rtl8139: drop tautologous if (ip) {...} statement (CVE-2015-5165)
[qemu/ar7.git] / hw / vfio / pci.c
blob4023d8e82367174eb90e9c865404eab05ce2a4d2
1 /*
2 * vfio based device assignment support
4 * Copyright Red Hat, Inc. 2012
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
21 #include <dirent.h>
22 #include <linux/vfio.h>
23 #include <sys/ioctl.h>
24 #include <sys/mman.h>
25 #include <sys/stat.h>
26 #include <sys/types.h>
27 #include <unistd.h>
29 #include "config.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci.h"
35 #include "qemu-common.h"
36 #include "qemu/error-report.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/queue.h"
39 #include "qemu/range.h"
40 #include "sysemu/kvm.h"
41 #include "sysemu/sysemu.h"
42 #include "trace.h"
43 #include "hw/vfio/vfio.h"
44 #include "hw/vfio/vfio-common.h"
46 struct VFIOPCIDevice;
48 typedef struct VFIOQuirk {
49 MemoryRegion mem;
50 struct VFIOPCIDevice *vdev;
51 QLIST_ENTRY(VFIOQuirk) next;
52 struct {
53 uint32_t base_offset:TARGET_PAGE_BITS;
54 uint32_t address_offset:TARGET_PAGE_BITS;
55 uint32_t address_size:3;
56 uint32_t bar:3;
58 uint32_t address_match;
59 uint32_t address_mask;
61 uint32_t address_val:TARGET_PAGE_BITS;
62 uint32_t data_offset:TARGET_PAGE_BITS;
63 uint32_t data_size:3;
65 uint8_t flags;
66 uint8_t read_flags;
67 uint8_t write_flags;
68 } data;
69 } VFIOQuirk;
71 typedef struct VFIOBAR {
72 VFIORegion region;
73 bool ioport;
74 bool mem64;
75 QLIST_HEAD(, VFIOQuirk) quirks;
76 } VFIOBAR;
78 typedef struct VFIOVGARegion {
79 MemoryRegion mem;
80 off_t offset;
81 int nr;
82 QLIST_HEAD(, VFIOQuirk) quirks;
83 } VFIOVGARegion;
85 typedef struct VFIOVGA {
86 off_t fd_offset;
87 int fd;
88 VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS];
89 } VFIOVGA;
91 typedef struct VFIOINTx {
92 bool pending; /* interrupt pending */
93 bool kvm_accel; /* set when QEMU bypass through KVM enabled */
94 uint8_t pin; /* which pin to pull for qemu_set_irq */
95 EventNotifier interrupt; /* eventfd triggered on interrupt */
96 EventNotifier unmask; /* eventfd for unmask on QEMU bypass */
97 PCIINTxRoute route; /* routing info for QEMU bypass */
98 uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */
99 QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */
100 } VFIOINTx;
102 typedef struct VFIOMSIVector {
104 * Two interrupt paths are configured per vector. The first, is only used
105 * for interrupts injected via QEMU. This is typically the non-accel path,
106 * but may also be used when we want QEMU to handle masking and pending
107 * bits. The KVM path bypasses QEMU and is therefore higher performance,
108 * but requires masking at the device. virq is used to track the MSI route
109 * through KVM, thus kvm_interrupt is only available when virq is set to a
110 * valid (>= 0) value.
112 EventNotifier interrupt;
113 EventNotifier kvm_interrupt;
114 struct VFIOPCIDevice *vdev; /* back pointer to device */
115 int virq;
116 bool use;
117 } VFIOMSIVector;
119 enum {
120 VFIO_INT_NONE = 0,
121 VFIO_INT_INTx = 1,
122 VFIO_INT_MSI = 2,
123 VFIO_INT_MSIX = 3,
126 /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */
127 typedef struct VFIOMSIXInfo {
128 uint8_t table_bar;
129 uint8_t pba_bar;
130 uint16_t entries;
131 uint32_t table_offset;
132 uint32_t pba_offset;
133 MemoryRegion mmap_mem;
134 void *mmap;
135 } VFIOMSIXInfo;
137 typedef struct VFIOPCIDevice {
138 PCIDevice pdev;
139 VFIODevice vbasedev;
140 VFIOINTx intx;
141 unsigned int config_size;
142 uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */
143 off_t config_offset; /* Offset of config space region within device fd */
144 unsigned int rom_size;
145 off_t rom_offset; /* Offset of ROM region within device fd */
146 void *rom;
147 int msi_cap_size;
148 VFIOMSIVector *msi_vectors;
149 VFIOMSIXInfo *msix;
150 int nr_vectors; /* Number of MSI/MSIX vectors currently in use */
151 int interrupt; /* Current interrupt type */
152 VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */
153 VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */
154 PCIHostDeviceAddress host;
155 EventNotifier err_notifier;
156 EventNotifier req_notifier;
157 int (*resetfn)(struct VFIOPCIDevice *);
158 uint32_t features;
159 #define VFIO_FEATURE_ENABLE_VGA_BIT 0
160 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT)
161 #define VFIO_FEATURE_ENABLE_REQ_BIT 1
162 #define VFIO_FEATURE_ENABLE_REQ (1 << VFIO_FEATURE_ENABLE_REQ_BIT)
163 int32_t bootindex;
164 uint8_t pm_cap;
165 bool has_vga;
166 bool pci_aer;
167 bool req_enabled;
168 bool has_flr;
169 bool has_pm_reset;
170 bool rom_read_failed;
171 } VFIOPCIDevice;
173 typedef struct VFIORomBlacklistEntry {
174 uint16_t vendor_id;
175 uint16_t device_id;
176 } VFIORomBlacklistEntry;
179 * List of device ids/vendor ids for which to disable
180 * option rom loading. This avoids the guest hangs during rom
181 * execution as noticed with the BCM 57810 card for lack of a
182 * more better way to handle such issues.
183 * The user can still override by specifying a romfile or
184 * rombar=1.
185 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
186 * for an analysis of the 57810 card hang. When adding
187 * a new vendor id/device id combination below, please also add
188 * your card/environment details and information that could
189 * help in debugging to the bug tracking this issue
191 static const VFIORomBlacklistEntry romblacklist[] = {
192 /* Broadcom BCM 57810 */
193 { 0x14e4, 0x168e }
196 #define MSIX_CAP_LENGTH 12
198 static void vfio_disable_interrupts(VFIOPCIDevice *vdev);
199 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len);
200 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
201 uint32_t val, int len);
202 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled);
205 * Disabling BAR mmaping can be slow, but toggling it around INTx can
206 * also be a huge overhead. We try to get the best of both worlds by
207 * waiting until an interrupt to disable mmaps (subsequent transitions
208 * to the same state are effectively no overhead). If the interrupt has
209 * been serviced and the time gap is long enough, we re-enable mmaps for
210 * performance. This works well for things like graphics cards, which
211 * may not use their interrupt at all and are penalized to an unusable
212 * level by read/write BAR traps. Other devices, like NICs, have more
213 * regular interrupts and see much better latency by staying in non-mmap
214 * mode. We therefore set the default mmap_timeout such that a ping
215 * is just enough to keep the mmap disabled. Users can experiment with
216 * other options with the x-intx-mmap-timeout-ms parameter (a value of
217 * zero disables the timer).
219 static void vfio_intx_mmap_enable(void *opaque)
221 VFIOPCIDevice *vdev = opaque;
223 if (vdev->intx.pending) {
224 timer_mod(vdev->intx.mmap_timer,
225 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
226 return;
229 vfio_mmap_set_enabled(vdev, true);
232 static void vfio_intx_interrupt(void *opaque)
234 VFIOPCIDevice *vdev = opaque;
236 if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) {
237 return;
240 trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin);
242 vdev->intx.pending = true;
243 pci_irq_assert(&vdev->pdev);
244 vfio_mmap_set_enabled(vdev, false);
245 if (vdev->intx.mmap_timeout) {
246 timer_mod(vdev->intx.mmap_timer,
247 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
251 static void vfio_eoi(VFIODevice *vbasedev)
253 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
255 if (!vdev->intx.pending) {
256 return;
259 trace_vfio_eoi(vbasedev->name);
261 vdev->intx.pending = false;
262 pci_irq_deassert(&vdev->pdev);
263 vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
266 static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev)
268 #ifdef CONFIG_KVM
269 struct kvm_irqfd irqfd = {
270 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
271 .gsi = vdev->intx.route.irq,
272 .flags = KVM_IRQFD_FLAG_RESAMPLE,
274 struct vfio_irq_set *irq_set;
275 int ret, argsz;
276 int32_t *pfd;
278 if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() ||
279 vdev->intx.route.mode != PCI_INTX_ENABLED ||
280 !kvm_resamplefds_enabled()) {
281 return;
284 /* Get to a known interrupt state */
285 qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev);
286 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
287 vdev->intx.pending = false;
288 pci_irq_deassert(&vdev->pdev);
290 /* Get an eventfd for resample/unmask */
291 if (event_notifier_init(&vdev->intx.unmask, 0)) {
292 error_report("vfio: Error: event_notifier_init failed eoi");
293 goto fail;
296 /* KVM triggers it, VFIO listens for it */
297 irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask);
299 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
300 error_report("vfio: Error: Failed to setup resample irqfd: %m");
301 goto fail_irqfd;
304 argsz = sizeof(*irq_set) + sizeof(*pfd);
306 irq_set = g_malloc0(argsz);
307 irq_set->argsz = argsz;
308 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK;
309 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
310 irq_set->start = 0;
311 irq_set->count = 1;
312 pfd = (int32_t *)&irq_set->data;
314 *pfd = irqfd.resamplefd;
316 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
317 g_free(irq_set);
318 if (ret) {
319 error_report("vfio: Error: Failed to setup INTx unmask fd: %m");
320 goto fail_vfio;
323 /* Let'em rip */
324 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
326 vdev->intx.kvm_accel = true;
328 trace_vfio_enable_intx_kvm(vdev->vbasedev.name);
330 return;
332 fail_vfio:
333 irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN;
334 kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
335 fail_irqfd:
336 event_notifier_cleanup(&vdev->intx.unmask);
337 fail:
338 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
339 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
340 #endif
343 static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev)
345 #ifdef CONFIG_KVM
346 struct kvm_irqfd irqfd = {
347 .fd = event_notifier_get_fd(&vdev->intx.interrupt),
348 .gsi = vdev->intx.route.irq,
349 .flags = KVM_IRQFD_FLAG_DEASSIGN,
352 if (!vdev->intx.kvm_accel) {
353 return;
357 * Get to a known state, hardware masked, QEMU ready to accept new
358 * interrupts, QEMU IRQ de-asserted.
360 vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
361 vdev->intx.pending = false;
362 pci_irq_deassert(&vdev->pdev);
364 /* Tell KVM to stop listening for an INTx irqfd */
365 if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
366 error_report("vfio: Error: Failed to disable INTx irqfd: %m");
369 /* We only need to close the eventfd for VFIO to cleanup the kernel side */
370 event_notifier_cleanup(&vdev->intx.unmask);
372 /* QEMU starts listening for interrupt events. */
373 qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
375 vdev->intx.kvm_accel = false;
377 /* If we've missed an event, let it re-fire through QEMU */
378 vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
380 trace_vfio_disable_intx_kvm(vdev->vbasedev.name);
381 #endif
384 static void vfio_update_irq(PCIDevice *pdev)
386 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
387 PCIINTxRoute route;
389 if (vdev->interrupt != VFIO_INT_INTx) {
390 return;
393 route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin);
395 if (!pci_intx_route_changed(&vdev->intx.route, &route)) {
396 return; /* Nothing changed */
399 trace_vfio_update_irq(vdev->vbasedev.name,
400 vdev->intx.route.irq, route.irq);
402 vfio_disable_intx_kvm(vdev);
404 vdev->intx.route = route;
406 if (route.mode != PCI_INTX_ENABLED) {
407 return;
410 vfio_enable_intx_kvm(vdev);
412 /* Re-enable the interrupt in cased we missed an EOI */
413 vfio_eoi(&vdev->vbasedev);
416 static int vfio_enable_intx(VFIOPCIDevice *vdev)
418 uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1);
419 int ret, argsz;
420 struct vfio_irq_set *irq_set;
421 int32_t *pfd;
423 if (!pin) {
424 return 0;
427 vfio_disable_interrupts(vdev);
429 vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */
430 pci_config_set_interrupt_pin(vdev->pdev.config, pin);
432 #ifdef CONFIG_KVM
434 * Only conditional to avoid generating error messages on platforms
435 * where we won't actually use the result anyway.
437 if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) {
438 vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
439 vdev->intx.pin);
441 #endif
443 ret = event_notifier_init(&vdev->intx.interrupt, 0);
444 if (ret) {
445 error_report("vfio: Error: event_notifier_init failed");
446 return ret;
449 argsz = sizeof(*irq_set) + sizeof(*pfd);
451 irq_set = g_malloc0(argsz);
452 irq_set->argsz = argsz;
453 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
454 irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
455 irq_set->start = 0;
456 irq_set->count = 1;
457 pfd = (int32_t *)&irq_set->data;
459 *pfd = event_notifier_get_fd(&vdev->intx.interrupt);
460 qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev);
462 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
463 g_free(irq_set);
464 if (ret) {
465 error_report("vfio: Error: Failed to setup INTx fd: %m");
466 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
467 event_notifier_cleanup(&vdev->intx.interrupt);
468 return -errno;
471 vfio_enable_intx_kvm(vdev);
473 vdev->interrupt = VFIO_INT_INTx;
475 trace_vfio_enable_intx(vdev->vbasedev.name);
477 return 0;
480 static void vfio_disable_intx(VFIOPCIDevice *vdev)
482 int fd;
484 timer_del(vdev->intx.mmap_timer);
485 vfio_disable_intx_kvm(vdev);
486 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
487 vdev->intx.pending = false;
488 pci_irq_deassert(&vdev->pdev);
489 vfio_mmap_set_enabled(vdev, true);
491 fd = event_notifier_get_fd(&vdev->intx.interrupt);
492 qemu_set_fd_handler(fd, NULL, NULL, vdev);
493 event_notifier_cleanup(&vdev->intx.interrupt);
495 vdev->interrupt = VFIO_INT_NONE;
497 trace_vfio_disable_intx(vdev->vbasedev.name);
501 * MSI/X
503 static void vfio_msi_interrupt(void *opaque)
505 VFIOMSIVector *vector = opaque;
506 VFIOPCIDevice *vdev = vector->vdev;
507 int nr = vector - vdev->msi_vectors;
509 if (!event_notifier_test_and_clear(&vector->interrupt)) {
510 return;
513 #ifdef DEBUG_VFIO
514 MSIMessage msg;
516 if (vdev->interrupt == VFIO_INT_MSIX) {
517 msg = msix_get_message(&vdev->pdev, nr);
518 } else if (vdev->interrupt == VFIO_INT_MSI) {
519 msg = msi_get_message(&vdev->pdev, nr);
520 } else {
521 abort();
524 trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data);
525 #endif
527 if (vdev->interrupt == VFIO_INT_MSIX) {
528 msix_notify(&vdev->pdev, nr);
529 } else if (vdev->interrupt == VFIO_INT_MSI) {
530 msi_notify(&vdev->pdev, nr);
531 } else {
532 error_report("vfio: MSI interrupt receieved, but not enabled?");
536 static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix)
538 struct vfio_irq_set *irq_set;
539 int ret = 0, i, argsz;
540 int32_t *fds;
542 argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds));
544 irq_set = g_malloc0(argsz);
545 irq_set->argsz = argsz;
546 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
547 irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX;
548 irq_set->start = 0;
549 irq_set->count = vdev->nr_vectors;
550 fds = (int32_t *)&irq_set->data;
552 for (i = 0; i < vdev->nr_vectors; i++) {
553 int fd = -1;
556 * MSI vs MSI-X - The guest has direct access to MSI mask and pending
557 * bits, therefore we always use the KVM signaling path when setup.
558 * MSI-X mask and pending bits are emulated, so we want to use the
559 * KVM signaling path only when configured and unmasked.
561 if (vdev->msi_vectors[i].use) {
562 if (vdev->msi_vectors[i].virq < 0 ||
563 (msix && msix_is_masked(&vdev->pdev, i))) {
564 fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt);
565 } else {
566 fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt);
570 fds[i] = fd;
573 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
575 g_free(irq_set);
577 return ret;
580 static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg,
581 bool msix)
583 int virq;
585 if ((msix && !VFIO_ALLOW_KVM_MSIX) ||
586 (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) {
587 return;
590 if (event_notifier_init(&vector->kvm_interrupt, 0)) {
591 return;
594 virq = kvm_irqchip_add_msi_route(kvm_state, *msg);
595 if (virq < 0) {
596 event_notifier_cleanup(&vector->kvm_interrupt);
597 return;
600 if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt,
601 NULL, virq) < 0) {
602 kvm_irqchip_release_virq(kvm_state, virq);
603 event_notifier_cleanup(&vector->kvm_interrupt);
604 return;
607 vector->virq = virq;
610 static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector)
612 kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt,
613 vector->virq);
614 kvm_irqchip_release_virq(kvm_state, vector->virq);
615 vector->virq = -1;
616 event_notifier_cleanup(&vector->kvm_interrupt);
619 static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg)
621 kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg);
624 static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr,
625 MSIMessage *msg, IOHandler *handler)
627 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
628 VFIOMSIVector *vector;
629 int ret;
631 trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr);
633 vector = &vdev->msi_vectors[nr];
635 if (!vector->use) {
636 vector->vdev = vdev;
637 vector->virq = -1;
638 if (event_notifier_init(&vector->interrupt, 0)) {
639 error_report("vfio: Error: event_notifier_init failed");
641 vector->use = true;
642 msix_vector_use(pdev, nr);
645 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
646 handler, NULL, vector);
649 * Attempt to enable route through KVM irqchip,
650 * default to userspace handling if unavailable.
652 if (vector->virq >= 0) {
653 if (!msg) {
654 vfio_remove_kvm_msi_virq(vector);
655 } else {
656 vfio_update_kvm_msi_virq(vector, *msg);
658 } else {
659 vfio_add_kvm_msi_virq(vector, msg, true);
663 * We don't want to have the host allocate all possible MSI vectors
664 * for a device if they're not in use, so we shutdown and incrementally
665 * increase them as needed.
667 if (vdev->nr_vectors < nr + 1) {
668 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
669 vdev->nr_vectors = nr + 1;
670 ret = vfio_enable_vectors(vdev, true);
671 if (ret) {
672 error_report("vfio: failed to enable vectors, %d", ret);
674 } else {
675 int argsz;
676 struct vfio_irq_set *irq_set;
677 int32_t *pfd;
679 argsz = sizeof(*irq_set) + sizeof(*pfd);
681 irq_set = g_malloc0(argsz);
682 irq_set->argsz = argsz;
683 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
684 VFIO_IRQ_SET_ACTION_TRIGGER;
685 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
686 irq_set->start = nr;
687 irq_set->count = 1;
688 pfd = (int32_t *)&irq_set->data;
690 if (vector->virq >= 0) {
691 *pfd = event_notifier_get_fd(&vector->kvm_interrupt);
692 } else {
693 *pfd = event_notifier_get_fd(&vector->interrupt);
696 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
697 g_free(irq_set);
698 if (ret) {
699 error_report("vfio: failed to modify vector, %d", ret);
703 return 0;
706 static int vfio_msix_vector_use(PCIDevice *pdev,
707 unsigned int nr, MSIMessage msg)
709 return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt);
712 static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr)
714 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
715 VFIOMSIVector *vector = &vdev->msi_vectors[nr];
717 trace_vfio_msix_vector_release(vdev->vbasedev.name, nr);
720 * There are still old guests that mask and unmask vectors on every
721 * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of
722 * the KVM setup in place, simply switch VFIO to use the non-bypass
723 * eventfd. We'll then fire the interrupt through QEMU and the MSI-X
724 * core will mask the interrupt and set pending bits, allowing it to
725 * be re-asserted on unmask. Nothing to do if already using QEMU mode.
727 if (vector->virq >= 0) {
728 int argsz;
729 struct vfio_irq_set *irq_set;
730 int32_t *pfd;
732 argsz = sizeof(*irq_set) + sizeof(*pfd);
734 irq_set = g_malloc0(argsz);
735 irq_set->argsz = argsz;
736 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
737 VFIO_IRQ_SET_ACTION_TRIGGER;
738 irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
739 irq_set->start = nr;
740 irq_set->count = 1;
741 pfd = (int32_t *)&irq_set->data;
743 *pfd = event_notifier_get_fd(&vector->interrupt);
745 ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
747 g_free(irq_set);
751 static void vfio_enable_msix(VFIOPCIDevice *vdev)
753 vfio_disable_interrupts(vdev);
755 vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector));
757 vdev->interrupt = VFIO_INT_MSIX;
760 * Some communication channels between VF & PF or PF & fw rely on the
761 * physical state of the device and expect that enabling MSI-X from the
762 * guest enables the same on the host. When our guest is Linux, the
763 * guest driver call to pci_enable_msix() sets the enabling bit in the
764 * MSI-X capability, but leaves the vector table masked. We therefore
765 * can't rely on a vector_use callback (from request_irq() in the guest)
766 * to switch the physical device into MSI-X mode because that may come a
767 * long time after pci_enable_msix(). This code enables vector 0 with
768 * triggering to userspace, then immediately release the vector, leaving
769 * the physical device with no vectors enabled, but MSI-X enabled, just
770 * like the guest view.
772 vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL);
773 vfio_msix_vector_release(&vdev->pdev, 0);
775 if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use,
776 vfio_msix_vector_release, NULL)) {
777 error_report("vfio: msix_set_vector_notifiers failed");
780 trace_vfio_enable_msix(vdev->vbasedev.name);
783 static void vfio_enable_msi(VFIOPCIDevice *vdev)
785 int ret, i;
787 vfio_disable_interrupts(vdev);
789 vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev);
790 retry:
791 vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector));
793 for (i = 0; i < vdev->nr_vectors; i++) {
794 VFIOMSIVector *vector = &vdev->msi_vectors[i];
795 MSIMessage msg = msi_get_message(&vdev->pdev, i);
797 vector->vdev = vdev;
798 vector->virq = -1;
799 vector->use = true;
801 if (event_notifier_init(&vector->interrupt, 0)) {
802 error_report("vfio: Error: event_notifier_init failed");
805 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
806 vfio_msi_interrupt, NULL, vector);
809 * Attempt to enable route through KVM irqchip,
810 * default to userspace handling if unavailable.
812 vfio_add_kvm_msi_virq(vector, &msg, false);
815 /* Set interrupt type prior to possible interrupts */
816 vdev->interrupt = VFIO_INT_MSI;
818 ret = vfio_enable_vectors(vdev, false);
819 if (ret) {
820 if (ret < 0) {
821 error_report("vfio: Error: Failed to setup MSI fds: %m");
822 } else if (ret != vdev->nr_vectors) {
823 error_report("vfio: Error: Failed to enable %d "
824 "MSI vectors, retry with %d", vdev->nr_vectors, ret);
827 for (i = 0; i < vdev->nr_vectors; i++) {
828 VFIOMSIVector *vector = &vdev->msi_vectors[i];
829 if (vector->virq >= 0) {
830 vfio_remove_kvm_msi_virq(vector);
832 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
833 NULL, NULL, NULL);
834 event_notifier_cleanup(&vector->interrupt);
837 g_free(vdev->msi_vectors);
839 if (ret > 0 && ret != vdev->nr_vectors) {
840 vdev->nr_vectors = ret;
841 goto retry;
843 vdev->nr_vectors = 0;
846 * Failing to setup MSI doesn't really fall within any specification.
847 * Let's try leaving interrupts disabled and hope the guest figures
848 * out to fall back to INTx for this device.
850 error_report("vfio: Error: Failed to enable MSI");
851 vdev->interrupt = VFIO_INT_NONE;
853 return;
856 trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors);
859 static void vfio_disable_msi_common(VFIOPCIDevice *vdev)
861 int i;
863 for (i = 0; i < vdev->nr_vectors; i++) {
864 VFIOMSIVector *vector = &vdev->msi_vectors[i];
865 if (vdev->msi_vectors[i].use) {
866 if (vector->virq >= 0) {
867 vfio_remove_kvm_msi_virq(vector);
869 qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
870 NULL, NULL, NULL);
871 event_notifier_cleanup(&vector->interrupt);
875 g_free(vdev->msi_vectors);
876 vdev->msi_vectors = NULL;
877 vdev->nr_vectors = 0;
878 vdev->interrupt = VFIO_INT_NONE;
880 vfio_enable_intx(vdev);
883 static void vfio_disable_msix(VFIOPCIDevice *vdev)
885 int i;
887 msix_unset_vector_notifiers(&vdev->pdev);
890 * MSI-X will only release vectors if MSI-X is still enabled on the
891 * device, check through the rest and release it ourselves if necessary.
893 for (i = 0; i < vdev->nr_vectors; i++) {
894 if (vdev->msi_vectors[i].use) {
895 vfio_msix_vector_release(&vdev->pdev, i);
896 msix_vector_unuse(&vdev->pdev, i);
900 if (vdev->nr_vectors) {
901 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
904 vfio_disable_msi_common(vdev);
906 trace_vfio_disable_msix(vdev->vbasedev.name);
909 static void vfio_disable_msi(VFIOPCIDevice *vdev)
911 vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX);
912 vfio_disable_msi_common(vdev);
914 trace_vfio_disable_msi(vdev->vbasedev.name);
917 static void vfio_update_msi(VFIOPCIDevice *vdev)
919 int i;
921 for (i = 0; i < vdev->nr_vectors; i++) {
922 VFIOMSIVector *vector = &vdev->msi_vectors[i];
923 MSIMessage msg;
925 if (!vector->use || vector->virq < 0) {
926 continue;
929 msg = msi_get_message(&vdev->pdev, i);
930 vfio_update_kvm_msi_virq(vector, msg);
934 static void vfio_pci_load_rom(VFIOPCIDevice *vdev)
936 struct vfio_region_info reg_info = {
937 .argsz = sizeof(reg_info),
938 .index = VFIO_PCI_ROM_REGION_INDEX
940 uint64_t size;
941 off_t off = 0;
942 ssize_t bytes;
944 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info)) {
945 error_report("vfio: Error getting ROM info: %m");
946 return;
949 trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size,
950 (unsigned long)reg_info.offset,
951 (unsigned long)reg_info.flags);
953 vdev->rom_size = size = reg_info.size;
954 vdev->rom_offset = reg_info.offset;
956 if (!vdev->rom_size) {
957 vdev->rom_read_failed = true;
958 error_report("vfio-pci: Cannot read device rom at "
959 "%s", vdev->vbasedev.name);
960 error_printf("Device option ROM contents are probably invalid "
961 "(check dmesg).\nSkip option ROM probe with rombar=0, "
962 "or load from file with romfile=\n");
963 return;
966 vdev->rom = g_malloc(size);
967 memset(vdev->rom, 0xff, size);
969 while (size) {
970 bytes = pread(vdev->vbasedev.fd, vdev->rom + off,
971 size, vdev->rom_offset + off);
972 if (bytes == 0) {
973 break;
974 } else if (bytes > 0) {
975 off += bytes;
976 size -= bytes;
977 } else {
978 if (errno == EINTR || errno == EAGAIN) {
979 continue;
981 error_report("vfio: Error reading device ROM: %m");
982 break;
987 static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size)
989 VFIOPCIDevice *vdev = opaque;
990 union {
991 uint8_t byte;
992 uint16_t word;
993 uint32_t dword;
994 uint64_t qword;
995 } val;
996 uint64_t data = 0;
998 /* Load the ROM lazily when the guest tries to read it */
999 if (unlikely(!vdev->rom && !vdev->rom_read_failed)) {
1000 vfio_pci_load_rom(vdev);
1003 memcpy(&val, vdev->rom + addr,
1004 (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0);
1006 switch (size) {
1007 case 1:
1008 data = val.byte;
1009 break;
1010 case 2:
1011 data = le16_to_cpu(val.word);
1012 break;
1013 case 4:
1014 data = le32_to_cpu(val.dword);
1015 break;
1016 default:
1017 hw_error("vfio: unsupported read size, %d bytes\n", size);
1018 break;
1021 trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data);
1023 return data;
1026 static void vfio_rom_write(void *opaque, hwaddr addr,
1027 uint64_t data, unsigned size)
1031 static const MemoryRegionOps vfio_rom_ops = {
1032 .read = vfio_rom_read,
1033 .write = vfio_rom_write,
1034 .endianness = DEVICE_LITTLE_ENDIAN,
1037 static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
1039 PCIDevice *pdev = &vdev->pdev;
1040 uint16_t vendor_id, device_id;
1041 int count = 0;
1043 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
1044 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
1046 while (count < ARRAY_SIZE(romblacklist)) {
1047 if (romblacklist[count].vendor_id == vendor_id &&
1048 romblacklist[count].device_id == device_id) {
1049 return true;
1051 count++;
1054 return false;
1057 static void vfio_pci_size_rom(VFIOPCIDevice *vdev)
1059 uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK);
1060 off_t offset = vdev->config_offset + PCI_ROM_ADDRESS;
1061 DeviceState *dev = DEVICE(vdev);
1062 char name[32];
1063 int fd = vdev->vbasedev.fd;
1065 if (vdev->pdev.romfile || !vdev->pdev.rom_bar) {
1066 /* Since pci handles romfile, just print a message and return */
1067 if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) {
1068 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1069 "is known to cause system instability issues during "
1070 "option rom execution. "
1071 "Proceeding anyway since user specified romfile\n",
1072 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1073 vdev->host.function);
1075 return;
1079 * Use the same size ROM BAR as the physical device. The contents
1080 * will get filled in later when the guest tries to read it.
1082 if (pread(fd, &orig, 4, offset) != 4 ||
1083 pwrite(fd, &size, 4, offset) != 4 ||
1084 pread(fd, &size, 4, offset) != 4 ||
1085 pwrite(fd, &orig, 4, offset) != 4) {
1086 error_report("%s(%04x:%02x:%02x.%x) failed: %m",
1087 __func__, vdev->host.domain, vdev->host.bus,
1088 vdev->host.slot, vdev->host.function);
1089 return;
1092 size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1;
1094 if (!size) {
1095 return;
1098 if (vfio_blacklist_opt_rom(vdev)) {
1099 if (dev->opts && qemu_opt_get(dev->opts, "rombar")) {
1100 error_printf("Warning : Device at %04x:%02x:%02x.%x "
1101 "is known to cause system instability issues during "
1102 "option rom execution. "
1103 "Proceeding anyway since user specified non zero value for "
1104 "rombar\n",
1105 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1106 vdev->host.function);
1107 } else {
1108 error_printf("Warning : Rom loading for device at "
1109 "%04x:%02x:%02x.%x has been disabled due to "
1110 "system instability issues. "
1111 "Specify rombar=1 or romfile to force\n",
1112 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1113 vdev->host.function);
1114 return;
1118 trace_vfio_pci_size_rom(vdev->vbasedev.name, size);
1120 snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom",
1121 vdev->host.domain, vdev->host.bus, vdev->host.slot,
1122 vdev->host.function);
1124 memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev),
1125 &vfio_rom_ops, vdev, name, size);
1127 pci_register_bar(&vdev->pdev, PCI_ROM_SLOT,
1128 PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom);
1130 vdev->pdev.has_rom = true;
1131 vdev->rom_read_failed = false;
1134 static void vfio_vga_write(void *opaque, hwaddr addr,
1135 uint64_t data, unsigned size)
1137 VFIOVGARegion *region = opaque;
1138 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1139 union {
1140 uint8_t byte;
1141 uint16_t word;
1142 uint32_t dword;
1143 uint64_t qword;
1144 } buf;
1145 off_t offset = vga->fd_offset + region->offset + addr;
1147 switch (size) {
1148 case 1:
1149 buf.byte = data;
1150 break;
1151 case 2:
1152 buf.word = cpu_to_le16(data);
1153 break;
1154 case 4:
1155 buf.dword = cpu_to_le32(data);
1156 break;
1157 default:
1158 hw_error("vfio: unsupported write size, %d bytes", size);
1159 break;
1162 if (pwrite(vga->fd, &buf, size, offset) != size) {
1163 error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m",
1164 __func__, region->offset + addr, data, size);
1167 trace_vfio_vga_write(region->offset + addr, data, size);
1170 static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size)
1172 VFIOVGARegion *region = opaque;
1173 VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
1174 union {
1175 uint8_t byte;
1176 uint16_t word;
1177 uint32_t dword;
1178 uint64_t qword;
1179 } buf;
1180 uint64_t data = 0;
1181 off_t offset = vga->fd_offset + region->offset + addr;
1183 if (pread(vga->fd, &buf, size, offset) != size) {
1184 error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m",
1185 __func__, region->offset + addr, size);
1186 return (uint64_t)-1;
1189 switch (size) {
1190 case 1:
1191 data = buf.byte;
1192 break;
1193 case 2:
1194 data = le16_to_cpu(buf.word);
1195 break;
1196 case 4:
1197 data = le32_to_cpu(buf.dword);
1198 break;
1199 default:
1200 hw_error("vfio: unsupported read size, %d bytes", size);
1201 break;
1204 trace_vfio_vga_read(region->offset + addr, size, data);
1206 return data;
1209 static const MemoryRegionOps vfio_vga_ops = {
1210 .read = vfio_vga_read,
1211 .write = vfio_vga_write,
1212 .endianness = DEVICE_LITTLE_ENDIAN,
1216 * Device specific quirks
1219 /* Is range1 fully contained within range2? */
1220 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
1221 uint64_t first2, uint64_t len2) {
1222 return (first1 >= first2 && first1 + len1 <= first2 + len2);
1225 static bool vfio_flags_enabled(uint8_t flags, uint8_t mask)
1227 return (mask && (flags & mask) == mask);
1230 static uint64_t vfio_generic_window_quirk_read(void *opaque,
1231 hwaddr addr, unsigned size)
1233 VFIOQuirk *quirk = opaque;
1234 VFIOPCIDevice *vdev = quirk->vdev;
1235 uint64_t data;
1237 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1238 ranges_overlap(addr, size,
1239 quirk->data.data_offset, quirk->data.data_size)) {
1240 hwaddr offset = addr - quirk->data.data_offset;
1242 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1243 quirk->data.data_size)) {
1244 hw_error("%s: window data read not fully contained: %s",
1245 __func__, memory_region_name(&quirk->mem));
1248 data = vfio_pci_read_config(&vdev->pdev,
1249 quirk->data.address_val + offset, size);
1251 trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem),
1252 vdev->vbasedev.name,
1253 quirk->data.bar,
1254 addr, size, data);
1255 } else {
1256 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1257 addr + quirk->data.base_offset, size);
1260 return data;
1263 static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr,
1264 uint64_t data, unsigned size)
1266 VFIOQuirk *quirk = opaque;
1267 VFIOPCIDevice *vdev = quirk->vdev;
1269 if (ranges_overlap(addr, size,
1270 quirk->data.address_offset, quirk->data.address_size)) {
1272 if (addr != quirk->data.address_offset) {
1273 hw_error("%s: offset write into address window: %s",
1274 __func__, memory_region_name(&quirk->mem));
1277 if ((data & ~quirk->data.address_mask) == quirk->data.address_match) {
1278 quirk->data.flags |= quirk->data.write_flags |
1279 quirk->data.read_flags;
1280 quirk->data.address_val = data & quirk->data.address_mask;
1281 } else {
1282 quirk->data.flags &= ~(quirk->data.write_flags |
1283 quirk->data.read_flags);
1287 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1288 ranges_overlap(addr, size,
1289 quirk->data.data_offset, quirk->data.data_size)) {
1290 hwaddr offset = addr - quirk->data.data_offset;
1292 if (!vfio_range_contained(addr, size, quirk->data.data_offset,
1293 quirk->data.data_size)) {
1294 hw_error("%s: window data write not fully contained: %s",
1295 __func__, memory_region_name(&quirk->mem));
1298 vfio_pci_write_config(&vdev->pdev,
1299 quirk->data.address_val + offset, data, size);
1300 trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem),
1301 vdev->vbasedev.name,
1302 quirk->data.bar,
1303 addr, data, size);
1304 return;
1307 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1308 addr + quirk->data.base_offset, data, size);
1311 static const MemoryRegionOps vfio_generic_window_quirk = {
1312 .read = vfio_generic_window_quirk_read,
1313 .write = vfio_generic_window_quirk_write,
1314 .endianness = DEVICE_LITTLE_ENDIAN,
1317 static uint64_t vfio_generic_quirk_read(void *opaque,
1318 hwaddr addr, unsigned size)
1320 VFIOQuirk *quirk = opaque;
1321 VFIOPCIDevice *vdev = quirk->vdev;
1322 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1323 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1324 uint64_t data;
1326 if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
1327 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1328 if (!vfio_range_contained(addr, size, offset,
1329 quirk->data.address_mask + 1)) {
1330 hw_error("%s: read not fully contained: %s",
1331 __func__, memory_region_name(&quirk->mem));
1334 data = vfio_pci_read_config(&vdev->pdev, addr - offset, size);
1336 trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem),
1337 vdev->vbasedev.name, quirk->data.bar,
1338 addr + base, size, data);
1339 } else {
1340 data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
1341 addr + base, size);
1344 return data;
1347 static void vfio_generic_quirk_write(void *opaque, hwaddr addr,
1348 uint64_t data, unsigned size)
1350 VFIOQuirk *quirk = opaque;
1351 VFIOPCIDevice *vdev = quirk->vdev;
1352 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1353 hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
1355 if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
1356 ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
1357 if (!vfio_range_contained(addr, size, offset,
1358 quirk->data.address_mask + 1)) {
1359 hw_error("%s: write not fully contained: %s",
1360 __func__, memory_region_name(&quirk->mem));
1363 vfio_pci_write_config(&vdev->pdev, addr - offset, data, size);
1365 trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem),
1366 vdev->vbasedev.name, quirk->data.bar,
1367 addr + base, data, size);
1368 } else {
1369 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1370 addr + base, data, size);
1374 static const MemoryRegionOps vfio_generic_quirk = {
1375 .read = vfio_generic_quirk_read,
1376 .write = vfio_generic_quirk_write,
1377 .endianness = DEVICE_LITTLE_ENDIAN,
1380 #define PCI_VENDOR_ID_ATI 0x1002
1383 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
1384 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
1385 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
1386 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
1387 * I/O port BAR address. Originally this was coded to return the virtual BAR
1388 * address only if the physical register read returns the actual BAR address,
1389 * but users have reported greater success if we return the virtual address
1390 * unconditionally.
1392 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
1393 hwaddr addr, unsigned size)
1395 VFIOQuirk *quirk = opaque;
1396 VFIOPCIDevice *vdev = quirk->vdev;
1397 uint64_t data = vfio_pci_read_config(&vdev->pdev,
1398 PCI_BASE_ADDRESS_0 + (4 * 4) + 1,
1399 size);
1400 trace_vfio_ati_3c3_quirk_read(data);
1402 return data;
1405 static const MemoryRegionOps vfio_ati_3c3_quirk = {
1406 .read = vfio_ati_3c3_quirk_read,
1407 .endianness = DEVICE_LITTLE_ENDIAN,
1410 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
1412 PCIDevice *pdev = &vdev->pdev;
1413 VFIOQuirk *quirk;
1415 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1416 return;
1420 * As long as the BAR is >= 256 bytes it will be aligned such that the
1421 * lower byte is always zero. Filter out anything else, if it exists.
1423 if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
1424 return;
1427 quirk = g_malloc0(sizeof(*quirk));
1428 quirk->vdev = vdev;
1430 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk,
1431 "vfio-ati-3c3-quirk", 1);
1432 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1433 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem);
1435 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1436 quirk, next);
1438 trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name);
1442 * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI
1443 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
1444 * the MMIO space directly, but a window to this space is provided through
1445 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
1446 * data register. When the address is programmed to a range of 0x4000-0x4fff
1447 * PCI configuration space is available. Experimentation seems to indicate
1448 * that only read-only access is provided, but we drop writes when the window
1449 * is enabled to config space nonetheless.
1451 static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr)
1453 PCIDevice *pdev = &vdev->pdev;
1454 VFIOQuirk *quirk;
1456 if (!vdev->has_vga || nr != 4 ||
1457 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1458 return;
1461 quirk = g_malloc0(sizeof(*quirk));
1462 quirk->vdev = vdev;
1463 quirk->data.address_size = 4;
1464 quirk->data.data_offset = 4;
1465 quirk->data.data_size = 4;
1466 quirk->data.address_match = 0x4000;
1467 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1468 quirk->data.bar = nr;
1469 quirk->data.read_flags = quirk->data.write_flags = 1;
1471 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1472 &vfio_generic_window_quirk, quirk,
1473 "vfio-ati-bar4-window-quirk", 8);
1474 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1475 quirk->data.base_offset, &quirk->mem, 1);
1477 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1479 trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name);
1482 #define PCI_VENDOR_ID_REALTEK 0x10ec
1485 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1486 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1487 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1488 * when the "type" portion of the address register is set to 0x1. This appears
1489 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1490 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1491 * ignore because the MSI-X table should always be accessed as a dword (full
1492 * mask). Bits 0:11 is offset within the type.
1494 * Example trace:
1496 * Read from MSI-X table offset 0
1497 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1498 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1499 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1501 * Write 0xfee00000 to MSI-X table offset 0
1502 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1503 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1504 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1507 static uint64_t vfio_rtl8168_window_quirk_read(void *opaque,
1508 hwaddr addr, unsigned size)
1510 VFIOQuirk *quirk = opaque;
1511 VFIOPCIDevice *vdev = quirk->vdev;
1513 switch (addr) {
1514 case 4: /* address */
1515 if (quirk->data.flags) {
1516 trace_vfio_rtl8168_window_quirk_read_fake(
1517 memory_region_name(&quirk->mem),
1518 vdev->vbasedev.name);
1520 return quirk->data.address_match ^ 0x80000000U;
1522 break;
1523 case 0: /* data */
1524 if (quirk->data.flags) {
1525 uint64_t val;
1527 trace_vfio_rtl8168_window_quirk_read_table(
1528 memory_region_name(&quirk->mem),
1529 vdev->vbasedev.name);
1531 if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1532 return 0;
1535 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio,
1536 (hwaddr)(quirk->data.address_match
1537 & 0xfff),
1538 &val,
1539 size,
1540 MEMTXATTRS_UNSPECIFIED);
1541 return val;
1545 trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem),
1546 vdev->vbasedev.name);
1548 return vfio_region_read(&vdev->bars[quirk->data.bar].region,
1549 addr + 0x70, size);
1552 static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr,
1553 uint64_t data, unsigned size)
1555 VFIOQuirk *quirk = opaque;
1556 VFIOPCIDevice *vdev = quirk->vdev;
1558 switch (addr) {
1559 case 4: /* address */
1560 if ((data & 0x7fff0000) == 0x10000) {
1561 if (data & 0x80000000U &&
1562 vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1564 trace_vfio_rtl8168_window_quirk_write_table(
1565 memory_region_name(&quirk->mem),
1566 vdev->vbasedev.name);
1568 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1569 (hwaddr)(data & 0xfff),
1570 (uint64_t)quirk->data.address_mask,
1571 size, MEMTXATTRS_UNSPECIFIED);
1574 quirk->data.flags = 1;
1575 quirk->data.address_match = data;
1577 return;
1579 quirk->data.flags = 0;
1580 break;
1581 case 0: /* data */
1582 quirk->data.address_mask = data;
1583 break;
1586 trace_vfio_rtl8168_window_quirk_write_direct(
1587 memory_region_name(&quirk->mem),
1588 vdev->vbasedev.name);
1590 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1591 addr + 0x70, data, size);
1594 static const MemoryRegionOps vfio_rtl8168_window_quirk = {
1595 .read = vfio_rtl8168_window_quirk_read,
1596 .write = vfio_rtl8168_window_quirk_write,
1597 .valid = {
1598 .min_access_size = 4,
1599 .max_access_size = 4,
1600 .unaligned = false,
1602 .endianness = DEVICE_LITTLE_ENDIAN,
1605 static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr)
1607 PCIDevice *pdev = &vdev->pdev;
1608 VFIOQuirk *quirk;
1610 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK ||
1611 pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) {
1612 return;
1615 quirk = g_malloc0(sizeof(*quirk));
1616 quirk->vdev = vdev;
1617 quirk->data.bar = nr;
1619 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk,
1620 quirk, "vfio-rtl8168-window-quirk", 8);
1621 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1622 0x70, &quirk->mem, 1);
1624 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1626 trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name);
1629 * Trap the BAR2 MMIO window to config space as well.
1631 static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr)
1633 PCIDevice *pdev = &vdev->pdev;
1634 VFIOQuirk *quirk;
1636 /* Only enable on newer devices where BAR2 is 64bit */
1637 if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 ||
1638 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
1639 return;
1642 quirk = g_malloc0(sizeof(*quirk));
1643 quirk->vdev = vdev;
1644 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1645 quirk->data.address_match = 0x4000;
1646 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1647 quirk->data.bar = nr;
1649 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1650 "vfio-ati-bar2-4000-quirk",
1651 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1652 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1653 quirk->data.address_match & TARGET_PAGE_MASK,
1654 &quirk->mem, 1);
1656 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1658 trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name);
1662 * Older ATI/AMD cards like the X550 have a similar window to that above.
1663 * I/O port BAR1 provides a window to a mirror of PCI config space located
1664 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
1665 * note it for future reference.
1668 #define PCI_VENDOR_ID_NVIDIA 0x10de
1671 * Nvidia has several different methods to get to config space, the
1672 * nouveu project has several of these documented here:
1673 * https://github.com/pathscale/envytools/tree/master/hwdocs
1675 * The first quirk is actually not documented in envytools and is found
1676 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
1677 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
1678 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
1679 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
1680 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
1681 * is written for a write to 0x3d4. The BAR0 offset is then accessible
1682 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
1683 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
1685 enum {
1686 NV_3D0_NONE = 0,
1687 NV_3D0_SELECT,
1688 NV_3D0_WINDOW,
1689 NV_3D0_READ,
1690 NV_3D0_WRITE,
1693 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
1694 hwaddr addr, unsigned size)
1696 VFIOQuirk *quirk = opaque;
1697 VFIOPCIDevice *vdev = quirk->vdev;
1698 PCIDevice *pdev = &vdev->pdev;
1699 uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1700 addr + quirk->data.base_offset, size);
1702 if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) {
1703 data = vfio_pci_read_config(pdev, quirk->data.address_val, size);
1704 trace_vfio_nvidia_3d0_quirk_read(size, data);
1707 quirk->data.flags = NV_3D0_NONE;
1709 return data;
1712 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
1713 uint64_t data, unsigned size)
1715 VFIOQuirk *quirk = opaque;
1716 VFIOPCIDevice *vdev = quirk->vdev;
1717 PCIDevice *pdev = &vdev->pdev;
1719 switch (quirk->data.flags) {
1720 case NV_3D0_NONE:
1721 if (addr == quirk->data.address_offset && data == 0x338) {
1722 quirk->data.flags = NV_3D0_SELECT;
1724 break;
1725 case NV_3D0_SELECT:
1726 quirk->data.flags = NV_3D0_NONE;
1727 if (addr == quirk->data.data_offset &&
1728 (data & ~quirk->data.address_mask) == quirk->data.address_match) {
1729 quirk->data.flags = NV_3D0_WINDOW;
1730 quirk->data.address_val = data & quirk->data.address_mask;
1732 break;
1733 case NV_3D0_WINDOW:
1734 quirk->data.flags = NV_3D0_NONE;
1735 if (addr == quirk->data.address_offset) {
1736 if (data == 0x538) {
1737 quirk->data.flags = NV_3D0_READ;
1738 } else if (data == 0x738) {
1739 quirk->data.flags = NV_3D0_WRITE;
1742 break;
1743 case NV_3D0_WRITE:
1744 quirk->data.flags = NV_3D0_NONE;
1745 if (addr == quirk->data.data_offset) {
1746 vfio_pci_write_config(pdev, quirk->data.address_val, data, size);
1747 trace_vfio_nvidia_3d0_quirk_write(data, size);
1748 return;
1750 break;
1753 vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
1754 addr + quirk->data.base_offset, data, size);
1757 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
1758 .read = vfio_nvidia_3d0_quirk_read,
1759 .write = vfio_nvidia_3d0_quirk_write,
1760 .endianness = DEVICE_LITTLE_ENDIAN,
1763 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
1765 PCIDevice *pdev = &vdev->pdev;
1766 VFIOQuirk *quirk;
1768 if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA ||
1769 !vdev->bars[1].region.size) {
1770 return;
1773 quirk = g_malloc0(sizeof(*quirk));
1774 quirk->vdev = vdev;
1775 quirk->data.base_offset = 0x10;
1776 quirk->data.address_offset = 4;
1777 quirk->data.address_size = 2;
1778 quirk->data.address_match = 0x1800;
1779 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1780 quirk->data.data_offset = 0;
1781 quirk->data.data_size = 4;
1783 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk,
1784 quirk, "vfio-nvidia-3d0-quirk", 6);
1785 memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
1786 quirk->data.base_offset, &quirk->mem);
1788 QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
1789 quirk, next);
1791 trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name);
1795 * The second quirk is documented in envytools. The I/O port BAR5 is just
1796 * a set of address/data ports to the MMIO BARs. The BAR we care about is
1797 * again BAR0. This backdoor is apparently a bit newer than the one above
1798 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
1799 * space, including extended space is available at the 4k @0x88000.
1801 enum {
1802 NV_BAR5_ADDRESS = 0x1,
1803 NV_BAR5_ENABLE = 0x2,
1804 NV_BAR5_MASTER = 0x4,
1805 NV_BAR5_VALID = 0x7,
1808 static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr,
1809 uint64_t data, unsigned size)
1811 VFIOQuirk *quirk = opaque;
1813 switch (addr) {
1814 case 0x0:
1815 if (data & 0x1) {
1816 quirk->data.flags |= NV_BAR5_MASTER;
1817 } else {
1818 quirk->data.flags &= ~NV_BAR5_MASTER;
1820 break;
1821 case 0x4:
1822 if (data & 0x1) {
1823 quirk->data.flags |= NV_BAR5_ENABLE;
1824 } else {
1825 quirk->data.flags &= ~NV_BAR5_ENABLE;
1827 break;
1828 case 0x8:
1829 if (quirk->data.flags & NV_BAR5_MASTER) {
1830 if ((data & ~0xfff) == 0x88000) {
1831 quirk->data.flags |= NV_BAR5_ADDRESS;
1832 quirk->data.address_val = data & 0xfff;
1833 } else if ((data & ~0xff) == 0x1800) {
1834 quirk->data.flags |= NV_BAR5_ADDRESS;
1835 quirk->data.address_val = data & 0xff;
1836 } else {
1837 quirk->data.flags &= ~NV_BAR5_ADDRESS;
1840 break;
1843 vfio_generic_window_quirk_write(opaque, addr, data, size);
1846 static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = {
1847 .read = vfio_generic_window_quirk_read,
1848 .write = vfio_nvidia_bar5_window_quirk_write,
1849 .valid.min_access_size = 4,
1850 .endianness = DEVICE_LITTLE_ENDIAN,
1853 static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr)
1855 PCIDevice *pdev = &vdev->pdev;
1856 VFIOQuirk *quirk;
1858 if (!vdev->has_vga || nr != 5 ||
1859 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1860 return;
1863 quirk = g_malloc0(sizeof(*quirk));
1864 quirk->vdev = vdev;
1865 quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID;
1866 quirk->data.address_offset = 0x8;
1867 quirk->data.address_size = 0; /* actually 4, but avoids generic code */
1868 quirk->data.data_offset = 0xc;
1869 quirk->data.data_size = 4;
1870 quirk->data.bar = nr;
1872 memory_region_init_io(&quirk->mem, OBJECT(vdev),
1873 &vfio_nvidia_bar5_window_quirk, quirk,
1874 "vfio-nvidia-bar5-window-quirk", 16);
1875 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1876 0, &quirk->mem, 1);
1878 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1880 trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name);
1883 static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr,
1884 uint64_t data, unsigned size)
1886 VFIOQuirk *quirk = opaque;
1887 VFIOPCIDevice *vdev = quirk->vdev;
1888 PCIDevice *pdev = &vdev->pdev;
1889 hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
1891 vfio_generic_quirk_write(opaque, addr, data, size);
1894 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
1895 * MSI capability ID register. Both the ID and next register are
1896 * read-only, so we allow writes covering either of those to real hw.
1897 * NB - only fixed for the 0x88000 MMIO window.
1899 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
1900 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
1901 vfio_region_write(&vdev->bars[quirk->data.bar].region,
1902 addr + base, data, size);
1906 static const MemoryRegionOps vfio_nvidia_88000_quirk = {
1907 .read = vfio_generic_quirk_read,
1908 .write = vfio_nvidia_88000_quirk_write,
1909 .endianness = DEVICE_LITTLE_ENDIAN,
1913 * Finally, BAR0 itself. We want to redirect any accesses to either
1914 * 0x1800 or 0x88000 through the PCI config space access functions.
1916 * NB - quirk at a page granularity or else they don't seem to work when
1917 * BARs are mmap'd
1919 * Here's offset 0x88000...
1921 static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr)
1923 PCIDevice *pdev = &vdev->pdev;
1924 VFIOQuirk *quirk;
1925 uint16_t vendor, class;
1927 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
1928 class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
1930 if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA ||
1931 class != PCI_CLASS_DISPLAY_VGA) {
1932 return;
1935 quirk = g_malloc0(sizeof(*quirk));
1936 quirk->vdev = vdev;
1937 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1938 quirk->data.address_match = 0x88000;
1939 quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
1940 quirk->data.bar = nr;
1942 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk,
1943 quirk, "vfio-nvidia-bar0-88000-quirk",
1944 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1945 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1946 quirk->data.address_match & TARGET_PAGE_MASK,
1947 &quirk->mem, 1);
1949 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1951 trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name);
1955 * And here's the same for BAR0 offset 0x1800...
1957 static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr)
1959 PCIDevice *pdev = &vdev->pdev;
1960 VFIOQuirk *quirk;
1962 if (!vdev->has_vga || nr != 0 ||
1963 pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
1964 return;
1967 /* Log the chipset ID */
1968 trace_vfio_probe_nvidia_bar0_1800_quirk_id(
1969 (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20)
1970 & 0xff);
1972 quirk = g_malloc0(sizeof(*quirk));
1973 quirk->vdev = vdev;
1974 quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
1975 quirk->data.address_match = 0x1800;
1976 quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
1977 quirk->data.bar = nr;
1979 memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
1980 "vfio-nvidia-bar0-1800-quirk",
1981 TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
1982 memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
1983 quirk->data.address_match & TARGET_PAGE_MASK,
1984 &quirk->mem, 1);
1986 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1988 trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name);
1992 * TODO - Some Nvidia devices provide config access to their companion HDA
1993 * device and even to their parent bridge via these config space mirrors.
1994 * Add quirks for those regions.
1998 * Common quirk probe entry points.
2000 static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
2002 vfio_vga_probe_ati_3c3_quirk(vdev);
2003 vfio_vga_probe_nvidia_3d0_quirk(vdev);
2006 static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev)
2008 VFIOQuirk *quirk;
2009 int i;
2011 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
2012 QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) {
2013 memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem);
2018 static void vfio_vga_quirk_free(VFIOPCIDevice *vdev)
2020 int i;
2022 for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
2023 while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) {
2024 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks);
2025 object_unparent(OBJECT(&quirk->mem));
2026 QLIST_REMOVE(quirk, next);
2027 g_free(quirk);
2032 static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
2034 vfio_probe_ati_bar4_window_quirk(vdev, nr);
2035 vfio_probe_ati_bar2_4000_quirk(vdev, nr);
2036 vfio_probe_nvidia_bar5_window_quirk(vdev, nr);
2037 vfio_probe_nvidia_bar0_88000_quirk(vdev, nr);
2038 vfio_probe_nvidia_bar0_1800_quirk(vdev, nr);
2039 vfio_probe_rtl8168_bar2_window_quirk(vdev, nr);
2042 static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr)
2044 VFIOBAR *bar = &vdev->bars[nr];
2045 VFIOQuirk *quirk;
2047 QLIST_FOREACH(quirk, &bar->quirks, next) {
2048 memory_region_del_subregion(&bar->region.mem, &quirk->mem);
2052 static void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr)
2054 VFIOBAR *bar = &vdev->bars[nr];
2056 while (!QLIST_EMPTY(&bar->quirks)) {
2057 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
2058 object_unparent(OBJECT(&quirk->mem));
2059 QLIST_REMOVE(quirk, next);
2060 g_free(quirk);
2065 * PCI config space
2067 static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len)
2069 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2070 uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val;
2072 memcpy(&emu_bits, vdev->emulated_config_bits + addr, len);
2073 emu_bits = le32_to_cpu(emu_bits);
2075 if (emu_bits) {
2076 emu_val = pci_default_read_config(pdev, addr, len);
2079 if (~emu_bits & (0xffffffffU >> (32 - len * 8))) {
2080 ssize_t ret;
2082 ret = pread(vdev->vbasedev.fd, &phys_val, len,
2083 vdev->config_offset + addr);
2084 if (ret != len) {
2085 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m",
2086 __func__, vdev->host.domain, vdev->host.bus,
2087 vdev->host.slot, vdev->host.function, addr, len);
2088 return -errno;
2090 phys_val = le32_to_cpu(phys_val);
2093 val = (emu_val & emu_bits) | (phys_val & ~emu_bits);
2095 trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val);
2097 return val;
2100 static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
2101 uint32_t val, int len)
2103 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
2104 uint32_t val_le = cpu_to_le32(val);
2106 trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len);
2108 /* Write everything to VFIO, let it filter out what we can't write */
2109 if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr)
2110 != len) {
2111 error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m",
2112 __func__, vdev->host.domain, vdev->host.bus,
2113 vdev->host.slot, vdev->host.function, addr, val, len);
2116 /* MSI/MSI-X Enabling/Disabling */
2117 if (pdev->cap_present & QEMU_PCI_CAP_MSI &&
2118 ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) {
2119 int is_enabled, was_enabled = msi_enabled(pdev);
2121 pci_default_write_config(pdev, addr, val, len);
2123 is_enabled = msi_enabled(pdev);
2125 if (!was_enabled) {
2126 if (is_enabled) {
2127 vfio_enable_msi(vdev);
2129 } else {
2130 if (!is_enabled) {
2131 vfio_disable_msi(vdev);
2132 } else {
2133 vfio_update_msi(vdev);
2136 } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX &&
2137 ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) {
2138 int is_enabled, was_enabled = msix_enabled(pdev);
2140 pci_default_write_config(pdev, addr, val, len);
2142 is_enabled = msix_enabled(pdev);
2144 if (!was_enabled && is_enabled) {
2145 vfio_enable_msix(vdev);
2146 } else if (was_enabled && !is_enabled) {
2147 vfio_disable_msix(vdev);
2149 } else {
2150 /* Write everything to QEMU to keep emulated bits correct */
2151 pci_default_write_config(pdev, addr, val, len);
2156 * Interrupt setup
2158 static void vfio_disable_interrupts(VFIOPCIDevice *vdev)
2161 * More complicated than it looks. Disabling MSI/X transitions the
2162 * device to INTx mode (if supported). Therefore we need to first
2163 * disable MSI/X and then cleanup by disabling INTx.
2165 if (vdev->interrupt == VFIO_INT_MSIX) {
2166 vfio_disable_msix(vdev);
2167 } else if (vdev->interrupt == VFIO_INT_MSI) {
2168 vfio_disable_msi(vdev);
2171 if (vdev->interrupt == VFIO_INT_INTx) {
2172 vfio_disable_intx(vdev);
2176 static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos)
2178 uint16_t ctrl;
2179 bool msi_64bit, msi_maskbit;
2180 int ret, entries;
2182 if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl),
2183 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2184 return -errno;
2186 ctrl = le16_to_cpu(ctrl);
2188 msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT);
2189 msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT);
2190 entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1);
2192 trace_vfio_setup_msi(vdev->vbasedev.name, pos);
2194 ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit);
2195 if (ret < 0) {
2196 if (ret == -ENOTSUP) {
2197 return 0;
2199 error_report("vfio: msi_init failed");
2200 return ret;
2202 vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0);
2204 return 0;
2208 * We don't have any control over how pci_add_capability() inserts
2209 * capabilities into the chain. In order to setup MSI-X we need a
2210 * MemoryRegion for the BAR. In order to setup the BAR and not
2211 * attempt to mmap the MSI-X table area, which VFIO won't allow, we
2212 * need to first look for where the MSI-X table lives. So we
2213 * unfortunately split MSI-X setup across two functions.
2215 static int vfio_early_setup_msix(VFIOPCIDevice *vdev)
2217 uint8_t pos;
2218 uint16_t ctrl;
2219 uint32_t table, pba;
2220 int fd = vdev->vbasedev.fd;
2222 pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX);
2223 if (!pos) {
2224 return 0;
2227 if (pread(fd, &ctrl, sizeof(ctrl),
2228 vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
2229 return -errno;
2232 if (pread(fd, &table, sizeof(table),
2233 vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) {
2234 return -errno;
2237 if (pread(fd, &pba, sizeof(pba),
2238 vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) {
2239 return -errno;
2242 ctrl = le16_to_cpu(ctrl);
2243 table = le32_to_cpu(table);
2244 pba = le32_to_cpu(pba);
2246 vdev->msix = g_malloc0(sizeof(*(vdev->msix)));
2247 vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK;
2248 vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK;
2249 vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK;
2250 vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK;
2251 vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
2254 * Test the size of the pba_offset variable and catch if it extends outside
2255 * of the specified BAR. If it is the case, we need to apply a hardware
2256 * specific quirk if the device is known or we have a broken configuration.
2258 if (vdev->msix->pba_offset >=
2259 vdev->bars[vdev->msix->pba_bar].region.size) {
2261 PCIDevice *pdev = &vdev->pdev;
2262 uint16_t vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
2263 uint16_t device = pci_get_word(pdev->config + PCI_DEVICE_ID);
2266 * Chelsio T5 Virtual Function devices are encoded as 0x58xx for T5
2267 * adapters. The T5 hardware returns an incorrect value of 0x8000 for
2268 * the VF PBA offset while the BAR itself is only 8k. The correct value
2269 * is 0x1000, so we hard code that here.
2271 if (vendor == PCI_VENDOR_ID_CHELSIO && (device & 0xff00) == 0x5800) {
2272 vdev->msix->pba_offset = 0x1000;
2273 } else {
2274 error_report("vfio: Hardware reports invalid configuration, "
2275 "MSIX PBA outside of specified BAR");
2276 return -EINVAL;
2280 trace_vfio_early_setup_msix(vdev->vbasedev.name, pos,
2281 vdev->msix->table_bar,
2282 vdev->msix->table_offset,
2283 vdev->msix->entries);
2285 return 0;
2288 static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos)
2290 int ret;
2292 ret = msix_init(&vdev->pdev, vdev->msix->entries,
2293 &vdev->bars[vdev->msix->table_bar].region.mem,
2294 vdev->msix->table_bar, vdev->msix->table_offset,
2295 &vdev->bars[vdev->msix->pba_bar].region.mem,
2296 vdev->msix->pba_bar, vdev->msix->pba_offset, pos);
2297 if (ret < 0) {
2298 if (ret == -ENOTSUP) {
2299 return 0;
2301 error_report("vfio: msix_init failed");
2302 return ret;
2305 return 0;
2308 static void vfio_teardown_msi(VFIOPCIDevice *vdev)
2310 msi_uninit(&vdev->pdev);
2312 if (vdev->msix) {
2313 msix_uninit(&vdev->pdev,
2314 &vdev->bars[vdev->msix->table_bar].region.mem,
2315 &vdev->bars[vdev->msix->pba_bar].region.mem);
2320 * Resource setup
2322 static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled)
2324 int i;
2326 for (i = 0; i < PCI_ROM_SLOT; i++) {
2327 VFIOBAR *bar = &vdev->bars[i];
2329 if (!bar->region.size) {
2330 continue;
2333 memory_region_set_enabled(&bar->region.mmap_mem, enabled);
2334 if (vdev->msix && vdev->msix->table_bar == i) {
2335 memory_region_set_enabled(&vdev->msix->mmap_mem, enabled);
2340 static void vfio_unregister_bar(VFIOPCIDevice *vdev, int nr)
2342 VFIOBAR *bar = &vdev->bars[nr];
2344 if (!bar->region.size) {
2345 return;
2348 vfio_bar_quirk_teardown(vdev, nr);
2350 memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem);
2352 if (vdev->msix && vdev->msix->table_bar == nr) {
2353 memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem);
2357 static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr)
2359 VFIOBAR *bar = &vdev->bars[nr];
2361 if (!bar->region.size) {
2362 return;
2365 vfio_bar_quirk_free(vdev, nr);
2367 munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem));
2369 if (vdev->msix && vdev->msix->table_bar == nr) {
2370 munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem));
2374 static void vfio_map_bar(VFIOPCIDevice *vdev, int nr)
2376 VFIOBAR *bar = &vdev->bars[nr];
2377 uint64_t size = bar->region.size;
2378 char name[64];
2379 uint32_t pci_bar;
2380 uint8_t type;
2381 int ret;
2383 /* Skip both unimplemented BARs and the upper half of 64bit BARS. */
2384 if (!size) {
2385 return;
2388 snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d",
2389 vdev->host.domain, vdev->host.bus, vdev->host.slot,
2390 vdev->host.function, nr);
2392 /* Determine what type of BAR this is for registration */
2393 ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar),
2394 vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr));
2395 if (ret != sizeof(pci_bar)) {
2396 error_report("vfio: Failed to read BAR %d (%m)", nr);
2397 return;
2400 pci_bar = le32_to_cpu(pci_bar);
2401 bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO);
2402 bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64);
2403 type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK :
2404 ~PCI_BASE_ADDRESS_MEM_MASK);
2406 /* A "slow" read/write mapping underlies all BARs */
2407 memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops,
2408 bar, name, size);
2409 pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem);
2412 * We can't mmap areas overlapping the MSIX vector table, so we
2413 * potentially insert a direct-mapped subregion before and after it.
2415 if (vdev->msix && vdev->msix->table_bar == nr) {
2416 size = vdev->msix->table_offset & qemu_real_host_page_mask;
2419 strncat(name, " mmap", sizeof(name) - strlen(name) - 1);
2420 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2421 &bar->region.mmap_mem, &bar->region.mmap,
2422 size, 0, name)) {
2423 error_report("%s unsupported. Performance may be slow", name);
2426 if (vdev->msix && vdev->msix->table_bar == nr) {
2427 uint64_t start;
2429 start = REAL_HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset +
2430 (vdev->msix->entries *
2431 PCI_MSIX_ENTRY_SIZE));
2433 size = start < bar->region.size ? bar->region.size - start : 0;
2434 strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1);
2435 /* VFIOMSIXInfo contains another MemoryRegion for this mapping */
2436 if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
2437 &vdev->msix->mmap_mem,
2438 &vdev->msix->mmap, size, start, name)) {
2439 error_report("%s unsupported. Performance may be slow", name);
2443 vfio_bar_quirk_setup(vdev, nr);
2446 static void vfio_map_bars(VFIOPCIDevice *vdev)
2448 int i;
2450 for (i = 0; i < PCI_ROM_SLOT; i++) {
2451 vfio_map_bar(vdev, i);
2454 if (vdev->has_vga) {
2455 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2456 OBJECT(vdev), &vfio_vga_ops,
2457 &vdev->vga.region[QEMU_PCI_VGA_MEM],
2458 "vfio-vga-mmio@0xa0000",
2459 QEMU_PCI_VGA_MEM_SIZE);
2460 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2461 OBJECT(vdev), &vfio_vga_ops,
2462 &vdev->vga.region[QEMU_PCI_VGA_IO_LO],
2463 "vfio-vga-io@0x3b0",
2464 QEMU_PCI_VGA_IO_LO_SIZE);
2465 memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
2466 OBJECT(vdev), &vfio_vga_ops,
2467 &vdev->vga.region[QEMU_PCI_VGA_IO_HI],
2468 "vfio-vga-io@0x3c0",
2469 QEMU_PCI_VGA_IO_HI_SIZE);
2471 pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
2472 &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
2473 &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem);
2474 vfio_vga_quirk_setup(vdev);
2478 static void vfio_unregister_bars(VFIOPCIDevice *vdev)
2480 int i;
2482 for (i = 0; i < PCI_ROM_SLOT; i++) {
2483 vfio_unregister_bar(vdev, i);
2486 if (vdev->has_vga) {
2487 vfio_vga_quirk_teardown(vdev);
2488 pci_unregister_vga(&vdev->pdev);
2492 static void vfio_unmap_bars(VFIOPCIDevice *vdev)
2494 int i;
2496 for (i = 0; i < PCI_ROM_SLOT; i++) {
2497 vfio_unmap_bar(vdev, i);
2500 if (vdev->has_vga) {
2501 vfio_vga_quirk_free(vdev);
2506 * General setup
2508 static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos)
2510 uint8_t tmp, next = 0xff;
2512 for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp;
2513 tmp = pdev->config[tmp + 1]) {
2514 if (tmp > pos && tmp < next) {
2515 next = tmp;
2519 return next - pos;
2522 static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask)
2524 pci_set_word(buf, (pci_get_word(buf) & ~mask) | val);
2527 static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos,
2528 uint16_t val, uint16_t mask)
2530 vfio_set_word_bits(vdev->pdev.config + pos, val, mask);
2531 vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask);
2532 vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask);
2535 static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask)
2537 pci_set_long(buf, (pci_get_long(buf) & ~mask) | val);
2540 static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos,
2541 uint32_t val, uint32_t mask)
2543 vfio_set_long_bits(vdev->pdev.config + pos, val, mask);
2544 vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask);
2545 vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask);
2548 static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size)
2550 uint16_t flags;
2551 uint8_t type;
2553 flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS);
2554 type = (flags & PCI_EXP_FLAGS_TYPE) >> 4;
2556 if (type != PCI_EXP_TYPE_ENDPOINT &&
2557 type != PCI_EXP_TYPE_LEG_END &&
2558 type != PCI_EXP_TYPE_RC_END) {
2560 error_report("vfio: Assignment of PCIe type 0x%x "
2561 "devices is not currently supported", type);
2562 return -EINVAL;
2565 if (!pci_bus_is_express(vdev->pdev.bus)) {
2567 * Use express capability as-is on PCI bus. It doesn't make much
2568 * sense to even expose, but some drivers (ex. tg3) depend on it
2569 * and guests don't seem to be particular about it. We'll need
2570 * to revist this or force express devices to express buses if we
2571 * ever expose an IOMMU to the guest.
2573 } else if (pci_bus_is_root(vdev->pdev.bus)) {
2575 * On a Root Complex bus Endpoints become Root Complex Integrated
2576 * Endpoints, which changes the type and clears the LNK & LNK2 fields.
2578 if (type == PCI_EXP_TYPE_ENDPOINT) {
2579 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2580 PCI_EXP_TYPE_RC_END << 4,
2581 PCI_EXP_FLAGS_TYPE);
2583 /* Link Capabilities, Status, and Control goes away */
2584 if (size > PCI_EXP_LNKCTL) {
2585 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0);
2586 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2587 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0);
2589 #ifndef PCI_EXP_LNKCAP2
2590 #define PCI_EXP_LNKCAP2 44
2591 #endif
2592 #ifndef PCI_EXP_LNKSTA2
2593 #define PCI_EXP_LNKSTA2 50
2594 #endif
2595 /* Link 2 Capabilities, Status, and Control goes away */
2596 if (size > PCI_EXP_LNKCAP2) {
2597 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0);
2598 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0);
2599 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0);
2603 } else if (type == PCI_EXP_TYPE_LEG_END) {
2605 * Legacy endpoints don't belong on the root complex. Windows
2606 * seems to be happier with devices if we skip the capability.
2608 return 0;
2611 } else {
2613 * Convert Root Complex Integrated Endpoints to regular endpoints.
2614 * These devices don't support LNK/LNK2 capabilities, so make them up.
2616 if (type == PCI_EXP_TYPE_RC_END) {
2617 vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
2618 PCI_EXP_TYPE_ENDPOINT << 4,
2619 PCI_EXP_FLAGS_TYPE);
2620 vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP,
2621 PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0);
2622 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
2625 /* Mark the Link Status bits as emulated to allow virtual negotiation */
2626 vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA,
2627 pci_get_word(vdev->pdev.config + pos +
2628 PCI_EXP_LNKSTA),
2629 PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS);
2632 pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size);
2633 if (pos >= 0) {
2634 vdev->pdev.exp.exp_cap = pos;
2637 return pos;
2640 static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos)
2642 uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP);
2644 if (cap & PCI_EXP_DEVCAP_FLR) {
2645 trace_vfio_check_pcie_flr(vdev->vbasedev.name);
2646 vdev->has_flr = true;
2650 static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos)
2652 uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL);
2654 if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) {
2655 trace_vfio_check_pm_reset(vdev->vbasedev.name);
2656 vdev->has_pm_reset = true;
2660 static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos)
2662 uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP);
2664 if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) {
2665 trace_vfio_check_af_flr(vdev->vbasedev.name);
2666 vdev->has_flr = true;
2670 static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos)
2672 PCIDevice *pdev = &vdev->pdev;
2673 uint8_t cap_id, next, size;
2674 int ret;
2676 cap_id = pdev->config[pos];
2677 next = pdev->config[pos + 1];
2680 * If it becomes important to configure capabilities to their actual
2681 * size, use this as the default when it's something we don't recognize.
2682 * Since QEMU doesn't actually handle many of the config accesses,
2683 * exact size doesn't seem worthwhile.
2685 size = vfio_std_cap_max_size(pdev, pos);
2688 * pci_add_capability always inserts the new capability at the head
2689 * of the chain. Therefore to end up with a chain that matches the
2690 * physical device, we insert from the end by making this recursive.
2691 * This is also why we pre-caclulate size above as cached config space
2692 * will be changed as we unwind the stack.
2694 if (next) {
2695 ret = vfio_add_std_cap(vdev, next);
2696 if (ret) {
2697 return ret;
2699 } else {
2700 /* Begin the rebuild, use QEMU emulated list bits */
2701 pdev->config[PCI_CAPABILITY_LIST] = 0;
2702 vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff;
2703 vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
2706 /* Use emulated next pointer to allow dropping caps */
2707 pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff);
2709 switch (cap_id) {
2710 case PCI_CAP_ID_MSI:
2711 ret = vfio_setup_msi(vdev, pos);
2712 break;
2713 case PCI_CAP_ID_EXP:
2714 vfio_check_pcie_flr(vdev, pos);
2715 ret = vfio_setup_pcie_cap(vdev, pos, size);
2716 break;
2717 case PCI_CAP_ID_MSIX:
2718 ret = vfio_setup_msix(vdev, pos);
2719 break;
2720 case PCI_CAP_ID_PM:
2721 vfio_check_pm_reset(vdev, pos);
2722 vdev->pm_cap = pos;
2723 ret = pci_add_capability(pdev, cap_id, pos, size);
2724 break;
2725 case PCI_CAP_ID_AF:
2726 vfio_check_af_flr(vdev, pos);
2727 ret = pci_add_capability(pdev, cap_id, pos, size);
2728 break;
2729 default:
2730 ret = pci_add_capability(pdev, cap_id, pos, size);
2731 break;
2734 if (ret < 0) {
2735 error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability "
2736 "0x%x[0x%x]@0x%x: %d", vdev->host.domain,
2737 vdev->host.bus, vdev->host.slot, vdev->host.function,
2738 cap_id, size, pos, ret);
2739 return ret;
2742 return 0;
2745 static int vfio_add_capabilities(VFIOPCIDevice *vdev)
2747 PCIDevice *pdev = &vdev->pdev;
2749 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) ||
2750 !pdev->config[PCI_CAPABILITY_LIST]) {
2751 return 0; /* Nothing to add */
2754 return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]);
2757 static void vfio_pci_pre_reset(VFIOPCIDevice *vdev)
2759 PCIDevice *pdev = &vdev->pdev;
2760 uint16_t cmd;
2762 vfio_disable_interrupts(vdev);
2764 /* Make sure the device is in D0 */
2765 if (vdev->pm_cap) {
2766 uint16_t pmcsr;
2767 uint8_t state;
2769 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2770 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2771 if (state) {
2772 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2773 vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2);
2774 /* vfio handles the necessary delay here */
2775 pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
2776 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
2777 if (state) {
2778 error_report("vfio: Unable to power on device, stuck in D%d",
2779 state);
2785 * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master.
2786 * Also put INTx Disable in known state.
2788 cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2);
2789 cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
2790 PCI_COMMAND_INTX_DISABLE);
2791 vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2);
2794 static void vfio_pci_post_reset(VFIOPCIDevice *vdev)
2796 vfio_enable_intx(vdev);
2799 static bool vfio_pci_host_match(PCIHostDeviceAddress *host1,
2800 PCIHostDeviceAddress *host2)
2802 return (host1->domain == host2->domain && host1->bus == host2->bus &&
2803 host1->slot == host2->slot && host1->function == host2->function);
2806 static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single)
2808 VFIOGroup *group;
2809 struct vfio_pci_hot_reset_info *info;
2810 struct vfio_pci_dependent_device *devices;
2811 struct vfio_pci_hot_reset *reset;
2812 int32_t *fds;
2813 int ret, i, count;
2814 bool multi = false;
2816 trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi");
2818 vfio_pci_pre_reset(vdev);
2819 vdev->vbasedev.needs_reset = false;
2821 info = g_malloc0(sizeof(*info));
2822 info->argsz = sizeof(*info);
2824 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2825 if (ret && errno != ENOSPC) {
2826 ret = -errno;
2827 if (!vdev->has_pm_reset) {
2828 error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, "
2829 "no available reset mechanism.", vdev->host.domain,
2830 vdev->host.bus, vdev->host.slot, vdev->host.function);
2832 goto out_single;
2835 count = info->count;
2836 info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices)));
2837 info->argsz = sizeof(*info) + (count * sizeof(*devices));
2838 devices = &info->devices[0];
2840 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
2841 if (ret) {
2842 ret = -errno;
2843 error_report("vfio: hot reset info failed: %m");
2844 goto out_single;
2847 trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name);
2849 /* Verify that we have all the groups required */
2850 for (i = 0; i < info->count; i++) {
2851 PCIHostDeviceAddress host;
2852 VFIOPCIDevice *tmp;
2853 VFIODevice *vbasedev_iter;
2855 host.domain = devices[i].segment;
2856 host.bus = devices[i].bus;
2857 host.slot = PCI_SLOT(devices[i].devfn);
2858 host.function = PCI_FUNC(devices[i].devfn);
2860 trace_vfio_pci_hot_reset_dep_devices(host.domain,
2861 host.bus, host.slot, host.function, devices[i].group_id);
2863 if (vfio_pci_host_match(&host, &vdev->host)) {
2864 continue;
2867 QLIST_FOREACH(group, &vfio_group_list, next) {
2868 if (group->groupid == devices[i].group_id) {
2869 break;
2873 if (!group) {
2874 if (!vdev->has_pm_reset) {
2875 error_report("vfio: Cannot reset device %s, "
2876 "depends on group %d which is not owned.",
2877 vdev->vbasedev.name, devices[i].group_id);
2879 ret = -EPERM;
2880 goto out;
2883 /* Prep dependent devices for reset and clear our marker. */
2884 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2885 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2886 continue;
2888 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2889 if (vfio_pci_host_match(&host, &tmp->host)) {
2890 if (single) {
2891 ret = -EINVAL;
2892 goto out_single;
2894 vfio_pci_pre_reset(tmp);
2895 tmp->vbasedev.needs_reset = false;
2896 multi = true;
2897 break;
2902 if (!single && !multi) {
2903 ret = -EINVAL;
2904 goto out_single;
2907 /* Determine how many group fds need to be passed */
2908 count = 0;
2909 QLIST_FOREACH(group, &vfio_group_list, next) {
2910 for (i = 0; i < info->count; i++) {
2911 if (group->groupid == devices[i].group_id) {
2912 count++;
2913 break;
2918 reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds)));
2919 reset->argsz = sizeof(*reset) + (count * sizeof(*fds));
2920 fds = &reset->group_fds[0];
2922 /* Fill in group fds */
2923 QLIST_FOREACH(group, &vfio_group_list, next) {
2924 for (i = 0; i < info->count; i++) {
2925 if (group->groupid == devices[i].group_id) {
2926 fds[reset->count++] = group->fd;
2927 break;
2932 /* Bus reset! */
2933 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset);
2934 g_free(reset);
2936 trace_vfio_pci_hot_reset_result(vdev->vbasedev.name,
2937 ret ? "%m" : "Success");
2939 out:
2940 /* Re-enable INTx on affected devices */
2941 for (i = 0; i < info->count; i++) {
2942 PCIHostDeviceAddress host;
2943 VFIOPCIDevice *tmp;
2944 VFIODevice *vbasedev_iter;
2946 host.domain = devices[i].segment;
2947 host.bus = devices[i].bus;
2948 host.slot = PCI_SLOT(devices[i].devfn);
2949 host.function = PCI_FUNC(devices[i].devfn);
2951 if (vfio_pci_host_match(&host, &vdev->host)) {
2952 continue;
2955 QLIST_FOREACH(group, &vfio_group_list, next) {
2956 if (group->groupid == devices[i].group_id) {
2957 break;
2961 if (!group) {
2962 break;
2965 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
2966 if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
2967 continue;
2969 tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
2970 if (vfio_pci_host_match(&host, &tmp->host)) {
2971 vfio_pci_post_reset(tmp);
2972 break;
2976 out_single:
2977 vfio_pci_post_reset(vdev);
2978 g_free(info);
2980 return ret;
2984 * We want to differentiate hot reset of mulitple in-use devices vs hot reset
2985 * of a single in-use device. VFIO_DEVICE_RESET will already handle the case
2986 * of doing hot resets when there is only a single device per bus. The in-use
2987 * here refers to how many VFIODevices are affected. A hot reset that affects
2988 * multiple devices, but only a single in-use device, means that we can call
2989 * it from our bus ->reset() callback since the extent is effectively a single
2990 * device. This allows us to make use of it in the hotplug path. When there
2991 * are multiple in-use devices, we can only trigger the hot reset during a
2992 * system reset and thus from our reset handler. We separate _one vs _multi
2993 * here so that we don't overlap and do a double reset on the system reset
2994 * path where both our reset handler and ->reset() callback are used. Calling
2995 * _one() will only do a hot reset for the one in-use devices case, calling
2996 * _multi() will do nothing if a _one() would have been sufficient.
2998 static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev)
3000 return vfio_pci_hot_reset(vdev, true);
3003 static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev)
3005 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
3006 return vfio_pci_hot_reset(vdev, false);
3009 static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev)
3011 VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
3012 if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) {
3013 vbasedev->needs_reset = true;
3017 static VFIODeviceOps vfio_pci_ops = {
3018 .vfio_compute_needs_reset = vfio_pci_compute_needs_reset,
3019 .vfio_hot_reset_multi = vfio_pci_hot_reset_multi,
3020 .vfio_eoi = vfio_eoi,
3023 static int vfio_populate_device(VFIOPCIDevice *vdev)
3025 VFIODevice *vbasedev = &vdev->vbasedev;
3026 struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) };
3027 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) };
3028 int i, ret = -1;
3030 /* Sanity check device */
3031 if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) {
3032 error_report("vfio: Um, this isn't a PCI device");
3033 goto error;
3036 if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) {
3037 error_report("vfio: unexpected number of io regions %u",
3038 vbasedev->num_regions);
3039 goto error;
3042 if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) {
3043 error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs);
3044 goto error;
3047 for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) {
3048 reg_info.index = i;
3050 ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
3051 if (ret) {
3052 error_report("vfio: Error getting region %d info: %m", i);
3053 goto error;
3056 trace_vfio_populate_device_region(vbasedev->name, i,
3057 (unsigned long)reg_info.size,
3058 (unsigned long)reg_info.offset,
3059 (unsigned long)reg_info.flags);
3061 vdev->bars[i].region.vbasedev = vbasedev;
3062 vdev->bars[i].region.flags = reg_info.flags;
3063 vdev->bars[i].region.size = reg_info.size;
3064 vdev->bars[i].region.fd_offset = reg_info.offset;
3065 vdev->bars[i].region.nr = i;
3066 QLIST_INIT(&vdev->bars[i].quirks);
3069 reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX;
3071 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
3072 if (ret) {
3073 error_report("vfio: Error getting config info: %m");
3074 goto error;
3077 trace_vfio_populate_device_config(vdev->vbasedev.name,
3078 (unsigned long)reg_info.size,
3079 (unsigned long)reg_info.offset,
3080 (unsigned long)reg_info.flags);
3082 vdev->config_size = reg_info.size;
3083 if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) {
3084 vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS;
3086 vdev->config_offset = reg_info.offset;
3088 if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) &&
3089 vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) {
3090 struct vfio_region_info vga_info = {
3091 .argsz = sizeof(vga_info),
3092 .index = VFIO_PCI_VGA_REGION_INDEX,
3095 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info);
3096 if (ret) {
3097 error_report(
3098 "vfio: Device does not support requested feature x-vga");
3099 goto error;
3102 if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) ||
3103 !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) ||
3104 vga_info.size < 0xbffff + 1) {
3105 error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx",
3106 (unsigned long)vga_info.flags,
3107 (unsigned long)vga_info.size);
3108 goto error;
3111 vdev->vga.fd_offset = vga_info.offset;
3112 vdev->vga.fd = vdev->vbasedev.fd;
3114 vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE;
3115 vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM;
3116 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks);
3118 vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE;
3119 vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO;
3120 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks);
3122 vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE;
3123 vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI;
3124 QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks);
3126 vdev->has_vga = true;
3129 irq_info.index = VFIO_PCI_ERR_IRQ_INDEX;
3131 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info);
3132 if (ret) {
3133 /* This can fail for an old kernel or legacy PCI dev */
3134 trace_vfio_populate_device_get_irq_info_failure();
3135 ret = 0;
3136 } else if (irq_info.count == 1) {
3137 vdev->pci_aer = true;
3138 } else {
3139 error_report("vfio: %s "
3140 "Could not enable error recovery for the device",
3141 vbasedev->name);
3144 error:
3145 return ret;
3148 static void vfio_put_device(VFIOPCIDevice *vdev)
3150 g_free(vdev->vbasedev.name);
3151 if (vdev->msix) {
3152 object_unparent(OBJECT(&vdev->msix->mmap_mem));
3153 g_free(vdev->msix);
3154 vdev->msix = NULL;
3156 vfio_put_base_device(&vdev->vbasedev);
3159 static void vfio_err_notifier_handler(void *opaque)
3161 VFIOPCIDevice *vdev = opaque;
3163 if (!event_notifier_test_and_clear(&vdev->err_notifier)) {
3164 return;
3168 * TBD. Retrieve the error details and decide what action
3169 * needs to be taken. One of the actions could be to pass
3170 * the error to the guest and have the guest driver recover
3171 * from the error. This requires that PCIe capabilities be
3172 * exposed to the guest. For now, we just terminate the
3173 * guest to contain the error.
3176 error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. "
3177 "Please collect any data possible and then kill the guest",
3178 __func__, vdev->host.domain, vdev->host.bus,
3179 vdev->host.slot, vdev->host.function);
3181 vm_stop(RUN_STATE_INTERNAL_ERROR);
3185 * Registers error notifier for devices supporting error recovery.
3186 * If we encounter a failure in this function, we report an error
3187 * and continue after disabling error recovery support for the
3188 * device.
3190 static void vfio_register_err_notifier(VFIOPCIDevice *vdev)
3192 int ret;
3193 int argsz;
3194 struct vfio_irq_set *irq_set;
3195 int32_t *pfd;
3197 if (!vdev->pci_aer) {
3198 return;
3201 if (event_notifier_init(&vdev->err_notifier, 0)) {
3202 error_report("vfio: Unable to init event notifier for error detection");
3203 vdev->pci_aer = false;
3204 return;
3207 argsz = sizeof(*irq_set) + sizeof(*pfd);
3209 irq_set = g_malloc0(argsz);
3210 irq_set->argsz = argsz;
3211 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3212 VFIO_IRQ_SET_ACTION_TRIGGER;
3213 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3214 irq_set->start = 0;
3215 irq_set->count = 1;
3216 pfd = (int32_t *)&irq_set->data;
3218 *pfd = event_notifier_get_fd(&vdev->err_notifier);
3219 qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev);
3221 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3222 if (ret) {
3223 error_report("vfio: Failed to set up error notification");
3224 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3225 event_notifier_cleanup(&vdev->err_notifier);
3226 vdev->pci_aer = false;
3228 g_free(irq_set);
3231 static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev)
3233 int argsz;
3234 struct vfio_irq_set *irq_set;
3235 int32_t *pfd;
3236 int ret;
3238 if (!vdev->pci_aer) {
3239 return;
3242 argsz = sizeof(*irq_set) + sizeof(*pfd);
3244 irq_set = g_malloc0(argsz);
3245 irq_set->argsz = argsz;
3246 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3247 VFIO_IRQ_SET_ACTION_TRIGGER;
3248 irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
3249 irq_set->start = 0;
3250 irq_set->count = 1;
3251 pfd = (int32_t *)&irq_set->data;
3252 *pfd = -1;
3254 ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
3255 if (ret) {
3256 error_report("vfio: Failed to de-assign error fd: %m");
3258 g_free(irq_set);
3259 qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier),
3260 NULL, NULL, vdev);
3261 event_notifier_cleanup(&vdev->err_notifier);
3264 static void vfio_req_notifier_handler(void *opaque)
3266 VFIOPCIDevice *vdev = opaque;
3268 if (!event_notifier_test_and_clear(&vdev->req_notifier)) {
3269 return;
3272 qdev_unplug(&vdev->pdev.qdev, NULL);
3275 static void vfio_register_req_notifier(VFIOPCIDevice *vdev)
3277 struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info),
3278 .index = VFIO_PCI_REQ_IRQ_INDEX };
3279 int argsz;
3280 struct vfio_irq_set *irq_set;
3281 int32_t *pfd;
3283 if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) {
3284 return;
3287 if (ioctl(vdev->vbasedev.fd,
3288 VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) {
3289 return;
3292 if (event_notifier_init(&vdev->req_notifier, 0)) {
3293 error_report("vfio: Unable to init event notifier for device request");
3294 return;
3297 argsz = sizeof(*irq_set) + sizeof(*pfd);
3299 irq_set = g_malloc0(argsz);
3300 irq_set->argsz = argsz;
3301 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3302 VFIO_IRQ_SET_ACTION_TRIGGER;
3303 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
3304 irq_set->start = 0;
3305 irq_set->count = 1;
3306 pfd = (int32_t *)&irq_set->data;
3308 *pfd = event_notifier_get_fd(&vdev->req_notifier);
3309 qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev);
3311 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
3312 error_report("vfio: Failed to set up device request notification");
3313 qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
3314 event_notifier_cleanup(&vdev->req_notifier);
3315 } else {
3316 vdev->req_enabled = true;
3319 g_free(irq_set);
3322 static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev)
3324 int argsz;
3325 struct vfio_irq_set *irq_set;
3326 int32_t *pfd;
3328 if (!vdev->req_enabled) {
3329 return;
3332 argsz = sizeof(*irq_set) + sizeof(*pfd);
3334 irq_set = g_malloc0(argsz);
3335 irq_set->argsz = argsz;
3336 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
3337 VFIO_IRQ_SET_ACTION_TRIGGER;
3338 irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
3339 irq_set->start = 0;
3340 irq_set->count = 1;
3341 pfd = (int32_t *)&irq_set->data;
3342 *pfd = -1;
3344 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
3345 error_report("vfio: Failed to de-assign device request fd: %m");
3347 g_free(irq_set);
3348 qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier),
3349 NULL, NULL, vdev);
3350 event_notifier_cleanup(&vdev->req_notifier);
3352 vdev->req_enabled = false;
3356 * AMD Radeon PCI config reset, based on Linux:
3357 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
3358 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
3359 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
3360 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
3361 * IDs: include/drm/drm_pciids.h
3362 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
3364 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
3365 * hardware that should be fixed on future ASICs. The symptom of this is that
3366 * once the accerlated driver loads, Windows guests will bsod on subsequent
3367 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
3368 * work around this, we do an AMD specific PCI config reset, followed by an SMC
3369 * reset. The PCI config reset only works if SMC firmware is running, so we
3370 * have a dependency on the state of the device as to whether this reset will
3371 * be effective. There are still cases where we won't be able to kick the
3372 * device into working, but this greatly improves the usability overall. The
3373 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
3374 * poking is largely ASIC specific.
3376 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
3378 uint32_t clk, pc_c;
3381 * Registers 200h and 204h are index and data registers for acessing
3382 * indirect configuration registers within the device.
3384 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
3385 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3386 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
3387 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3389 return (!(clk & 1) && (0x20100 <= pc_c));
3393 * The scope of a config reset is controlled by a mode bit in the misc register
3394 * and a fuse, exposed as a bit in another register. The fuse is the default
3395 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
3396 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
3397 * the fuse. A truth table therefore tells us that if misc == fuse, we need
3398 * to flip the value of the bit in the misc register.
3400 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
3402 uint32_t misc, fuse;
3403 bool a, b;
3405 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
3406 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3407 b = fuse & 64;
3409 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
3410 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3411 a = misc & 2;
3413 if (a == b) {
3414 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
3415 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
3419 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
3421 PCIDevice *pdev = &vdev->pdev;
3422 int i, ret = 0;
3423 uint32_t data;
3425 /* Defer to a kernel implemented reset */
3426 if (vdev->vbasedev.reset_works) {
3427 return -ENODEV;
3430 /* Enable only memory BAR access */
3431 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
3433 /* Reset only works if SMC firmware is loaded and running */
3434 if (!vfio_radeon_smc_is_running(vdev)) {
3435 ret = -EINVAL;
3436 goto out;
3439 /* Make sure only the GFX function is reset */
3440 vfio_radeon_set_gfx_only_reset(vdev);
3442 /* AMD PCI config reset */
3443 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
3444 usleep(100);
3446 /* Read back the memory size to make sure we're out of reset */
3447 for (i = 0; i < 100000; i++) {
3448 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
3449 break;
3451 usleep(1);
3454 /* Reset SMC */
3455 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
3456 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3457 data |= 1;
3458 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
3460 /* Disable SMC clock */
3461 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
3462 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
3463 data |= 1;
3464 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
3466 out:
3467 /* Restore PCI command register */
3468 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
3470 return ret;
3473 static void vfio_setup_resetfn(VFIOPCIDevice *vdev)
3475 PCIDevice *pdev = &vdev->pdev;
3476 uint16_t vendor, device;
3478 vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
3479 device = pci_get_word(pdev->config + PCI_DEVICE_ID);
3481 switch (vendor) {
3482 case 0x1002:
3483 switch (device) {
3484 /* Bonaire */
3485 case 0x6649: /* Bonaire [FirePro W5100] */
3486 case 0x6650:
3487 case 0x6651:
3488 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
3489 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
3490 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
3491 /* Hawaii */
3492 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
3493 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
3494 case 0x67A2:
3495 case 0x67A8:
3496 case 0x67A9:
3497 case 0x67AA:
3498 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
3499 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
3500 case 0x67B8:
3501 case 0x67B9:
3502 case 0x67BA:
3503 case 0x67BE:
3504 vdev->resetfn = vfio_radeon_reset;
3505 break;
3507 break;
3511 static int vfio_initfn(PCIDevice *pdev)
3513 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3514 VFIODevice *vbasedev_iter;
3515 VFIOGroup *group;
3516 char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name;
3517 ssize_t len;
3518 struct stat st;
3519 int groupid;
3520 int ret;
3522 /* Check that the host device exists */
3523 snprintf(path, sizeof(path),
3524 "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
3525 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3526 vdev->host.function);
3527 if (stat(path, &st) < 0) {
3528 error_report("vfio: error: no such host device: %s", path);
3529 return -errno;
3532 vdev->vbasedev.ops = &vfio_pci_ops;
3534 vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI;
3535 vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x",
3536 vdev->host.domain, vdev->host.bus,
3537 vdev->host.slot, vdev->host.function);
3539 strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1);
3541 len = readlink(path, iommu_group_path, sizeof(path));
3542 if (len <= 0 || len >= sizeof(path)) {
3543 error_report("vfio: error no iommu_group for device");
3544 return len < 0 ? -errno : -ENAMETOOLONG;
3547 iommu_group_path[len] = 0;
3548 group_name = basename(iommu_group_path);
3550 if (sscanf(group_name, "%d", &groupid) != 1) {
3551 error_report("vfio: error reading %s: %m", path);
3552 return -errno;
3555 trace_vfio_initfn(vdev->vbasedev.name, groupid);
3557 group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev));
3558 if (!group) {
3559 error_report("vfio: failed to get group %d", groupid);
3560 return -ENOENT;
3563 snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x",
3564 vdev->host.domain, vdev->host.bus, vdev->host.slot,
3565 vdev->host.function);
3567 QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
3568 if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) {
3569 error_report("vfio: error: device %s is already attached", path);
3570 vfio_put_group(group);
3571 return -EBUSY;
3575 ret = vfio_get_device(group, path, &vdev->vbasedev);
3576 if (ret) {
3577 error_report("vfio: failed to get device %s", path);
3578 vfio_put_group(group);
3579 return ret;
3582 ret = vfio_populate_device(vdev);
3583 if (ret) {
3584 return ret;
3587 /* Get a copy of config space */
3588 ret = pread(vdev->vbasedev.fd, vdev->pdev.config,
3589 MIN(pci_config_size(&vdev->pdev), vdev->config_size),
3590 vdev->config_offset);
3591 if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
3592 ret = ret < 0 ? -errno : -EFAULT;
3593 error_report("vfio: Failed to read device config space");
3594 return ret;
3597 /* vfio emulates a lot for us, but some bits need extra love */
3598 vdev->emulated_config_bits = g_malloc0(vdev->config_size);
3600 /* QEMU can choose to expose the ROM or not */
3601 memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4);
3603 /* QEMU can change multi-function devices to single function, or reverse */
3604 vdev->emulated_config_bits[PCI_HEADER_TYPE] =
3605 PCI_HEADER_TYPE_MULTI_FUNCTION;
3607 /* Restore or clear multifunction, this is always controlled by QEMU */
3608 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
3609 vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
3610 } else {
3611 vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
3615 * Clear host resource mapping info. If we choose not to register a
3616 * BAR, such as might be the case with the option ROM, we can get
3617 * confusing, unwritable, residual addresses from the host here.
3619 memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
3620 memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
3622 vfio_pci_size_rom(vdev);
3624 ret = vfio_early_setup_msix(vdev);
3625 if (ret) {
3626 return ret;
3629 vfio_map_bars(vdev);
3631 ret = vfio_add_capabilities(vdev);
3632 if (ret) {
3633 goto out_teardown;
3636 /* QEMU emulates all of MSI & MSIX */
3637 if (pdev->cap_present & QEMU_PCI_CAP_MSIX) {
3638 memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff,
3639 MSIX_CAP_LENGTH);
3642 if (pdev->cap_present & QEMU_PCI_CAP_MSI) {
3643 memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff,
3644 vdev->msi_cap_size);
3647 if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
3648 vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3649 vfio_intx_mmap_enable, vdev);
3650 pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq);
3651 ret = vfio_enable_intx(vdev);
3652 if (ret) {
3653 goto out_teardown;
3657 vfio_register_err_notifier(vdev);
3658 vfio_register_req_notifier(vdev);
3659 vfio_setup_resetfn(vdev);
3661 return 0;
3663 out_teardown:
3664 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3665 vfio_teardown_msi(vdev);
3666 vfio_unregister_bars(vdev);
3667 return ret;
3670 static void vfio_instance_finalize(Object *obj)
3672 PCIDevice *pci_dev = PCI_DEVICE(obj);
3673 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev);
3674 VFIOGroup *group = vdev->vbasedev.group;
3676 vfio_unmap_bars(vdev);
3677 g_free(vdev->emulated_config_bits);
3678 g_free(vdev->rom);
3679 vfio_put_device(vdev);
3680 vfio_put_group(group);
3683 static void vfio_exitfn(PCIDevice *pdev)
3685 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3687 vfio_unregister_req_notifier(vdev);
3688 vfio_unregister_err_notifier(vdev);
3689 pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
3690 vfio_disable_interrupts(vdev);
3691 if (vdev->intx.mmap_timer) {
3692 timer_free(vdev->intx.mmap_timer);
3694 vfio_teardown_msi(vdev);
3695 vfio_unregister_bars(vdev);
3698 static void vfio_pci_reset(DeviceState *dev)
3700 PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
3701 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
3703 trace_vfio_pci_reset(vdev->vbasedev.name);
3705 vfio_pci_pre_reset(vdev);
3707 if (vdev->resetfn && !vdev->resetfn(vdev)) {
3708 goto post_reset;
3711 if (vdev->vbasedev.reset_works &&
3712 (vdev->has_flr || !vdev->has_pm_reset) &&
3713 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3714 trace_vfio_pci_reset_flr(vdev->vbasedev.name);
3715 goto post_reset;
3718 /* See if we can do our own bus reset */
3719 if (!vfio_pci_hot_reset_one(vdev)) {
3720 goto post_reset;
3723 /* If nothing else works and the device supports PM reset, use it */
3724 if (vdev->vbasedev.reset_works && vdev->has_pm_reset &&
3725 !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
3726 trace_vfio_pci_reset_pm(vdev->vbasedev.name);
3727 goto post_reset;
3730 post_reset:
3731 vfio_pci_post_reset(vdev);
3734 static void vfio_instance_init(Object *obj)
3736 PCIDevice *pci_dev = PCI_DEVICE(obj);
3737 VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj));
3739 device_add_bootindex_property(obj, &vdev->bootindex,
3740 "bootindex", NULL,
3741 &pci_dev->qdev, NULL);
3744 static Property vfio_pci_dev_properties[] = {
3745 DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host),
3746 DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice,
3747 intx.mmap_timeout, 1100),
3748 DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features,
3749 VFIO_FEATURE_ENABLE_VGA_BIT, false),
3750 DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features,
3751 VFIO_FEATURE_ENABLE_REQ_BIT, true),
3752 DEFINE_PROP_BOOL("x-mmap", VFIOPCIDevice, vbasedev.allow_mmap, true),
3754 * TODO - support passed fds... is this necessary?
3755 * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name),
3756 * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name),
3758 DEFINE_PROP_END_OF_LIST(),
3761 static const VMStateDescription vfio_pci_vmstate = {
3762 .name = "vfio-pci",
3763 .unmigratable = 1,
3766 static void vfio_pci_dev_class_init(ObjectClass *klass, void *data)
3768 DeviceClass *dc = DEVICE_CLASS(klass);
3769 PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass);
3771 dc->reset = vfio_pci_reset;
3772 dc->props = vfio_pci_dev_properties;
3773 dc->vmsd = &vfio_pci_vmstate;
3774 dc->desc = "VFIO-based PCI device assignment";
3775 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3776 pdc->init = vfio_initfn;
3777 pdc->exit = vfio_exitfn;
3778 pdc->config_read = vfio_pci_read_config;
3779 pdc->config_write = vfio_pci_write_config;
3780 pdc->is_express = 1; /* We might be */
3783 static const TypeInfo vfio_pci_dev_info = {
3784 .name = "vfio-pci",
3785 .parent = TYPE_PCI_DEVICE,
3786 .instance_size = sizeof(VFIOPCIDevice),
3787 .class_init = vfio_pci_dev_class_init,
3788 .instance_init = vfio_instance_init,
3789 .instance_finalize = vfio_instance_finalize,
3792 static void register_vfio_pci_dev_type(void)
3794 type_register_static(&vfio_pci_dev_info);
3797 type_init(register_vfio_pci_dev_type)