .initfn = ti925t_initfn },
1581 { .name = "sa1100", .initfn = sa1100_initfn },
1582 { .name = "sa1110", .initfn = sa1110_initfn },
1583 { .name = "pxa250", .initfn = pxa250_initfn },
1584 { .name = "pxa255", .initfn = pxa255_initfn },
1585 { .name = "pxa260", .initfn = pxa260_initfn },
1586 { .name = "pxa261", .initfn = pxa261_initfn },
1587 { .name = "pxa262", .initfn = pxa262_initfn },
1588 /* "pxa270" is an alias for "pxa270-a0" */
1589 { .name = "pxa270", .initfn = pxa270a0_initfn },
1590 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1591 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1592 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1593 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1594 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1595 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1596 #ifdef CONFIG_USER_ONLY
1597 { .name = "any", .initfn = arm_any_initfn },
1598 #endif
1599 #endif
1600 { .name = NULL }
1603 static Property arm_cpu_properties[] = {
1604 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1605 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1606 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1607 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1608 mp_affinity, ARM64_AFFINITY_INVALID),
1609 DEFINE_PROP_END_OF_LIST()
1612 #ifdef CONFIG_USER_ONLY
1613 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1614 int mmu_idx)
1616 ARMCPU *cpu = ARM_CPU(cs);
1617 CPUARMState *env = &cpu->env;
1619 env->exception.vaddress = address;
1620 if (rw == 2) {
1621 cs->exception_index = EXCP_PREFETCH_ABORT;
1622 } else {
1623 cs->exception_index = EXCP_DATA_ABORT;
1625 return 1;
1627 #endif
1629 static gchar *arm_gdb_arch_name(CPUState *cs)
1631 ARMCPU *cpu = ARM_CPU(cs);
1632 CPUARMState *env = &cpu->env;
1634 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1635 return g_strdup("iwmmxt");
1637 return g_strdup("arm");
1640 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1642 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1643 CPUClass *cc = CPU_CLASS(acc);
1644 DeviceClass *dc = DEVICE_CLASS(oc);
1646 acc->parent_realize = dc->realize;
1647 dc->realize = arm_cpu_realizefn;
1648 dc->props = arm_cpu_properties;
1650 acc->parent_reset = cc->reset;
1651 cc->reset = arm_cpu_reset;
1653 cc->class_by_name = arm_cpu_class_by_name;
1654 cc->has_work = arm_cpu_has_work;
1655 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1656 cc->dump_state = arm_cpu_dump_state;
1657 cc->set_pc = arm_cpu_set_pc;
1658 cc->gdb_read_register = arm_cpu_gdb_read_register;
1659 cc->gdb_write_register = arm_cpu_gdb_write_register;
1660 #ifdef CONFIG_USER_ONLY
1661 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1662 #else
1663 cc->do_interrupt = arm_cpu_do_interrupt;
1664 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1665 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1666 cc->asidx_from_attrs = arm_asidx_from_attrs;
1667 cc->vmsd = &vmstate_arm_cpu;
1668 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1669 cc->write_elf64_note = arm_cpu_write_elf64_note;
1670 cc->write_elf32_note = arm_cpu_write_elf32_note;
1671 #endif
1672 cc->gdb_num_core_regs = 26;
1673 cc->gdb_core_xml_file = "arm-core.xml";
1674 cc->gdb_arch_name = arm_gdb_arch_name;
1675 cc->gdb_stop_before_watchpoint = true;
1676 cc->debug_excp_handler = arm_debug_excp_handler;
1677 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1678 #if !defined(CONFIG_USER_ONLY)
1679 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1680 #endif
1682 cc->disas_set_info = arm_disas_set_info;
1685 static void cpu_register(const ARMCPUInfo *info)
1687 TypeInfo type_info = {
1688 .parent = TYPE_ARM_CPU,
1689 .instance_size = sizeof(ARMCPU),
1690 .instance_init = info->initfn,
1691 .class_size = sizeof(ARMCPUClass),
1692 .class_init = info->class_init,
1695 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1696 type_register(&type_info);
1697 g_free((void *)type_info.name);
1700 static const TypeInfo arm_cpu_type_info = {
1701 .name = TYPE_ARM_CPU,
1702 .parent = TYPE_CPU,
1703 .instance_size = sizeof(ARMCPU),
1704 .instance_init = arm_cpu_initfn,
1705 .instance_post_init = arm_cpu_post_init,
1706 .instance_finalize = arm_cpu_finalizefn,
1707 .abstract = true,
1708 .class_size = sizeof(ARMCPUClass),
1709 .class_init = arm_cpu_class_init,
1712 static void arm_cpu_register_types(void)
1714 const ARMCPUInfo *info = arm_cpus;
1716 type_register_static(&arm_cpu_type_info);
1718 while (info->name) {
1719 cpu_register(info);
1720 info++;
1724 type_init(arm_cpu_register_types)