2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/cpus.h"
33 #include "qemu/main-loop.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/runstate.h"
38 #include "migration/vmstate.h"
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
47 # define LOG_IRQ(...) do { } while (0)
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
54 # define LOG_TB(...) do { } while (0)
57 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
58 static void cpu_ppc_tb_start (CPUPPCState
*env
);
60 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
62 CPUState
*cs
= CPU(cpu
);
63 CPUPPCState
*env
= &cpu
->env
;
64 unsigned int old_pending
;
67 /* We may already have the BQL if coming from the reset path */
68 if (!qemu_mutex_iothread_locked()) {
70 qemu_mutex_lock_iothread();
73 old_pending
= env
->pending_interrupts
;
76 env
->pending_interrupts
|= 1 << n_IRQ
;
77 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
79 env
->pending_interrupts
&= ~(1 << n_IRQ
);
80 if (env
->pending_interrupts
== 0) {
81 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
85 if (old_pending
!= env
->pending_interrupts
) {
86 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__
, env
, n_IRQ
, level
,
92 env
->pending_interrupts
, CPU(cpu
)->interrupt_request
);
95 qemu_mutex_unlock_iothread();
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
102 PowerPCCPU
*cpu
= opaque
;
103 CPUPPCState
*env
= &cpu
->env
;
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
108 cur_level
= (env
->irq_input_state
>> pin
) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
111 CPUState
*cs
= CPU(cpu
);
114 case PPC6xx_INPUT_TBEN
:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__
, level
? "start" : "stop");
119 cpu_ppc_tb_start(env
);
121 cpu_ppc_tb_stop(env
);
124 case PPC6xx_INPUT_INT
:
125 /* Level sensitive - active high */
126 LOG_IRQ("%s: set the external IRQ state to %d\n",
128 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
130 case PPC6xx_INPUT_SMI
:
131 /* Level sensitive - active high */
132 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
134 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
136 case PPC6xx_INPUT_MCP
:
137 /* Negative edge sensitive */
138 /* XXX: TODO: actual reaction may depends on HID0 status
139 * 603/604/740/750: check HID0[EMCP]
141 if (cur_level
== 1 && level
== 0) {
142 LOG_IRQ("%s: raise machine check state\n",
144 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
147 case PPC6xx_INPUT_CKSTP_IN
:
148 /* Level sensitive - active low */
149 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
150 /* XXX: Note that the only way to restart the CPU is to reset it */
152 LOG_IRQ("%s: stop the CPU\n", __func__
);
156 case PPC6xx_INPUT_HRESET
:
157 /* Level sensitive - active low */
159 LOG_IRQ("%s: reset the CPU\n", __func__
);
160 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
163 case PPC6xx_INPUT_SRESET
:
164 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
166 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
169 /* Unknown pin - do nothing */
170 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
174 env
->irq_input_state
|= 1 << pin
;
176 env
->irq_input_state
&= ~(1 << pin
);
180 void ppc6xx_irq_init(PowerPCCPU
*cpu
)
182 CPUPPCState
*env
= &cpu
->env
;
184 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
188 #if defined(TARGET_PPC64)
189 /* PowerPC 970 internal IRQ controller */
190 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
192 PowerPCCPU
*cpu
= opaque
;
193 CPUPPCState
*env
= &cpu
->env
;
196 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
198 cur_level
= (env
->irq_input_state
>> pin
) & 1;
199 /* Don't generate spurious events */
200 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
201 CPUState
*cs
= CPU(cpu
);
204 case PPC970_INPUT_INT
:
205 /* Level sensitive - active high */
206 LOG_IRQ("%s: set the external IRQ state to %d\n",
208 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
210 case PPC970_INPUT_THINT
:
211 /* Level sensitive - active high */
212 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
214 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
216 case PPC970_INPUT_MCP
:
217 /* Negative edge sensitive */
218 /* XXX: TODO: actual reaction may depends on HID0 status
219 * 603/604/740/750: check HID0[EMCP]
221 if (cur_level
== 1 && level
== 0) {
222 LOG_IRQ("%s: raise machine check state\n",
224 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
227 case PPC970_INPUT_CKSTP
:
228 /* Level sensitive - active low */
229 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
231 LOG_IRQ("%s: stop the CPU\n", __func__
);
234 LOG_IRQ("%s: restart the CPU\n", __func__
);
239 case PPC970_INPUT_HRESET
:
240 /* Level sensitive - active low */
242 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
245 case PPC970_INPUT_SRESET
:
246 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
248 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
250 case PPC970_INPUT_TBEN
:
251 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
256 /* Unknown pin - do nothing */
257 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
261 env
->irq_input_state
|= 1 << pin
;
263 env
->irq_input_state
&= ~(1 << pin
);
267 void ppc970_irq_init(PowerPCCPU
*cpu
)
269 CPUPPCState
*env
= &cpu
->env
;
271 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
275 /* POWER7 internal IRQ controller */
276 static void power7_set_irq(void *opaque
, int pin
, int level
)
278 PowerPCCPU
*cpu
= opaque
;
280 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
281 &cpu
->env
, pin
, level
);
284 case POWER7_INPUT_INT
:
285 /* Level sensitive - active high */
286 LOG_IRQ("%s: set the external IRQ state to %d\n",
288 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
291 /* Unknown pin - do nothing */
292 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
297 void ppcPOWER7_irq_init(PowerPCCPU
*cpu
)
299 CPUPPCState
*env
= &cpu
->env
;
301 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
305 /* POWER9 internal IRQ controller */
306 static void power9_set_irq(void *opaque
, int pin
, int level
)
308 PowerPCCPU
*cpu
= opaque
;
310 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
311 &cpu
->env
, pin
, level
);
314 case POWER9_INPUT_INT
:
315 /* Level sensitive - active high */
316 LOG_IRQ("%s: set the external IRQ state to %d\n",
318 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
320 case POWER9_INPUT_HINT
:
321 /* Level sensitive - active high */
322 LOG_IRQ("%s: set the external IRQ state to %d\n",
324 ppc_set_irq(cpu
, PPC_INTERRUPT_HVIRT
, level
);
327 /* Unknown pin - do nothing */
328 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
333 void ppcPOWER9_irq_init(PowerPCCPU
*cpu
)
335 CPUPPCState
*env
= &cpu
->env
;
337 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power9_set_irq
, cpu
,
340 #endif /* defined(TARGET_PPC64) */
342 void ppc40x_core_reset(PowerPCCPU
*cpu
)
344 CPUPPCState
*env
= &cpu
->env
;
347 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC core\n");
348 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
349 dbsr
= env
->spr
[SPR_40x_DBSR
];
352 env
->spr
[SPR_40x_DBSR
] = dbsr
;
355 void ppc40x_chip_reset(PowerPCCPU
*cpu
)
357 CPUPPCState
*env
= &cpu
->env
;
360 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC chip\n");
361 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
362 /* XXX: TODO reset all internal peripherals */
363 dbsr
= env
->spr
[SPR_40x_DBSR
];
366 env
->spr
[SPR_40x_DBSR
] = dbsr
;
369 void ppc40x_system_reset(PowerPCCPU
*cpu
)
371 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC system\n");
372 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
375 void store_40x_dbcr0(CPUPPCState
*env
, uint32_t val
)
377 PowerPCCPU
*cpu
= env_archcpu(env
);
379 switch ((val
>> 28) & 0x3) {
385 ppc40x_core_reset(cpu
);
389 ppc40x_chip_reset(cpu
);
393 ppc40x_system_reset(cpu
);
398 /* PowerPC 40x internal IRQ controller */
399 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
401 PowerPCCPU
*cpu
= opaque
;
402 CPUPPCState
*env
= &cpu
->env
;
405 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
407 cur_level
= (env
->irq_input_state
>> pin
) & 1;
408 /* Don't generate spurious events */
409 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
410 CPUState
*cs
= CPU(cpu
);
413 case PPC40x_INPUT_RESET_SYS
:
415 LOG_IRQ("%s: reset the PowerPC system\n",
417 ppc40x_system_reset(cpu
);
420 case PPC40x_INPUT_RESET_CHIP
:
422 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
423 ppc40x_chip_reset(cpu
);
426 case PPC40x_INPUT_RESET_CORE
:
427 /* XXX: TODO: update DBSR[MRR] */
429 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
430 ppc40x_core_reset(cpu
);
433 case PPC40x_INPUT_CINT
:
434 /* Level sensitive - active high */
435 LOG_IRQ("%s: set the critical IRQ state to %d\n",
437 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
439 case PPC40x_INPUT_INT
:
440 /* Level sensitive - active high */
441 LOG_IRQ("%s: set the external IRQ state to %d\n",
443 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
445 case PPC40x_INPUT_HALT
:
446 /* Level sensitive - active low */
448 LOG_IRQ("%s: stop the CPU\n", __func__
);
451 LOG_IRQ("%s: restart the CPU\n", __func__
);
456 case PPC40x_INPUT_DEBUG
:
457 /* Level sensitive - active high */
458 LOG_IRQ("%s: set the debug pin state to %d\n",
460 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
463 /* Unknown pin - do nothing */
464 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
468 env
->irq_input_state
|= 1 << pin
;
470 env
->irq_input_state
&= ~(1 << pin
);
474 void ppc40x_irq_init(PowerPCCPU
*cpu
)
476 CPUPPCState
*env
= &cpu
->env
;
478 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
479 cpu
, PPC40x_INPUT_NB
);
482 /* PowerPC E500 internal IRQ controller */
483 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
485 PowerPCCPU
*cpu
= opaque
;
486 CPUPPCState
*env
= &cpu
->env
;
489 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
491 cur_level
= (env
->irq_input_state
>> pin
) & 1;
492 /* Don't generate spurious events */
493 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
495 case PPCE500_INPUT_MCK
:
497 LOG_IRQ("%s: reset the PowerPC system\n",
499 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
502 case PPCE500_INPUT_RESET_CORE
:
504 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
505 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
508 case PPCE500_INPUT_CINT
:
509 /* Level sensitive - active high */
510 LOG_IRQ("%s: set the critical IRQ state to %d\n",
512 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
514 case PPCE500_INPUT_INT
:
515 /* Level sensitive - active high */
516 LOG_IRQ("%s: set the core IRQ state to %d\n",
518 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
520 case PPCE500_INPUT_DEBUG
:
521 /* Level sensitive - active high */
522 LOG_IRQ("%s: set the debug pin state to %d\n",
524 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
527 /* Unknown pin - do nothing */
528 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
532 env
->irq_input_state
|= 1 << pin
;
534 env
->irq_input_state
&= ~(1 << pin
);
538 void ppce500_irq_init(PowerPCCPU
*cpu
)
540 CPUPPCState
*env
= &cpu
->env
;
542 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
543 cpu
, PPCE500_INPUT_NB
);
546 /* Enable or Disable the E500 EPR capability */
547 void ppce500_set_mpic_proxy(bool enabled
)
552 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
554 cpu
->env
.mpic_proxy
= enabled
;
556 kvmppc_set_mpic_proxy(cpu
, enabled
);
561 /*****************************************************************************/
562 /* PowerPC time base and decrementer emulation */
564 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
566 /* TB time in tb periods */
567 return muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
) + tb_offset
;
570 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
572 ppc_tb_t
*tb_env
= env
->tb_env
;
576 return env
->spr
[SPR_TBL
];
579 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
580 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
585 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
587 ppc_tb_t
*tb_env
= env
->tb_env
;
590 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
591 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
596 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
599 return env
->spr
[SPR_TBU
];
602 return _cpu_ppc_load_tbu(env
);
605 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
606 int64_t *tb_offsetp
, uint64_t value
)
608 *tb_offsetp
= value
-
609 muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
611 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
612 __func__
, value
, *tb_offsetp
);
615 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
617 ppc_tb_t
*tb_env
= env
->tb_env
;
620 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
621 tb
&= 0xFFFFFFFF00000000ULL
;
622 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
623 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
626 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
628 ppc_tb_t
*tb_env
= env
->tb_env
;
631 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
632 tb
&= 0x00000000FFFFFFFFULL
;
633 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
634 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
637 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
639 _cpu_ppc_store_tbu(env
, value
);
642 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
644 ppc_tb_t
*tb_env
= env
->tb_env
;
647 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
648 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
653 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
655 ppc_tb_t
*tb_env
= env
->tb_env
;
658 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
659 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
664 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
666 ppc_tb_t
*tb_env
= env
->tb_env
;
669 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
670 tb
&= 0xFFFFFFFF00000000ULL
;
671 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
672 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
675 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
677 ppc_tb_t
*tb_env
= env
->tb_env
;
680 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
681 tb
&= 0x00000000FFFFFFFFULL
;
682 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
683 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
686 uint64_t cpu_ppc_load_vtb(CPUPPCState
*env
)
688 ppc_tb_t
*tb_env
= env
->tb_env
;
690 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
694 void cpu_ppc_store_vtb(CPUPPCState
*env
, uint64_t value
)
696 ppc_tb_t
*tb_env
= env
->tb_env
;
698 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
699 &tb_env
->vtb_offset
, value
);
702 void cpu_ppc_store_tbu40(CPUPPCState
*env
, uint64_t value
)
704 ppc_tb_t
*tb_env
= env
->tb_env
;
707 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
710 tb
|= (value
& ~0xFFFFFFUL
);
711 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
712 &tb_env
->tb_offset
, tb
);
715 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
717 ppc_tb_t
*tb_env
= env
->tb_env
;
718 uint64_t tb
, atb
, vmclk
;
720 /* If the time base is already frozen, do nothing */
721 if (tb_env
->tb_freq
!= 0) {
722 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
723 /* Get the time base */
724 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
725 /* Get the alternate time base */
726 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
727 /* Store the time base value (ie compute the current offset) */
728 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
729 /* Store the alternate time base value (compute the current offset) */
730 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
731 /* Set the time base frequency to zero */
733 /* Now, the time bases are frozen to tb_offset / atb_offset value */
737 static void cpu_ppc_tb_start (CPUPPCState
*env
)
739 ppc_tb_t
*tb_env
= env
->tb_env
;
740 uint64_t tb
, atb
, vmclk
;
742 /* If the time base is not frozen, do nothing */
743 if (tb_env
->tb_freq
== 0) {
744 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
745 /* Get the time base from tb_offset */
746 tb
= tb_env
->tb_offset
;
747 /* Get the alternate time base from atb_offset */
748 atb
= tb_env
->atb_offset
;
749 /* Restore the tb frequency from the decrementer frequency */
750 tb_env
->tb_freq
= tb_env
->decr_freq
;
751 /* Store the time base value */
752 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
753 /* Store the alternate time base value */
754 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
758 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
760 ppc_tb_t
*tb_env
= env
->tb_env
;
761 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
762 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
765 static inline int64_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
767 ppc_tb_t
*tb_env
= env
->tb_env
;
770 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
772 decr
= muldiv64(diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
773 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
776 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
778 LOG_TB("%s: %016" PRIx64
"\n", __func__
, decr
);
783 target_ulong
cpu_ppc_load_decr(CPUPPCState
*env
)
785 ppc_tb_t
*tb_env
= env
->tb_env
;
789 return env
->spr
[SPR_DECR
];
792 decr
= _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
795 * If large decrementer is enabled then the decrementer is signed extened
796 * to 64 bits, otherwise it is a 32 bit value.
798 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
801 return (uint32_t) decr
;
804 target_ulong
cpu_ppc_load_hdecr(CPUPPCState
*env
)
806 PowerPCCPU
*cpu
= env_archcpu(env
);
807 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
808 ppc_tb_t
*tb_env
= env
->tb_env
;
811 hdecr
= _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
814 * If we have a large decrementer (POWER9 or later) then hdecr is sign
815 * extended to 64 bits, otherwise it is 32 bits.
817 if (pcc
->lrg_decr_bits
> 32) {
820 return (uint32_t) hdecr
;
823 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
825 ppc_tb_t
*tb_env
= env
->tb_env
;
827 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
828 tb_env
->purr_offset
);
831 /* When decrementer expires,
832 * all we need to do is generate or queue a CPU exception
834 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
837 LOG_TB("raise decrementer exception\n");
838 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
841 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
843 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
846 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
848 CPUPPCState
*env
= &cpu
->env
;
851 LOG_TB("raise hv decrementer exception\n");
853 /* The architecture specifies that we don't deliver HDEC
854 * interrupts in a PM state. Not only they don't cause a
855 * wakeup but they also get effectively discarded.
857 if (!env
->resume_as_sreset
) {
858 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
862 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
864 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
867 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
869 void (*raise_excp
)(void *),
870 void (*lower_excp
)(PowerPCCPU
*),
871 target_ulong decr
, target_ulong value
,
874 CPUPPCState
*env
= &cpu
->env
;
875 ppc_tb_t
*tb_env
= env
->tb_env
;
879 /* Truncate value to decr_width and sign extend for simplicity */
880 value
&= ((1ULL << nr_bits
) - 1);
881 negative
= !!(value
& (1ULL << (nr_bits
- 1)));
883 value
|= (0xFFFFFFFFULL
<< nr_bits
);
886 LOG_TB("%s: " TARGET_FMT_lx
" => " TARGET_FMT_lx
"\n", __func__
,
890 /* KVM handles decrementer exceptions, we don't need our own timer */
895 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
898 * If we get a really small DEC value, we can assume that by the time we
899 * handled it we should inject an interrupt already.
901 * On MSB level based DEC implementations the MSB always means the interrupt
902 * is pending, so raise it on those.
904 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
905 * an edge interrupt, so raise it here too.
908 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
) && negative
) ||
909 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && negative
910 && !(decr
& (1ULL << (nr_bits
- 1))))) {
915 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
916 if (!negative
&& (tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
920 /* Calculate the next timer event */
921 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
922 next
= now
+ muldiv64(value
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
926 timer_mod(timer
, next
);
929 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, target_ulong decr
,
930 target_ulong value
, int nr_bits
)
932 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
934 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
935 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
, decr
,
939 void cpu_ppc_store_decr(CPUPPCState
*env
, target_ulong value
)
941 PowerPCCPU
*cpu
= env_archcpu(env
);
942 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
945 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
946 nr_bits
= pcc
->lrg_decr_bits
;
949 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
, nr_bits
);
952 static void cpu_ppc_decr_cb(void *opaque
)
954 PowerPCCPU
*cpu
= opaque
;
956 cpu_ppc_decr_excp(cpu
);
959 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, target_ulong hdecr
,
960 target_ulong value
, int nr_bits
)
962 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
964 if (tb_env
->hdecr_timer
!= NULL
) {
965 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
966 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
967 hdecr
, value
, nr_bits
);
971 void cpu_ppc_store_hdecr(CPUPPCState
*env
, target_ulong value
)
973 PowerPCCPU
*cpu
= env_archcpu(env
);
974 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
976 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
,
980 static void cpu_ppc_hdecr_cb(void *opaque
)
982 PowerPCCPU
*cpu
= opaque
;
984 cpu_ppc_hdecr_excp(cpu
);
987 void cpu_ppc_store_purr(CPUPPCState
*env
, uint64_t value
)
989 ppc_tb_t
*tb_env
= env
->tb_env
;
991 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
992 &tb_env
->purr_offset
, value
);
995 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
997 CPUPPCState
*env
= opaque
;
998 PowerPCCPU
*cpu
= env_archcpu(env
);
999 ppc_tb_t
*tb_env
= env
->tb_env
;
1001 tb_env
->tb_freq
= freq
;
1002 tb_env
->decr_freq
= freq
;
1003 /* There is a bug in Linux 2.4 kernels:
1004 * if a decrementer exception is pending when it enables msr_ee at startup,
1005 * it's not ready to handle it...
1007 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1008 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
1009 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
1012 static void timebase_save(PPCTimebase
*tb
)
1014 uint64_t ticks
= cpu_get_host_ticks();
1015 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1017 if (!first_ppc_cpu
->env
.tb_env
) {
1018 error_report("No timebase object");
1022 /* not used anymore, we keep it for compatibility */
1023 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
1025 * tb_offset is only expected to be changed by QEMU so
1026 * there is no need to update it from KVM here
1028 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
1030 tb
->runstate_paused
=
1031 runstate_check(RUN_STATE_PAUSED
) || runstate_check(RUN_STATE_SAVE_VM
);
1034 static void timebase_load(PPCTimebase
*tb
)
1037 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1038 int64_t tb_off_adj
, tb_off
;
1041 if (!first_ppc_cpu
->env
.tb_env
) {
1042 error_report("No timebase object");
1046 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
1048 tb_off_adj
= tb
->guest_timebase
- cpu_get_host_ticks();
1050 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
1051 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
1052 (tb_off_adj
- tb_off
) / freq
);
1054 /* Set new offset to all CPUs */
1056 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
1057 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
1058 kvmppc_set_reg_tb_offset(pcpu
, pcpu
->env
.tb_env
->tb_offset
);
1062 void cpu_ppc_clock_vm_state_change(void *opaque
, int running
,
1065 PPCTimebase
*tb
= opaque
;
1075 * When migrating a running guest, read the clock just
1076 * before migration, so that the guest clock counts
1077 * during the events between:
1083 * This reduces clock difference on migration from 5s
1084 * to 0.1s (when max_downtime == 5s), because sending the
1085 * final pages of memory (which happens between vm_stop()
1086 * and pre_save()) takes max_downtime.
1088 static int timebase_pre_save(void *opaque
)
1090 PPCTimebase
*tb
= opaque
;
1092 /* guest_timebase won't be overridden in case of paused guest or savevm */
1093 if (!tb
->runstate_paused
) {
1100 const VMStateDescription vmstate_ppc_timebase
= {
1103 .minimum_version_id
= 1,
1104 .minimum_version_id_old
= 1,
1105 .pre_save
= timebase_pre_save
,
1106 .fields
= (VMStateField
[]) {
1107 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
1108 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
1109 VMSTATE_END_OF_LIST()
1113 /* Set up (once) timebase frequency (in Hz) */
1114 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
1116 PowerPCCPU
*cpu
= env_archcpu(env
);
1119 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1120 env
->tb_env
= tb_env
;
1121 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1122 if (is_book3s_arch2x(env
)) {
1123 /* All Book3S 64bit CPUs implement level based DEC logic */
1124 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
1126 /* Create new timer */
1127 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
1128 if (env
->has_hv_mode
) {
1129 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
1132 tb_env
->hdecr_timer
= NULL
;
1134 cpu_ppc_set_tb_clk(env
, freq
);
1136 return &cpu_ppc_set_tb_clk
;
1139 /* Specific helpers for POWER & PowerPC 601 RTC */
1140 void cpu_ppc601_store_rtcu (CPUPPCState
*env
, uint32_t value
)
1142 _cpu_ppc_store_tbu(env
, value
);
1145 uint32_t cpu_ppc601_load_rtcu (CPUPPCState
*env
)
1147 return _cpu_ppc_load_tbu(env
);
1150 void cpu_ppc601_store_rtcl (CPUPPCState
*env
, uint32_t value
)
1152 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
1155 uint32_t cpu_ppc601_load_rtcl (CPUPPCState
*env
)
1157 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1160 /*****************************************************************************/
1161 /* PowerPC 40x timers */
1163 /* PIT, FIT & WDT */
1164 typedef struct ppc40x_timer_t ppc40x_timer_t
;
1165 struct ppc40x_timer_t
{
1166 uint64_t pit_reload
; /* PIT auto-reload value */
1167 uint64_t fit_next
; /* Tick for next FIT interrupt */
1168 QEMUTimer
*fit_timer
;
1169 uint64_t wdt_next
; /* Tick for next WDT interrupt */
1170 QEMUTimer
*wdt_timer
;
1172 /* 405 have the PIT, 440 have a DECR. */
1173 unsigned int decr_excp
;
1176 /* Fixed interval timer */
1177 static void cpu_4xx_fit_cb (void *opaque
)
1182 ppc40x_timer_t
*ppc40x_timer
;
1186 cpu
= env_archcpu(env
);
1187 tb_env
= env
->tb_env
;
1188 ppc40x_timer
= tb_env
->opaque
;
1189 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1190 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1204 /* Cannot occur, but makes gcc happy */
1207 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->tb_freq
);
1210 timer_mod(ppc40x_timer
->fit_timer
, next
);
1211 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1212 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1213 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1215 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1216 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1217 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1220 /* Programmable interval timer */
1221 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1223 ppc40x_timer_t
*ppc40x_timer
;
1226 ppc40x_timer
= tb_env
->opaque
;
1227 if (ppc40x_timer
->pit_reload
<= 1 ||
1228 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1229 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1231 LOG_TB("%s: stop PIT\n", __func__
);
1232 timer_del(tb_env
->decr_timer
);
1234 LOG_TB("%s: start PIT %016" PRIx64
"\n",
1235 __func__
, ppc40x_timer
->pit_reload
);
1236 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1237 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
1238 NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1240 next
+= tb_env
->decr_next
- now
;
1243 timer_mod(tb_env
->decr_timer
, next
);
1244 tb_env
->decr_next
= next
;
1248 static void cpu_4xx_pit_cb (void *opaque
)
1253 ppc40x_timer_t
*ppc40x_timer
;
1256 cpu
= env_archcpu(env
);
1257 tb_env
= env
->tb_env
;
1258 ppc40x_timer
= tb_env
->opaque
;
1259 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1260 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1261 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1263 start_stop_pit(env
, tb_env
, 1);
1264 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
1265 "%016" PRIx64
"\n", __func__
,
1266 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1267 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1268 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1269 ppc40x_timer
->pit_reload
);
1272 /* Watchdog timer */
1273 static void cpu_4xx_wdt_cb (void *opaque
)
1278 ppc40x_timer_t
*ppc40x_timer
;
1282 cpu
= env_archcpu(env
);
1283 tb_env
= env
->tb_env
;
1284 ppc40x_timer
= tb_env
->opaque
;
1285 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1286 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1300 /* Cannot occur, but makes gcc happy */
1303 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1306 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1307 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1308 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1311 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1312 ppc40x_timer
->wdt_next
= next
;
1313 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1316 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1317 ppc40x_timer
->wdt_next
= next
;
1318 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1319 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1320 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1324 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1325 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1326 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1330 case 0x1: /* Core reset */
1331 ppc40x_core_reset(cpu
);
1333 case 0x2: /* Chip reset */
1334 ppc40x_chip_reset(cpu
);
1336 case 0x3: /* System reset */
1337 ppc40x_system_reset(cpu
);
1343 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1346 ppc40x_timer_t
*ppc40x_timer
;
1348 tb_env
= env
->tb_env
;
1349 ppc40x_timer
= tb_env
->opaque
;
1350 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
1351 ppc40x_timer
->pit_reload
= val
;
1352 start_stop_pit(env
, tb_env
, 0);
1355 target_ulong
load_40x_pit (CPUPPCState
*env
)
1357 return cpu_ppc_load_decr(env
);
1360 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1362 CPUPPCState
*env
= opaque
;
1363 ppc_tb_t
*tb_env
= env
->tb_env
;
1365 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
1367 tb_env
->tb_freq
= freq
;
1368 tb_env
->decr_freq
= freq
;
1369 /* XXX: we should also update all timers */
1372 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1373 unsigned int decr_excp
)
1376 ppc40x_timer_t
*ppc40x_timer
;
1378 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1379 env
->tb_env
= tb_env
;
1380 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1381 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1382 tb_env
->tb_freq
= freq
;
1383 tb_env
->decr_freq
= freq
;
1384 tb_env
->opaque
= ppc40x_timer
;
1385 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1386 if (ppc40x_timer
!= NULL
) {
1387 /* We use decr timer for PIT */
1388 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, env
);
1389 ppc40x_timer
->fit_timer
=
1390 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, env
);
1391 ppc40x_timer
->wdt_timer
=
1392 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, env
);
1393 ppc40x_timer
->decr_excp
= decr_excp
;
1396 return &ppc_40x_set_tb_clk
;
1399 /*****************************************************************************/
1400 /* Embedded PowerPC Device Control Registers */
1401 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1403 dcr_read_cb dcr_read
;
1404 dcr_write_cb dcr_write
;
1408 /* XXX: on 460, DCR addresses are 32 bits wide,
1409 * using DCRIPR to get the 22 upper bits of the DCR address
1411 #define DCRN_NB 1024
1413 ppc_dcrn_t dcrn
[DCRN_NB
];
1414 int (*read_error
)(int dcrn
);
1415 int (*write_error
)(int dcrn
);
1418 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1422 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1424 dcr
= &dcr_env
->dcrn
[dcrn
];
1425 if (dcr
->dcr_read
== NULL
)
1427 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1432 if (dcr_env
->read_error
!= NULL
)
1433 return (*dcr_env
->read_error
)(dcrn
);
1438 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1442 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1444 dcr
= &dcr_env
->dcrn
[dcrn
];
1445 if (dcr
->dcr_write
== NULL
)
1447 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1452 if (dcr_env
->write_error
!= NULL
)
1453 return (*dcr_env
->write_error
)(dcrn
);
1458 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1459 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1464 dcr_env
= env
->dcr_env
;
1465 if (dcr_env
== NULL
)
1467 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1469 dcr
= &dcr_env
->dcrn
[dcrn
];
1470 if (dcr
->opaque
!= NULL
||
1471 dcr
->dcr_read
!= NULL
||
1472 dcr
->dcr_write
!= NULL
)
1474 dcr
->opaque
= opaque
;
1475 dcr
->dcr_read
= dcr_read
;
1476 dcr
->dcr_write
= dcr_write
;
1481 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1482 int (*write_error
)(int dcrn
))
1486 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1487 dcr_env
->read_error
= read_error
;
1488 dcr_env
->write_error
= write_error
;
1489 env
->dcr_env
= dcr_env
;
1494 /*****************************************************************************/
1496 int ppc_cpu_pir(PowerPCCPU
*cpu
)
1498 CPUPPCState
*env
= &cpu
->env
;
1499 return env
->spr_cb
[SPR_PIR
].default_value
;
1502 PowerPCCPU
*ppc_get_vcpu_by_pir(int pir
)
1507 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1509 if (ppc_cpu_pir(cpu
) == pir
) {
1517 void ppc_irq_reset(PowerPCCPU
*cpu
)
1519 CPUPPCState
*env
= &cpu
->env
;
1521 env
->irq_input_state
= 0;
1522 kvmppc_set_interrupt(cpu
, PPC_INTERRUPT_EXT
, 0);