hw/nand: Support large NAND devices
[qemu/ar7.git] / target-microblaze / op_helper.c
blob664ffe5990ffbcd35f7a79cdc567d835d7dfbd3a
1 /*
2 * Microblaze helper routines.
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include <assert.h>
21 #include "exec.h"
22 #include "helper.h"
23 #include "host-utils.h"
25 #define D(x)
27 #if !defined(CONFIG_USER_ONLY)
28 #define MMUSUFFIX _mmu
29 #define SHIFT 0
30 #include "softmmu_template.h"
31 #define SHIFT 1
32 #include "softmmu_template.h"
33 #define SHIFT 2
34 #include "softmmu_template.h"
35 #define SHIFT 3
36 #include "softmmu_template.h"
38 /* Try to fill the TLB and return an exception if error. If retaddr is
39 NULL, it means that the function was called in C code (i.e. not
40 from generated code or from helper.c) */
41 /* XXX: fix it to restore all registers */
42 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
44 TranslationBlock *tb;
45 CPUState *saved_env;
46 unsigned long pc;
47 int ret;
49 /* XXX: hack to restore env in all cases, even if not called from
50 generated code */
51 saved_env = env;
52 env = cpu_single_env;
54 ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
55 if (unlikely(ret)) {
56 if (retaddr) {
57 /* now we have a real cpu fault */
58 pc = (unsigned long)retaddr;
59 tb = tb_find_pc(pc);
60 if (tb) {
61 /* the PC is inside the translated code. It means that we have
62 a virtual CPU fault */
63 cpu_restore_state(tb, env, pc);
66 cpu_loop_exit(env);
68 env = saved_env;
70 #endif
72 void helper_put(uint32_t id, uint32_t ctrl, uint32_t data)
74 int test = ctrl & STREAM_TEST;
75 int atomic = ctrl & STREAM_ATOMIC;
76 int control = ctrl & STREAM_CONTROL;
77 int nonblock = ctrl & STREAM_NONBLOCK;
78 int exception = ctrl & STREAM_EXCEPTION;
80 qemu_log("Unhandled stream put to stream-id=%d data=%x %s%s%s%s%s\n",
81 id, data,
82 test ? "t" : "",
83 nonblock ? "n" : "",
84 exception ? "e" : "",
85 control ? "c" : "",
86 atomic ? "a" : "");
89 uint32_t helper_get(uint32_t id, uint32_t ctrl)
91 int test = ctrl & STREAM_TEST;
92 int atomic = ctrl & STREAM_ATOMIC;
93 int control = ctrl & STREAM_CONTROL;
94 int nonblock = ctrl & STREAM_NONBLOCK;
95 int exception = ctrl & STREAM_EXCEPTION;
97 qemu_log("Unhandled stream get from stream-id=%d %s%s%s%s%s\n",
98 id,
99 test ? "t" : "",
100 nonblock ? "n" : "",
101 exception ? "e" : "",
102 control ? "c" : "",
103 atomic ? "a" : "");
104 return 0xdead0000 | id;
107 void helper_raise_exception(uint32_t index)
109 env->exception_index = index;
110 cpu_loop_exit(env);
113 void helper_debug(void)
115 int i;
117 qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
118 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
119 env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
120 env->debug, env->imm, env->iflags);
121 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
122 env->btaken, env->btarget,
123 (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
124 (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
125 (env->sregs[SR_MSR] & MSR_EIP),
126 (env->sregs[SR_MSR] & MSR_IE));
127 for (i = 0; i < 32; i++) {
128 qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
129 if ((i + 1) % 4 == 0)
130 qemu_log("\n");
132 qemu_log("\n\n");
135 static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
137 uint32_t cout = 0;
139 if ((b == ~0) && cin)
140 cout = 1;
141 else if ((~0 - a) < (b + cin))
142 cout = 1;
143 return cout;
146 uint32_t helper_cmp(uint32_t a, uint32_t b)
148 uint32_t t;
150 t = b + ~a + 1;
151 if ((b & 0x80000000) ^ (a & 0x80000000))
152 t = (t & 0x7fffffff) | (b & 0x80000000);
153 return t;
156 uint32_t helper_cmpu(uint32_t a, uint32_t b)
158 uint32_t t;
160 t = b + ~a + 1;
161 if ((b & 0x80000000) ^ (a & 0x80000000))
162 t = (t & 0x7fffffff) | (a & 0x80000000);
163 return t;
166 uint32_t helper_carry(uint32_t a, uint32_t b, uint32_t cf)
168 uint32_t ncf;
169 ncf = compute_carry(a, b, cf);
170 return ncf;
173 static inline int div_prepare(uint32_t a, uint32_t b)
175 if (b == 0) {
176 env->sregs[SR_MSR] |= MSR_DZ;
178 if ((env->sregs[SR_MSR] & MSR_EE)
179 && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
180 env->sregs[SR_ESR] = ESR_EC_DIVZERO;
181 helper_raise_exception(EXCP_HW_EXCP);
183 return 0;
185 env->sregs[SR_MSR] &= ~MSR_DZ;
186 return 1;
189 uint32_t helper_divs(uint32_t a, uint32_t b)
191 if (!div_prepare(a, b))
192 return 0;
193 return (int32_t)a / (int32_t)b;
196 uint32_t helper_divu(uint32_t a, uint32_t b)
198 if (!div_prepare(a, b))
199 return 0;
200 return a / b;
203 /* raise FPU exception. */
204 static void raise_fpu_exception(void)
206 env->sregs[SR_ESR] = ESR_EC_FPU;
207 helper_raise_exception(EXCP_HW_EXCP);
210 static void update_fpu_flags(int flags)
212 int raise = 0;
214 if (flags & float_flag_invalid) {
215 env->sregs[SR_FSR] |= FSR_IO;
216 raise = 1;
218 if (flags & float_flag_divbyzero) {
219 env->sregs[SR_FSR] |= FSR_DZ;
220 raise = 1;
222 if (flags & float_flag_overflow) {
223 env->sregs[SR_FSR] |= FSR_OF;
224 raise = 1;
226 if (flags & float_flag_underflow) {
227 env->sregs[SR_FSR] |= FSR_UF;
228 raise = 1;
230 if (raise
231 && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
232 && (env->sregs[SR_MSR] & MSR_EE)) {
233 raise_fpu_exception();
237 uint32_t helper_fadd(uint32_t a, uint32_t b)
239 CPU_FloatU fd, fa, fb;
240 int flags;
242 set_float_exception_flags(0, &env->fp_status);
243 fa.l = a;
244 fb.l = b;
245 fd.f = float32_add(fa.f, fb.f, &env->fp_status);
247 flags = get_float_exception_flags(&env->fp_status);
248 update_fpu_flags(flags);
249 return fd.l;
252 uint32_t helper_frsub(uint32_t a, uint32_t b)
254 CPU_FloatU fd, fa, fb;
255 int flags;
257 set_float_exception_flags(0, &env->fp_status);
258 fa.l = a;
259 fb.l = b;
260 fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
261 flags = get_float_exception_flags(&env->fp_status);
262 update_fpu_flags(flags);
263 return fd.l;
266 uint32_t helper_fmul(uint32_t a, uint32_t b)
268 CPU_FloatU fd, fa, fb;
269 int flags;
271 set_float_exception_flags(0, &env->fp_status);
272 fa.l = a;
273 fb.l = b;
274 fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
275 flags = get_float_exception_flags(&env->fp_status);
276 update_fpu_flags(flags);
278 return fd.l;
281 uint32_t helper_fdiv(uint32_t a, uint32_t b)
283 CPU_FloatU fd, fa, fb;
284 int flags;
286 set_float_exception_flags(0, &env->fp_status);
287 fa.l = a;
288 fb.l = b;
289 fd.f = float32_div(fb.f, fa.f, &env->fp_status);
290 flags = get_float_exception_flags(&env->fp_status);
291 update_fpu_flags(flags);
293 return fd.l;
296 uint32_t helper_fcmp_un(uint32_t a, uint32_t b)
298 CPU_FloatU fa, fb;
299 uint32_t r = 0;
301 fa.l = a;
302 fb.l = b;
304 if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) {
305 update_fpu_flags(float_flag_invalid);
306 r = 1;
309 if (float32_is_quiet_nan(fa.f) || float32_is_quiet_nan(fb.f)) {
310 r = 1;
313 return r;
316 uint32_t helper_fcmp_lt(uint32_t a, uint32_t b)
318 CPU_FloatU fa, fb;
319 int r;
320 int flags;
322 set_float_exception_flags(0, &env->fp_status);
323 fa.l = a;
324 fb.l = b;
325 r = float32_lt(fb.f, fa.f, &env->fp_status);
326 flags = get_float_exception_flags(&env->fp_status);
327 update_fpu_flags(flags & float_flag_invalid);
329 return r;
332 uint32_t helper_fcmp_eq(uint32_t a, uint32_t b)
334 CPU_FloatU fa, fb;
335 int flags;
336 int r;
338 set_float_exception_flags(0, &env->fp_status);
339 fa.l = a;
340 fb.l = b;
341 r = float32_eq_quiet(fa.f, fb.f, &env->fp_status);
342 flags = get_float_exception_flags(&env->fp_status);
343 update_fpu_flags(flags & float_flag_invalid);
345 return r;
348 uint32_t helper_fcmp_le(uint32_t a, uint32_t b)
350 CPU_FloatU fa, fb;
351 int flags;
352 int r;
354 fa.l = a;
355 fb.l = b;
356 set_float_exception_flags(0, &env->fp_status);
357 r = float32_le(fa.f, fb.f, &env->fp_status);
358 flags = get_float_exception_flags(&env->fp_status);
359 update_fpu_flags(flags & float_flag_invalid);
362 return r;
365 uint32_t helper_fcmp_gt(uint32_t a, uint32_t b)
367 CPU_FloatU fa, fb;
368 int flags, r;
370 fa.l = a;
371 fb.l = b;
372 set_float_exception_flags(0, &env->fp_status);
373 r = float32_lt(fa.f, fb.f, &env->fp_status);
374 flags = get_float_exception_flags(&env->fp_status);
375 update_fpu_flags(flags & float_flag_invalid);
376 return r;
379 uint32_t helper_fcmp_ne(uint32_t a, uint32_t b)
381 CPU_FloatU fa, fb;
382 int flags, r;
384 fa.l = a;
385 fb.l = b;
386 set_float_exception_flags(0, &env->fp_status);
387 r = !float32_eq_quiet(fa.f, fb.f, &env->fp_status);
388 flags = get_float_exception_flags(&env->fp_status);
389 update_fpu_flags(flags & float_flag_invalid);
391 return r;
394 uint32_t helper_fcmp_ge(uint32_t a, uint32_t b)
396 CPU_FloatU fa, fb;
397 int flags, r;
399 fa.l = a;
400 fb.l = b;
401 set_float_exception_flags(0, &env->fp_status);
402 r = !float32_lt(fa.f, fb.f, &env->fp_status);
403 flags = get_float_exception_flags(&env->fp_status);
404 update_fpu_flags(flags & float_flag_invalid);
406 return r;
409 uint32_t helper_flt(uint32_t a)
411 CPU_FloatU fd, fa;
413 fa.l = a;
414 fd.f = int32_to_float32(fa.l, &env->fp_status);
415 return fd.l;
418 uint32_t helper_fint(uint32_t a)
420 CPU_FloatU fa;
421 uint32_t r;
422 int flags;
424 set_float_exception_flags(0, &env->fp_status);
425 fa.l = a;
426 r = float32_to_int32(fa.f, &env->fp_status);
427 flags = get_float_exception_flags(&env->fp_status);
428 update_fpu_flags(flags);
430 return r;
433 uint32_t helper_fsqrt(uint32_t a)
435 CPU_FloatU fd, fa;
436 int flags;
438 set_float_exception_flags(0, &env->fp_status);
439 fa.l = a;
440 fd.l = float32_sqrt(fa.f, &env->fp_status);
441 flags = get_float_exception_flags(&env->fp_status);
442 update_fpu_flags(flags);
444 return fd.l;
447 uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
449 unsigned int i;
450 uint32_t mask = 0xff000000;
452 for (i = 0; i < 4; i++) {
453 if ((a & mask) == (b & mask))
454 return i + 1;
455 mask >>= 8;
457 return 0;
460 void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
462 if (addr & mask) {
463 qemu_log_mask(CPU_LOG_INT,
464 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
465 addr, mask, wr, dr);
466 env->sregs[SR_EAR] = addr;
467 env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
468 | (dr & 31) << 5;
469 if (mask == 3) {
470 env->sregs[SR_ESR] |= 1 << 11;
472 if (!(env->sregs[SR_MSR] & MSR_EE)) {
473 return;
475 helper_raise_exception(EXCP_HW_EXCP);
479 #if !defined(CONFIG_USER_ONLY)
480 /* Writes/reads to the MMU's special regs end up here. */
481 uint32_t helper_mmu_read(uint32_t rn)
483 return mmu_read(env, rn);
486 void helper_mmu_write(uint32_t rn, uint32_t v)
488 mmu_write(env, rn, v);
491 void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
492 int is_write, int is_exec, int is_asi, int size)
494 CPUState *saved_env;
496 saved_env = env;
497 env = env1;
499 qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
500 addr, is_write, is_exec);
501 if (!(env->sregs[SR_MSR] & MSR_EE)) {
502 env = saved_env;
503 return;
506 env->sregs[SR_EAR] = addr;
507 if (is_exec) {
508 if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
509 env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
510 helper_raise_exception(EXCP_HW_EXCP);
512 } else {
513 if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
514 env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
515 helper_raise_exception(EXCP_HW_EXCP);
518 env = saved_env;
520 #endif