4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
39 /* This check must be after config-host.h is included */
41 #include <sys/eventfd.h>
44 #ifdef CONFIG_VALGRIND_H
45 #include <valgrind/memcheck.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size
;
72 typedef struct kvm_dirty_log KVMDirtyLog
;
81 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
82 bool coalesced_flush_in_progress
;
83 int broken_set_mem_region
;
86 int robust_singlestep
;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
95 /* The man page (and posix) say ioctl numbers are signed int, but
96 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
97 * unsigned, and treating them as signed here can break things */
98 unsigned irq_set_ioctl
;
99 #ifdef KVM_CAP_IRQ_ROUTING
100 struct kvm_irq_routing
*irq_routes
;
101 int nr_allocated_irq_routes
;
102 uint32_t *used_gsi_bitmap
;
103 unsigned int gsi_count
;
104 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
110 bool kvm_kernel_irqchip
;
111 bool kvm_async_interrupts_allowed
;
112 bool kvm_halt_in_kernel_allowed
;
113 bool kvm_irqfds_allowed
;
114 bool kvm_msi_via_irqfd_allowed
;
115 bool kvm_gsi_routing_allowed
;
116 bool kvm_gsi_direct_mapping
;
118 bool kvm_readonly_mem_allowed
;
120 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
121 KVM_CAP_INFO(USER_MEMORY
),
122 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
126 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
130 for (i
= 0; i
< s
->nr_slots
; i
++) {
131 if (s
->slots
[i
].memory_size
== 0) {
136 fprintf(stderr
, "%s: no free slot available\n", __func__
);
140 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
146 for (i
= 0; i
< s
->nr_slots
; i
++) {
147 KVMSlot
*mem
= &s
->slots
[i
];
149 if (start_addr
== mem
->start_addr
&&
150 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
159 * Find overlapping slot with lowest start address
161 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
165 KVMSlot
*found
= NULL
;
168 for (i
= 0; i
< s
->nr_slots
; i
++) {
169 KVMSlot
*mem
= &s
->slots
[i
];
171 if (mem
->memory_size
== 0 ||
172 (found
&& found
->start_addr
< mem
->start_addr
)) {
176 if (end_addr
> mem
->start_addr
&&
177 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
185 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
190 for (i
= 0; i
< s
->nr_slots
; i
++) {
191 KVMSlot
*mem
= &s
->slots
[i
];
193 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
194 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
202 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
204 struct kvm_userspace_memory_region mem
;
206 mem
.slot
= slot
->slot
;
207 mem
.guest_phys_addr
= slot
->start_addr
;
208 mem
.userspace_addr
= (unsigned long)slot
->ram
;
209 mem
.flags
= slot
->flags
;
210 if (s
->migration_log
) {
211 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
214 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
215 /* Set the slot size to 0 before setting the slot to the desired
216 * value. This is needed based on KVM commit 75d61fbc. */
218 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
220 mem
.memory_size
= slot
->memory_size
;
221 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
224 static void kvm_reset_vcpu(void *opaque
)
226 CPUState
*cpu
= opaque
;
228 kvm_arch_reset_vcpu(cpu
);
231 int kvm_init_vcpu(CPUState
*cpu
)
233 KVMState
*s
= kvm_state
;
237 DPRINTF("kvm_init_vcpu\n");
239 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
241 DPRINTF("kvm_create_vcpu failed\n");
247 cpu
->kvm_vcpu_dirty
= true;
249 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
252 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
256 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
258 if (cpu
->kvm_run
== MAP_FAILED
) {
260 DPRINTF("mmap'ing vcpu state failed\n");
264 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
265 s
->coalesced_mmio_ring
=
266 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
269 ret
= kvm_arch_init_vcpu(cpu
);
271 qemu_register_reset(kvm_reset_vcpu
, cpu
);
272 kvm_arch_reset_vcpu(cpu
);
279 * dirty pages logging control
282 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
285 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
286 if (readonly
&& kvm_readonly_mem_allowed
) {
287 flags
|= KVM_MEM_READONLY
;
292 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
294 KVMState
*s
= kvm_state
;
295 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
298 old_flags
= mem
->flags
;
300 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
303 /* If nothing changed effectively, no need to issue ioctl */
304 if (s
->migration_log
) {
305 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
308 if (flags
== old_flags
) {
312 return kvm_set_user_memory_region(s
, mem
);
315 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
316 ram_addr_t size
, bool log_dirty
)
318 KVMState
*s
= kvm_state
;
319 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
322 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
323 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
324 (hwaddr
)(phys_addr
+ size
- 1));
327 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
330 static void kvm_log_start(MemoryListener
*listener
,
331 MemoryRegionSection
*section
)
335 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
336 int128_get64(section
->size
), true);
342 static void kvm_log_stop(MemoryListener
*listener
,
343 MemoryRegionSection
*section
)
347 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
348 int128_get64(section
->size
), false);
354 static int kvm_set_migration_log(int enable
)
356 KVMState
*s
= kvm_state
;
360 s
->migration_log
= enable
;
362 for (i
= 0; i
< s
->nr_slots
; i
++) {
365 if (!mem
->memory_size
) {
368 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
371 err
= kvm_set_user_memory_region(s
, mem
);
379 /* get kvm's dirty pages bitmap and update qemu's */
380 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
381 unsigned long *bitmap
)
383 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
384 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
386 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
390 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
393 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
394 * This function updates qemu's dirty bitmap using
395 * memory_region_set_dirty(). This means all bits are set
398 * @start_add: start of logged region.
399 * @end_addr: end of logged region.
401 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
403 KVMState
*s
= kvm_state
;
404 unsigned long size
, allocated_size
= 0;
408 hwaddr start_addr
= section
->offset_within_address_space
;
409 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
411 d
.dirty_bitmap
= NULL
;
412 while (start_addr
< end_addr
) {
413 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
418 /* XXX bad kernel interface alert
419 * For dirty bitmap, kernel allocates array of size aligned to
420 * bits-per-long. But for case when the kernel is 64bits and
421 * the userspace is 32bits, userspace can't align to the same
422 * bits-per-long, since sizeof(long) is different between kernel
423 * and user space. This way, userspace will provide buffer which
424 * may be 4 bytes less than the kernel will use, resulting in
425 * userspace memory corruption (which is not detectable by valgrind
426 * too, in most cases).
427 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
428 * a hope that sizeof(long) wont become >8 any time soon.
430 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
431 /*HOST_LONG_BITS*/ 64) / 8;
432 if (!d
.dirty_bitmap
) {
433 d
.dirty_bitmap
= g_malloc(size
);
434 } else if (size
> allocated_size
) {
435 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
437 allocated_size
= size
;
438 memset(d
.dirty_bitmap
, 0, allocated_size
);
442 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
443 DPRINTF("ioctl failed %d\n", errno
);
448 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
449 start_addr
= mem
->start_addr
+ mem
->memory_size
;
451 g_free(d
.dirty_bitmap
);
456 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
457 MemoryRegionSection
*secion
,
458 hwaddr start
, hwaddr size
)
460 KVMState
*s
= kvm_state
;
462 if (s
->coalesced_mmio
) {
463 struct kvm_coalesced_mmio_zone zone
;
469 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
473 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
474 MemoryRegionSection
*secion
,
475 hwaddr start
, hwaddr size
)
477 KVMState
*s
= kvm_state
;
479 if (s
->coalesced_mmio
) {
480 struct kvm_coalesced_mmio_zone zone
;
486 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
490 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
494 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
502 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
503 bool assign
, uint32_t size
, bool datamatch
)
506 struct kvm_ioeventfd iofd
;
508 iofd
.datamatch
= datamatch
? val
: 0;
514 if (!kvm_enabled()) {
519 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
522 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
525 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
534 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
535 bool assign
, uint32_t size
, bool datamatch
)
537 struct kvm_ioeventfd kick
= {
538 .datamatch
= datamatch
? val
: 0,
540 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
545 if (!kvm_enabled()) {
549 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
552 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
554 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
562 static int kvm_check_many_ioeventfds(void)
564 /* Userspace can use ioeventfd for io notification. This requires a host
565 * that supports eventfd(2) and an I/O thread; since eventfd does not
566 * support SIGIO it cannot interrupt the vcpu.
568 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
569 * can avoid creating too many ioeventfds.
571 #if defined(CONFIG_EVENTFD)
574 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
575 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
576 if (ioeventfds
[i
] < 0) {
579 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
581 close(ioeventfds
[i
]);
586 /* Decide whether many devices are supported or not */
587 ret
= i
== ARRAY_SIZE(ioeventfds
);
590 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
591 close(ioeventfds
[i
]);
599 static const KVMCapabilityInfo
*
600 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
603 if (!kvm_check_extension(s
, list
->value
)) {
611 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
613 KVMState
*s
= kvm_state
;
616 MemoryRegion
*mr
= section
->mr
;
617 bool log_dirty
= memory_region_is_logging(mr
);
618 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
619 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
620 hwaddr start_addr
= section
->offset_within_address_space
;
621 ram_addr_t size
= int128_get64(section
->size
);
625 /* kvm works in page size chunks, but the function may be called
626 with sub-page size and unaligned start address. */
627 delta
= TARGET_PAGE_ALIGN(size
) - size
;
633 size
&= TARGET_PAGE_MASK
;
634 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
638 if (!memory_region_is_ram(mr
)) {
639 if (writeable
|| !kvm_readonly_mem_allowed
) {
641 } else if (!mr
->romd_mode
) {
642 /* If the memory device is not in romd_mode, then we actually want
643 * to remove the kvm memory slot so all accesses will trap. */
648 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
651 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
656 if (add
&& start_addr
>= mem
->start_addr
&&
657 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
658 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
659 /* The new slot fits into the existing one and comes with
660 * identical parameters - update flags and done. */
661 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
667 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
668 kvm_physical_sync_dirty_bitmap(section
);
671 /* unregister the overlapping slot */
672 mem
->memory_size
= 0;
673 err
= kvm_set_user_memory_region(s
, mem
);
675 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
676 __func__
, strerror(-err
));
680 /* Workaround for older KVM versions: we can't join slots, even not by
681 * unregistering the previous ones and then registering the larger
682 * slot. We have to maintain the existing fragmentation. Sigh.
684 * This workaround assumes that the new slot starts at the same
685 * address as the first existing one. If not or if some overlapping
686 * slot comes around later, we will fail (not seen in practice so far)
687 * - and actually require a recent KVM version. */
688 if (s
->broken_set_mem_region
&&
689 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
690 mem
= kvm_alloc_slot(s
);
691 mem
->memory_size
= old
.memory_size
;
692 mem
->start_addr
= old
.start_addr
;
694 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
696 err
= kvm_set_user_memory_region(s
, mem
);
698 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
703 start_addr
+= old
.memory_size
;
704 ram
+= old
.memory_size
;
705 size
-= old
.memory_size
;
709 /* register prefix slot */
710 if (old
.start_addr
< start_addr
) {
711 mem
= kvm_alloc_slot(s
);
712 mem
->memory_size
= start_addr
- old
.start_addr
;
713 mem
->start_addr
= old
.start_addr
;
715 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
717 err
= kvm_set_user_memory_region(s
, mem
);
719 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
720 __func__
, strerror(-err
));
722 fprintf(stderr
, "%s: This is probably because your kernel's " \
723 "PAGE_SIZE is too big. Please try to use 4k " \
724 "PAGE_SIZE!\n", __func__
);
730 /* register suffix slot */
731 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
732 ram_addr_t size_delta
;
734 mem
= kvm_alloc_slot(s
);
735 mem
->start_addr
= start_addr
+ size
;
736 size_delta
= mem
->start_addr
- old
.start_addr
;
737 mem
->memory_size
= old
.memory_size
- size_delta
;
738 mem
->ram
= old
.ram
+ size_delta
;
739 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
741 err
= kvm_set_user_memory_region(s
, mem
);
743 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
744 __func__
, strerror(-err
));
750 /* in case the KVM bug workaround already "consumed" the new slot */
757 mem
= kvm_alloc_slot(s
);
758 mem
->memory_size
= size
;
759 mem
->start_addr
= start_addr
;
761 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
763 err
= kvm_set_user_memory_region(s
, mem
);
765 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
771 static void kvm_region_add(MemoryListener
*listener
,
772 MemoryRegionSection
*section
)
774 memory_region_ref(section
->mr
);
775 kvm_set_phys_mem(section
, true);
778 static void kvm_region_del(MemoryListener
*listener
,
779 MemoryRegionSection
*section
)
781 kvm_set_phys_mem(section
, false);
782 memory_region_unref(section
->mr
);
785 static void kvm_log_sync(MemoryListener
*listener
,
786 MemoryRegionSection
*section
)
790 r
= kvm_physical_sync_dirty_bitmap(section
);
796 static void kvm_log_global_start(struct MemoryListener
*listener
)
800 r
= kvm_set_migration_log(1);
804 static void kvm_log_global_stop(struct MemoryListener
*listener
)
808 r
= kvm_set_migration_log(0);
812 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
813 MemoryRegionSection
*section
,
814 bool match_data
, uint64_t data
,
817 int fd
= event_notifier_get_fd(e
);
820 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
821 data
, true, int128_get64(section
->size
),
824 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
825 __func__
, strerror(-r
));
830 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
831 MemoryRegionSection
*section
,
832 bool match_data
, uint64_t data
,
835 int fd
= event_notifier_get_fd(e
);
838 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
839 data
, false, int128_get64(section
->size
),
846 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
847 MemoryRegionSection
*section
,
848 bool match_data
, uint64_t data
,
851 int fd
= event_notifier_get_fd(e
);
854 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
855 data
, true, int128_get64(section
->size
),
858 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
859 __func__
, strerror(-r
));
864 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
865 MemoryRegionSection
*section
,
866 bool match_data
, uint64_t data
,
870 int fd
= event_notifier_get_fd(e
);
873 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
874 data
, false, int128_get64(section
->size
),
881 static MemoryListener kvm_memory_listener
= {
882 .region_add
= kvm_region_add
,
883 .region_del
= kvm_region_del
,
884 .log_start
= kvm_log_start
,
885 .log_stop
= kvm_log_stop
,
886 .log_sync
= kvm_log_sync
,
887 .log_global_start
= kvm_log_global_start
,
888 .log_global_stop
= kvm_log_global_stop
,
889 .eventfd_add
= kvm_mem_ioeventfd_add
,
890 .eventfd_del
= kvm_mem_ioeventfd_del
,
891 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
892 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
896 static MemoryListener kvm_io_listener
= {
897 .eventfd_add
= kvm_io_ioeventfd_add
,
898 .eventfd_del
= kvm_io_ioeventfd_del
,
902 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
904 cpu
->interrupt_request
|= mask
;
906 if (!qemu_cpu_is_self(cpu
)) {
911 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
913 struct kvm_irq_level event
;
916 assert(kvm_async_interrupts_enabled());
920 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
922 perror("kvm_set_irq");
926 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
929 #ifdef KVM_CAP_IRQ_ROUTING
930 typedef struct KVMMSIRoute
{
931 struct kvm_irq_routing_entry kroute
;
932 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
935 static void set_gsi(KVMState
*s
, unsigned int gsi
)
937 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
940 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
942 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
945 void kvm_init_irq_routing(KVMState
*s
)
949 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
951 unsigned int gsi_bits
, i
;
953 /* Round up so we can search ints using ffs */
954 gsi_bits
= ALIGN(gsi_count
, 32);
955 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
956 s
->gsi_count
= gsi_count
;
958 /* Mark any over-allocated bits as already in use */
959 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
964 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
965 s
->nr_allocated_irq_routes
= 0;
967 if (!s
->direct_msi
) {
968 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
969 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
973 kvm_arch_init_irq_routing(s
);
976 void kvm_irqchip_commit_routes(KVMState
*s
)
980 s
->irq_routes
->flags
= 0;
981 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
985 static void kvm_add_routing_entry(KVMState
*s
,
986 struct kvm_irq_routing_entry
*entry
)
988 struct kvm_irq_routing_entry
*new;
991 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
992 n
= s
->nr_allocated_irq_routes
* 2;
996 size
= sizeof(struct kvm_irq_routing
);
997 size
+= n
* sizeof(*new);
998 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
999 s
->nr_allocated_irq_routes
= n
;
1001 n
= s
->irq_routes
->nr
++;
1002 new = &s
->irq_routes
->entries
[n
];
1006 set_gsi(s
, entry
->gsi
);
1009 static int kvm_update_routing_entry(KVMState
*s
,
1010 struct kvm_irq_routing_entry
*new_entry
)
1012 struct kvm_irq_routing_entry
*entry
;
1015 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1016 entry
= &s
->irq_routes
->entries
[n
];
1017 if (entry
->gsi
!= new_entry
->gsi
) {
1021 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1025 *entry
= *new_entry
;
1027 kvm_irqchip_commit_routes(s
);
1035 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1037 struct kvm_irq_routing_entry e
= {};
1039 assert(pin
< s
->gsi_count
);
1042 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1044 e
.u
.irqchip
.irqchip
= irqchip
;
1045 e
.u
.irqchip
.pin
= pin
;
1046 kvm_add_routing_entry(s
, &e
);
1049 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1051 struct kvm_irq_routing_entry
*e
;
1054 if (kvm_gsi_direct_mapping()) {
1058 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1059 e
= &s
->irq_routes
->entries
[i
];
1060 if (e
->gsi
== virq
) {
1061 s
->irq_routes
->nr
--;
1062 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1068 static unsigned int kvm_hash_msi(uint32_t data
)
1070 /* This is optimized for IA32 MSI layout. However, no other arch shall
1071 * repeat the mistake of not providing a direct MSI injection API. */
1075 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1077 KVMMSIRoute
*route
, *next
;
1080 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1081 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1082 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1083 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1089 static int kvm_irqchip_get_virq(KVMState
*s
)
1091 uint32_t *word
= s
->used_gsi_bitmap
;
1092 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1097 /* Return the lowest unused GSI in the bitmap */
1098 for (i
= 0; i
< max_words
; i
++) {
1099 bit
= ffs(~word
[i
]);
1104 return bit
- 1 + i
* 32;
1106 if (!s
->direct_msi
&& retry
) {
1108 kvm_flush_dynamic_msi_routes(s
);
1115 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1117 unsigned int hash
= kvm_hash_msi(msg
.data
);
1120 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1121 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1122 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1123 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1130 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1135 if (s
->direct_msi
) {
1136 msi
.address_lo
= (uint32_t)msg
.address
;
1137 msi
.address_hi
= msg
.address
>> 32;
1138 msi
.data
= le32_to_cpu(msg
.data
);
1140 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1142 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1145 route
= kvm_lookup_msi_route(s
, msg
);
1149 virq
= kvm_irqchip_get_virq(s
);
1154 route
= g_malloc0(sizeof(KVMMSIRoute
));
1155 route
->kroute
.gsi
= virq
;
1156 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1157 route
->kroute
.flags
= 0;
1158 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1159 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1160 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1162 kvm_add_routing_entry(s
, &route
->kroute
);
1163 kvm_irqchip_commit_routes(s
);
1165 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1169 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1171 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1174 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1176 struct kvm_irq_routing_entry kroute
= {};
1179 if (kvm_gsi_direct_mapping()) {
1180 return msg
.data
& 0xffff;
1183 if (!kvm_gsi_routing_enabled()) {
1187 virq
= kvm_irqchip_get_virq(s
);
1193 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1195 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1196 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1197 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1199 kvm_add_routing_entry(s
, &kroute
);
1200 kvm_irqchip_commit_routes(s
);
1205 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1207 struct kvm_irq_routing_entry kroute
= {};
1209 if (kvm_gsi_direct_mapping()) {
1213 if (!kvm_irqchip_in_kernel()) {
1218 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1220 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1221 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1222 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1224 return kvm_update_routing_entry(s
, &kroute
);
1227 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1230 struct kvm_irqfd irqfd
= {
1233 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1237 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1238 irqfd
.resamplefd
= rfd
;
1241 if (!kvm_irqfds_enabled()) {
1245 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1248 #else /* !KVM_CAP_IRQ_ROUTING */
1250 void kvm_init_irq_routing(KVMState
*s
)
1254 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1258 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1263 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1268 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1273 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1277 #endif /* !KVM_CAP_IRQ_ROUTING */
1279 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1280 EventNotifier
*rn
, int virq
)
1282 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1283 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1286 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1288 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1292 static int kvm_irqchip_create(KVMState
*s
)
1296 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1297 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1301 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1303 fprintf(stderr
, "Create kernel irqchip failed\n");
1307 kvm_kernel_irqchip
= true;
1308 /* If we have an in-kernel IRQ chip then we must have asynchronous
1309 * interrupt delivery (though the reverse is not necessarily true)
1311 kvm_async_interrupts_allowed
= true;
1312 kvm_halt_in_kernel_allowed
= true;
1314 kvm_init_irq_routing(s
);
1319 /* Find number of supported CPUs using the recommended
1320 * procedure from the kernel API documentation to cope with
1321 * older kernels that may be missing capabilities.
1323 static int kvm_recommended_vcpus(KVMState
*s
)
1325 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1326 return (ret
) ? ret
: 4;
1329 static int kvm_max_vcpus(KVMState
*s
)
1331 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1332 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1337 static const char upgrade_note
[] =
1338 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1339 "(see http://sourceforge.net/projects/kvm).\n";
1344 { "SMP", smp_cpus
},
1345 { "hotpluggable", max_cpus
},
1348 int soft_vcpus_limit
, hard_vcpus_limit
;
1350 const KVMCapabilityInfo
*missing_cap
;
1354 s
= g_malloc0(sizeof(KVMState
));
1357 * On systems where the kernel can support different base page
1358 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1359 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1360 * page size for the system though.
1362 assert(TARGET_PAGE_SIZE
<= getpagesize());
1365 #ifdef KVM_CAP_SET_GUEST_DEBUG
1366 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1369 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1371 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1376 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1377 if (ret
< KVM_API_VERSION
) {
1381 fprintf(stderr
, "kvm version too old\n");
1385 if (ret
> KVM_API_VERSION
) {
1387 fprintf(stderr
, "kvm version not supported\n");
1391 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1393 /* If unspecified, use the default value */
1398 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1400 for (i
= 0; i
< s
->nr_slots
; i
++) {
1401 s
->slots
[i
].slot
= i
;
1404 /* check the vcpu limits */
1405 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1406 hard_vcpus_limit
= kvm_max_vcpus(s
);
1409 if (nc
->num
> soft_vcpus_limit
) {
1411 "Warning: Number of %s cpus requested (%d) exceeds "
1412 "the recommended cpus supported by KVM (%d)\n",
1413 nc
->name
, nc
->num
, soft_vcpus_limit
);
1415 if (nc
->num
> hard_vcpus_limit
) {
1417 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1418 "the maximum cpus supported by KVM (%d)\n",
1419 nc
->name
, nc
->num
, hard_vcpus_limit
);
1427 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1428 } while (ret
== -EINTR
);
1431 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -s
->vmfd
,
1435 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1436 "your host kernel command line\n");
1442 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1445 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1449 fprintf(stderr
, "kvm does not support %s\n%s",
1450 missing_cap
->name
, upgrade_note
);
1454 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1456 s
->broken_set_mem_region
= 1;
1457 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1459 s
->broken_set_mem_region
= 0;
1462 #ifdef KVM_CAP_VCPU_EVENTS
1463 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1466 s
->robust_singlestep
=
1467 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1469 #ifdef KVM_CAP_DEBUGREGS
1470 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1473 #ifdef KVM_CAP_XSAVE
1474 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1478 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1481 #ifdef KVM_CAP_PIT_STATE2
1482 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1485 #ifdef KVM_CAP_IRQ_ROUTING
1486 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1489 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1491 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1492 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1493 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1496 #ifdef KVM_CAP_READONLY_MEM
1497 kvm_readonly_mem_allowed
=
1498 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1501 ret
= kvm_arch_init(s
);
1506 ret
= kvm_irqchip_create(s
);
1512 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1513 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1515 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1517 cpu_interrupt_handler
= kvm_handle_interrupt
;
1534 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1538 uint8_t *ptr
= data
;
1540 for (i
= 0; i
< count
; i
++) {
1541 address_space_rw(&address_space_io
, port
, ptr
, size
,
1542 direction
== KVM_EXIT_IO_OUT
);
1547 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1549 fprintf(stderr
, "KVM internal error.");
1550 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1553 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1554 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1555 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1556 i
, (uint64_t)run
->internal
.data
[i
]);
1559 fprintf(stderr
, "\n");
1561 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1562 fprintf(stderr
, "emulation failure\n");
1563 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1564 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1565 return EXCP_INTERRUPT
;
1568 /* FIXME: Should trigger a qmp message to let management know
1569 * something went wrong.
1574 void kvm_flush_coalesced_mmio_buffer(void)
1576 KVMState
*s
= kvm_state
;
1578 if (s
->coalesced_flush_in_progress
) {
1582 s
->coalesced_flush_in_progress
= true;
1584 if (s
->coalesced_mmio_ring
) {
1585 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1586 while (ring
->first
!= ring
->last
) {
1587 struct kvm_coalesced_mmio
*ent
;
1589 ent
= &ring
->coalesced_mmio
[ring
->first
];
1591 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1593 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1597 s
->coalesced_flush_in_progress
= false;
1600 static void do_kvm_cpu_synchronize_state(void *arg
)
1602 CPUState
*cpu
= arg
;
1604 if (!cpu
->kvm_vcpu_dirty
) {
1605 kvm_arch_get_registers(cpu
);
1606 cpu
->kvm_vcpu_dirty
= true;
1610 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1612 if (!cpu
->kvm_vcpu_dirty
) {
1613 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1617 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1619 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1620 cpu
->kvm_vcpu_dirty
= false;
1623 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1625 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1626 cpu
->kvm_vcpu_dirty
= false;
1629 int kvm_cpu_exec(CPUState
*cpu
)
1631 struct kvm_run
*run
= cpu
->kvm_run
;
1634 DPRINTF("kvm_cpu_exec()\n");
1636 if (kvm_arch_process_async_events(cpu
)) {
1637 cpu
->exit_request
= 0;
1642 if (cpu
->kvm_vcpu_dirty
) {
1643 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1644 cpu
->kvm_vcpu_dirty
= false;
1647 kvm_arch_pre_run(cpu
, run
);
1648 if (cpu
->exit_request
) {
1649 DPRINTF("interrupt exit requested\n");
1651 * KVM requires us to reenter the kernel after IO exits to complete
1652 * instruction emulation. This self-signal will ensure that we
1655 qemu_cpu_kick_self();
1657 qemu_mutex_unlock_iothread();
1659 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1661 qemu_mutex_lock_iothread();
1662 kvm_arch_post_run(cpu
, run
);
1665 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1666 DPRINTF("io window exit\n");
1667 ret
= EXCP_INTERRUPT
;
1670 fprintf(stderr
, "error: kvm run failed %s\n",
1671 strerror(-run_ret
));
1675 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1676 switch (run
->exit_reason
) {
1678 DPRINTF("handle_io\n");
1679 kvm_handle_io(run
->io
.port
,
1680 (uint8_t *)run
+ run
->io
.data_offset
,
1687 DPRINTF("handle_mmio\n");
1688 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1691 run
->mmio
.is_write
);
1694 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1695 DPRINTF("irq_window_open\n");
1696 ret
= EXCP_INTERRUPT
;
1698 case KVM_EXIT_SHUTDOWN
:
1699 DPRINTF("shutdown\n");
1700 qemu_system_reset_request();
1701 ret
= EXCP_INTERRUPT
;
1703 case KVM_EXIT_UNKNOWN
:
1704 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1705 (uint64_t)run
->hw
.hardware_exit_reason
);
1708 case KVM_EXIT_INTERNAL_ERROR
:
1709 ret
= kvm_handle_internal_error(cpu
, run
);
1712 DPRINTF("kvm_arch_handle_exit\n");
1713 ret
= kvm_arch_handle_exit(cpu
, run
);
1719 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1720 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1723 cpu
->exit_request
= 0;
1727 int kvm_ioctl(KVMState
*s
, int type
, ...)
1734 arg
= va_arg(ap
, void *);
1737 trace_kvm_ioctl(type
, arg
);
1738 ret
= ioctl(s
->fd
, type
, arg
);
1745 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1752 arg
= va_arg(ap
, void *);
1755 trace_kvm_vm_ioctl(type
, arg
);
1756 ret
= ioctl(s
->vmfd
, type
, arg
);
1763 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1770 arg
= va_arg(ap
, void *);
1773 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1774 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1781 int kvm_has_sync_mmu(void)
1783 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1786 int kvm_has_vcpu_events(void)
1788 return kvm_state
->vcpu_events
;
1791 int kvm_has_robust_singlestep(void)
1793 return kvm_state
->robust_singlestep
;
1796 int kvm_has_debugregs(void)
1798 return kvm_state
->debugregs
;
1801 int kvm_has_xsave(void)
1803 return kvm_state
->xsave
;
1806 int kvm_has_xcrs(void)
1808 return kvm_state
->xcrs
;
1811 int kvm_has_pit_state2(void)
1813 return kvm_state
->pit_state2
;
1816 int kvm_has_many_ioeventfds(void)
1818 if (!kvm_enabled()) {
1821 return kvm_state
->many_ioeventfds
;
1824 int kvm_has_gsi_routing(void)
1826 #ifdef KVM_CAP_IRQ_ROUTING
1827 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1833 int kvm_has_intx_set_mask(void)
1835 return kvm_state
->intx_set_mask
;
1838 void kvm_setup_guest_memory(void *start
, size_t size
)
1840 #ifdef CONFIG_VALGRIND_H
1841 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1843 if (!kvm_has_sync_mmu()) {
1844 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1847 perror("qemu_madvise");
1849 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1855 #ifdef KVM_CAP_SET_GUEST_DEBUG
1856 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1859 struct kvm_sw_breakpoint
*bp
;
1861 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1869 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1871 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1874 struct kvm_set_guest_debug_data
{
1875 struct kvm_guest_debug dbg
;
1880 static void kvm_invoke_set_guest_debug(void *data
)
1882 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1884 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
1888 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
1890 struct kvm_set_guest_debug_data data
;
1892 data
.dbg
.control
= reinject_trap
;
1894 if (cpu
->singlestep_enabled
) {
1895 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1897 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
1900 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
1904 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
1905 target_ulong len
, int type
)
1907 struct kvm_sw_breakpoint
*bp
;
1910 if (type
== GDB_BREAKPOINT_SW
) {
1911 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1917 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1924 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
1930 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1932 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1939 err
= kvm_update_guest_debug(cpu
, 0);
1947 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
1948 target_ulong len
, int type
)
1950 struct kvm_sw_breakpoint
*bp
;
1953 if (type
== GDB_BREAKPOINT_SW
) {
1954 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1959 if (bp
->use_count
> 1) {
1964 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
1969 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1972 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1979 err
= kvm_update_guest_debug(cpu
, 0);
1987 void kvm_remove_all_breakpoints(CPUState
*cpu
)
1989 struct kvm_sw_breakpoint
*bp
, *next
;
1990 KVMState
*s
= cpu
->kvm_state
;
1992 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1993 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
1994 /* Try harder to find a CPU that currently sees the breakpoint. */
1996 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) == 0) {
2001 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2004 kvm_arch_remove_all_hw_breakpoints();
2007 kvm_update_guest_debug(cpu
, 0);
2011 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2013 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2018 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2019 target_ulong len
, int type
)
2024 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2025 target_ulong len
, int type
)
2030 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2033 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2035 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2037 struct kvm_signal_mask
*sigmask
;
2041 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2044 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2047 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2048 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2053 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2055 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2058 int kvm_on_sigbus(int code
, void *addr
)
2060 return kvm_arch_on_sigbus(code
, addr
);