2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
23 #include <hw/block/block.h>
25 #include <hw/pci/msix.h>
26 #include <hw/pci/pci.h>
27 #include "sysemu/sysemu.h"
28 #include "qapi/visitor.h"
29 #include "sysemu/block-backend.h"
33 static void nvme_process_sq(void *opaque
);
35 static int nvme_check_sqid(NvmeCtrl
*n
, uint16_t sqid
)
37 return sqid
< n
->num_queues
&& n
->sq
[sqid
] != NULL
? 0 : -1;
40 static int nvme_check_cqid(NvmeCtrl
*n
, uint16_t cqid
)
42 return cqid
< n
->num_queues
&& n
->cq
[cqid
] != NULL
? 0 : -1;
45 static void nvme_inc_cq_tail(NvmeCQueue
*cq
)
48 if (cq
->tail
>= cq
->size
) {
50 cq
->phase
= !cq
->phase
;
54 static void nvme_inc_sq_head(NvmeSQueue
*sq
)
56 sq
->head
= (sq
->head
+ 1) % sq
->size
;
59 static uint8_t nvme_cq_full(NvmeCQueue
*cq
)
61 return (cq
->tail
+ 1) % cq
->size
== cq
->head
;
64 static uint8_t nvme_sq_empty(NvmeSQueue
*sq
)
66 return sq
->head
== sq
->tail
;
69 static void nvme_isr_notify(NvmeCtrl
*n
, NvmeCQueue
*cq
)
71 if (cq
->irq_enabled
) {
72 if (msix_enabled(&(n
->parent_obj
))) {
73 msix_notify(&(n
->parent_obj
), cq
->vector
);
75 pci_irq_pulse(&n
->parent_obj
);
80 static uint16_t nvme_map_prp(QEMUSGList
*qsg
, uint64_t prp1
, uint64_t prp2
,
81 uint32_t len
, NvmeCtrl
*n
)
83 hwaddr trans_len
= n
->page_size
- (prp1
% n
->page_size
);
84 trans_len
= MIN(len
, trans_len
);
85 int num_prps
= (len
>> n
->page_bits
) + 1;
88 return NVME_INVALID_FIELD
| NVME_DNR
;
91 pci_dma_sglist_init(qsg
, &n
->parent_obj
, num_prps
);
92 qemu_sglist_add(qsg
, prp1
, trans_len
);
98 if (len
> n
->page_size
) {
99 uint64_t prp_list
[n
->max_prp_ents
];
100 uint32_t nents
, prp_trans
;
103 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
104 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
105 pci_dma_read(&n
->parent_obj
, prp2
, (void *)prp_list
, prp_trans
);
107 uint64_t prp_ent
= le64_to_cpu(prp_list
[i
]);
109 if (i
== n
->max_prp_ents
- 1 && len
> n
->page_size
) {
110 if (!prp_ent
|| prp_ent
& (n
->page_size
- 1)) {
115 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
116 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
117 pci_dma_read(&n
->parent_obj
, prp_ent
, (void *)prp_list
,
119 prp_ent
= le64_to_cpu(prp_list
[i
]);
122 if (!prp_ent
|| prp_ent
& (n
->page_size
- 1)) {
126 trans_len
= MIN(len
, n
->page_size
);
127 qemu_sglist_add(qsg
, prp_ent
, trans_len
);
132 if (prp2
& (n
->page_size
- 1)) {
135 qemu_sglist_add(qsg
, prp2
, len
);
141 qemu_sglist_destroy(qsg
);
142 return NVME_INVALID_FIELD
| NVME_DNR
;
145 static uint16_t nvme_dma_read_prp(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
146 uint64_t prp1
, uint64_t prp2
)
150 if (nvme_map_prp(&qsg
, prp1
, prp2
, len
, n
)) {
151 return NVME_INVALID_FIELD
| NVME_DNR
;
153 if (dma_buf_read(ptr
, len
, &qsg
)) {
154 qemu_sglist_destroy(&qsg
);
155 return NVME_INVALID_FIELD
| NVME_DNR
;
157 qemu_sglist_destroy(&qsg
);
161 static void nvme_post_cqes(void *opaque
)
163 NvmeCQueue
*cq
= opaque
;
164 NvmeCtrl
*n
= cq
->ctrl
;
165 NvmeRequest
*req
, *next
;
167 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
171 if (nvme_cq_full(cq
)) {
175 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
177 req
->cqe
.status
= cpu_to_le16((req
->status
<< 1) | cq
->phase
);
178 req
->cqe
.sq_id
= cpu_to_le16(sq
->sqid
);
179 req
->cqe
.sq_head
= cpu_to_le16(sq
->head
);
180 addr
= cq
->dma_addr
+ cq
->tail
* n
->cqe_size
;
181 nvme_inc_cq_tail(cq
);
182 pci_dma_write(&n
->parent_obj
, addr
, (void *)&req
->cqe
,
184 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
186 nvme_isr_notify(n
, cq
);
189 static void nvme_enqueue_req_completion(NvmeCQueue
*cq
, NvmeRequest
*req
)
191 assert(cq
->cqid
== req
->sq
->cqid
);
192 QTAILQ_REMOVE(&req
->sq
->out_req_list
, req
, entry
);
193 QTAILQ_INSERT_TAIL(&cq
->req_list
, req
, entry
);
194 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
197 static void nvme_rw_cb(void *opaque
, int ret
)
199 NvmeRequest
*req
= opaque
;
200 NvmeSQueue
*sq
= req
->sq
;
201 NvmeCtrl
*n
= sq
->ctrl
;
202 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
204 block_acct_done(blk_get_stats(n
->conf
.blk
), &req
->acct
);
206 req
->status
= NVME_SUCCESS
;
208 req
->status
= NVME_INTERNAL_DEV_ERROR
;
211 qemu_sglist_destroy(&req
->qsg
);
213 nvme_enqueue_req_completion(cq
, req
);
216 static uint16_t nvme_flush(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
220 block_acct_start(blk_get_stats(n
->conf
.blk
), &req
->acct
, 0,
222 req
->aiocb
= blk_aio_flush(n
->conf
.blk
, nvme_rw_cb
, req
);
224 return NVME_NO_COMPLETE
;
227 static uint16_t nvme_rw(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
230 NvmeRwCmd
*rw
= (NvmeRwCmd
*)cmd
;
231 uint32_t nlb
= le32_to_cpu(rw
->nlb
) + 1;
232 uint64_t slba
= le64_to_cpu(rw
->slba
);
233 uint64_t prp1
= le64_to_cpu(rw
->prp1
);
234 uint64_t prp2
= le64_to_cpu(rw
->prp2
);
236 uint8_t lba_index
= NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
);
237 uint8_t data_shift
= ns
->id_ns
.lbaf
[lba_index
].ds
;
238 uint64_t data_size
= (uint64_t)nlb
<< data_shift
;
239 uint64_t aio_slba
= slba
<< (data_shift
- BDRV_SECTOR_BITS
);
240 int is_write
= rw
->opcode
== NVME_CMD_WRITE
? 1 : 0;
242 if ((slba
+ nlb
) > ns
->id_ns
.nsze
) {
243 return NVME_LBA_RANGE
| NVME_DNR
;
245 if (nvme_map_prp(&req
->qsg
, prp1
, prp2
, data_size
, n
)) {
246 return NVME_INVALID_FIELD
| NVME_DNR
;
248 assert((nlb
<< data_shift
) == req
->qsg
.size
);
251 dma_acct_start(n
->conf
.blk
, &req
->acct
, &req
->qsg
,
252 is_write
? BLOCK_ACCT_WRITE
: BLOCK_ACCT_READ
);
253 req
->aiocb
= is_write
?
254 dma_blk_write(n
->conf
.blk
, &req
->qsg
, aio_slba
, nvme_rw_cb
, req
) :
255 dma_blk_read(n
->conf
.blk
, &req
->qsg
, aio_slba
, nvme_rw_cb
, req
);
257 return NVME_NO_COMPLETE
;
260 static uint16_t nvme_io_cmd(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
263 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
265 if (nsid
== 0 || nsid
> n
->num_namespaces
) {
266 return NVME_INVALID_NSID
| NVME_DNR
;
269 ns
= &n
->namespaces
[nsid
- 1];
270 switch (cmd
->opcode
) {
272 return nvme_flush(n
, ns
, cmd
, req
);
275 return nvme_rw(n
, ns
, cmd
, req
);
277 return NVME_INVALID_OPCODE
| NVME_DNR
;
281 static void nvme_free_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
)
283 n
->sq
[sq
->sqid
] = NULL
;
284 timer_del(sq
->timer
);
285 timer_free(sq
->timer
);
292 static uint16_t nvme_del_sq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
294 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)cmd
;
295 NvmeRequest
*req
, *next
;
298 uint16_t qid
= le16_to_cpu(c
->qid
);
300 if (!qid
|| nvme_check_sqid(n
, qid
)) {
301 return NVME_INVALID_QID
| NVME_DNR
;
305 while (!QTAILQ_EMPTY(&sq
->out_req_list
)) {
306 req
= QTAILQ_FIRST(&sq
->out_req_list
);
308 blk_aio_cancel(req
->aiocb
);
310 if (!nvme_check_cqid(n
, sq
->cqid
)) {
311 cq
= n
->cq
[sq
->cqid
];
312 QTAILQ_REMOVE(&cq
->sq_list
, sq
, entry
);
315 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
317 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
318 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
327 static void nvme_init_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
, uint64_t dma_addr
,
328 uint16_t sqid
, uint16_t cqid
, uint16_t size
)
334 sq
->dma_addr
= dma_addr
;
338 sq
->head
= sq
->tail
= 0;
339 sq
->io_req
= g_new(NvmeRequest
, sq
->size
);
341 QTAILQ_INIT(&sq
->req_list
);
342 QTAILQ_INIT(&sq
->out_req_list
);
343 for (i
= 0; i
< sq
->size
; i
++) {
344 sq
->io_req
[i
].sq
= sq
;
345 QTAILQ_INSERT_TAIL(&(sq
->req_list
), &sq
->io_req
[i
], entry
);
347 sq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_process_sq
, sq
);
351 QTAILQ_INSERT_TAIL(&(cq
->sq_list
), sq
, entry
);
355 static uint16_t nvme_create_sq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
358 NvmeCreateSq
*c
= (NvmeCreateSq
*)cmd
;
360 uint16_t cqid
= le16_to_cpu(c
->cqid
);
361 uint16_t sqid
= le16_to_cpu(c
->sqid
);
362 uint16_t qsize
= le16_to_cpu(c
->qsize
);
363 uint16_t qflags
= le16_to_cpu(c
->sq_flags
);
364 uint64_t prp1
= le64_to_cpu(c
->prp1
);
366 if (!cqid
|| nvme_check_cqid(n
, cqid
)) {
367 return NVME_INVALID_CQID
| NVME_DNR
;
369 if (!sqid
|| (sqid
&& !nvme_check_sqid(n
, sqid
))) {
370 return NVME_INVALID_QID
| NVME_DNR
;
372 if (!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
)) {
373 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
375 if (!prp1
|| prp1
& (n
->page_size
- 1)) {
376 return NVME_INVALID_FIELD
| NVME_DNR
;
378 if (!(NVME_SQ_FLAGS_PC(qflags
))) {
379 return NVME_INVALID_FIELD
| NVME_DNR
;
381 sq
= g_malloc0(sizeof(*sq
));
382 nvme_init_sq(sq
, n
, prp1
, sqid
, cqid
, qsize
+ 1);
386 static void nvme_free_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
)
388 n
->cq
[cq
->cqid
] = NULL
;
389 timer_del(cq
->timer
);
390 timer_free(cq
->timer
);
391 msix_vector_unuse(&n
->parent_obj
, cq
->vector
);
397 static uint16_t nvme_del_cq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
399 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)cmd
;
401 uint16_t qid
= le16_to_cpu(c
->qid
);
403 if (!qid
|| nvme_check_cqid(n
, qid
)) {
404 return NVME_INVALID_CQID
| NVME_DNR
;
408 if (!QTAILQ_EMPTY(&cq
->sq_list
)) {
409 return NVME_INVALID_QUEUE_DEL
;
415 static void nvme_init_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
, uint64_t dma_addr
,
416 uint16_t cqid
, uint16_t vector
, uint16_t size
, uint16_t irq_enabled
)
421 cq
->dma_addr
= dma_addr
;
423 cq
->irq_enabled
= irq_enabled
;
425 cq
->head
= cq
->tail
= 0;
426 QTAILQ_INIT(&cq
->req_list
);
427 QTAILQ_INIT(&cq
->sq_list
);
428 msix_vector_use(&n
->parent_obj
, cq
->vector
);
430 cq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_post_cqes
, cq
);
433 static uint16_t nvme_create_cq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
436 NvmeCreateCq
*c
= (NvmeCreateCq
*)cmd
;
437 uint16_t cqid
= le16_to_cpu(c
->cqid
);
438 uint16_t vector
= le16_to_cpu(c
->irq_vector
);
439 uint16_t qsize
= le16_to_cpu(c
->qsize
);
440 uint16_t qflags
= le16_to_cpu(c
->cq_flags
);
441 uint64_t prp1
= le64_to_cpu(c
->prp1
);
443 if (!cqid
|| (cqid
&& !nvme_check_cqid(n
, cqid
))) {
444 return NVME_INVALID_CQID
| NVME_DNR
;
446 if (!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
)) {
447 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
450 return NVME_INVALID_FIELD
| NVME_DNR
;
452 if (vector
> n
->num_queues
) {
453 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
455 if (!(NVME_CQ_FLAGS_PC(qflags
))) {
456 return NVME_INVALID_FIELD
| NVME_DNR
;
459 cq
= g_malloc0(sizeof(*cq
));
460 nvme_init_cq(cq
, n
, prp1
, cqid
, vector
, qsize
+ 1,
461 NVME_CQ_FLAGS_IEN(qflags
));
465 static uint16_t nvme_identify(NvmeCtrl
*n
, NvmeCmd
*cmd
)
468 NvmeIdentify
*c
= (NvmeIdentify
*)cmd
;
469 uint32_t cns
= le32_to_cpu(c
->cns
);
470 uint32_t nsid
= le32_to_cpu(c
->nsid
);
471 uint64_t prp1
= le64_to_cpu(c
->prp1
);
472 uint64_t prp2
= le64_to_cpu(c
->prp2
);
475 return nvme_dma_read_prp(n
, (uint8_t *)&n
->id_ctrl
, sizeof(n
->id_ctrl
),
478 if (nsid
== 0 || nsid
> n
->num_namespaces
) {
479 return NVME_INVALID_NSID
| NVME_DNR
;
482 ns
= &n
->namespaces
[nsid
- 1];
483 return nvme_dma_read_prp(n
, (uint8_t *)&ns
->id_ns
, sizeof(ns
->id_ns
),
487 static uint16_t nvme_get_feature(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
489 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
493 case NVME_VOLATILE_WRITE_CACHE
:
494 result
= blk_enable_write_cache(n
->conf
.blk
);
496 case NVME_NUMBER_OF_QUEUES
:
497 result
= cpu_to_le32((n
->num_queues
- 1) | ((n
->num_queues
- 1) << 16));
500 return NVME_INVALID_FIELD
| NVME_DNR
;
503 req
->cqe
.result
= result
;
507 static uint16_t nvme_set_feature(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
509 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
510 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
513 case NVME_VOLATILE_WRITE_CACHE
:
514 blk_set_enable_write_cache(n
->conf
.blk
, dw11
& 1);
516 case NVME_NUMBER_OF_QUEUES
:
518 cpu_to_le32((n
->num_queues
- 1) | ((n
->num_queues
- 1) << 16));
521 return NVME_INVALID_FIELD
| NVME_DNR
;
526 static uint16_t nvme_admin_cmd(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
528 switch (cmd
->opcode
) {
529 case NVME_ADM_CMD_DELETE_SQ
:
530 return nvme_del_sq(n
, cmd
);
531 case NVME_ADM_CMD_CREATE_SQ
:
532 return nvme_create_sq(n
, cmd
);
533 case NVME_ADM_CMD_DELETE_CQ
:
534 return nvme_del_cq(n
, cmd
);
535 case NVME_ADM_CMD_CREATE_CQ
:
536 return nvme_create_cq(n
, cmd
);
537 case NVME_ADM_CMD_IDENTIFY
:
538 return nvme_identify(n
, cmd
);
539 case NVME_ADM_CMD_SET_FEATURES
:
540 return nvme_set_feature(n
, cmd
, req
);
541 case NVME_ADM_CMD_GET_FEATURES
:
542 return nvme_get_feature(n
, cmd
, req
);
544 return NVME_INVALID_OPCODE
| NVME_DNR
;
548 static void nvme_process_sq(void *opaque
)
550 NvmeSQueue
*sq
= opaque
;
551 NvmeCtrl
*n
= sq
->ctrl
;
552 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
559 while (!(nvme_sq_empty(sq
) || QTAILQ_EMPTY(&sq
->req_list
))) {
560 addr
= sq
->dma_addr
+ sq
->head
* n
->sqe_size
;
561 pci_dma_read(&n
->parent_obj
, addr
, (void *)&cmd
, sizeof(cmd
));
562 nvme_inc_sq_head(sq
);
564 req
= QTAILQ_FIRST(&sq
->req_list
);
565 QTAILQ_REMOVE(&sq
->req_list
, req
, entry
);
566 QTAILQ_INSERT_TAIL(&sq
->out_req_list
, req
, entry
);
567 memset(&req
->cqe
, 0, sizeof(req
->cqe
));
568 req
->cqe
.cid
= cmd
.cid
;
570 status
= sq
->sqid
? nvme_io_cmd(n
, &cmd
, req
) :
571 nvme_admin_cmd(n
, &cmd
, req
);
572 if (status
!= NVME_NO_COMPLETE
) {
573 req
->status
= status
;
574 nvme_enqueue_req_completion(cq
, req
);
579 static void nvme_clear_ctrl(NvmeCtrl
*n
)
583 for (i
= 0; i
< n
->num_queues
; i
++) {
584 if (n
->sq
[i
] != NULL
) {
585 nvme_free_sq(n
->sq
[i
], n
);
588 for (i
= 0; i
< n
->num_queues
; i
++) {
589 if (n
->cq
[i
] != NULL
) {
590 nvme_free_cq(n
->cq
[i
], n
);
594 blk_flush(n
->conf
.blk
);
598 static int nvme_start_ctrl(NvmeCtrl
*n
)
600 uint32_t page_bits
= NVME_CC_MPS(n
->bar
.cc
) + 12;
601 uint32_t page_size
= 1 << page_bits
;
603 if (n
->cq
[0] || n
->sq
[0] || !n
->bar
.asq
|| !n
->bar
.acq
||
604 n
->bar
.asq
& (page_size
- 1) || n
->bar
.acq
& (page_size
- 1) ||
605 NVME_CC_MPS(n
->bar
.cc
) < NVME_CAP_MPSMIN(n
->bar
.cap
) ||
606 NVME_CC_MPS(n
->bar
.cc
) > NVME_CAP_MPSMAX(n
->bar
.cap
) ||
607 NVME_CC_IOCQES(n
->bar
.cc
) < NVME_CTRL_CQES_MIN(n
->id_ctrl
.cqes
) ||
608 NVME_CC_IOCQES(n
->bar
.cc
) > NVME_CTRL_CQES_MAX(n
->id_ctrl
.cqes
) ||
609 NVME_CC_IOSQES(n
->bar
.cc
) < NVME_CTRL_SQES_MIN(n
->id_ctrl
.sqes
) ||
610 NVME_CC_IOSQES(n
->bar
.cc
) > NVME_CTRL_SQES_MAX(n
->id_ctrl
.sqes
) ||
611 !NVME_AQA_ASQS(n
->bar
.aqa
) || !NVME_AQA_ACQS(n
->bar
.aqa
)) {
615 n
->page_bits
= page_bits
;
616 n
->page_size
= page_size
;
617 n
->max_prp_ents
= n
->page_size
/ sizeof(uint64_t);
618 n
->cqe_size
= 1 << NVME_CC_IOCQES(n
->bar
.cc
);
619 n
->sqe_size
= 1 << NVME_CC_IOSQES(n
->bar
.cc
);
620 nvme_init_cq(&n
->admin_cq
, n
, n
->bar
.acq
, 0, 0,
621 NVME_AQA_ACQS(n
->bar
.aqa
) + 1, 1);
622 nvme_init_sq(&n
->admin_sq
, n
, n
->bar
.asq
, 0, 0,
623 NVME_AQA_ASQS(n
->bar
.aqa
) + 1);
628 static void nvme_write_bar(NvmeCtrl
*n
, hwaddr offset
, uint64_t data
,
633 n
->bar
.intms
|= data
& 0xffffffff;
634 n
->bar
.intmc
= n
->bar
.intms
;
637 n
->bar
.intms
&= ~(data
& 0xffffffff);
638 n
->bar
.intmc
= n
->bar
.intms
;
641 /* Windows first sends data, then sends enable bit */
642 if (!NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
) &&
643 !NVME_CC_SHN(data
) && !NVME_CC_SHN(n
->bar
.cc
))
648 if (NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
)) {
650 if (nvme_start_ctrl(n
)) {
651 n
->bar
.csts
= NVME_CSTS_FAILED
;
653 n
->bar
.csts
= NVME_CSTS_READY
;
655 } else if (!NVME_CC_EN(data
) && NVME_CC_EN(n
->bar
.cc
)) {
657 n
->bar
.csts
&= ~NVME_CSTS_READY
;
659 if (NVME_CC_SHN(data
) && !(NVME_CC_SHN(n
->bar
.cc
))) {
662 n
->bar
.csts
|= NVME_CSTS_SHST_COMPLETE
;
663 } else if (!NVME_CC_SHN(data
) && NVME_CC_SHN(n
->bar
.cc
)) {
664 n
->bar
.csts
&= ~NVME_CSTS_SHST_COMPLETE
;
669 n
->bar
.aqa
= data
& 0xffffffff;
675 n
->bar
.asq
|= data
<< 32;
681 n
->bar
.acq
|= data
<< 32;
688 static uint64_t nvme_mmio_read(void *opaque
, hwaddr addr
, unsigned size
)
690 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
691 uint8_t *ptr
= (uint8_t *)&n
->bar
;
694 if (addr
< sizeof(n
->bar
)) {
695 memcpy(&val
, ptr
+ addr
, size
);
700 static void nvme_process_db(NvmeCtrl
*n
, hwaddr addr
, int val
)
704 if (addr
& ((1 << 2) - 1)) {
708 if (((addr
- 0x1000) >> 2) & 1) {
709 uint16_t new_head
= val
& 0xffff;
713 qid
= (addr
- (0x1000 + (1 << 2))) >> 3;
714 if (nvme_check_cqid(n
, qid
)) {
719 if (new_head
>= cq
->size
) {
723 start_sqs
= nvme_cq_full(cq
) ? 1 : 0;
727 QTAILQ_FOREACH(sq
, &cq
->sq_list
, entry
) {
728 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
730 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
733 if (cq
->tail
!= cq
->head
) {
734 nvme_isr_notify(n
, cq
);
737 uint16_t new_tail
= val
& 0xffff;
740 qid
= (addr
- 0x1000) >> 3;
741 if (nvme_check_sqid(n
, qid
)) {
746 if (new_tail
>= sq
->size
) {
751 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
755 static void nvme_mmio_write(void *opaque
, hwaddr addr
, uint64_t data
,
758 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
759 if (addr
< sizeof(n
->bar
)) {
760 nvme_write_bar(n
, addr
, data
, size
);
761 } else if (addr
>= 0x1000) {
762 nvme_process_db(n
, addr
, data
);
766 static const MemoryRegionOps nvme_mmio_ops
= {
767 .read
= nvme_mmio_read
,
768 .write
= nvme_mmio_write
,
769 .endianness
= DEVICE_LITTLE_ENDIAN
,
771 .min_access_size
= 2,
772 .max_access_size
= 8,
776 static int nvme_init(PCIDevice
*pci_dev
)
778 NvmeCtrl
*n
= NVME(pci_dev
);
779 NvmeIdCtrl
*id
= &n
->id_ctrl
;
789 bs_size
= blk_getlength(n
->conf
.blk
);
794 blkconf_serial(&n
->conf
, &n
->serial
);
798 blkconf_blocksizes(&n
->conf
);
800 pci_conf
= pci_dev
->config
;
801 pci_conf
[PCI_INTERRUPT_PIN
] = 1;
802 pci_config_set_prog_interface(pci_dev
->config
, 0x2);
803 pci_config_set_class(pci_dev
->config
, PCI_CLASS_STORAGE_EXPRESS
);
804 pcie_endpoint_cap_init(&n
->parent_obj
, 0x80);
806 n
->num_namespaces
= 1;
808 n
->reg_size
= 1 << qemu_fls(0x1004 + 2 * (n
->num_queues
+ 1) * 4);
809 n
->ns_size
= bs_size
/ (uint64_t)n
->num_namespaces
;
811 n
->namespaces
= g_new0(NvmeNamespace
, n
->num_namespaces
);
812 n
->sq
= g_new0(NvmeSQueue
*, n
->num_queues
);
813 n
->cq
= g_new0(NvmeCQueue
*, n
->num_queues
);
815 memory_region_init_io(&n
->iomem
, OBJECT(n
), &nvme_mmio_ops
, n
,
816 "nvme", n
->reg_size
);
817 pci_register_bar(&n
->parent_obj
, 0,
818 PCI_BASE_ADDRESS_SPACE_MEMORY
| PCI_BASE_ADDRESS_MEM_TYPE_64
,
820 msix_init_exclusive_bar(&n
->parent_obj
, n
->num_queues
, 4);
822 id
->vid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_VENDOR_ID
));
823 id
->ssvid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_SUBSYSTEM_VENDOR_ID
));
824 strpadcpy((char *)id
->mn
, sizeof(id
->mn
), "QEMU NVMe Ctrl", ' ');
825 strpadcpy((char *)id
->fr
, sizeof(id
->fr
), "1.0", ' ');
826 strpadcpy((char *)id
->sn
, sizeof(id
->sn
), n
->serial
, ' ');
831 id
->oacs
= cpu_to_le16(0);
834 id
->sqes
= (0x6 << 4) | 0x6;
835 id
->cqes
= (0x4 << 4) | 0x4;
836 id
->nn
= cpu_to_le32(n
->num_namespaces
);
837 id
->psd
[0].mp
= cpu_to_le16(0x9c4);
838 id
->psd
[0].enlat
= cpu_to_le32(0x10);
839 id
->psd
[0].exlat
= cpu_to_le32(0x4);
840 if (blk_enable_write_cache(n
->conf
.blk
)) {
845 NVME_CAP_SET_MQES(n
->bar
.cap
, 0x7ff);
846 NVME_CAP_SET_CQR(n
->bar
.cap
, 1);
847 NVME_CAP_SET_AMS(n
->bar
.cap
, 1);
848 NVME_CAP_SET_TO(n
->bar
.cap
, 0xf);
849 NVME_CAP_SET_CSS(n
->bar
.cap
, 1);
850 NVME_CAP_SET_MPSMAX(n
->bar
.cap
, 4);
852 n
->bar
.vs
= 0x00010100;
853 n
->bar
.intmc
= n
->bar
.intms
= 0;
855 for (i
= 0; i
< n
->num_namespaces
; i
++) {
856 NvmeNamespace
*ns
= &n
->namespaces
[i
];
857 NvmeIdNs
*id_ns
= &ns
->id_ns
;
864 id_ns
->lbaf
[0].ds
= BDRV_SECTOR_BITS
;
865 id_ns
->ncap
= id_ns
->nuse
= id_ns
->nsze
=
866 cpu_to_le64(n
->ns_size
>>
867 id_ns
->lbaf
[NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
)].ds
);
872 static void nvme_exit(PCIDevice
*pci_dev
)
874 NvmeCtrl
*n
= NVME(pci_dev
);
877 g_free(n
->namespaces
);
880 msix_uninit_exclusive_bar(pci_dev
);
883 static Property nvme_props
[] = {
884 DEFINE_BLOCK_PROPERTIES(NvmeCtrl
, conf
),
885 DEFINE_PROP_STRING("serial", NvmeCtrl
, serial
),
886 DEFINE_PROP_END_OF_LIST(),
889 static const VMStateDescription nvme_vmstate
= {
894 static void nvme_class_init(ObjectClass
*oc
, void *data
)
896 DeviceClass
*dc
= DEVICE_CLASS(oc
);
897 PCIDeviceClass
*pc
= PCI_DEVICE_CLASS(oc
);
899 pc
->init
= nvme_init
;
900 pc
->exit
= nvme_exit
;
901 pc
->class_id
= PCI_CLASS_STORAGE_EXPRESS
;
902 pc
->vendor_id
= PCI_VENDOR_ID_INTEL
;
903 pc
->device_id
= 0x5845;
907 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
908 dc
->desc
= "Non-Volatile Memory Express";
909 dc
->props
= nvme_props
;
910 dc
->vmsd
= &nvme_vmstate
;
913 static void nvme_get_bootindex(Object
*obj
, Visitor
*v
, void *opaque
,
914 const char *name
, Error
**errp
)
916 NvmeCtrl
*s
= NVME(obj
);
918 visit_type_int32(v
, &s
->conf
.bootindex
, name
, errp
);
921 static void nvme_set_bootindex(Object
*obj
, Visitor
*v
, void *opaque
,
922 const char *name
, Error
**errp
)
924 NvmeCtrl
*s
= NVME(obj
);
926 Error
*local_err
= NULL
;
928 visit_type_int32(v
, &boot_index
, name
, &local_err
);
932 /* check whether bootindex is present in fw_boot_order list */
933 check_boot_index(boot_index
, &local_err
);
937 /* change bootindex to a new one */
938 s
->conf
.bootindex
= boot_index
;
942 error_propagate(errp
, local_err
);
946 static void nvme_instance_init(Object
*obj
)
948 object_property_add(obj
, "bootindex", "int32",
950 nvme_set_bootindex
, NULL
, NULL
, NULL
);
951 object_property_set_int(obj
, -1, "bootindex", NULL
);
954 static const TypeInfo nvme_info
= {
956 .parent
= TYPE_PCI_DEVICE
,
957 .instance_size
= sizeof(NvmeCtrl
),
958 .class_init
= nvme_class_init
,
959 .instance_init
= nvme_instance_init
,
962 static void nvme_register_types(void)
964 type_register_static(&nvme_info
);
967 type_init(nvme_register_types
)