qga: guest exec functionality
[qemu/ar7.git] / cpu-exec.c
blob8fd56a69e0857c6fc06f8975b694dfe94f18e417
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "tcg.h"
24 #include "qemu/atomic.h"
25 #include "sysemu/qtest.h"
26 #include "qemu/timer.h"
27 #include "exec/address-spaces.h"
28 #include "qemu/rcu.h"
29 #include "exec/tb-hash.h"
30 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
31 #include "hw/i386/apic.h"
32 #endif
34 /* -icount align implementation. */
36 typedef struct SyncClocks {
37 int64_t diff_clk;
38 int64_t last_cpu_icount;
39 int64_t realtime_clock;
40 } SyncClocks;
42 #if !defined(CONFIG_USER_ONLY)
43 /* Allow the guest to have a max 3ms advance.
44 * The difference between the 2 clocks could therefore
45 * oscillate around 0.
47 #define VM_CLOCK_ADVANCE 3000000
48 #define THRESHOLD_REDUCE 1.5
49 #define MAX_DELAY_PRINT_RATE 2000000000LL
50 #define MAX_NB_PRINTS 100
52 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
54 int64_t cpu_icount;
56 if (!icount_align_option) {
57 return;
60 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
61 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
62 sc->last_cpu_icount = cpu_icount;
64 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
65 #ifndef _WIN32
66 struct timespec sleep_delay, rem_delay;
67 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
68 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
69 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
70 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
71 } else {
72 sc->diff_clk = 0;
74 #else
75 Sleep(sc->diff_clk / SCALE_MS);
76 sc->diff_clk = 0;
77 #endif
81 static void print_delay(const SyncClocks *sc)
83 static float threshold_delay;
84 static int64_t last_realtime_clock;
85 static int nb_prints;
87 if (icount_align_option &&
88 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
89 nb_prints < MAX_NB_PRINTS) {
90 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
91 (-sc->diff_clk / (float)1000000000LL <
92 (threshold_delay - THRESHOLD_REDUCE))) {
93 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
94 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
95 threshold_delay - 1,
96 threshold_delay);
97 nb_prints++;
98 last_realtime_clock = sc->realtime_clock;
103 static void init_delay_params(SyncClocks *sc,
104 const CPUState *cpu)
106 if (!icount_align_option) {
107 return;
109 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
110 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
111 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
112 if (sc->diff_clk < max_delay) {
113 max_delay = sc->diff_clk;
115 if (sc->diff_clk > max_advance) {
116 max_advance = sc->diff_clk;
119 /* Print every 2s max if the guest is late. We limit the number
120 of printed messages to NB_PRINT_MAX(currently 100) */
121 print_delay(sc);
123 #else
124 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
128 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
131 #endif /* CONFIG USER ONLY */
133 /* Execute a TB, and fix up the CPU state afterwards if necessary */
134 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr)
136 CPUArchState *env = cpu->env_ptr;
137 uintptr_t next_tb;
139 #if defined(DEBUG_DISAS)
140 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
141 #if defined(TARGET_I386)
142 log_cpu_state(cpu, CPU_DUMP_CCOP);
143 #elif defined(TARGET_M68K)
144 /* ??? Should not modify env state for dumping. */
145 cpu_m68k_flush_flags(env, env->cc_op);
146 env->cc_op = CC_OP_FLAGS;
147 env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4);
148 log_cpu_state(cpu, 0);
149 #else
150 log_cpu_state(cpu, 0);
151 #endif
153 #endif /* DEBUG_DISAS */
155 cpu->can_do_io = !use_icount;
156 next_tb = tcg_qemu_tb_exec(env, tb_ptr);
157 cpu->can_do_io = 1;
158 trace_exec_tb_exit((void *) (next_tb & ~TB_EXIT_MASK),
159 next_tb & TB_EXIT_MASK);
161 if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) {
162 /* We didn't start executing this TB (eg because the instruction
163 * counter hit zero); we must restore the guest PC to the address
164 * of the start of the TB.
166 CPUClass *cc = CPU_GET_CLASS(cpu);
167 TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
168 if (cc->synchronize_from_tb) {
169 cc->synchronize_from_tb(cpu, tb);
170 } else {
171 assert(cc->set_pc);
172 cc->set_pc(cpu, tb->pc);
175 if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) {
176 /* We were asked to stop executing TBs (probably a pending
177 * interrupt. We've now stopped, so clear the flag.
179 cpu->tcg_exit_req = 0;
181 return next_tb;
184 /* Execute the code without caching the generated code. An interpreter
185 could be used if available. */
186 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
187 TranslationBlock *orig_tb)
189 TranslationBlock *tb;
191 /* Should never happen.
192 We only end up here when an existing TB is too long. */
193 if (max_cycles > CF_COUNT_MASK)
194 max_cycles = CF_COUNT_MASK;
196 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
197 max_cycles | CF_NOCACHE);
198 tb->orig_tb = tcg_ctx.tb_ctx.tb_invalidated_flag ? NULL : orig_tb;
199 cpu->current_tb = tb;
200 /* execute the generated code */
201 trace_exec_tb_nocache(tb, tb->pc);
202 cpu_tb_exec(cpu, tb->tc_ptr);
203 cpu->current_tb = NULL;
204 tb_phys_invalidate(tb, -1);
205 tb_free(tb);
208 static TranslationBlock *tb_find_physical(CPUState *cpu,
209 target_ulong pc,
210 target_ulong cs_base,
211 uint64_t flags)
213 CPUArchState *env = (CPUArchState *)cpu->env_ptr;
214 TranslationBlock *tb, **ptb1;
215 unsigned int h;
216 tb_page_addr_t phys_pc, phys_page1;
217 target_ulong virt_page2;
219 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
221 /* find translated block using physical mappings */
222 phys_pc = get_page_addr_code(env, pc);
223 phys_page1 = phys_pc & TARGET_PAGE_MASK;
224 h = tb_phys_hash_func(phys_pc);
225 ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h];
226 for(;;) {
227 tb = *ptb1;
228 if (!tb) {
229 return NULL;
231 if (tb->pc == pc &&
232 tb->page_addr[0] == phys_page1 &&
233 tb->cs_base == cs_base &&
234 tb->flags == flags) {
235 /* check next page if needed */
236 if (tb->page_addr[1] != -1) {
237 tb_page_addr_t phys_page2;
239 virt_page2 = (pc & TARGET_PAGE_MASK) +
240 TARGET_PAGE_SIZE;
241 phys_page2 = get_page_addr_code(env, virt_page2);
242 if (tb->page_addr[1] == phys_page2) {
243 break;
245 } else {
246 break;
249 ptb1 = &tb->phys_hash_next;
252 /* Move the TB to the head of the list */
253 *ptb1 = tb->phys_hash_next;
254 tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h];
255 tcg_ctx.tb_ctx.tb_phys_hash[h] = tb;
256 return tb;
259 static TranslationBlock *tb_find_slow(CPUState *cpu,
260 target_ulong pc,
261 target_ulong cs_base,
262 uint64_t flags)
264 TranslationBlock *tb;
266 tb = tb_find_physical(cpu, pc, cs_base, flags);
267 if (tb) {
268 goto found;
271 #ifdef CONFIG_USER_ONLY
272 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
273 * taken outside tb_lock. Since we're momentarily dropping
274 * tb_lock, there's a chance that our desired tb has been
275 * translated.
277 tb_unlock();
278 mmap_lock();
279 tb_lock();
280 tb = tb_find_physical(cpu, pc, cs_base, flags);
281 if (tb) {
282 mmap_unlock();
283 goto found;
285 #endif
287 /* if no translated code available, then translate it now */
288 tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
290 #ifdef CONFIG_USER_ONLY
291 mmap_unlock();
292 #endif
294 found:
295 /* we add the TB in the virtual pc hash table */
296 cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
297 return tb;
300 static inline TranslationBlock *tb_find_fast(CPUState *cpu)
302 CPUArchState *env = (CPUArchState *)cpu->env_ptr;
303 TranslationBlock *tb;
304 target_ulong cs_base, pc;
305 int flags;
307 /* we record a subset of the CPU state. It will
308 always be the same before a given translated block
309 is executed. */
310 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
311 tb = cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
312 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
313 tb->flags != flags)) {
314 tb = tb_find_slow(cpu, pc, cs_base, flags);
316 return tb;
319 static void cpu_handle_debug_exception(CPUState *cpu)
321 CPUClass *cc = CPU_GET_CLASS(cpu);
322 CPUWatchpoint *wp;
324 if (!cpu->watchpoint_hit) {
325 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
326 wp->flags &= ~BP_WATCHPOINT_HIT;
330 cc->debug_excp_handler(cpu);
333 /* main execution loop */
335 int cpu_exec(CPUState *cpu)
337 CPUClass *cc = CPU_GET_CLASS(cpu);
338 #ifdef TARGET_I386
339 X86CPU *x86_cpu = X86_CPU(cpu);
340 CPUArchState *env = &x86_cpu->env;
341 #endif
342 int ret, interrupt_request;
343 TranslationBlock *tb;
344 uint8_t *tc_ptr;
345 uintptr_t next_tb;
346 SyncClocks sc;
348 if (cpu->halted) {
349 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
350 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
351 apic_poll_irq(x86_cpu->apic_state);
352 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
354 #endif
355 if (!cpu_has_work(cpu)) {
356 return EXCP_HALTED;
359 cpu->halted = 0;
362 current_cpu = cpu;
363 atomic_mb_set(&tcg_current_cpu, cpu);
364 rcu_read_lock();
366 if (unlikely(atomic_mb_read(&exit_request))) {
367 cpu->exit_request = 1;
370 cc->cpu_exec_enter(cpu);
372 /* Calculate difference between guest clock and host clock.
373 * This delay includes the delay of the last cycle, so
374 * what we have to do is sleep until it is 0. As for the
375 * advance/delay we gain here, we try to fix it next time.
377 init_delay_params(&sc, cpu);
379 /* prepare setjmp context for exception handling */
380 for(;;) {
381 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
382 /* if an exception is pending, we execute it here */
383 if (cpu->exception_index >= 0) {
384 if (cpu->exception_index >= EXCP_INTERRUPT) {
385 /* exit request from the cpu execution loop */
386 ret = cpu->exception_index;
387 if (ret == EXCP_DEBUG) {
388 cpu_handle_debug_exception(cpu);
390 cpu->exception_index = -1;
391 break;
392 } else {
393 #if defined(CONFIG_USER_ONLY)
394 /* if user mode only, we simulate a fake exception
395 which will be handled outside the cpu execution
396 loop */
397 #if defined(TARGET_I386)
398 cc->do_interrupt(cpu);
399 #endif
400 ret = cpu->exception_index;
401 cpu->exception_index = -1;
402 break;
403 #else
404 cc->do_interrupt(cpu);
405 cpu->exception_index = -1;
406 #endif
410 next_tb = 0; /* force lookup of first TB */
411 for(;;) {
412 interrupt_request = cpu->interrupt_request;
413 if (unlikely(interrupt_request)) {
414 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
415 /* Mask out external interrupts for this step. */
416 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
418 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
419 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
420 cpu->exception_index = EXCP_DEBUG;
421 cpu_loop_exit(cpu);
423 if (interrupt_request & CPU_INTERRUPT_HALT) {
424 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
425 cpu->halted = 1;
426 cpu->exception_index = EXCP_HLT;
427 cpu_loop_exit(cpu);
429 #if defined(TARGET_I386)
430 if (interrupt_request & CPU_INTERRUPT_INIT) {
431 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0);
432 do_cpu_init(x86_cpu);
433 cpu->exception_index = EXCP_HALTED;
434 cpu_loop_exit(cpu);
436 #else
437 if (interrupt_request & CPU_INTERRUPT_RESET) {
438 cpu_reset(cpu);
440 #endif
441 /* The target hook has 3 exit conditions:
442 False when the interrupt isn't processed,
443 True when it is, and we should restart on a new TB,
444 and via longjmp via cpu_loop_exit. */
445 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
446 next_tb = 0;
448 /* Don't use the cached interrupt_request value,
449 do_interrupt may have updated the EXITTB flag. */
450 if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) {
451 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
452 /* ensure that no TB jump will be modified as
453 the program flow was changed */
454 next_tb = 0;
457 if (unlikely(cpu->exit_request)) {
458 cpu->exit_request = 0;
459 cpu->exception_index = EXCP_INTERRUPT;
460 cpu_loop_exit(cpu);
462 tb_lock();
463 tb = tb_find_fast(cpu);
464 /* Note: we do it here to avoid a gcc bug on Mac OS X when
465 doing it in tb_find_slow */
466 if (tcg_ctx.tb_ctx.tb_invalidated_flag) {
467 /* as some TB could have been invalidated because
468 of memory exceptions while generating the code, we
469 must recompute the hash index here */
470 next_tb = 0;
471 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
473 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
474 qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n",
475 tb->tc_ptr, tb->pc, lookup_symbol(tb->pc));
477 /* see if we can patch the calling TB. When the TB
478 spans two pages, we cannot safely do a direct
479 jump. */
480 if (next_tb != 0 && tb->page_addr[1] == -1) {
481 tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK),
482 next_tb & TB_EXIT_MASK, tb);
484 tb_unlock();
485 if (likely(!cpu->exit_request)) {
486 trace_exec_tb(tb, tb->pc);
487 tc_ptr = tb->tc_ptr;
488 /* execute the generated code */
489 cpu->current_tb = tb;
490 next_tb = cpu_tb_exec(cpu, tc_ptr);
491 cpu->current_tb = NULL;
492 switch (next_tb & TB_EXIT_MASK) {
493 case TB_EXIT_REQUESTED:
494 /* Something asked us to stop executing
495 * chained TBs; just continue round the main
496 * loop. Whatever requested the exit will also
497 * have set something else (eg exit_request or
498 * interrupt_request) which we will handle
499 * next time around the loop. But we need to
500 * ensure the tcg_exit_req read in generated code
501 * comes before the next read of cpu->exit_request
502 * or cpu->interrupt_request.
504 smp_rmb();
505 next_tb = 0;
506 break;
507 case TB_EXIT_ICOUNT_EXPIRED:
509 /* Instruction counter expired. */
510 int insns_left = cpu->icount_decr.u32;
511 if (cpu->icount_extra && insns_left >= 0) {
512 /* Refill decrementer and continue execution. */
513 cpu->icount_extra += insns_left;
514 insns_left = MIN(0xffff, cpu->icount_extra);
515 cpu->icount_extra -= insns_left;
516 cpu->icount_decr.u16.low = insns_left;
517 } else {
518 if (insns_left > 0) {
519 /* Execute remaining instructions. */
520 tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
521 cpu_exec_nocache(cpu, insns_left, tb);
522 align_clocks(&sc, cpu);
524 cpu->exception_index = EXCP_INTERRUPT;
525 next_tb = 0;
526 cpu_loop_exit(cpu);
528 break;
530 default:
531 break;
534 /* Try to align the host and virtual clocks
535 if the guest is in advance */
536 align_clocks(&sc, cpu);
537 /* reset soft MMU for next block (it can currently
538 only be set by a memory fault) */
539 } /* for(;;) */
540 } else {
541 /* Reload env after longjmp - the compiler may have smashed all
542 * local variables as longjmp is marked 'noreturn'. */
543 cpu = current_cpu;
544 cc = CPU_GET_CLASS(cpu);
545 cpu->can_do_io = 1;
546 #ifdef TARGET_I386
547 x86_cpu = X86_CPU(cpu);
548 env = &x86_cpu->env;
549 #endif
550 tb_lock_reset();
552 } /* for(;;) */
554 cc->cpu_exec_exit(cpu);
555 rcu_read_unlock();
557 /* fail safe : never use current_cpu outside cpu_exec() */
558 current_cpu = NULL;
560 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
561 atomic_set(&tcg_current_cpu, NULL);
562 return ret;