2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
33 #include "hw/fw-path-provider.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
60 #include "exec/address-spaces.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
66 #include "hw/intc/intc.h"
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
75 /* SLOF memory layout:
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
83 * We load our kernel at 4M, leaving space for SLOF initial image
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
93 #define MIN_RMA_SLOF 128UL
95 #define PHANDLE_XICP 0x00001111
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99 static int try_create_xics(sPAPRMachineState
*spapr
, const char *type_ics
,
100 const char *type_icp
, int nr_servers
,
101 int nr_irqs
, Error
**errp
)
103 XICSFabric
*xi
= XICS_FABRIC(spapr
);
104 Error
*err
= NULL
, *local_err
= NULL
;
105 ICSState
*ics
= NULL
;
108 ics
= ICS_SIMPLE(object_new(type_ics
));
109 object_property_add_child(OBJECT(spapr
), "ics", OBJECT(ics
), NULL
);
110 object_property_set_int(OBJECT(ics
), nr_irqs
, "nr-irqs", &err
);
111 object_property_add_const_link(OBJECT(ics
), "xics", OBJECT(xi
), NULL
);
112 object_property_set_bool(OBJECT(ics
), true, "realized", &local_err
);
113 error_propagate(&err
, local_err
);
118 spapr
->icps
= g_malloc0(nr_servers
* sizeof(ICPState
));
119 spapr
->nr_servers
= nr_servers
;
121 for (i
= 0; i
< nr_servers
; i
++) {
122 ICPState
*icp
= &spapr
->icps
[i
];
124 object_initialize(icp
, sizeof(*icp
), type_icp
);
125 object_property_add_child(OBJECT(spapr
), "icp[*]", OBJECT(icp
), NULL
);
126 object_property_add_const_link(OBJECT(icp
), "xics", OBJECT(xi
), NULL
);
127 object_property_set_bool(OBJECT(icp
), true, "realized", &err
);
131 object_unref(OBJECT(icp
));
138 error_propagate(errp
, err
);
140 object_unparent(OBJECT(ics
));
145 static int xics_system_init(MachineState
*machine
,
146 int nr_servers
, int nr_irqs
, Error
**errp
)
153 if (machine_kernel_irqchip_allowed(machine
) &&
154 !xics_kvm_init(SPAPR_MACHINE(machine
), errp
)) {
155 rc
= try_create_xics(SPAPR_MACHINE(machine
), TYPE_ICS_KVM
,
156 TYPE_KVM_ICP
, nr_servers
, nr_irqs
, &err
);
158 if (machine_kernel_irqchip_required(machine
) && rc
< 0) {
159 error_reportf_err(err
,
160 "kernel_irqchip requested but unavailable: ");
167 xics_spapr_init(SPAPR_MACHINE(machine
), errp
);
168 rc
= try_create_xics(SPAPR_MACHINE(machine
), TYPE_ICS_SIMPLE
,
169 TYPE_ICP
, nr_servers
, nr_irqs
, errp
);
175 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
179 uint32_t servers_prop
[smt_threads
];
180 uint32_t gservers_prop
[smt_threads
* 2];
181 int index
= ppc_get_vcpu_dt_id(cpu
);
183 if (cpu
->compat_pvr
) {
184 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
190 /* Build interrupt servers and gservers properties */
191 for (i
= 0; i
< smt_threads
; i
++) {
192 servers_prop
[i
] = cpu_to_be32(index
+ i
);
193 /* Hack, direct the group queues back to cpu 0 */
194 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
195 gservers_prop
[i
*2 + 1] = 0;
197 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
198 servers_prop
, sizeof(servers_prop
));
202 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
203 gservers_prop
, sizeof(gservers_prop
));
208 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, CPUState
*cs
)
211 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
212 int index
= ppc_get_vcpu_dt_id(cpu
);
213 uint32_t associativity
[] = {cpu_to_be32(0x5),
217 cpu_to_be32(cs
->numa_node
),
220 /* Advertise NUMA via ibm,associativity */
221 if (nb_numa_nodes
> 1) {
222 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
223 sizeof(associativity
));
229 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
231 int ret
= 0, offset
, cpus_offset
;
234 int smt
= kvmppc_smt_threads();
235 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
238 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
239 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
240 int index
= ppc_get_vcpu_dt_id(cpu
);
241 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
243 if ((index
% smt
) != 0) {
247 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
249 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
250 if (cpus_offset
< 0) {
251 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
253 if (cpus_offset
< 0) {
257 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
259 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
265 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
266 pft_size_prop
, sizeof(pft_size_prop
));
271 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
);
276 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
284 static hwaddr
spapr_node0_size(void)
286 MachineState
*machine
= MACHINE(qdev_get_machine());
290 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
291 if (numa_info
[i
].node_mem
) {
292 return MIN(pow2floor(numa_info
[i
].node_mem
),
297 return machine
->ram_size
;
300 static void add_str(GString
*s
, const gchar
*s1
)
302 g_string_append_len(s
, s1
, strlen(s1
) + 1);
305 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
308 uint32_t associativity
[] = {
309 cpu_to_be32(0x4), /* length */
310 cpu_to_be32(0x0), cpu_to_be32(0x0),
311 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
314 uint64_t mem_reg_property
[2];
317 mem_reg_property
[0] = cpu_to_be64(start
);
318 mem_reg_property
[1] = cpu_to_be64(size
);
320 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
321 off
= fdt_add_subnode(fdt
, 0, mem_name
);
323 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
324 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
325 sizeof(mem_reg_property
))));
326 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
327 sizeof(associativity
))));
331 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
333 MachineState
*machine
= MACHINE(spapr
);
334 hwaddr mem_start
, node_size
;
335 int i
, nb_nodes
= nb_numa_nodes
;
336 NodeInfo
*nodes
= numa_info
;
339 /* No NUMA nodes, assume there is just one node with whole RAM */
340 if (!nb_numa_nodes
) {
342 ramnode
.node_mem
= machine
->ram_size
;
346 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
347 if (!nodes
[i
].node_mem
) {
350 if (mem_start
>= machine
->ram_size
) {
353 node_size
= nodes
[i
].node_mem
;
354 if (node_size
> machine
->ram_size
- mem_start
) {
355 node_size
= machine
->ram_size
- mem_start
;
359 /* ppc_spapr_init() checks for rma_size <= node0_size already */
360 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
361 mem_start
+= spapr
->rma_size
;
362 node_size
-= spapr
->rma_size
;
364 for ( ; node_size
; ) {
365 hwaddr sizetmp
= pow2floor(node_size
);
367 /* mem_start != 0 here */
368 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
369 sizetmp
= 1ULL << ctzl(mem_start
);
372 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
373 node_size
-= sizetmp
;
374 mem_start
+= sizetmp
;
381 /* Populate the "ibm,pa-features" property */
382 static void spapr_populate_pa_features(CPUPPCState
*env
, void *fdt
, int offset
)
384 uint8_t pa_features_206
[] = { 6, 0,
385 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
386 uint8_t pa_features_207
[] = { 24, 0,
387 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
388 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
389 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
390 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
391 /* Currently we don't advertise any of the "new" ISAv3.00 functionality */
392 uint8_t pa_features_300
[] = { 64, 0,
393 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
394 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
395 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
396 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
397 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */
398 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */
399 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */
400 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */
401 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */
402 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */
403 0x00, 0x00, 0x00, 0x00 }; /* 60 - 63 */
405 uint8_t *pa_features
;
408 switch (POWERPC_MMU_VER(env
->mmu_model
)) {
409 case POWERPC_MMU_VER_2_06
:
410 pa_features
= pa_features_206
;
411 pa_size
= sizeof(pa_features_206
);
413 case POWERPC_MMU_VER_2_07
:
414 pa_features
= pa_features_207
;
415 pa_size
= sizeof(pa_features_207
);
417 case POWERPC_MMU_VER_3_00
:
418 pa_features
= pa_features_300
;
419 pa_size
= sizeof(pa_features_300
);
425 if (env
->ci_large_pages
) {
427 * Note: we keep CI large pages off by default because a 64K capable
428 * guest provisioned with large pages might otherwise try to map a qemu
429 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
430 * even if that qemu runs on a 4k host.
431 * We dd this bit back here if we are confident this is not an issue
433 pa_features
[3] |= 0x20;
435 if (kvmppc_has_cap_htm() && pa_size
> 24) {
436 pa_features
[24] |= 0x80; /* Transactional memory support */
439 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
442 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
443 sPAPRMachineState
*spapr
)
445 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
446 CPUPPCState
*env
= &cpu
->env
;
447 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
448 int index
= ppc_get_vcpu_dt_id(cpu
);
449 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
450 0xffffffff, 0xffffffff};
451 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
452 : SPAPR_TIMEBASE_FREQ
;
453 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
454 uint32_t page_sizes_prop
[64];
455 size_t page_sizes_prop_size
;
456 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
457 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
458 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
459 sPAPRDRConnector
*drc
;
460 sPAPRDRConnectorClass
*drck
;
463 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
);
465 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
466 drc_index
= drck
->get_index(drc
);
467 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
470 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
471 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
473 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
474 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
475 env
->dcache_line_size
)));
476 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
477 env
->dcache_line_size
)));
478 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
479 env
->icache_line_size
)));
480 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
481 env
->icache_line_size
)));
483 if (pcc
->l1_dcache_size
) {
484 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
485 pcc
->l1_dcache_size
)));
487 error_report("Warning: Unknown L1 dcache size for cpu");
489 if (pcc
->l1_icache_size
) {
490 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
491 pcc
->l1_icache_size
)));
493 error_report("Warning: Unknown L1 icache size for cpu");
496 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
497 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
498 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
499 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
500 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
501 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
503 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
504 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
507 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
508 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
509 segs
, sizeof(segs
))));
512 /* Advertise VMX/VSX (vector extensions) if available
513 * 0 / no property == no vector extensions
514 * 1 == VMX / Altivec available
515 * 2 == VSX available */
516 if (env
->insns_flags
& PPC_ALTIVEC
) {
517 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
519 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
522 /* Advertise DFP (Decimal Floating Point) if available
523 * 0 / no property == no DFP
524 * 1 == DFP available */
525 if (env
->insns_flags2
& PPC2_DFP
) {
526 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
529 page_sizes_prop_size
= ppc_create_page_sizes_prop(env
, page_sizes_prop
,
530 sizeof(page_sizes_prop
));
531 if (page_sizes_prop_size
) {
532 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
533 page_sizes_prop
, page_sizes_prop_size
)));
536 spapr_populate_pa_features(env
, fdt
, offset
);
538 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
539 cs
->cpu_index
/ vcpus_per_socket
)));
541 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
542 pft_size_prop
, sizeof(pft_size_prop
))));
544 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
));
546 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
549 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
554 int smt
= kvmppc_smt_threads();
556 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
558 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
559 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
562 * We walk the CPUs in reverse order to ensure that CPU DT nodes
563 * created by fdt_add_subnode() end up in the right order in FDT
564 * for the guest kernel the enumerate the CPUs correctly.
566 CPU_FOREACH_REVERSE(cs
) {
567 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
568 int index
= ppc_get_vcpu_dt_id(cpu
);
569 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
572 if ((index
% smt
) != 0) {
576 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
577 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
580 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
586 * Adds ibm,dynamic-reconfiguration-memory node.
587 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
588 * of this device tree node.
590 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
592 MachineState
*machine
= MACHINE(spapr
);
594 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
595 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
596 uint32_t hotplug_lmb_start
= spapr
->hotplug_memory
.base
/ lmb_size
;
597 uint32_t nr_lmbs
= (spapr
->hotplug_memory
.base
+
598 memory_region_size(&spapr
->hotplug_memory
.mr
)) /
600 uint32_t *int_buf
, *cur_index
, buf_len
;
601 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
604 * Don't create the node if there is no hotpluggable memory
606 if (machine
->ram_size
== machine
->maxram_size
) {
611 * Allocate enough buffer size to fit in ibm,dynamic-memory
612 * or ibm,associativity-lookup-arrays
614 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
616 cur_index
= int_buf
= g_malloc0(buf_len
);
618 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
620 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
621 sizeof(prop_lmb_size
));
626 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
631 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
636 /* ibm,dynamic-memory */
637 int_buf
[0] = cpu_to_be32(nr_lmbs
);
639 for (i
= 0; i
< nr_lmbs
; i
++) {
640 uint64_t addr
= i
* lmb_size
;
641 uint32_t *dynamic_memory
= cur_index
;
643 if (i
>= hotplug_lmb_start
) {
644 sPAPRDRConnector
*drc
;
645 sPAPRDRConnectorClass
*drck
;
647 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
, i
);
649 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
651 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
652 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
653 dynamic_memory
[2] = cpu_to_be32(drck
->get_index(drc
));
654 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
655 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
656 if (memory_region_present(get_system_memory(), addr
)) {
657 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
659 dynamic_memory
[5] = cpu_to_be32(0);
663 * LMB information for RMA, boot time RAM and gap b/n RAM and
664 * hotplug memory region -- all these are marked as reserved
665 * and as having no valid DRC.
667 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
668 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
669 dynamic_memory
[2] = cpu_to_be32(0);
670 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
671 dynamic_memory
[4] = cpu_to_be32(-1);
672 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
673 SPAPR_LMB_FLAGS_DRC_INVALID
);
676 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
678 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
683 /* ibm,associativity-lookup-arrays */
685 int_buf
[0] = cpu_to_be32(nr_nodes
);
686 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
688 for (i
= 0; i
< nr_nodes
; i
++) {
689 uint32_t associativity
[] = {
695 memcpy(cur_index
, associativity
, sizeof(associativity
));
698 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
699 (cur_index
- int_buf
) * sizeof(uint32_t));
705 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
706 sPAPROptionVector
*ov5_updates
)
708 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
711 /* Generate ibm,dynamic-reconfiguration-memory node if required */
712 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
713 g_assert(smc
->dr_lmb_enabled
);
714 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
720 offset
= fdt_path_offset(fdt
, "/chosen");
722 offset
= fdt_add_subnode(fdt
, 0, "chosen");
727 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
728 "ibm,architecture-vec-5");
734 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
735 target_ulong addr
, target_ulong size
,
736 sPAPROptionVector
*ov5_updates
)
738 void *fdt
, *fdt_skel
;
739 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
743 /* Create sceleton */
744 fdt_skel
= g_malloc0(size
);
745 _FDT((fdt_create(fdt_skel
, size
)));
746 _FDT((fdt_begin_node(fdt_skel
, "")));
747 _FDT((fdt_end_node(fdt_skel
)));
748 _FDT((fdt_finish(fdt_skel
)));
749 fdt
= g_malloc0(size
);
750 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
753 /* Fixup cpu nodes */
754 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
756 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
760 /* Pack resulting tree */
761 _FDT((fdt_pack(fdt
)));
763 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
764 trace_spapr_cas_failed(size
);
768 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
769 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
770 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
776 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
779 GString
*hypertas
= g_string_sized_new(256);
780 GString
*qemu_hypertas
= g_string_sized_new(256);
781 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
782 uint64_t max_hotplug_addr
= spapr
->hotplug_memory
.base
+
783 memory_region_size(&spapr
->hotplug_memory
.mr
);
784 uint32_t lrdr_capacity
[] = {
785 cpu_to_be32(max_hotplug_addr
>> 32),
786 cpu_to_be32(max_hotplug_addr
& 0xffffffff),
787 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
788 cpu_to_be32(max_cpus
/ smp_threads
),
791 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
794 add_str(hypertas
, "hcall-pft");
795 add_str(hypertas
, "hcall-term");
796 add_str(hypertas
, "hcall-dabr");
797 add_str(hypertas
, "hcall-interrupt");
798 add_str(hypertas
, "hcall-tce");
799 add_str(hypertas
, "hcall-vio");
800 add_str(hypertas
, "hcall-splpar");
801 add_str(hypertas
, "hcall-bulk");
802 add_str(hypertas
, "hcall-set-mode");
803 add_str(hypertas
, "hcall-sprg0");
804 add_str(hypertas
, "hcall-copy");
805 add_str(hypertas
, "hcall-debug");
806 add_str(qemu_hypertas
, "hcall-memop1");
808 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
809 add_str(hypertas
, "hcall-multi-tce");
811 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
812 hypertas
->str
, hypertas
->len
));
813 g_string_free(hypertas
, TRUE
);
814 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
815 qemu_hypertas
->str
, qemu_hypertas
->len
));
816 g_string_free(qemu_hypertas
, TRUE
);
818 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
819 refpoints
, sizeof(refpoints
)));
821 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
822 RTAS_ERROR_LOG_MAX
));
823 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
824 RTAS_EVENT_SCAN_RATE
));
827 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
831 * According to PAPR, rtas ibm,os-term does not guarantee a return
832 * back to the guest cpu.
834 * While an additional ibm,extended-os-term property indicates
835 * that rtas call return will always occur. Set this property.
837 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
839 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
840 lrdr_capacity
, sizeof(lrdr_capacity
)));
842 spapr_dt_rtas_tokens(fdt
, rtas
);
845 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
847 MachineState
*machine
= MACHINE(spapr
);
849 const char *boot_device
= machine
->boot_order
;
850 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
852 char *bootlist
= get_boot_devices_list(&cb
, true);
854 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
856 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
857 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
858 spapr
->initrd_base
));
859 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
860 spapr
->initrd_base
+ spapr
->initrd_size
));
862 if (spapr
->kernel_size
) {
863 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
864 cpu_to_be64(spapr
->kernel_size
) };
866 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
867 &kprop
, sizeof(kprop
)));
868 if (spapr
->kernel_le
) {
869 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
873 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
875 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
876 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
877 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
879 if (cb
&& bootlist
) {
882 for (i
= 0; i
< cb
; i
++) {
883 if (bootlist
[i
] == '\n') {
887 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
890 if (boot_device
&& strlen(boot_device
)) {
891 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
894 if (!spapr
->has_graphics
&& stdout_path
) {
895 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
902 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
904 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
905 * KVM to work under pHyp with some guest co-operation */
907 uint8_t hypercall
[16];
909 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
910 /* indicate KVM hypercall interface */
911 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
912 if (kvmppc_has_cap_fixup_hcalls()) {
914 * Older KVM versions with older guest kernels were broken
915 * with the magic page, don't allow the guest to map it.
917 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
918 sizeof(hypercall
))) {
919 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
920 hypercall
, sizeof(hypercall
)));
925 static void *spapr_build_fdt(sPAPRMachineState
*spapr
,
929 MachineState
*machine
= MACHINE(qdev_get_machine());
930 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
931 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
937 fdt
= g_malloc0(FDT_MAX_SIZE
);
938 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
941 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
942 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
943 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
946 * Add info to guest to indentify which host is it being run on
947 * and what is the uuid of the guest
949 if (kvmppc_get_host_model(&buf
)) {
950 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
953 if (kvmppc_get_host_serial(&buf
)) {
954 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
958 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
960 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
962 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
966 if (qemu_get_vm_name()) {
967 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
968 qemu_get_vm_name()));
971 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
972 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
974 /* /interrupt controller */
975 spapr_dt_xics(spapr
->nr_servers
, fdt
, PHANDLE_XICP
);
977 ret
= spapr_populate_memory(spapr
, fdt
);
979 error_report("couldn't setup memory nodes in fdt");
984 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
986 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
987 ret
= spapr_rng_populate_dt(fdt
);
989 error_report("could not set up rng device in the fdt");
994 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
995 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
997 error_report("couldn't setup PCI devices in fdt");
1003 spapr_populate_cpus_dt_node(fdt
, spapr
);
1005 if (smc
->dr_lmb_enabled
) {
1006 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1009 if (mc
->has_hotpluggable_cpus
) {
1010 int offset
= fdt_path_offset(fdt
, "/cpus");
1011 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
1012 SPAPR_DR_CONNECTOR_TYPE_CPU
);
1014 error_report("Couldn't set up CPU DR device tree properties");
1019 /* /event-sources */
1020 spapr_dt_events(spapr
, fdt
);
1023 spapr_dt_rtas(spapr
, fdt
);
1026 spapr_dt_chosen(spapr
, fdt
);
1029 if (kvm_enabled()) {
1030 spapr_dt_hypervisor(spapr
, fdt
);
1033 /* Build memory reserve map */
1034 if (spapr
->kernel_size
) {
1035 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1037 if (spapr
->initrd_size
) {
1038 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
1041 /* ibm,client-architecture-support updates */
1042 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1044 error_report("couldn't setup CAS properties fdt");
1051 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1053 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1056 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1059 CPUPPCState
*env
= &cpu
->env
;
1061 /* The TCG path should also be holding the BQL at this point */
1062 g_assert(qemu_mutex_iothread_locked());
1065 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1066 env
->gpr
[3] = H_PRIVILEGE
;
1068 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1072 static uint64_t spapr_get_patbe(PPCVirtualHypervisor
*vhyp
)
1074 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1076 return spapr
->patb_entry
;
1079 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1080 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1081 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1082 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1083 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1086 * Get the fd to access the kernel htab, re-opening it if necessary
1088 static int get_htab_fd(sPAPRMachineState
*spapr
)
1090 if (spapr
->htab_fd
>= 0) {
1091 return spapr
->htab_fd
;
1094 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1095 if (spapr
->htab_fd
< 0) {
1096 error_report("Unable to open fd for reading hash table from KVM: %s",
1100 return spapr
->htab_fd
;
1103 static void close_htab_fd(sPAPRMachineState
*spapr
)
1105 if (spapr
->htab_fd
>= 0) {
1106 close(spapr
->htab_fd
);
1108 spapr
->htab_fd
= -1;
1111 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1113 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1115 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1118 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1121 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1122 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1126 * HTAB is controlled by KVM. Fetch into temporary buffer
1128 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1129 kvmppc_read_hptes(hptes
, ptex
, n
);
1134 * HTAB is controlled by QEMU. Just point to the internally
1137 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1140 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1141 const ppc_hash_pte64_t
*hptes
,
1144 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1147 g_free((void *)hptes
);
1150 /* Nothing to do for qemu managed HPT */
1153 static void spapr_store_hpte(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1154 uint64_t pte0
, uint64_t pte1
)
1156 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1157 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1160 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1162 stq_p(spapr
->htab
+ offset
, pte0
);
1163 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1167 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1171 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1172 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1173 * that's much more than is needed for Linux guests */
1174 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1175 shift
= MAX(shift
, 18); /* Minimum architected size */
1176 shift
= MIN(shift
, 46); /* Maximum architected size */
1180 static void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1185 /* Clean up any HPT info from a previous boot */
1186 g_free(spapr
->htab
);
1188 spapr
->htab_shift
= 0;
1189 close_htab_fd(spapr
);
1191 rc
= kvmppc_reset_htab(shift
);
1193 /* kernel-side HPT needed, but couldn't allocate one */
1194 error_setg_errno(errp
, errno
,
1195 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1197 /* This is almost certainly fatal, but if the caller really
1198 * wants to carry on with shift == 0, it's welcome to try */
1199 } else if (rc
> 0) {
1200 /* kernel-side HPT allocated */
1203 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1207 spapr
->htab_shift
= shift
;
1210 /* kernel-side HPT not needed, allocate in userspace instead */
1211 size_t size
= 1ULL << shift
;
1214 spapr
->htab
= qemu_memalign(size
, size
);
1216 error_setg_errno(errp
, errno
,
1217 "Could not allocate HPT of order %d", shift
);
1221 memset(spapr
->htab
, 0, size
);
1222 spapr
->htab_shift
= shift
;
1224 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1225 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1230 static void find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1232 bool matched
= false;
1234 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1239 error_report("Device %s is not supported by this machine yet.",
1240 qdev_fw_name(DEVICE(sbdev
)));
1245 static void ppc_spapr_reset(void)
1247 MachineState
*machine
= MACHINE(qdev_get_machine());
1248 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1249 PowerPCCPU
*first_ppc_cpu
;
1250 uint32_t rtas_limit
;
1251 hwaddr rtas_addr
, fdt_addr
;
1255 /* Check for unknown sysbus devices */
1256 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1258 spapr
->patb_entry
= 0;
1260 /* Allocate and/or reset the hash page table */
1261 spapr_reallocate_hpt(spapr
,
1262 spapr_hpt_shift_for_ramsize(machine
->maxram_size
),
1265 /* Update the RMA size if necessary */
1266 if (spapr
->vrma_adjust
) {
1267 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(),
1271 qemu_devices_reset();
1274 * We place the device tree and RTAS just below either the top of the RMA,
1275 * or just below 2GB, whichever is lowere, so that it can be
1276 * processed with 32-bit real mode code if necessary
1278 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1279 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1280 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1282 /* if this reset wasn't generated by CAS, we should reset our
1283 * negotiated options and start from scratch */
1284 if (!spapr
->cas_reboot
) {
1285 spapr_ovec_cleanup(spapr
->ov5_cas
);
1286 spapr
->ov5_cas
= spapr_ovec_new();
1289 fdt
= spapr_build_fdt(spapr
, rtas_addr
, spapr
->rtas_size
);
1291 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1295 /* Should only fail if we've built a corrupted tree */
1298 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1299 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1300 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1305 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1306 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1309 /* Set up the entry state */
1310 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1311 first_ppc_cpu
->env
.gpr
[3] = fdt_addr
;
1312 first_ppc_cpu
->env
.gpr
[5] = 0;
1313 first_cpu
->halted
= 0;
1314 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1316 spapr
->cas_reboot
= false;
1319 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1321 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1322 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1325 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1329 qdev_init_nofail(dev
);
1331 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1334 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1336 DeviceState
*dev
= qdev_create(NULL
, TYPE_SPAPR_RTC
);
1338 qdev_init_nofail(dev
);
1341 object_property_add_alias(qdev_get_machine(), "rtc-time",
1342 OBJECT(spapr
->rtc
), "date", NULL
);
1345 /* Returns whether we want to use VGA or not */
1346 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1348 switch (vga_interface_type
) {
1355 return pci_vga_init(pci_bus
) != NULL
;
1358 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1363 static int spapr_post_load(void *opaque
, int version_id
)
1365 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1368 if (!object_dynamic_cast(OBJECT(spapr
->ics
), TYPE_ICS_KVM
)) {
1370 for (i
= 0; i
< spapr
->nr_servers
; i
++) {
1371 icp_resend(&spapr
->icps
[i
]);
1375 /* In earlier versions, there was no separate qdev for the PAPR
1376 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1377 * So when migrating from those versions, poke the incoming offset
1378 * value into the RTC device */
1379 if (version_id
< 3) {
1380 err
= spapr_rtc_import_offset(spapr
->rtc
, spapr
->rtc_offset
);
1386 static bool version_before_3(void *opaque
, int version_id
)
1388 return version_id
< 3;
1391 static bool spapr_ov5_cas_needed(void *opaque
)
1393 sPAPRMachineState
*spapr
= opaque
;
1394 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1395 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1396 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1399 /* Prior to the introduction of sPAPROptionVector, we had two option
1400 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1401 * Both of these options encode machine topology into the device-tree
1402 * in such a way that the now-booted OS should still be able to interact
1403 * appropriately with QEMU regardless of what options were actually
1404 * negotiatied on the source side.
1406 * As such, we can avoid migrating the CAS-negotiated options if these
1407 * are the only options available on the current machine/platform.
1408 * Since these are the only options available for pseries-2.7 and
1409 * earlier, this allows us to maintain old->new/new->old migration
1412 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1413 * via default pseries-2.8 machines and explicit command-line parameters.
1414 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1415 * of the actual CAS-negotiated values to continue working properly. For
1416 * example, availability of memory unplug depends on knowing whether
1417 * OV5_HP_EVT was negotiated via CAS.
1419 * Thus, for any cases where the set of available CAS-negotiatable
1420 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1421 * include the CAS-negotiated options in the migration stream.
1423 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1424 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1426 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1427 * the mask itself since in the future it's possible "legacy" bits may be
1428 * removed via machine options, which could generate a false positive
1429 * that breaks migration.
1431 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1432 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1434 spapr_ovec_cleanup(ov5_mask
);
1435 spapr_ovec_cleanup(ov5_legacy
);
1436 spapr_ovec_cleanup(ov5_removed
);
1441 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1442 .name
= "spapr_option_vector_ov5_cas",
1444 .minimum_version_id
= 1,
1445 .needed
= spapr_ov5_cas_needed
,
1446 .fields
= (VMStateField
[]) {
1447 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1448 vmstate_spapr_ovec
, sPAPROptionVector
),
1449 VMSTATE_END_OF_LIST()
1453 static bool spapr_patb_entry_needed(void *opaque
)
1455 sPAPRMachineState
*spapr
= opaque
;
1457 return !!spapr
->patb_entry
;
1460 static const VMStateDescription vmstate_spapr_patb_entry
= {
1461 .name
= "spapr_patb_entry",
1463 .minimum_version_id
= 1,
1464 .needed
= spapr_patb_entry_needed
,
1465 .fields
= (VMStateField
[]) {
1466 VMSTATE_UINT64(patb_entry
, sPAPRMachineState
),
1467 VMSTATE_END_OF_LIST()
1471 static const VMStateDescription vmstate_spapr
= {
1474 .minimum_version_id
= 1,
1475 .post_load
= spapr_post_load
,
1476 .fields
= (VMStateField
[]) {
1477 /* used to be @next_irq */
1478 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1481 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1483 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1484 VMSTATE_END_OF_LIST()
1486 .subsections
= (const VMStateDescription
*[]) {
1487 &vmstate_spapr_ov5_cas
,
1488 &vmstate_spapr_patb_entry
,
1493 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1495 sPAPRMachineState
*spapr
= opaque
;
1497 /* "Iteration" header */
1498 qemu_put_be32(f
, spapr
->htab_shift
);
1501 spapr
->htab_save_index
= 0;
1502 spapr
->htab_first_pass
= true;
1504 assert(kvm_enabled());
1511 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1514 bool has_timeout
= max_ns
!= -1;
1515 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1516 int index
= spapr
->htab_save_index
;
1517 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1519 assert(spapr
->htab_first_pass
);
1524 /* Consume invalid HPTEs */
1525 while ((index
< htabslots
)
1526 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1528 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1531 /* Consume valid HPTEs */
1533 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1534 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1536 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1539 if (index
> chunkstart
) {
1540 int n_valid
= index
- chunkstart
;
1542 qemu_put_be32(f
, chunkstart
);
1543 qemu_put_be16(f
, n_valid
);
1544 qemu_put_be16(f
, 0);
1545 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1546 HASH_PTE_SIZE_64
* n_valid
);
1549 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1553 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1555 if (index
>= htabslots
) {
1556 assert(index
== htabslots
);
1558 spapr
->htab_first_pass
= false;
1560 spapr
->htab_save_index
= index
;
1563 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1566 bool final
= max_ns
< 0;
1567 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1568 int examined
= 0, sent
= 0;
1569 int index
= spapr
->htab_save_index
;
1570 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1572 assert(!spapr
->htab_first_pass
);
1575 int chunkstart
, invalidstart
;
1577 /* Consume non-dirty HPTEs */
1578 while ((index
< htabslots
)
1579 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1585 /* Consume valid dirty HPTEs */
1586 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1587 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1588 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1589 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1594 invalidstart
= index
;
1595 /* Consume invalid dirty HPTEs */
1596 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1597 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1598 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1599 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1604 if (index
> chunkstart
) {
1605 int n_valid
= invalidstart
- chunkstart
;
1606 int n_invalid
= index
- invalidstart
;
1608 qemu_put_be32(f
, chunkstart
);
1609 qemu_put_be16(f
, n_valid
);
1610 qemu_put_be16(f
, n_invalid
);
1611 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1612 HASH_PTE_SIZE_64
* n_valid
);
1613 sent
+= index
- chunkstart
;
1615 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1620 if (examined
>= htabslots
) {
1624 if (index
>= htabslots
) {
1625 assert(index
== htabslots
);
1628 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1630 if (index
>= htabslots
) {
1631 assert(index
== htabslots
);
1635 spapr
->htab_save_index
= index
;
1637 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1640 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1641 #define MAX_KVM_BUF_SIZE 2048
1643 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1645 sPAPRMachineState
*spapr
= opaque
;
1649 /* Iteration header */
1650 qemu_put_be32(f
, 0);
1653 assert(kvm_enabled());
1655 fd
= get_htab_fd(spapr
);
1660 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1664 } else if (spapr
->htab_first_pass
) {
1665 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1667 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1671 qemu_put_be32(f
, 0);
1672 qemu_put_be16(f
, 0);
1673 qemu_put_be16(f
, 0);
1678 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1680 sPAPRMachineState
*spapr
= opaque
;
1683 /* Iteration header */
1684 qemu_put_be32(f
, 0);
1689 assert(kvm_enabled());
1691 fd
= get_htab_fd(spapr
);
1696 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
1701 if (spapr
->htab_first_pass
) {
1702 htab_save_first_pass(f
, spapr
, -1);
1704 htab_save_later_pass(f
, spapr
, -1);
1708 qemu_put_be32(f
, 0);
1709 qemu_put_be16(f
, 0);
1710 qemu_put_be16(f
, 0);
1715 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1717 sPAPRMachineState
*spapr
= opaque
;
1718 uint32_t section_hdr
;
1721 if (version_id
< 1 || version_id
> 1) {
1722 error_report("htab_load() bad version");
1726 section_hdr
= qemu_get_be32(f
);
1729 Error
*local_err
= NULL
;
1731 /* First section gives the htab size */
1732 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
1734 error_report_err(local_err
);
1741 assert(kvm_enabled());
1743 fd
= kvmppc_get_htab_fd(true);
1745 error_report("Unable to open fd to restore KVM hash table: %s",
1752 uint16_t n_valid
, n_invalid
;
1754 index
= qemu_get_be32(f
);
1755 n_valid
= qemu_get_be16(f
);
1756 n_invalid
= qemu_get_be16(f
);
1758 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1763 if ((index
+ n_valid
+ n_invalid
) >
1764 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1765 /* Bad index in stream */
1767 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1768 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
1774 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1775 HASH_PTE_SIZE_64
* n_valid
);
1778 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1779 HASH_PTE_SIZE_64
* n_invalid
);
1786 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
1801 static void htab_cleanup(void *opaque
)
1803 sPAPRMachineState
*spapr
= opaque
;
1805 close_htab_fd(spapr
);
1808 static SaveVMHandlers savevm_htab_handlers
= {
1809 .save_live_setup
= htab_save_setup
,
1810 .save_live_iterate
= htab_save_iterate
,
1811 .save_live_complete_precopy
= htab_save_complete
,
1812 .cleanup
= htab_cleanup
,
1813 .load_state
= htab_load
,
1816 static void spapr_boot_set(void *opaque
, const char *boot_device
,
1819 MachineState
*machine
= MACHINE(qdev_get_machine());
1820 machine
->boot_order
= g_strdup(boot_device
);
1824 * Reset routine for LMB DR devices.
1826 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1827 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1828 * when it walks all its children devices. LMB devices reset occurs
1829 * as part of spapr_ppc_reset().
1831 static void spapr_drc_reset(void *opaque
)
1833 sPAPRDRConnector
*drc
= opaque
;
1834 DeviceState
*d
= DEVICE(drc
);
1841 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
1843 MachineState
*machine
= MACHINE(spapr
);
1844 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
1845 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
1848 for (i
= 0; i
< nr_lmbs
; i
++) {
1849 sPAPRDRConnector
*drc
;
1852 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
1853 drc
= spapr_dr_connector_new(OBJECT(spapr
), SPAPR_DR_CONNECTOR_TYPE_LMB
,
1855 qemu_register_reset(spapr_drc_reset
, drc
);
1860 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1861 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1862 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1864 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
1868 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1869 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
1870 " is not aligned to %llu MiB",
1872 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1876 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1877 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
1878 " is not aligned to %llu MiB",
1880 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1884 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1885 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
1887 "Node %d memory size 0x%" PRIx64
1888 " is not aligned to %llu MiB",
1889 i
, numa_info
[i
].node_mem
,
1890 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1896 /* find cpu slot in machine->possible_cpus by core_id */
1897 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
1899 int index
= id
/ smp_threads
;
1901 if (index
>= ms
->possible_cpus
->len
) {
1907 return &ms
->possible_cpus
->cpus
[index
];
1910 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
1912 MachineState
*machine
= MACHINE(spapr
);
1913 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1914 char *type
= spapr_get_cpu_core_type(machine
->cpu_model
);
1915 int smt
= kvmppc_smt_threads();
1916 const CPUArchIdList
*possible_cpus
;
1917 int boot_cores_nr
= smp_cpus
/ smp_threads
;
1921 error_report("Unable to find sPAPR CPU Core definition");
1925 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1926 if (mc
->has_hotpluggable_cpus
) {
1927 if (smp_cpus
% smp_threads
) {
1928 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1929 smp_cpus
, smp_threads
);
1932 if (max_cpus
% smp_threads
) {
1933 error_report("max_cpus (%u) must be multiple of threads (%u)",
1934 max_cpus
, smp_threads
);
1938 if (max_cpus
!= smp_cpus
) {
1939 error_report("This machine version does not support CPU hotplug");
1942 boot_cores_nr
= possible_cpus
->len
;
1945 for (i
= 0; i
< possible_cpus
->len
; i
++) {
1946 int core_id
= i
* smp_threads
;
1948 if (mc
->has_hotpluggable_cpus
) {
1949 sPAPRDRConnector
*drc
=
1950 spapr_dr_connector_new(OBJECT(spapr
),
1951 SPAPR_DR_CONNECTOR_TYPE_CPU
,
1952 (core_id
/ smp_threads
) * smt
);
1954 qemu_register_reset(spapr_drc_reset
, drc
);
1957 if (i
< boot_cores_nr
) {
1958 Object
*core
= object_new(type
);
1959 int nr_threads
= smp_threads
;
1961 /* Handle the partially filled core for older machine types */
1962 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
1963 nr_threads
= smp_cpus
- i
* smp_threads
;
1966 object_property_set_int(core
, nr_threads
, "nr-threads",
1968 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
1970 object_property_set_bool(core
, true, "realized", &error_fatal
);
1976 /* pSeries LPAR / sPAPR hardware init */
1977 static void ppc_spapr_init(MachineState
*machine
)
1979 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1980 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1981 const char *kernel_filename
= machine
->kernel_filename
;
1982 const char *initrd_filename
= machine
->initrd_filename
;
1985 MemoryRegion
*sysmem
= get_system_memory();
1986 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1987 MemoryRegion
*rma_region
;
1989 hwaddr rma_alloc_size
;
1990 hwaddr node0_size
= spapr_node0_size();
1991 long load_limit
, fw_size
;
1993 int smt
= kvmppc_smt_threads();
1995 msi_nonbroken
= true;
1997 QLIST_INIT(&spapr
->phbs
);
1999 /* Allocate RMA if necessary */
2000 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
2002 if (rma_alloc_size
== -1) {
2003 error_report("Unable to create RMA");
2007 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
2008 spapr
->rma_size
= rma_alloc_size
;
2010 spapr
->rma_size
= node0_size
;
2012 /* With KVM, we don't actually know whether KVM supports an
2013 * unbounded RMA (PR KVM) or is limited by the hash table size
2014 * (HV KVM using VRMA), so we always assume the latter
2016 * In that case, we also limit the initial allocations for RTAS
2017 * etc... to 256M since we have no way to know what the VRMA size
2018 * is going to be as it depends on the size of the hash table
2019 * isn't determined yet.
2021 if (kvm_enabled()) {
2022 spapr
->vrma_adjust
= 1;
2023 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2026 /* Actually we don't support unbounded RMA anymore since we
2027 * added proper emulation of HV mode. The max we can get is
2028 * 16G which also happens to be what we configure for PAPR
2029 * mode so make sure we don't do anything bigger than that
2031 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2034 if (spapr
->rma_size
> node0_size
) {
2035 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2040 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2041 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2043 /* Set up Interrupt Controller before we create the VCPUs */
2044 xics_system_init(machine
, DIV_ROUND_UP(max_cpus
* smt
, smp_threads
),
2045 XICS_IRQS_SPAPR
, &error_fatal
);
2047 /* Set up containers for ibm,client-set-architecture negotiated options */
2048 spapr
->ov5
= spapr_ovec_new();
2049 spapr
->ov5_cas
= spapr_ovec_new();
2051 if (smc
->dr_lmb_enabled
) {
2052 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2053 spapr_validate_node_memory(machine
, &error_fatal
);
2056 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2058 /* advertise support for dedicated HP event source to guests */
2059 if (spapr
->use_hotplug_event_source
) {
2060 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2064 if (machine
->cpu_model
== NULL
) {
2065 machine
->cpu_model
= kvm_enabled() ? "host" : smc
->tcg_default_cpu
;
2068 ppc_cpu_parse_features(machine
->cpu_model
);
2070 spapr_init_cpus(spapr
);
2072 if (kvm_enabled()) {
2073 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2074 kvmppc_enable_logical_ci_hcalls();
2075 kvmppc_enable_set_mode_hcall();
2077 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2078 kvmppc_enable_clear_ref_mod_hcalls();
2082 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2084 memory_region_add_subregion(sysmem
, 0, ram
);
2086 if (rma_alloc_size
&& rma
) {
2087 rma_region
= g_new(MemoryRegion
, 1);
2088 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
2089 rma_alloc_size
, rma
);
2090 vmstate_register_ram_global(rma_region
);
2091 memory_region_add_subregion(sysmem
, 0, rma_region
);
2094 /* initialize hotplug memory address space */
2095 if (machine
->ram_size
< machine
->maxram_size
) {
2096 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2098 * Limit the number of hotpluggable memory slots to half the number
2099 * slots that KVM supports, leaving the other half for PCI and other
2100 * devices. However ensure that number of slots doesn't drop below 32.
2102 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2103 SPAPR_MAX_RAM_SLOTS
;
2105 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2106 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2108 if (machine
->ram_slots
> max_memslots
) {
2109 error_report("Specified number of memory slots %"
2110 PRIu64
" exceeds max supported %d",
2111 machine
->ram_slots
, max_memslots
);
2115 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
2116 SPAPR_HOTPLUG_MEM_ALIGN
);
2117 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
2118 "hotplug-memory", hotplug_mem_size
);
2119 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
2120 &spapr
->hotplug_memory
.mr
);
2123 if (smc
->dr_lmb_enabled
) {
2124 spapr_create_lmb_dr_connectors(spapr
);
2127 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
2129 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2132 spapr
->rtas_size
= get_image_size(filename
);
2133 if (spapr
->rtas_size
< 0) {
2134 error_report("Could not get size of LPAR rtas '%s'", filename
);
2137 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
2138 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
2139 error_report("Could not load LPAR rtas '%s'", filename
);
2142 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2143 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2144 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2149 /* Set up RTAS event infrastructure */
2150 spapr_events_init(spapr
);
2152 /* Set up the RTC RTAS interfaces */
2153 spapr_rtc_create(spapr
);
2155 /* Set up VIO bus */
2156 spapr
->vio_bus
= spapr_vio_bus_init();
2158 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
2159 if (serial_hds
[i
]) {
2160 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
2164 /* We always have at least the nvram device on VIO */
2165 spapr_create_nvram(spapr
);
2168 spapr_pci_rtas_init();
2170 phb
= spapr_create_phb(spapr
, 0);
2172 for (i
= 0; i
< nb_nics
; i
++) {
2173 NICInfo
*nd
= &nd_table
[i
];
2176 nd
->model
= g_strdup("ibmveth");
2179 if (strcmp(nd
->model
, "ibmveth") == 0) {
2180 spapr_vlan_create(spapr
->vio_bus
, nd
);
2182 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2186 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2187 spapr_vscsi_create(spapr
->vio_bus
);
2191 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2192 spapr
->has_graphics
= true;
2193 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2197 if (smc
->use_ohci_by_default
) {
2198 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2200 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2203 if (spapr
->has_graphics
) {
2204 USBBus
*usb_bus
= usb_bus_find(-1);
2206 usb_create_simple(usb_bus
, "usb-kbd");
2207 usb_create_simple(usb_bus
, "usb-mouse");
2211 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
2213 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2218 if (kernel_filename
) {
2219 uint64_t lowaddr
= 0;
2221 spapr
->kernel_size
= load_elf(kernel_filename
, translate_kernel_address
,
2222 NULL
, NULL
, &lowaddr
, NULL
, 1,
2223 PPC_ELF_MACHINE
, 0, 0);
2224 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2225 spapr
->kernel_size
= load_elf(kernel_filename
,
2226 translate_kernel_address
, NULL
, NULL
,
2227 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2229 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2231 if (spapr
->kernel_size
< 0) {
2232 error_report("error loading %s: %s", kernel_filename
,
2233 load_elf_strerror(spapr
->kernel_size
));
2238 if (initrd_filename
) {
2239 /* Try to locate the initrd in the gap between the kernel
2240 * and the firmware. Add a bit of space just in case
2242 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2243 + 0x1ffff) & ~0xffff;
2244 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2247 - spapr
->initrd_base
);
2248 if (spapr
->initrd_size
< 0) {
2249 error_report("could not load initial ram disk '%s'",
2256 if (bios_name
== NULL
) {
2257 bios_name
= FW_FILE_NAME
;
2259 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2261 error_report("Could not find LPAR firmware '%s'", bios_name
);
2264 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2266 error_report("Could not load LPAR firmware '%s'", filename
);
2271 /* FIXME: Should register things through the MachineState's qdev
2272 * interface, this is a legacy from the sPAPREnvironment structure
2273 * which predated MachineState but had a similar function */
2274 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2275 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2276 &savevm_htab_handlers
, spapr
);
2279 QTAILQ_INIT(&spapr
->ccs_list
);
2280 qemu_register_reset(spapr_ccs_reset_hook
, spapr
);
2282 qemu_register_boot_set(spapr_boot_set
, spapr
);
2284 /* to stop and start vmclock */
2285 if (kvm_enabled()) {
2286 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2291 static int spapr_kvm_type(const char *vm_type
)
2297 if (!strcmp(vm_type
, "HV")) {
2301 if (!strcmp(vm_type
, "PR")) {
2305 error_report("Unknown kvm-type specified '%s'", vm_type
);
2310 * Implementation of an interface to adjust firmware path
2311 * for the bootindex property handling.
2313 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2316 #define CAST(type, obj, name) \
2317 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2318 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2319 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2322 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2323 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2324 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2328 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2329 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2330 * in the top 16 bits of the 64-bit LUN
2332 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2333 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2334 (uint64_t)id
<< 48);
2335 } else if (virtio
) {
2337 * We use SRP luns of the form 01000000 | (target << 8) | lun
2338 * in the top 32 bits of the 64-bit LUN
2339 * Note: the quote above is from SLOF and it is wrong,
2340 * the actual binding is:
2341 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2343 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2344 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2345 (uint64_t)id
<< 32);
2348 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2349 * in the top 32 bits of the 64-bit LUN
2351 unsigned usb_port
= atoi(usb
->port
->path
);
2352 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2353 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2354 (uint64_t)id
<< 32);
2359 * SLOF probes the USB devices, and if it recognizes that the device is a
2360 * storage device, it changes its name to "storage" instead of "usb-host",
2361 * and additionally adds a child node for the SCSI LUN, so the correct
2362 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2364 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
2365 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
2366 if (usb_host_dev_is_scsi_storage(usbdev
)) {
2367 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
2372 /* Replace "pci" with "pci@800000020000000" */
2373 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2379 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2381 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2383 return g_strdup(spapr
->kvm_type
);
2386 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2388 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2390 g_free(spapr
->kvm_type
);
2391 spapr
->kvm_type
= g_strdup(value
);
2394 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
2396 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2398 return spapr
->use_hotplug_event_source
;
2401 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
2404 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2406 spapr
->use_hotplug_event_source
= value
;
2409 static void spapr_machine_initfn(Object
*obj
)
2411 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2413 spapr
->htab_fd
= -1;
2414 spapr
->use_hotplug_event_source
= true;
2415 object_property_add_str(obj
, "kvm-type",
2416 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2417 object_property_set_description(obj
, "kvm-type",
2418 "Specifies the KVM virtualization mode (HV, PR)",
2420 object_property_add_bool(obj
, "modern-hotplug-events",
2421 spapr_get_modern_hotplug_events
,
2422 spapr_set_modern_hotplug_events
,
2424 object_property_set_description(obj
, "modern-hotplug-events",
2425 "Use dedicated hotplug event mechanism in"
2426 " place of standard EPOW events when possible"
2427 " (required for memory hot-unplug support)",
2431 static void spapr_machine_finalizefn(Object
*obj
)
2433 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2435 g_free(spapr
->kvm_type
);
2438 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
2440 cpu_synchronize_state(cs
);
2441 ppc_cpu_do_system_reset(cs
);
2444 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2449 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
2453 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
2454 uint32_t node
, bool dedicated_hp_event_source
,
2457 sPAPRDRConnector
*drc
;
2458 sPAPRDRConnectorClass
*drck
;
2459 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2460 int i
, fdt_offset
, fdt_size
;
2462 uint64_t addr
= addr_start
;
2464 for (i
= 0; i
< nr_lmbs
; i
++) {
2465 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2466 addr
/SPAPR_MEMORY_BLOCK_SIZE
);
2469 fdt
= create_device_tree(&fdt_size
);
2470 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2471 SPAPR_MEMORY_BLOCK_SIZE
);
2473 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2474 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, errp
);
2475 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2476 if (!dev
->hotplugged
) {
2477 /* guests expect coldplugged LMBs to be pre-allocated */
2478 drck
->set_allocation_state(drc
, SPAPR_DR_ALLOCATION_STATE_USABLE
);
2479 drck
->set_isolation_state(drc
, SPAPR_DR_ISOLATION_STATE_UNISOLATED
);
2482 /* send hotplug notification to the
2483 * guest only in case of hotplugged memory
2485 if (dev
->hotplugged
) {
2486 if (dedicated_hp_event_source
) {
2487 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2488 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2489 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2490 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2492 drck
->get_index(drc
));
2494 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2500 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2501 uint32_t node
, Error
**errp
)
2503 Error
*local_err
= NULL
;
2504 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2505 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2506 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2507 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2508 uint64_t align
= memory_region_get_alignment(mr
);
2509 uint64_t size
= memory_region_size(mr
);
2513 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2514 error_setg(&local_err
, "Hotplugged memory size must be a multiple of "
2515 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
2519 mem_dev
= object_property_get_str(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
, NULL
);
2520 if (mem_dev
&& !kvmppc_is_mem_backend_page_size_ok(mem_dev
)) {
2521 error_setg(&local_err
, "Memory backend has bad page size. "
2522 "Use 'memory-backend-file' with correct mem-path.");
2526 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, &local_err
);
2531 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2533 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2537 spapr_add_lmbs(dev
, addr
, size
, node
,
2538 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
2542 error_propagate(errp
, local_err
);
2545 typedef struct sPAPRDIMMState
{
2549 static void spapr_lmb_release(DeviceState
*dev
, void *opaque
)
2551 sPAPRDIMMState
*ds
= (sPAPRDIMMState
*)opaque
;
2552 HotplugHandler
*hotplug_ctrl
;
2554 if (--ds
->nr_lmbs
) {
2561 * Now that all the LMBs have been removed by the guest, call the
2562 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2564 hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
2565 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
2568 static void spapr_del_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
2571 sPAPRDRConnector
*drc
;
2572 sPAPRDRConnectorClass
*drck
;
2573 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
2575 sPAPRDIMMState
*ds
= g_malloc0(sizeof(sPAPRDIMMState
));
2576 uint64_t addr
= addr_start
;
2578 ds
->nr_lmbs
= nr_lmbs
;
2579 for (i
= 0; i
< nr_lmbs
; i
++) {
2580 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2581 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2584 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2585 drck
->detach(drc
, dev
, spapr_lmb_release
, ds
, errp
);
2586 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2589 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2590 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2591 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2592 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2594 drck
->get_index(drc
));
2597 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2600 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2601 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2602 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2603 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2605 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2606 object_unparent(OBJECT(dev
));
2609 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
2610 DeviceState
*dev
, Error
**errp
)
2612 Error
*local_err
= NULL
;
2613 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2614 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2615 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2616 uint64_t size
= memory_region_size(mr
);
2619 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2624 spapr_del_lmbs(dev
, addr
, size
, &error_abort
);
2626 error_propagate(errp
, local_err
);
2629 void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
2630 sPAPRMachineState
*spapr
)
2632 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2633 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
2634 int id
= ppc_get_vcpu_dt_id(cpu
);
2636 int offset
, fdt_size
;
2639 fdt
= create_device_tree(&fdt_size
);
2640 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
2641 offset
= fdt_add_subnode(fdt
, 0, nodename
);
2643 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
2646 *fdt_offset
= offset
;
2650 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2653 MachineState
*ms
= MACHINE(qdev_get_machine());
2654 CPUCore
*cc
= CPU_CORE(dev
);
2655 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
2657 core_slot
->cpu
= NULL
;
2658 object_unparent(OBJECT(dev
));
2661 static void spapr_core_release(DeviceState
*dev
, void *opaque
)
2663 HotplugHandler
*hotplug_ctrl
;
2665 hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
2666 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
2670 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2674 sPAPRDRConnector
*drc
;
2675 sPAPRDRConnectorClass
*drck
;
2676 Error
*local_err
= NULL
;
2677 CPUCore
*cc
= CPU_CORE(dev
);
2678 int smt
= kvmppc_smt_threads();
2680 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
2681 error_setg(errp
, "Unable to find CPU core with core-id: %d",
2686 error_setg(errp
, "Boot CPU core may not be unplugged");
2690 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
* smt
);
2693 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2694 drck
->detach(drc
, dev
, spapr_core_release
, NULL
, &local_err
);
2696 error_propagate(errp
, local_err
);
2700 spapr_hotplug_req_remove_by_index(drc
);
2703 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2706 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
2707 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
2708 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
2709 CPUCore
*cc
= CPU_CORE(dev
);
2710 CPUState
*cs
= CPU(core
->threads
);
2711 sPAPRDRConnector
*drc
;
2712 Error
*local_err
= NULL
;
2715 int smt
= kvmppc_smt_threads();
2716 CPUArchId
*core_slot
;
2719 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
2721 error_setg(errp
, "Unable to find CPU core with core-id: %d",
2725 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
* smt
);
2727 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
2730 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2731 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2733 if (dev
->hotplugged
) {
2734 fdt
= spapr_populate_hotplug_cpu_dt(cs
, &fdt_offset
, spapr
);
2738 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2739 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, &local_err
);
2742 error_propagate(errp
, local_err
);
2747 if (dev
->hotplugged
) {
2749 * Send hotplug notification interrupt to the guest only in case
2750 * of hotplugged CPUs.
2752 spapr_hotplug_req_add_by_index(drc
);
2755 * Set the right DRC states for cold plugged CPU.
2758 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2759 drck
->set_allocation_state(drc
, SPAPR_DR_ALLOCATION_STATE_USABLE
);
2760 drck
->set_isolation_state(drc
, SPAPR_DR_ISOLATION_STATE_UNISOLATED
);
2763 core_slot
->cpu
= OBJECT(dev
);
2766 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2769 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
2770 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
2771 Error
*local_err
= NULL
;
2772 CPUCore
*cc
= CPU_CORE(dev
);
2773 char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_model
);
2774 const char *type
= object_get_typename(OBJECT(dev
));
2775 CPUArchId
*core_slot
;
2778 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
2779 error_setg(&local_err
, "CPU hotplug not supported for this machine");
2783 if (strcmp(base_core_type
, type
)) {
2784 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
2788 if (cc
->core_id
% smp_threads
) {
2789 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
2793 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
2795 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
2799 if (core_slot
->cpu
) {
2800 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
2805 g_free(base_core_type
);
2806 error_propagate(errp
, local_err
);
2809 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
2810 DeviceState
*dev
, Error
**errp
)
2812 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2814 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2817 if (!smc
->dr_lmb_enabled
) {
2818 error_setg(errp
, "Memory hotplug not supported for this machine");
2821 node
= object_property_get_int(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
2825 if (node
< 0 || node
>= MAX_NODES
) {
2826 error_setg(errp
, "Invaild node %d", node
);
2831 * Currently PowerPC kernel doesn't allow hot-adding memory to
2832 * memory-less node, but instead will silently add the memory
2833 * to the first node that has some memory. This causes two
2834 * unexpected behaviours for the user.
2836 * - Memory gets hotplugged to a different node than what the user
2838 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2839 * to memory-less node, a reboot will set things accordingly
2840 * and the previously hotplugged memory now ends in the right node.
2841 * This appears as if some memory moved from one node to another.
2843 * So until kernel starts supporting memory hotplug to memory-less
2844 * nodes, just prevent such attempts upfront in QEMU.
2846 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
2847 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
2852 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
2853 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2854 spapr_core_plug(hotplug_dev
, dev
, errp
);
2858 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
2859 DeviceState
*dev
, Error
**errp
)
2861 sPAPRMachineState
*sms
= SPAPR_MACHINE(qdev_get_machine());
2862 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
2864 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2865 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
2866 spapr_memory_unplug(hotplug_dev
, dev
, errp
);
2868 error_setg(errp
, "Memory hot unplug not supported for this guest");
2870 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2871 if (!mc
->has_hotpluggable_cpus
) {
2872 error_setg(errp
, "CPU hot unplug not supported on this machine");
2875 spapr_core_unplug(hotplug_dev
, dev
, errp
);
2879 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
2880 DeviceState
*dev
, Error
**errp
)
2882 sPAPRMachineState
*sms
= SPAPR_MACHINE(qdev_get_machine());
2883 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
2885 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2886 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
2887 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
2889 /* NOTE: this means there is a window after guest reset, prior to
2890 * CAS negotiation, where unplug requests will fail due to the
2891 * capability not being detected yet. This is a bit different than
2892 * the case with PCI unplug, where the events will be queued and
2893 * eventually handled by the guest after boot
2895 error_setg(errp
, "Memory hot unplug not supported for this guest");
2897 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2898 if (!mc
->has_hotpluggable_cpus
) {
2899 error_setg(errp
, "CPU hot unplug not supported on this machine");
2902 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
2906 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
2907 DeviceState
*dev
, Error
**errp
)
2909 if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2910 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
2914 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
2917 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
2918 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2919 return HOTPLUG_HANDLER(machine
);
2924 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index
)
2926 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2927 * socket means much for the paravirtualized PAPR platform) */
2928 return cpu_index
/ smp_threads
/ smp_cores
;
2931 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
2934 int spapr_max_cores
= max_cpus
/ smp_threads
;
2935 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2937 if (!mc
->has_hotpluggable_cpus
) {
2938 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
2940 if (machine
->possible_cpus
) {
2941 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
2942 return machine
->possible_cpus
;
2945 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2946 sizeof(CPUArchId
) * spapr_max_cores
);
2947 machine
->possible_cpus
->len
= spapr_max_cores
;
2948 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
2949 int core_id
= i
* smp_threads
;
2951 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
2952 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
2953 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
2954 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
2955 /* TODO: add 'has_node/node' here to describe
2956 to which node core belongs */
2958 return machine
->possible_cpus
;
2961 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
2962 uint64_t *buid
, hwaddr
*pio
,
2963 hwaddr
*mmio32
, hwaddr
*mmio64
,
2964 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
2967 * New-style PHB window placement.
2969 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2970 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2973 * Some guest kernels can't work with MMIO windows above 1<<46
2974 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2976 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2977 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2978 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2979 * 1TiB 64-bit MMIO windows for each PHB.
2981 const uint64_t base_buid
= 0x800000020000000ULL
;
2982 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2983 SPAPR_PCI_MEM64_WIN_SIZE - 1)
2986 /* Sanity check natural alignments */
2987 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
2988 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
2989 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
2990 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
2991 /* Sanity check bounds */
2992 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
2993 SPAPR_PCI_MEM32_WIN_SIZE
);
2994 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
2995 SPAPR_PCI_MEM64_WIN_SIZE
);
2997 if (index
>= SPAPR_MAX_PHBS
) {
2998 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
2999 SPAPR_MAX_PHBS
- 1);
3003 *buid
= base_buid
+ index
;
3004 for (i
= 0; i
< n_dma
; ++i
) {
3005 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3008 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
3009 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
3010 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
3013 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
3015 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3017 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
3020 static void spapr_ics_resend(XICSFabric
*dev
)
3022 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3024 ics_resend(spapr
->ics
);
3027 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int server
)
3029 sPAPRMachineState
*spapr
= SPAPR_MACHINE(xi
);
3031 return (server
< spapr
->nr_servers
) ? &spapr
->icps
[server
] : NULL
;
3034 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
3037 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3040 for (i
= 0; i
< spapr
->nr_servers
; i
++) {
3041 icp_pic_print_info(&spapr
->icps
[i
], mon
);
3044 ics_pic_print_info(spapr
->ics
, mon
);
3047 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
3049 MachineClass
*mc
= MACHINE_CLASS(oc
);
3050 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
3051 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
3052 NMIClass
*nc
= NMI_CLASS(oc
);
3053 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
3054 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
3055 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
3056 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
3058 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
3061 * We set up the default / latest behaviour here. The class_init
3062 * functions for the specific versioned machine types can override
3063 * these details for backwards compatibility
3065 mc
->init
= ppc_spapr_init
;
3066 mc
->reset
= ppc_spapr_reset
;
3067 mc
->block_default_type
= IF_SCSI
;
3068 mc
->max_cpus
= 1024;
3069 mc
->no_parallel
= 1;
3070 mc
->default_boot_order
= "";
3071 mc
->default_ram_size
= 512 * M_BYTE
;
3072 mc
->kvm_type
= spapr_kvm_type
;
3073 mc
->has_dynamic_sysbus
= true;
3074 mc
->pci_allow_0_address
= true;
3075 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
3076 hc
->pre_plug
= spapr_machine_device_pre_plug
;
3077 hc
->plug
= spapr_machine_device_plug
;
3078 hc
->unplug
= spapr_machine_device_unplug
;
3079 mc
->cpu_index_to_socket_id
= spapr_cpu_index_to_socket_id
;
3080 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
3081 hc
->unplug_request
= spapr_machine_device_unplug_request
;
3083 smc
->dr_lmb_enabled
= true;
3084 smc
->tcg_default_cpu
= "POWER8";
3085 mc
->has_hotpluggable_cpus
= true;
3086 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
3087 nc
->nmi_monitor_handler
= spapr_nmi
;
3088 smc
->phb_placement
= spapr_phb_placement
;
3089 vhc
->hypercall
= emulate_spapr_hypercall
;
3090 vhc
->hpt_mask
= spapr_hpt_mask
;
3091 vhc
->map_hptes
= spapr_map_hptes
;
3092 vhc
->unmap_hptes
= spapr_unmap_hptes
;
3093 vhc
->store_hpte
= spapr_store_hpte
;
3094 vhc
->get_patbe
= spapr_get_patbe
;
3095 xic
->ics_get
= spapr_ics_get
;
3096 xic
->ics_resend
= spapr_ics_resend
;
3097 xic
->icp_get
= spapr_icp_get
;
3098 ispc
->print_info
= spapr_pic_print_info
;
3101 static const TypeInfo spapr_machine_info
= {
3102 .name
= TYPE_SPAPR_MACHINE
,
3103 .parent
= TYPE_MACHINE
,
3105 .instance_size
= sizeof(sPAPRMachineState
),
3106 .instance_init
= spapr_machine_initfn
,
3107 .instance_finalize
= spapr_machine_finalizefn
,
3108 .class_size
= sizeof(sPAPRMachineClass
),
3109 .class_init
= spapr_machine_class_init
,
3110 .interfaces
= (InterfaceInfo
[]) {
3111 { TYPE_FW_PATH_PROVIDER
},
3113 { TYPE_HOTPLUG_HANDLER
},
3114 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
3115 { TYPE_XICS_FABRIC
},
3116 { TYPE_INTERRUPT_STATS_PROVIDER
},
3121 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3122 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3125 MachineClass *mc = MACHINE_CLASS(oc); \
3126 spapr_machine_##suffix##_class_options(mc); \
3128 mc->alias = "pseries"; \
3129 mc->is_default = 1; \
3132 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3134 MachineState *machine = MACHINE(obj); \
3135 spapr_machine_##suffix##_instance_options(machine); \
3137 static const TypeInfo spapr_machine_##suffix##_info = { \
3138 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3139 .parent = TYPE_SPAPR_MACHINE, \
3140 .class_init = spapr_machine_##suffix##_class_init, \
3141 .instance_init = spapr_machine_##suffix##_instance_init, \
3143 static void spapr_machine_register_##suffix(void) \
3145 type_register(&spapr_machine_##suffix##_info); \
3147 type_init(spapr_machine_register_##suffix)
3152 static void spapr_machine_2_9_instance_options(MachineState
*machine
)
3156 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
3158 /* Defaults for the latest behaviour inherited from the base class */
3161 DEFINE_SPAPR_MACHINE(2_9
, "2.9", true);
3166 #define SPAPR_COMPAT_2_8 \
3169 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
3171 spapr_machine_2_9_instance_options(machine
);
3174 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
3176 spapr_machine_2_9_class_options(mc
);
3177 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_8
);
3180 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
3185 #define SPAPR_COMPAT_2_7 \
3188 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3189 .property = "mem_win_size", \
3190 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3193 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3194 .property = "mem64_win_size", \
3198 .driver = TYPE_POWERPC_CPU, \
3199 .property = "pre-2.8-migration", \
3203 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3204 .property = "pre-2.8-migration", \
3208 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
3209 uint64_t *buid
, hwaddr
*pio
,
3210 hwaddr
*mmio32
, hwaddr
*mmio64
,
3211 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3213 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3214 const uint64_t base_buid
= 0x800000020000000ULL
;
3215 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
3216 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
3217 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
3218 const uint32_t max_index
= 255;
3219 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
3221 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
3222 hwaddr phb0_base
, phb_base
;
3225 /* Do we have hotpluggable memory? */
3226 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
3227 /* Can't just use maxram_size, because there may be an
3228 * alignment gap between normal and hotpluggable memory
3230 ram_top
= spapr
->hotplug_memory
.base
+
3231 memory_region_size(&spapr
->hotplug_memory
.mr
);
3234 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
3236 if (index
> max_index
) {
3237 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
3242 *buid
= base_buid
+ index
;
3243 for (i
= 0; i
< n_dma
; ++i
) {
3244 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3247 phb_base
= phb0_base
+ index
* phb_spacing
;
3248 *pio
= phb_base
+ pio_offset
;
3249 *mmio32
= phb_base
+ mmio_offset
;
3251 * We don't set the 64-bit MMIO window, relying on the PHB's
3252 * fallback behaviour of automatically splitting a large "32-bit"
3253 * window into contiguous 32-bit and 64-bit windows
3257 static void spapr_machine_2_7_instance_options(MachineState
*machine
)
3259 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
3261 spapr_machine_2_8_instance_options(machine
);
3262 spapr
->use_hotplug_event_source
= false;
3265 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
3267 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3269 spapr_machine_2_8_class_options(mc
);
3270 smc
->tcg_default_cpu
= "POWER7";
3271 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
3272 smc
->phb_placement
= phb_placement_2_7
;
3275 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
3280 #define SPAPR_COMPAT_2_6 \
3283 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3285 .value = stringify(off),\
3288 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
3290 spapr_machine_2_7_instance_options(machine
);
3293 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
3295 spapr_machine_2_7_class_options(mc
);
3296 mc
->has_hotpluggable_cpus
= false;
3297 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
3300 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
3305 #define SPAPR_COMPAT_2_5 \
3308 .driver = "spapr-vlan", \
3309 .property = "use-rx-buffer-pools", \
3313 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
3315 spapr_machine_2_6_instance_options(machine
);
3318 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
3320 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3322 spapr_machine_2_6_class_options(mc
);
3323 smc
->use_ohci_by_default
= true;
3324 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
3327 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
3332 #define SPAPR_COMPAT_2_4 \
3335 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
3337 spapr_machine_2_5_instance_options(machine
);
3340 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
3342 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3344 spapr_machine_2_5_class_options(mc
);
3345 smc
->dr_lmb_enabled
= false;
3346 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
3349 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
3354 #define SPAPR_COMPAT_2_3 \
3357 .driver = "spapr-pci-host-bridge",\
3358 .property = "dynamic-reconfiguration",\
3362 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
3364 spapr_machine_2_4_instance_options(machine
);
3365 savevm_skip_section_footers();
3366 global_state_set_optional();
3367 savevm_skip_configuration();
3370 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
3372 spapr_machine_2_4_class_options(mc
);
3373 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
3375 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
3381 #define SPAPR_COMPAT_2_2 \
3384 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3385 .property = "mem_win_size",\
3386 .value = "0x20000000",\
3389 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
3391 spapr_machine_2_3_instance_options(machine
);
3392 machine
->suppress_vmdesc
= true;
3395 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
3397 spapr_machine_2_3_class_options(mc
);
3398 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
3400 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
3405 #define SPAPR_COMPAT_2_1 \
3408 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
3410 spapr_machine_2_2_instance_options(machine
);
3413 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
3415 spapr_machine_2_2_class_options(mc
);
3416 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
3418 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
3420 static void spapr_machine_register_types(void)
3422 type_register_static(&spapr_machine_info
);
3425 type_init(spapr_machine_register_types
)