block: Make bdrv_is_allocated() byte-based
[qemu/ar7.git] / block / io.c
blob6656d7fe3e7baba24c23219edfdd1dd26b66f1fe
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
38 int64_t offset, int bytes, BdrvRequestFlags flags);
40 void bdrv_parent_drained_begin(BlockDriverState *bs)
42 BdrvChild *c;
44 QLIST_FOREACH(c, &bs->parents, next_parent) {
45 if (c->role->drained_begin) {
46 c->role->drained_begin(c);
51 void bdrv_parent_drained_end(BlockDriverState *bs)
53 BdrvChild *c;
55 QLIST_FOREACH(c, &bs->parents, next_parent) {
56 if (c->role->drained_end) {
57 c->role->drained_end(c);
62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
64 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
65 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
66 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
67 src->opt_mem_alignment);
68 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
69 src->min_mem_alignment);
70 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
75 BlockDriver *drv = bs->drv;
76 Error *local_err = NULL;
78 memset(&bs->bl, 0, sizeof(bs->bl));
80 if (!drv) {
81 return;
84 /* Default alignment based on whether driver has byte interface */
85 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
87 /* Take some limits from the children as a default */
88 if (bs->file) {
89 bdrv_refresh_limits(bs->file->bs, &local_err);
90 if (local_err) {
91 error_propagate(errp, local_err);
92 return;
94 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
95 } else {
96 bs->bl.min_mem_alignment = 512;
97 bs->bl.opt_mem_alignment = getpagesize();
99 /* Safe default since most protocols use readv()/writev()/etc */
100 bs->bl.max_iov = IOV_MAX;
103 if (bs->backing) {
104 bdrv_refresh_limits(bs->backing->bs, &local_err);
105 if (local_err) {
106 error_propagate(errp, local_err);
107 return;
109 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
112 /* Then let the driver override it */
113 if (drv->bdrv_refresh_limits) {
114 drv->bdrv_refresh_limits(bs, errp);
119 * The copy-on-read flag is actually a reference count so multiple users may
120 * use the feature without worrying about clobbering its previous state.
121 * Copy-on-read stays enabled until all users have called to disable it.
123 void bdrv_enable_copy_on_read(BlockDriverState *bs)
125 atomic_inc(&bs->copy_on_read);
128 void bdrv_disable_copy_on_read(BlockDriverState *bs)
130 int old = atomic_fetch_dec(&bs->copy_on_read);
131 assert(old >= 1);
134 /* Check if any requests are in-flight (including throttled requests) */
135 bool bdrv_requests_pending(BlockDriverState *bs)
137 BdrvChild *child;
139 if (atomic_read(&bs->in_flight)) {
140 return true;
143 QLIST_FOREACH(child, &bs->children, next) {
144 if (bdrv_requests_pending(child->bs)) {
145 return true;
149 return false;
152 static bool bdrv_drain_recurse(BlockDriverState *bs)
154 BdrvChild *child, *tmp;
155 bool waited;
157 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
159 if (bs->drv && bs->drv->bdrv_drain) {
160 bs->drv->bdrv_drain(bs);
163 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
164 BlockDriverState *bs = child->bs;
165 bool in_main_loop =
166 qemu_get_current_aio_context() == qemu_get_aio_context();
167 assert(bs->refcnt > 0);
168 if (in_main_loop) {
169 /* In case the recursive bdrv_drain_recurse processes a
170 * block_job_defer_to_main_loop BH and modifies the graph,
171 * let's hold a reference to bs until we are done.
173 * IOThread doesn't have such a BH, and it is not safe to call
174 * bdrv_unref without BQL, so skip doing it there.
176 bdrv_ref(bs);
178 waited |= bdrv_drain_recurse(bs);
179 if (in_main_loop) {
180 bdrv_unref(bs);
184 return waited;
187 typedef struct {
188 Coroutine *co;
189 BlockDriverState *bs;
190 bool done;
191 } BdrvCoDrainData;
193 static void bdrv_co_drain_bh_cb(void *opaque)
195 BdrvCoDrainData *data = opaque;
196 Coroutine *co = data->co;
197 BlockDriverState *bs = data->bs;
199 bdrv_dec_in_flight(bs);
200 bdrv_drained_begin(bs);
201 data->done = true;
202 aio_co_wake(co);
205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
207 BdrvCoDrainData data;
209 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
210 * other coroutines run if they were queued from
211 * qemu_co_queue_run_restart(). */
213 assert(qemu_in_coroutine());
214 data = (BdrvCoDrainData) {
215 .co = qemu_coroutine_self(),
216 .bs = bs,
217 .done = false,
219 bdrv_inc_in_flight(bs);
220 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
221 bdrv_co_drain_bh_cb, &data);
223 qemu_coroutine_yield();
224 /* If we are resumed from some other event (such as an aio completion or a
225 * timer callback), it is a bug in the caller that should be fixed. */
226 assert(data.done);
229 void bdrv_drained_begin(BlockDriverState *bs)
231 if (qemu_in_coroutine()) {
232 bdrv_co_yield_to_drain(bs);
233 return;
236 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
237 aio_disable_external(bdrv_get_aio_context(bs));
238 bdrv_parent_drained_begin(bs);
241 bdrv_drain_recurse(bs);
244 void bdrv_drained_end(BlockDriverState *bs)
246 assert(bs->quiesce_counter > 0);
247 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
248 return;
251 bdrv_parent_drained_end(bs);
252 aio_enable_external(bdrv_get_aio_context(bs));
256 * Wait for pending requests to complete on a single BlockDriverState subtree,
257 * and suspend block driver's internal I/O until next request arrives.
259 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
260 * AioContext.
262 * Only this BlockDriverState's AioContext is run, so in-flight requests must
263 * not depend on events in other AioContexts. In that case, use
264 * bdrv_drain_all() instead.
266 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
268 assert(qemu_in_coroutine());
269 bdrv_drained_begin(bs);
270 bdrv_drained_end(bs);
273 void bdrv_drain(BlockDriverState *bs)
275 bdrv_drained_begin(bs);
276 bdrv_drained_end(bs);
280 * Wait for pending requests to complete across all BlockDriverStates
282 * This function does not flush data to disk, use bdrv_flush_all() for that
283 * after calling this function.
285 * This pauses all block jobs and disables external clients. It must
286 * be paired with bdrv_drain_all_end().
288 * NOTE: no new block jobs or BlockDriverStates can be created between
289 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
291 void bdrv_drain_all_begin(void)
293 /* Always run first iteration so any pending completion BHs run */
294 bool waited = true;
295 BlockDriverState *bs;
296 BdrvNextIterator it;
297 GSList *aio_ctxs = NULL, *ctx;
299 block_job_pause_all();
301 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
302 AioContext *aio_context = bdrv_get_aio_context(bs);
304 aio_context_acquire(aio_context);
305 bdrv_parent_drained_begin(bs);
306 aio_disable_external(aio_context);
307 aio_context_release(aio_context);
309 if (!g_slist_find(aio_ctxs, aio_context)) {
310 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
314 /* Note that completion of an asynchronous I/O operation can trigger any
315 * number of other I/O operations on other devices---for example a
316 * coroutine can submit an I/O request to another device in response to
317 * request completion. Therefore we must keep looping until there was no
318 * more activity rather than simply draining each device independently.
320 while (waited) {
321 waited = false;
323 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
324 AioContext *aio_context = ctx->data;
326 aio_context_acquire(aio_context);
327 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
328 if (aio_context == bdrv_get_aio_context(bs)) {
329 waited |= bdrv_drain_recurse(bs);
332 aio_context_release(aio_context);
336 g_slist_free(aio_ctxs);
339 void bdrv_drain_all_end(void)
341 BlockDriverState *bs;
342 BdrvNextIterator it;
344 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
345 AioContext *aio_context = bdrv_get_aio_context(bs);
347 aio_context_acquire(aio_context);
348 aio_enable_external(aio_context);
349 bdrv_parent_drained_end(bs);
350 aio_context_release(aio_context);
353 block_job_resume_all();
356 void bdrv_drain_all(void)
358 bdrv_drain_all_begin();
359 bdrv_drain_all_end();
363 * Remove an active request from the tracked requests list
365 * This function should be called when a tracked request is completing.
367 static void tracked_request_end(BdrvTrackedRequest *req)
369 if (req->serialising) {
370 atomic_dec(&req->bs->serialising_in_flight);
373 qemu_co_mutex_lock(&req->bs->reqs_lock);
374 QLIST_REMOVE(req, list);
375 qemu_co_queue_restart_all(&req->wait_queue);
376 qemu_co_mutex_unlock(&req->bs->reqs_lock);
380 * Add an active request to the tracked requests list
382 static void tracked_request_begin(BdrvTrackedRequest *req,
383 BlockDriverState *bs,
384 int64_t offset,
385 unsigned int bytes,
386 enum BdrvTrackedRequestType type)
388 *req = (BdrvTrackedRequest){
389 .bs = bs,
390 .offset = offset,
391 .bytes = bytes,
392 .type = type,
393 .co = qemu_coroutine_self(),
394 .serialising = false,
395 .overlap_offset = offset,
396 .overlap_bytes = bytes,
399 qemu_co_queue_init(&req->wait_queue);
401 qemu_co_mutex_lock(&bs->reqs_lock);
402 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
403 qemu_co_mutex_unlock(&bs->reqs_lock);
406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
408 int64_t overlap_offset = req->offset & ~(align - 1);
409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
410 - overlap_offset;
412 if (!req->serialising) {
413 atomic_inc(&req->bs->serialising_in_flight);
414 req->serialising = true;
417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
422 * Round a region to cluster boundaries
424 void bdrv_round_to_clusters(BlockDriverState *bs,
425 int64_t offset, unsigned int bytes,
426 int64_t *cluster_offset,
427 unsigned int *cluster_bytes)
429 BlockDriverInfo bdi;
431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
432 *cluster_offset = offset;
433 *cluster_bytes = bytes;
434 } else {
435 int64_t c = bdi.cluster_size;
436 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
437 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
441 static int bdrv_get_cluster_size(BlockDriverState *bs)
443 BlockDriverInfo bdi;
444 int ret;
446 ret = bdrv_get_info(bs, &bdi);
447 if (ret < 0 || bdi.cluster_size == 0) {
448 return bs->bl.request_alignment;
449 } else {
450 return bdi.cluster_size;
454 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
455 int64_t offset, unsigned int bytes)
457 /* aaaa bbbb */
458 if (offset >= req->overlap_offset + req->overlap_bytes) {
459 return false;
461 /* bbbb aaaa */
462 if (req->overlap_offset >= offset + bytes) {
463 return false;
465 return true;
468 void bdrv_inc_in_flight(BlockDriverState *bs)
470 atomic_inc(&bs->in_flight);
473 static void dummy_bh_cb(void *opaque)
477 void bdrv_wakeup(BlockDriverState *bs)
479 /* The barrier (or an atomic op) is in the caller. */
480 if (atomic_read(&bs->wakeup)) {
481 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
485 void bdrv_dec_in_flight(BlockDriverState *bs)
487 atomic_dec(&bs->in_flight);
488 bdrv_wakeup(bs);
491 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
493 BlockDriverState *bs = self->bs;
494 BdrvTrackedRequest *req;
495 bool retry;
496 bool waited = false;
498 if (!atomic_read(&bs->serialising_in_flight)) {
499 return false;
502 do {
503 retry = false;
504 qemu_co_mutex_lock(&bs->reqs_lock);
505 QLIST_FOREACH(req, &bs->tracked_requests, list) {
506 if (req == self || (!req->serialising && !self->serialising)) {
507 continue;
509 if (tracked_request_overlaps(req, self->overlap_offset,
510 self->overlap_bytes))
512 /* Hitting this means there was a reentrant request, for
513 * example, a block driver issuing nested requests. This must
514 * never happen since it means deadlock.
516 assert(qemu_coroutine_self() != req->co);
518 /* If the request is already (indirectly) waiting for us, or
519 * will wait for us as soon as it wakes up, then just go on
520 * (instead of producing a deadlock in the former case). */
521 if (!req->waiting_for) {
522 self->waiting_for = req;
523 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
524 self->waiting_for = NULL;
525 retry = true;
526 waited = true;
527 break;
531 qemu_co_mutex_unlock(&bs->reqs_lock);
532 } while (retry);
534 return waited;
537 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
538 size_t size)
540 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
541 return -EIO;
544 if (!bdrv_is_inserted(bs)) {
545 return -ENOMEDIUM;
548 if (offset < 0) {
549 return -EIO;
552 return 0;
555 typedef struct RwCo {
556 BdrvChild *child;
557 int64_t offset;
558 QEMUIOVector *qiov;
559 bool is_write;
560 int ret;
561 BdrvRequestFlags flags;
562 } RwCo;
564 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
566 RwCo *rwco = opaque;
568 if (!rwco->is_write) {
569 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
570 rwco->qiov->size, rwco->qiov,
571 rwco->flags);
572 } else {
573 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
574 rwco->qiov->size, rwco->qiov,
575 rwco->flags);
580 * Process a vectored synchronous request using coroutines
582 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
583 QEMUIOVector *qiov, bool is_write,
584 BdrvRequestFlags flags)
586 Coroutine *co;
587 RwCo rwco = {
588 .child = child,
589 .offset = offset,
590 .qiov = qiov,
591 .is_write = is_write,
592 .ret = NOT_DONE,
593 .flags = flags,
596 if (qemu_in_coroutine()) {
597 /* Fast-path if already in coroutine context */
598 bdrv_rw_co_entry(&rwco);
599 } else {
600 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
601 bdrv_coroutine_enter(child->bs, co);
602 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
604 return rwco.ret;
608 * Process a synchronous request using coroutines
610 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
611 int nb_sectors, bool is_write, BdrvRequestFlags flags)
613 QEMUIOVector qiov;
614 struct iovec iov = {
615 .iov_base = (void *)buf,
616 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
619 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
620 return -EINVAL;
623 qemu_iovec_init_external(&qiov, &iov, 1);
624 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
625 &qiov, is_write, flags);
628 /* return < 0 if error. See bdrv_write() for the return codes */
629 int bdrv_read(BdrvChild *child, int64_t sector_num,
630 uint8_t *buf, int nb_sectors)
632 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
635 /* Return < 0 if error. Important errors are:
636 -EIO generic I/O error (may happen for all errors)
637 -ENOMEDIUM No media inserted.
638 -EINVAL Invalid sector number or nb_sectors
639 -EACCES Trying to write a read-only device
641 int bdrv_write(BdrvChild *child, int64_t sector_num,
642 const uint8_t *buf, int nb_sectors)
644 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
647 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
648 int bytes, BdrvRequestFlags flags)
650 QEMUIOVector qiov;
651 struct iovec iov = {
652 .iov_base = NULL,
653 .iov_len = bytes,
656 qemu_iovec_init_external(&qiov, &iov, 1);
657 return bdrv_prwv_co(child, offset, &qiov, true,
658 BDRV_REQ_ZERO_WRITE | flags);
662 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
663 * The operation is sped up by checking the block status and only writing
664 * zeroes to the device if they currently do not return zeroes. Optional
665 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
666 * BDRV_REQ_FUA).
668 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
670 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
672 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
673 BlockDriverState *bs = child->bs;
674 BlockDriverState *file;
675 int n;
677 target_sectors = bdrv_nb_sectors(bs);
678 if (target_sectors < 0) {
679 return target_sectors;
682 for (;;) {
683 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
684 if (nb_sectors <= 0) {
685 return 0;
687 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
688 if (ret < 0) {
689 error_report("error getting block status at sector %" PRId64 ": %s",
690 sector_num, strerror(-ret));
691 return ret;
693 if (ret & BDRV_BLOCK_ZERO) {
694 sector_num += n;
695 continue;
697 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
698 n << BDRV_SECTOR_BITS, flags);
699 if (ret < 0) {
700 error_report("error writing zeroes at sector %" PRId64 ": %s",
701 sector_num, strerror(-ret));
702 return ret;
704 sector_num += n;
708 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
710 int ret;
712 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
713 if (ret < 0) {
714 return ret;
717 return qiov->size;
720 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
722 QEMUIOVector qiov;
723 struct iovec iov = {
724 .iov_base = (void *)buf,
725 .iov_len = bytes,
728 if (bytes < 0) {
729 return -EINVAL;
732 qemu_iovec_init_external(&qiov, &iov, 1);
733 return bdrv_preadv(child, offset, &qiov);
736 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
738 int ret;
740 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
741 if (ret < 0) {
742 return ret;
745 return qiov->size;
748 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
750 QEMUIOVector qiov;
751 struct iovec iov = {
752 .iov_base = (void *) buf,
753 .iov_len = bytes,
756 if (bytes < 0) {
757 return -EINVAL;
760 qemu_iovec_init_external(&qiov, &iov, 1);
761 return bdrv_pwritev(child, offset, &qiov);
765 * Writes to the file and ensures that no writes are reordered across this
766 * request (acts as a barrier)
768 * Returns 0 on success, -errno in error cases.
770 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
771 const void *buf, int count)
773 int ret;
775 ret = bdrv_pwrite(child, offset, buf, count);
776 if (ret < 0) {
777 return ret;
780 ret = bdrv_flush(child->bs);
781 if (ret < 0) {
782 return ret;
785 return 0;
788 typedef struct CoroutineIOCompletion {
789 Coroutine *coroutine;
790 int ret;
791 } CoroutineIOCompletion;
793 static void bdrv_co_io_em_complete(void *opaque, int ret)
795 CoroutineIOCompletion *co = opaque;
797 co->ret = ret;
798 aio_co_wake(co->coroutine);
801 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
802 uint64_t offset, uint64_t bytes,
803 QEMUIOVector *qiov, int flags)
805 BlockDriver *drv = bs->drv;
806 int64_t sector_num;
807 unsigned int nb_sectors;
809 assert(!(flags & ~BDRV_REQ_MASK));
811 if (drv->bdrv_co_preadv) {
812 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
815 sector_num = offset >> BDRV_SECTOR_BITS;
816 nb_sectors = bytes >> BDRV_SECTOR_BITS;
818 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
819 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
820 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
822 if (drv->bdrv_co_readv) {
823 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
824 } else {
825 BlockAIOCB *acb;
826 CoroutineIOCompletion co = {
827 .coroutine = qemu_coroutine_self(),
830 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
831 bdrv_co_io_em_complete, &co);
832 if (acb == NULL) {
833 return -EIO;
834 } else {
835 qemu_coroutine_yield();
836 return co.ret;
841 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
842 uint64_t offset, uint64_t bytes,
843 QEMUIOVector *qiov, int flags)
845 BlockDriver *drv = bs->drv;
846 int64_t sector_num;
847 unsigned int nb_sectors;
848 int ret;
850 assert(!(flags & ~BDRV_REQ_MASK));
852 if (drv->bdrv_co_pwritev) {
853 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
854 flags & bs->supported_write_flags);
855 flags &= ~bs->supported_write_flags;
856 goto emulate_flags;
859 sector_num = offset >> BDRV_SECTOR_BITS;
860 nb_sectors = bytes >> BDRV_SECTOR_BITS;
862 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
863 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
864 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
866 if (drv->bdrv_co_writev_flags) {
867 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
868 flags & bs->supported_write_flags);
869 flags &= ~bs->supported_write_flags;
870 } else if (drv->bdrv_co_writev) {
871 assert(!bs->supported_write_flags);
872 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
873 } else {
874 BlockAIOCB *acb;
875 CoroutineIOCompletion co = {
876 .coroutine = qemu_coroutine_self(),
879 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
880 bdrv_co_io_em_complete, &co);
881 if (acb == NULL) {
882 ret = -EIO;
883 } else {
884 qemu_coroutine_yield();
885 ret = co.ret;
889 emulate_flags:
890 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
891 ret = bdrv_co_flush(bs);
894 return ret;
897 static int coroutine_fn
898 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
899 uint64_t bytes, QEMUIOVector *qiov)
901 BlockDriver *drv = bs->drv;
903 if (!drv->bdrv_co_pwritev_compressed) {
904 return -ENOTSUP;
907 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
910 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
911 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
913 BlockDriverState *bs = child->bs;
915 /* Perform I/O through a temporary buffer so that users who scribble over
916 * their read buffer while the operation is in progress do not end up
917 * modifying the image file. This is critical for zero-copy guest I/O
918 * where anything might happen inside guest memory.
920 void *bounce_buffer;
922 BlockDriver *drv = bs->drv;
923 struct iovec iov;
924 QEMUIOVector bounce_qiov;
925 int64_t cluster_offset;
926 unsigned int cluster_bytes;
927 size_t skip_bytes;
928 int ret;
930 /* FIXME We cannot require callers to have write permissions when all they
931 * are doing is a read request. If we did things right, write permissions
932 * would be obtained anyway, but internally by the copy-on-read code. As
933 * long as it is implemented here rather than in a separat filter driver,
934 * the copy-on-read code doesn't have its own BdrvChild, however, for which
935 * it could request permissions. Therefore we have to bypass the permission
936 * system for the moment. */
937 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
939 /* Cover entire cluster so no additional backing file I/O is required when
940 * allocating cluster in the image file.
942 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
944 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
945 cluster_offset, cluster_bytes);
947 iov.iov_len = cluster_bytes;
948 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
949 if (bounce_buffer == NULL) {
950 ret = -ENOMEM;
951 goto err;
954 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
956 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
957 &bounce_qiov, 0);
958 if (ret < 0) {
959 goto err;
962 if (drv->bdrv_co_pwrite_zeroes &&
963 buffer_is_zero(bounce_buffer, iov.iov_len)) {
964 /* FIXME: Should we (perhaps conditionally) be setting
965 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
966 * that still correctly reads as zero? */
967 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
968 } else {
969 /* This does not change the data on the disk, it is not necessary
970 * to flush even in cache=writethrough mode.
972 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
973 &bounce_qiov, 0);
976 if (ret < 0) {
977 /* It might be okay to ignore write errors for guest requests. If this
978 * is a deliberate copy-on-read then we don't want to ignore the error.
979 * Simply report it in all cases.
981 goto err;
984 skip_bytes = offset - cluster_offset;
985 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
987 err:
988 qemu_vfree(bounce_buffer);
989 return ret;
993 * Forwards an already correctly aligned request to the BlockDriver. This
994 * handles copy on read, zeroing after EOF, and fragmentation of large
995 * reads; any other features must be implemented by the caller.
997 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
998 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
999 int64_t align, QEMUIOVector *qiov, int flags)
1001 BlockDriverState *bs = child->bs;
1002 int64_t total_bytes, max_bytes;
1003 int ret = 0;
1004 uint64_t bytes_remaining = bytes;
1005 int max_transfer;
1007 assert(is_power_of_2(align));
1008 assert((offset & (align - 1)) == 0);
1009 assert((bytes & (align - 1)) == 0);
1010 assert(!qiov || bytes == qiov->size);
1011 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1012 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1013 align);
1015 /* TODO: We would need a per-BDS .supported_read_flags and
1016 * potential fallback support, if we ever implement any read flags
1017 * to pass through to drivers. For now, there aren't any
1018 * passthrough flags. */
1019 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1021 /* Handle Copy on Read and associated serialisation */
1022 if (flags & BDRV_REQ_COPY_ON_READ) {
1023 /* If we touch the same cluster it counts as an overlap. This
1024 * guarantees that allocating writes will be serialized and not race
1025 * with each other for the same cluster. For example, in copy-on-read
1026 * it ensures that the CoR read and write operations are atomic and
1027 * guest writes cannot interleave between them. */
1028 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1031 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1032 wait_serialising_requests(req);
1035 if (flags & BDRV_REQ_COPY_ON_READ) {
1036 /* TODO: Simplify further once bdrv_is_allocated no longer
1037 * requires sector alignment */
1038 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
1039 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE);
1040 int64_t pnum;
1042 ret = bdrv_is_allocated(bs, start, end - start, &pnum);
1043 if (ret < 0) {
1044 goto out;
1047 if (!ret || pnum != end - start) {
1048 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1049 goto out;
1053 /* Forward the request to the BlockDriver, possibly fragmenting it */
1054 total_bytes = bdrv_getlength(bs);
1055 if (total_bytes < 0) {
1056 ret = total_bytes;
1057 goto out;
1060 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1061 if (bytes <= max_bytes && bytes <= max_transfer) {
1062 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1063 goto out;
1066 while (bytes_remaining) {
1067 int num;
1069 if (max_bytes) {
1070 QEMUIOVector local_qiov;
1072 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1073 assert(num);
1074 qemu_iovec_init(&local_qiov, qiov->niov);
1075 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1077 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1078 num, &local_qiov, 0);
1079 max_bytes -= num;
1080 qemu_iovec_destroy(&local_qiov);
1081 } else {
1082 num = bytes_remaining;
1083 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1084 bytes_remaining);
1086 if (ret < 0) {
1087 goto out;
1089 bytes_remaining -= num;
1092 out:
1093 return ret < 0 ? ret : 0;
1097 * Handle a read request in coroutine context
1099 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1100 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1101 BdrvRequestFlags flags)
1103 BlockDriverState *bs = child->bs;
1104 BlockDriver *drv = bs->drv;
1105 BdrvTrackedRequest req;
1107 uint64_t align = bs->bl.request_alignment;
1108 uint8_t *head_buf = NULL;
1109 uint8_t *tail_buf = NULL;
1110 QEMUIOVector local_qiov;
1111 bool use_local_qiov = false;
1112 int ret;
1114 if (!drv) {
1115 return -ENOMEDIUM;
1118 ret = bdrv_check_byte_request(bs, offset, bytes);
1119 if (ret < 0) {
1120 return ret;
1123 bdrv_inc_in_flight(bs);
1125 /* Don't do copy-on-read if we read data before write operation */
1126 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1127 flags |= BDRV_REQ_COPY_ON_READ;
1130 /* Align read if necessary by padding qiov */
1131 if (offset & (align - 1)) {
1132 head_buf = qemu_blockalign(bs, align);
1133 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1134 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1135 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1136 use_local_qiov = true;
1138 bytes += offset & (align - 1);
1139 offset = offset & ~(align - 1);
1142 if ((offset + bytes) & (align - 1)) {
1143 if (!use_local_qiov) {
1144 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1145 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1146 use_local_qiov = true;
1148 tail_buf = qemu_blockalign(bs, align);
1149 qemu_iovec_add(&local_qiov, tail_buf,
1150 align - ((offset + bytes) & (align - 1)));
1152 bytes = ROUND_UP(bytes, align);
1155 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1156 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1157 use_local_qiov ? &local_qiov : qiov,
1158 flags);
1159 tracked_request_end(&req);
1160 bdrv_dec_in_flight(bs);
1162 if (use_local_qiov) {
1163 qemu_iovec_destroy(&local_qiov);
1164 qemu_vfree(head_buf);
1165 qemu_vfree(tail_buf);
1168 return ret;
1171 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1172 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1173 BdrvRequestFlags flags)
1175 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1176 return -EINVAL;
1179 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1180 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1183 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1184 int nb_sectors, QEMUIOVector *qiov)
1186 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1188 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1191 /* Maximum buffer for write zeroes fallback, in bytes */
1192 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1194 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1195 int64_t offset, int bytes, BdrvRequestFlags flags)
1197 BlockDriver *drv = bs->drv;
1198 QEMUIOVector qiov;
1199 struct iovec iov = {0};
1200 int ret = 0;
1201 bool need_flush = false;
1202 int head = 0;
1203 int tail = 0;
1205 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1206 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1207 bs->bl.request_alignment);
1208 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1209 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1211 assert(alignment % bs->bl.request_alignment == 0);
1212 head = offset % alignment;
1213 tail = (offset + bytes) % alignment;
1214 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1215 assert(max_write_zeroes >= bs->bl.request_alignment);
1217 while (bytes > 0 && !ret) {
1218 int num = bytes;
1220 /* Align request. Block drivers can expect the "bulk" of the request
1221 * to be aligned, and that unaligned requests do not cross cluster
1222 * boundaries.
1224 if (head) {
1225 /* Make a small request up to the first aligned sector. For
1226 * convenience, limit this request to max_transfer even if
1227 * we don't need to fall back to writes. */
1228 num = MIN(MIN(bytes, max_transfer), alignment - head);
1229 head = (head + num) % alignment;
1230 assert(num < max_write_zeroes);
1231 } else if (tail && num > alignment) {
1232 /* Shorten the request to the last aligned sector. */
1233 num -= tail;
1236 /* limit request size */
1237 if (num > max_write_zeroes) {
1238 num = max_write_zeroes;
1241 ret = -ENOTSUP;
1242 /* First try the efficient write zeroes operation */
1243 if (drv->bdrv_co_pwrite_zeroes) {
1244 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1245 flags & bs->supported_zero_flags);
1246 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1247 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1248 need_flush = true;
1250 } else {
1251 assert(!bs->supported_zero_flags);
1254 if (ret == -ENOTSUP) {
1255 /* Fall back to bounce buffer if write zeroes is unsupported */
1256 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1258 if ((flags & BDRV_REQ_FUA) &&
1259 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1260 /* No need for bdrv_driver_pwrite() to do a fallback
1261 * flush on each chunk; use just one at the end */
1262 write_flags &= ~BDRV_REQ_FUA;
1263 need_flush = true;
1265 num = MIN(num, max_transfer);
1266 iov.iov_len = num;
1267 if (iov.iov_base == NULL) {
1268 iov.iov_base = qemu_try_blockalign(bs, num);
1269 if (iov.iov_base == NULL) {
1270 ret = -ENOMEM;
1271 goto fail;
1273 memset(iov.iov_base, 0, num);
1275 qemu_iovec_init_external(&qiov, &iov, 1);
1277 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1279 /* Keep bounce buffer around if it is big enough for all
1280 * all future requests.
1282 if (num < max_transfer) {
1283 qemu_vfree(iov.iov_base);
1284 iov.iov_base = NULL;
1288 offset += num;
1289 bytes -= num;
1292 fail:
1293 if (ret == 0 && need_flush) {
1294 ret = bdrv_co_flush(bs);
1296 qemu_vfree(iov.iov_base);
1297 return ret;
1301 * Forwards an already correctly aligned write request to the BlockDriver,
1302 * after possibly fragmenting it.
1304 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1305 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1306 int64_t align, QEMUIOVector *qiov, int flags)
1308 BlockDriverState *bs = child->bs;
1309 BlockDriver *drv = bs->drv;
1310 bool waited;
1311 int ret;
1313 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1314 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1315 uint64_t bytes_remaining = bytes;
1316 int max_transfer;
1318 assert(is_power_of_2(align));
1319 assert((offset & (align - 1)) == 0);
1320 assert((bytes & (align - 1)) == 0);
1321 assert(!qiov || bytes == qiov->size);
1322 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1323 assert(!(flags & ~BDRV_REQ_MASK));
1324 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1325 align);
1327 waited = wait_serialising_requests(req);
1328 assert(!waited || !req->serialising);
1329 assert(req->overlap_offset <= offset);
1330 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1331 assert(child->perm & BLK_PERM_WRITE);
1332 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1334 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1336 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1337 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1338 qemu_iovec_is_zero(qiov)) {
1339 flags |= BDRV_REQ_ZERO_WRITE;
1340 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1341 flags |= BDRV_REQ_MAY_UNMAP;
1345 if (ret < 0) {
1346 /* Do nothing, write notifier decided to fail this request */
1347 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1348 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1349 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1350 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1351 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1352 } else if (bytes <= max_transfer) {
1353 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1354 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1355 } else {
1356 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1357 while (bytes_remaining) {
1358 int num = MIN(bytes_remaining, max_transfer);
1359 QEMUIOVector local_qiov;
1360 int local_flags = flags;
1362 assert(num);
1363 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1364 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1365 /* If FUA is going to be emulated by flush, we only
1366 * need to flush on the last iteration */
1367 local_flags &= ~BDRV_REQ_FUA;
1369 qemu_iovec_init(&local_qiov, qiov->niov);
1370 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1372 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1373 num, &local_qiov, local_flags);
1374 qemu_iovec_destroy(&local_qiov);
1375 if (ret < 0) {
1376 break;
1378 bytes_remaining -= num;
1381 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1383 atomic_inc(&bs->write_gen);
1384 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1386 stat64_max(&bs->wr_highest_offset, offset + bytes);
1388 if (ret >= 0) {
1389 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1390 ret = 0;
1393 return ret;
1396 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1397 int64_t offset,
1398 unsigned int bytes,
1399 BdrvRequestFlags flags,
1400 BdrvTrackedRequest *req)
1402 BlockDriverState *bs = child->bs;
1403 uint8_t *buf = NULL;
1404 QEMUIOVector local_qiov;
1405 struct iovec iov;
1406 uint64_t align = bs->bl.request_alignment;
1407 unsigned int head_padding_bytes, tail_padding_bytes;
1408 int ret = 0;
1410 head_padding_bytes = offset & (align - 1);
1411 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1414 assert(flags & BDRV_REQ_ZERO_WRITE);
1415 if (head_padding_bytes || tail_padding_bytes) {
1416 buf = qemu_blockalign(bs, align);
1417 iov = (struct iovec) {
1418 .iov_base = buf,
1419 .iov_len = align,
1421 qemu_iovec_init_external(&local_qiov, &iov, 1);
1423 if (head_padding_bytes) {
1424 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1426 /* RMW the unaligned part before head. */
1427 mark_request_serialising(req, align);
1428 wait_serialising_requests(req);
1429 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1430 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1431 align, &local_qiov, 0);
1432 if (ret < 0) {
1433 goto fail;
1435 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1437 memset(buf + head_padding_bytes, 0, zero_bytes);
1438 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1439 align, &local_qiov,
1440 flags & ~BDRV_REQ_ZERO_WRITE);
1441 if (ret < 0) {
1442 goto fail;
1444 offset += zero_bytes;
1445 bytes -= zero_bytes;
1448 assert(!bytes || (offset & (align - 1)) == 0);
1449 if (bytes >= align) {
1450 /* Write the aligned part in the middle. */
1451 uint64_t aligned_bytes = bytes & ~(align - 1);
1452 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1453 NULL, flags);
1454 if (ret < 0) {
1455 goto fail;
1457 bytes -= aligned_bytes;
1458 offset += aligned_bytes;
1461 assert(!bytes || (offset & (align - 1)) == 0);
1462 if (bytes) {
1463 assert(align == tail_padding_bytes + bytes);
1464 /* RMW the unaligned part after tail. */
1465 mark_request_serialising(req, align);
1466 wait_serialising_requests(req);
1467 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1468 ret = bdrv_aligned_preadv(child, req, offset, align,
1469 align, &local_qiov, 0);
1470 if (ret < 0) {
1471 goto fail;
1473 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1475 memset(buf, 0, bytes);
1476 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1477 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1479 fail:
1480 qemu_vfree(buf);
1481 return ret;
1486 * Handle a write request in coroutine context
1488 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1489 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1490 BdrvRequestFlags flags)
1492 BlockDriverState *bs = child->bs;
1493 BdrvTrackedRequest req;
1494 uint64_t align = bs->bl.request_alignment;
1495 uint8_t *head_buf = NULL;
1496 uint8_t *tail_buf = NULL;
1497 QEMUIOVector local_qiov;
1498 bool use_local_qiov = false;
1499 int ret;
1501 if (!bs->drv) {
1502 return -ENOMEDIUM;
1504 if (bs->read_only) {
1505 return -EPERM;
1507 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1509 ret = bdrv_check_byte_request(bs, offset, bytes);
1510 if (ret < 0) {
1511 return ret;
1514 bdrv_inc_in_flight(bs);
1516 * Align write if necessary by performing a read-modify-write cycle.
1517 * Pad qiov with the read parts and be sure to have a tracked request not
1518 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1520 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1522 if (!qiov) {
1523 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1524 goto out;
1527 if (offset & (align - 1)) {
1528 QEMUIOVector head_qiov;
1529 struct iovec head_iov;
1531 mark_request_serialising(&req, align);
1532 wait_serialising_requests(&req);
1534 head_buf = qemu_blockalign(bs, align);
1535 head_iov = (struct iovec) {
1536 .iov_base = head_buf,
1537 .iov_len = align,
1539 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1541 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1542 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1543 align, &head_qiov, 0);
1544 if (ret < 0) {
1545 goto fail;
1547 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1549 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1550 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1551 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1552 use_local_qiov = true;
1554 bytes += offset & (align - 1);
1555 offset = offset & ~(align - 1);
1557 /* We have read the tail already if the request is smaller
1558 * than one aligned block.
1560 if (bytes < align) {
1561 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1562 bytes = align;
1566 if ((offset + bytes) & (align - 1)) {
1567 QEMUIOVector tail_qiov;
1568 struct iovec tail_iov;
1569 size_t tail_bytes;
1570 bool waited;
1572 mark_request_serialising(&req, align);
1573 waited = wait_serialising_requests(&req);
1574 assert(!waited || !use_local_qiov);
1576 tail_buf = qemu_blockalign(bs, align);
1577 tail_iov = (struct iovec) {
1578 .iov_base = tail_buf,
1579 .iov_len = align,
1581 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1583 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1584 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1585 align, align, &tail_qiov, 0);
1586 if (ret < 0) {
1587 goto fail;
1589 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1591 if (!use_local_qiov) {
1592 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1593 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1594 use_local_qiov = true;
1597 tail_bytes = (offset + bytes) & (align - 1);
1598 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1600 bytes = ROUND_UP(bytes, align);
1603 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1604 use_local_qiov ? &local_qiov : qiov,
1605 flags);
1607 fail:
1609 if (use_local_qiov) {
1610 qemu_iovec_destroy(&local_qiov);
1612 qemu_vfree(head_buf);
1613 qemu_vfree(tail_buf);
1614 out:
1615 tracked_request_end(&req);
1616 bdrv_dec_in_flight(bs);
1617 return ret;
1620 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1621 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1622 BdrvRequestFlags flags)
1624 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1625 return -EINVAL;
1628 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1629 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1632 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1633 int nb_sectors, QEMUIOVector *qiov)
1635 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1637 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1640 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1641 int bytes, BdrvRequestFlags flags)
1643 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1645 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1646 flags &= ~BDRV_REQ_MAY_UNMAP;
1649 return bdrv_co_pwritev(child, offset, bytes, NULL,
1650 BDRV_REQ_ZERO_WRITE | flags);
1654 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1656 int bdrv_flush_all(void)
1658 BdrvNextIterator it;
1659 BlockDriverState *bs = NULL;
1660 int result = 0;
1662 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1663 AioContext *aio_context = bdrv_get_aio_context(bs);
1664 int ret;
1666 aio_context_acquire(aio_context);
1667 ret = bdrv_flush(bs);
1668 if (ret < 0 && !result) {
1669 result = ret;
1671 aio_context_release(aio_context);
1674 return result;
1678 typedef struct BdrvCoGetBlockStatusData {
1679 BlockDriverState *bs;
1680 BlockDriverState *base;
1681 BlockDriverState **file;
1682 int64_t sector_num;
1683 int nb_sectors;
1684 int *pnum;
1685 int64_t ret;
1686 bool done;
1687 } BdrvCoGetBlockStatusData;
1690 * Returns the allocation status of the specified sectors.
1691 * Drivers not implementing the functionality are assumed to not support
1692 * backing files, hence all their sectors are reported as allocated.
1694 * If 'sector_num' is beyond the end of the disk image the return value is
1695 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1697 * 'pnum' is set to the number of sectors (including and immediately following
1698 * the specified sector) that are known to be in the same
1699 * allocated/unallocated state.
1701 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1702 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1703 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1705 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1706 * points to the BDS which the sector range is allocated in.
1708 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1709 int64_t sector_num,
1710 int nb_sectors, int *pnum,
1711 BlockDriverState **file)
1713 int64_t total_sectors;
1714 int64_t n;
1715 int64_t ret, ret2;
1717 *file = NULL;
1718 total_sectors = bdrv_nb_sectors(bs);
1719 if (total_sectors < 0) {
1720 return total_sectors;
1723 if (sector_num >= total_sectors) {
1724 *pnum = 0;
1725 return BDRV_BLOCK_EOF;
1728 n = total_sectors - sector_num;
1729 if (n < nb_sectors) {
1730 nb_sectors = n;
1733 if (!bs->drv->bdrv_co_get_block_status) {
1734 *pnum = nb_sectors;
1735 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1736 if (sector_num + nb_sectors == total_sectors) {
1737 ret |= BDRV_BLOCK_EOF;
1739 if (bs->drv->protocol_name) {
1740 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1741 *file = bs;
1743 return ret;
1746 bdrv_inc_in_flight(bs);
1747 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1748 file);
1749 if (ret < 0) {
1750 *pnum = 0;
1751 goto out;
1754 if (ret & BDRV_BLOCK_RAW) {
1755 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file);
1756 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1757 *pnum, pnum, file);
1758 goto out;
1761 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1762 ret |= BDRV_BLOCK_ALLOCATED;
1763 } else {
1764 if (bdrv_unallocated_blocks_are_zero(bs)) {
1765 ret |= BDRV_BLOCK_ZERO;
1766 } else if (bs->backing) {
1767 BlockDriverState *bs2 = bs->backing->bs;
1768 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1769 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1770 ret |= BDRV_BLOCK_ZERO;
1775 if (*file && *file != bs &&
1776 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1777 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1778 BlockDriverState *file2;
1779 int file_pnum;
1781 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1782 *pnum, &file_pnum, &file2);
1783 if (ret2 >= 0) {
1784 /* Ignore errors. This is just providing extra information, it
1785 * is useful but not necessary.
1787 if (ret2 & BDRV_BLOCK_EOF &&
1788 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1790 * It is valid for the format block driver to read
1791 * beyond the end of the underlying file's current
1792 * size; such areas read as zero.
1794 ret |= BDRV_BLOCK_ZERO;
1795 } else {
1796 /* Limit request to the range reported by the protocol driver */
1797 *pnum = file_pnum;
1798 ret |= (ret2 & BDRV_BLOCK_ZERO);
1803 out:
1804 bdrv_dec_in_flight(bs);
1805 if (ret >= 0 && sector_num + *pnum == total_sectors) {
1806 ret |= BDRV_BLOCK_EOF;
1808 return ret;
1811 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1812 BlockDriverState *base,
1813 int64_t sector_num,
1814 int nb_sectors,
1815 int *pnum,
1816 BlockDriverState **file)
1818 BlockDriverState *p;
1819 int64_t ret = 0;
1820 bool first = true;
1822 assert(bs != base);
1823 for (p = bs; p != base; p = backing_bs(p)) {
1824 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1825 if (ret < 0) {
1826 break;
1828 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
1830 * Reading beyond the end of the file continues to read
1831 * zeroes, but we can only widen the result to the
1832 * unallocated length we learned from an earlier
1833 * iteration.
1835 *pnum = nb_sectors;
1837 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
1838 break;
1840 /* [sector_num, pnum] unallocated on this layer, which could be only
1841 * the first part of [sector_num, nb_sectors]. */
1842 nb_sectors = MIN(nb_sectors, *pnum);
1843 first = false;
1845 return ret;
1848 /* Coroutine wrapper for bdrv_get_block_status_above() */
1849 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1851 BdrvCoGetBlockStatusData *data = opaque;
1853 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1854 data->sector_num,
1855 data->nb_sectors,
1856 data->pnum,
1857 data->file);
1858 data->done = true;
1862 * Synchronous wrapper around bdrv_co_get_block_status_above().
1864 * See bdrv_co_get_block_status_above() for details.
1866 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1867 BlockDriverState *base,
1868 int64_t sector_num,
1869 int nb_sectors, int *pnum,
1870 BlockDriverState **file)
1872 Coroutine *co;
1873 BdrvCoGetBlockStatusData data = {
1874 .bs = bs,
1875 .base = base,
1876 .file = file,
1877 .sector_num = sector_num,
1878 .nb_sectors = nb_sectors,
1879 .pnum = pnum,
1880 .done = false,
1883 if (qemu_in_coroutine()) {
1884 /* Fast-path if already in coroutine context */
1885 bdrv_get_block_status_above_co_entry(&data);
1886 } else {
1887 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1888 &data);
1889 bdrv_coroutine_enter(bs, co);
1890 BDRV_POLL_WHILE(bs, !data.done);
1892 return data.ret;
1895 int64_t bdrv_get_block_status(BlockDriverState *bs,
1896 int64_t sector_num,
1897 int nb_sectors, int *pnum,
1898 BlockDriverState **file)
1900 return bdrv_get_block_status_above(bs, backing_bs(bs),
1901 sector_num, nb_sectors, pnum, file);
1904 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
1905 int64_t bytes, int64_t *pnum)
1907 BlockDriverState *file;
1908 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1909 int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1910 int64_t ret;
1911 int psectors;
1913 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1914 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX);
1915 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors,
1916 &file);
1917 if (ret < 0) {
1918 return ret;
1920 if (pnum) {
1921 *pnum = psectors * BDRV_SECTOR_SIZE;
1923 return !!(ret & BDRV_BLOCK_ALLOCATED);
1927 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1929 * Return true if the given sector is allocated in any image between
1930 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1931 * sector is allocated in any image of the chain. Return false otherwise,
1932 * or negative errno on failure.
1934 * 'pnum' is set to the number of sectors (including and immediately following
1935 * the specified sector) that are known to be in the same
1936 * allocated/unallocated state.
1939 int bdrv_is_allocated_above(BlockDriverState *top,
1940 BlockDriverState *base,
1941 int64_t sector_num,
1942 int nb_sectors, int *pnum)
1944 BlockDriverState *intermediate;
1945 int ret, n = nb_sectors;
1947 intermediate = top;
1948 while (intermediate && intermediate != base) {
1949 int64_t pnum_inter;
1950 int psectors_inter;
1952 ret = bdrv_is_allocated(intermediate, sector_num * BDRV_SECTOR_SIZE,
1953 nb_sectors * BDRV_SECTOR_SIZE,
1954 &pnum_inter);
1955 if (ret < 0) {
1956 return ret;
1958 assert(pnum_inter < INT_MAX * BDRV_SECTOR_SIZE);
1959 psectors_inter = pnum_inter >> BDRV_SECTOR_BITS;
1960 if (ret) {
1961 *pnum = psectors_inter;
1962 return 1;
1966 * [sector_num, nb_sectors] is unallocated on top but intermediate
1967 * might have
1969 * [sector_num+x, nr_sectors] allocated.
1971 if (n > psectors_inter &&
1972 (intermediate == top ||
1973 sector_num + psectors_inter < intermediate->total_sectors)) {
1974 n = psectors_inter;
1977 intermediate = backing_bs(intermediate);
1980 *pnum = n;
1981 return 0;
1984 typedef struct BdrvVmstateCo {
1985 BlockDriverState *bs;
1986 QEMUIOVector *qiov;
1987 int64_t pos;
1988 bool is_read;
1989 int ret;
1990 } BdrvVmstateCo;
1992 static int coroutine_fn
1993 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1994 bool is_read)
1996 BlockDriver *drv = bs->drv;
1997 int ret = -ENOTSUP;
1999 bdrv_inc_in_flight(bs);
2001 if (!drv) {
2002 ret = -ENOMEDIUM;
2003 } else if (drv->bdrv_load_vmstate) {
2004 if (is_read) {
2005 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2006 } else {
2007 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2009 } else if (bs->file) {
2010 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2013 bdrv_dec_in_flight(bs);
2014 return ret;
2017 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2019 BdrvVmstateCo *co = opaque;
2020 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2023 static inline int
2024 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2025 bool is_read)
2027 if (qemu_in_coroutine()) {
2028 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2029 } else {
2030 BdrvVmstateCo data = {
2031 .bs = bs,
2032 .qiov = qiov,
2033 .pos = pos,
2034 .is_read = is_read,
2035 .ret = -EINPROGRESS,
2037 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2039 bdrv_coroutine_enter(bs, co);
2040 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2041 return data.ret;
2045 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2046 int64_t pos, int size)
2048 QEMUIOVector qiov;
2049 struct iovec iov = {
2050 .iov_base = (void *) buf,
2051 .iov_len = size,
2053 int ret;
2055 qemu_iovec_init_external(&qiov, &iov, 1);
2057 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2058 if (ret < 0) {
2059 return ret;
2062 return size;
2065 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2067 return bdrv_rw_vmstate(bs, qiov, pos, false);
2070 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2071 int64_t pos, int size)
2073 QEMUIOVector qiov;
2074 struct iovec iov = {
2075 .iov_base = buf,
2076 .iov_len = size,
2078 int ret;
2080 qemu_iovec_init_external(&qiov, &iov, 1);
2081 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2082 if (ret < 0) {
2083 return ret;
2086 return size;
2089 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2091 return bdrv_rw_vmstate(bs, qiov, pos, true);
2094 /**************************************************************/
2095 /* async I/Os */
2097 void bdrv_aio_cancel(BlockAIOCB *acb)
2099 qemu_aio_ref(acb);
2100 bdrv_aio_cancel_async(acb);
2101 while (acb->refcnt > 1) {
2102 if (acb->aiocb_info->get_aio_context) {
2103 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2104 } else if (acb->bs) {
2105 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2106 * assert that we're not using an I/O thread. Thread-safe
2107 * code should use bdrv_aio_cancel_async exclusively.
2109 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2110 aio_poll(bdrv_get_aio_context(acb->bs), true);
2111 } else {
2112 abort();
2115 qemu_aio_unref(acb);
2118 /* Async version of aio cancel. The caller is not blocked if the acb implements
2119 * cancel_async, otherwise we do nothing and let the request normally complete.
2120 * In either case the completion callback must be called. */
2121 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2123 if (acb->aiocb_info->cancel_async) {
2124 acb->aiocb_info->cancel_async(acb);
2128 /**************************************************************/
2129 /* Coroutine block device emulation */
2131 typedef struct FlushCo {
2132 BlockDriverState *bs;
2133 int ret;
2134 } FlushCo;
2137 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2139 FlushCo *rwco = opaque;
2141 rwco->ret = bdrv_co_flush(rwco->bs);
2144 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2146 int current_gen;
2147 int ret = 0;
2149 bdrv_inc_in_flight(bs);
2151 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2152 bdrv_is_sg(bs)) {
2153 goto early_exit;
2156 qemu_co_mutex_lock(&bs->reqs_lock);
2157 current_gen = atomic_read(&bs->write_gen);
2159 /* Wait until any previous flushes are completed */
2160 while (bs->active_flush_req) {
2161 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2164 /* Flushes reach this point in nondecreasing current_gen order. */
2165 bs->active_flush_req = true;
2166 qemu_co_mutex_unlock(&bs->reqs_lock);
2168 /* Write back all layers by calling one driver function */
2169 if (bs->drv->bdrv_co_flush) {
2170 ret = bs->drv->bdrv_co_flush(bs);
2171 goto out;
2174 /* Write back cached data to the OS even with cache=unsafe */
2175 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2176 if (bs->drv->bdrv_co_flush_to_os) {
2177 ret = bs->drv->bdrv_co_flush_to_os(bs);
2178 if (ret < 0) {
2179 goto out;
2183 /* But don't actually force it to the disk with cache=unsafe */
2184 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2185 goto flush_parent;
2188 /* Check if we really need to flush anything */
2189 if (bs->flushed_gen == current_gen) {
2190 goto flush_parent;
2193 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2194 if (bs->drv->bdrv_co_flush_to_disk) {
2195 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2196 } else if (bs->drv->bdrv_aio_flush) {
2197 BlockAIOCB *acb;
2198 CoroutineIOCompletion co = {
2199 .coroutine = qemu_coroutine_self(),
2202 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2203 if (acb == NULL) {
2204 ret = -EIO;
2205 } else {
2206 qemu_coroutine_yield();
2207 ret = co.ret;
2209 } else {
2211 * Some block drivers always operate in either writethrough or unsafe
2212 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2213 * know how the server works (because the behaviour is hardcoded or
2214 * depends on server-side configuration), so we can't ensure that
2215 * everything is safe on disk. Returning an error doesn't work because
2216 * that would break guests even if the server operates in writethrough
2217 * mode.
2219 * Let's hope the user knows what he's doing.
2221 ret = 0;
2224 if (ret < 0) {
2225 goto out;
2228 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2229 * in the case of cache=unsafe, so there are no useless flushes.
2231 flush_parent:
2232 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2233 out:
2234 /* Notify any pending flushes that we have completed */
2235 if (ret == 0) {
2236 bs->flushed_gen = current_gen;
2239 qemu_co_mutex_lock(&bs->reqs_lock);
2240 bs->active_flush_req = false;
2241 /* Return value is ignored - it's ok if wait queue is empty */
2242 qemu_co_queue_next(&bs->flush_queue);
2243 qemu_co_mutex_unlock(&bs->reqs_lock);
2245 early_exit:
2246 bdrv_dec_in_flight(bs);
2247 return ret;
2250 int bdrv_flush(BlockDriverState *bs)
2252 Coroutine *co;
2253 FlushCo flush_co = {
2254 .bs = bs,
2255 .ret = NOT_DONE,
2258 if (qemu_in_coroutine()) {
2259 /* Fast-path if already in coroutine context */
2260 bdrv_flush_co_entry(&flush_co);
2261 } else {
2262 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2263 bdrv_coroutine_enter(bs, co);
2264 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2267 return flush_co.ret;
2270 typedef struct DiscardCo {
2271 BlockDriverState *bs;
2272 int64_t offset;
2273 int bytes;
2274 int ret;
2275 } DiscardCo;
2276 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2278 DiscardCo *rwco = opaque;
2280 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2283 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2284 int bytes)
2286 BdrvTrackedRequest req;
2287 int max_pdiscard, ret;
2288 int head, tail, align;
2290 if (!bs->drv) {
2291 return -ENOMEDIUM;
2294 ret = bdrv_check_byte_request(bs, offset, bytes);
2295 if (ret < 0) {
2296 return ret;
2297 } else if (bs->read_only) {
2298 return -EPERM;
2300 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2302 /* Do nothing if disabled. */
2303 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2304 return 0;
2307 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2308 return 0;
2311 /* Discard is advisory, but some devices track and coalesce
2312 * unaligned requests, so we must pass everything down rather than
2313 * round here. Still, most devices will just silently ignore
2314 * unaligned requests (by returning -ENOTSUP), so we must fragment
2315 * the request accordingly. */
2316 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2317 assert(align % bs->bl.request_alignment == 0);
2318 head = offset % align;
2319 tail = (offset + bytes) % align;
2321 bdrv_inc_in_flight(bs);
2322 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2324 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2325 if (ret < 0) {
2326 goto out;
2329 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2330 align);
2331 assert(max_pdiscard >= bs->bl.request_alignment);
2333 while (bytes > 0) {
2334 int ret;
2335 int num = bytes;
2337 if (head) {
2338 /* Make small requests to get to alignment boundaries. */
2339 num = MIN(bytes, align - head);
2340 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2341 num %= bs->bl.request_alignment;
2343 head = (head + num) % align;
2344 assert(num < max_pdiscard);
2345 } else if (tail) {
2346 if (num > align) {
2347 /* Shorten the request to the last aligned cluster. */
2348 num -= tail;
2349 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2350 tail > bs->bl.request_alignment) {
2351 tail %= bs->bl.request_alignment;
2352 num -= tail;
2355 /* limit request size */
2356 if (num > max_pdiscard) {
2357 num = max_pdiscard;
2360 if (bs->drv->bdrv_co_pdiscard) {
2361 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2362 } else {
2363 BlockAIOCB *acb;
2364 CoroutineIOCompletion co = {
2365 .coroutine = qemu_coroutine_self(),
2368 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2369 bdrv_co_io_em_complete, &co);
2370 if (acb == NULL) {
2371 ret = -EIO;
2372 goto out;
2373 } else {
2374 qemu_coroutine_yield();
2375 ret = co.ret;
2378 if (ret && ret != -ENOTSUP) {
2379 goto out;
2382 offset += num;
2383 bytes -= num;
2385 ret = 0;
2386 out:
2387 atomic_inc(&bs->write_gen);
2388 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2389 req.bytes >> BDRV_SECTOR_BITS);
2390 tracked_request_end(&req);
2391 bdrv_dec_in_flight(bs);
2392 return ret;
2395 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2397 Coroutine *co;
2398 DiscardCo rwco = {
2399 .bs = bs,
2400 .offset = offset,
2401 .bytes = bytes,
2402 .ret = NOT_DONE,
2405 if (qemu_in_coroutine()) {
2406 /* Fast-path if already in coroutine context */
2407 bdrv_pdiscard_co_entry(&rwco);
2408 } else {
2409 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2410 bdrv_coroutine_enter(bs, co);
2411 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2414 return rwco.ret;
2417 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2419 BlockDriver *drv = bs->drv;
2420 CoroutineIOCompletion co = {
2421 .coroutine = qemu_coroutine_self(),
2423 BlockAIOCB *acb;
2425 bdrv_inc_in_flight(bs);
2426 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2427 co.ret = -ENOTSUP;
2428 goto out;
2431 if (drv->bdrv_co_ioctl) {
2432 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2433 } else {
2434 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2435 if (!acb) {
2436 co.ret = -ENOTSUP;
2437 goto out;
2439 qemu_coroutine_yield();
2441 out:
2442 bdrv_dec_in_flight(bs);
2443 return co.ret;
2446 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2448 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2451 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2453 return memset(qemu_blockalign(bs, size), 0, size);
2456 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2458 size_t align = bdrv_opt_mem_align(bs);
2460 /* Ensure that NULL is never returned on success */
2461 assert(align > 0);
2462 if (size == 0) {
2463 size = align;
2466 return qemu_try_memalign(align, size);
2469 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2471 void *mem = qemu_try_blockalign(bs, size);
2473 if (mem) {
2474 memset(mem, 0, size);
2477 return mem;
2481 * Check if all memory in this vector is sector aligned.
2483 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2485 int i;
2486 size_t alignment = bdrv_min_mem_align(bs);
2488 for (i = 0; i < qiov->niov; i++) {
2489 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2490 return false;
2492 if (qiov->iov[i].iov_len % alignment) {
2493 return false;
2497 return true;
2500 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2501 NotifierWithReturn *notifier)
2503 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2506 void bdrv_io_plug(BlockDriverState *bs)
2508 BdrvChild *child;
2510 QLIST_FOREACH(child, &bs->children, next) {
2511 bdrv_io_plug(child->bs);
2514 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2515 BlockDriver *drv = bs->drv;
2516 if (drv && drv->bdrv_io_plug) {
2517 drv->bdrv_io_plug(bs);
2522 void bdrv_io_unplug(BlockDriverState *bs)
2524 BdrvChild *child;
2526 assert(bs->io_plugged);
2527 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2528 BlockDriver *drv = bs->drv;
2529 if (drv && drv->bdrv_io_unplug) {
2530 drv->bdrv_io_unplug(bs);
2534 QLIST_FOREACH(child, &bs->children, next) {
2535 bdrv_io_unplug(child->bs);