ppc: Reset the interrupt presenter from the CPU reset handler
[qemu/ar7.git] / hw / intc / xive.c
blobf066be5eb5e32ce1730f55690fbb0669a9a5a91c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
26 * XIVE Thread Interrupt Management context
30 * Convert a priority number to an Interrupt Pending Buffer (IPB)
31 * register, which indicates a pending interrupt at the priority
32 * corresponding to the bit number
34 static uint8_t priority_to_ipb(uint8_t priority)
36 return priority > XIVE_PRIORITY_MAX ?
37 0 : 1 << (XIVE_PRIORITY_MAX - priority);
41 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42 * Interrupt Priority Register (PIPR), which contains the priority of
43 * the most favored pending notification.
45 static uint8_t ipb_to_pipr(uint8_t ibp)
47 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
50 static void ipb_update(uint8_t *regs, uint8_t priority)
52 regs[TM_IPB] |= priority_to_ipb(priority);
53 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
56 static uint8_t exception_mask(uint8_t ring)
58 switch (ring) {
59 case TM_QW1_OS:
60 return TM_QW1_NSR_EO;
61 case TM_QW3_HV_PHYS:
62 return TM_QW3_NSR_HE;
63 default:
64 g_assert_not_reached();
68 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
70 switch (ring) {
71 case TM_QW0_USER:
72 return 0; /* Not supported */
73 case TM_QW1_OS:
74 return tctx->os_output;
75 case TM_QW2_HV_POOL:
76 case TM_QW3_HV_PHYS:
77 return tctx->hv_output;
78 default:
79 return 0;
83 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
85 uint8_t *regs = &tctx->regs[ring];
86 uint8_t nsr = regs[TM_NSR];
87 uint8_t mask = exception_mask(ring);
89 qemu_irq_lower(xive_tctx_output(tctx, ring));
91 if (regs[TM_NSR] & mask) {
92 uint8_t cppr = regs[TM_PIPR];
94 regs[TM_CPPR] = cppr;
96 /* Reset the pending buffer bit */
97 regs[TM_IPB] &= ~priority_to_ipb(cppr);
98 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
100 /* Drop Exception bit */
101 regs[TM_NSR] &= ~mask;
104 return (nsr << 8) | regs[TM_CPPR];
107 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
109 uint8_t *regs = &tctx->regs[ring];
111 if (regs[TM_PIPR] < regs[TM_CPPR]) {
112 switch (ring) {
113 case TM_QW1_OS:
114 regs[TM_NSR] |= TM_QW1_NSR_EO;
115 break;
116 case TM_QW3_HV_PHYS:
117 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
118 break;
119 default:
120 g_assert_not_reached();
122 qemu_irq_raise(xive_tctx_output(tctx, ring));
126 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
128 if (cppr > XIVE_PRIORITY_MAX) {
129 cppr = 0xff;
132 tctx->regs[ring + TM_CPPR] = cppr;
134 /* CPPR has changed, check if we need to raise a pending exception */
135 xive_tctx_notify(tctx, ring);
138 static inline uint32_t xive_tctx_word2(uint8_t *ring)
140 return *((uint32_t *) &ring[TM_WORD2]);
144 * XIVE Thread Interrupt Management Area (TIMA)
147 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
148 uint64_t value, unsigned size)
150 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
153 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
155 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
158 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
159 unsigned size)
161 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
162 uint32_t qw2w2;
164 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
165 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
166 return qw2w2;
169 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
170 uint64_t value, unsigned size)
172 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
175 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
177 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
181 * Define an access map for each page of the TIMA that we will use in
182 * the memory region ops to filter values when doing loads and stores
183 * of raw registers values
185 * Registers accessibility bits :
187 * 0x0 - no access
188 * 0x1 - write only
189 * 0x2 - read only
190 * 0x3 - read/write
193 static const uint8_t xive_tm_hw_view[] = {
194 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
195 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
196 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
197 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
200 static const uint8_t xive_tm_hv_view[] = {
201 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
202 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
203 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
204 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
207 static const uint8_t xive_tm_os_view[] = {
208 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
209 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
210 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
211 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
214 static const uint8_t xive_tm_user_view[] = {
215 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
216 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
217 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
218 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
222 * Overall TIMA access map for the thread interrupt management context
223 * registers
225 static const uint8_t *xive_tm_views[] = {
226 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
227 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
228 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
229 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
233 * Computes a register access mask for a given offset in the TIMA
235 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
237 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
238 uint8_t reg_offset = offset & 0x3F;
239 uint8_t reg_mask = write ? 0x1 : 0x2;
240 uint64_t mask = 0x0;
241 int i;
243 for (i = 0; i < size; i++) {
244 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
245 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
249 return mask;
252 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
253 unsigned size)
255 uint8_t ring_offset = offset & 0x30;
256 uint8_t reg_offset = offset & 0x3F;
257 uint64_t mask = xive_tm_mask(offset, size, true);
258 int i;
261 * Only 4 or 8 bytes stores are allowed and the User ring is
262 * excluded
264 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
265 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
266 HWADDR_PRIx"\n", offset);
267 return;
271 * Use the register offset for the raw values and filter out
272 * reserved values
274 for (i = 0; i < size; i++) {
275 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
276 if (byte_mask) {
277 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
278 byte_mask;
283 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
285 uint8_t ring_offset = offset & 0x30;
286 uint8_t reg_offset = offset & 0x3F;
287 uint64_t mask = xive_tm_mask(offset, size, false);
288 uint64_t ret;
289 int i;
292 * Only 4 or 8 bytes loads are allowed and the User ring is
293 * excluded
295 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
296 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
297 HWADDR_PRIx"\n", offset);
298 return -1;
301 /* Use the register offset for the raw values */
302 ret = 0;
303 for (i = 0; i < size; i++) {
304 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
307 /* filter out reserved values */
308 return ret & mask;
312 * The TM context is mapped twice within each page. Stores and loads
313 * to the first mapping below 2K write and read the specified values
314 * without modification. The second mapping above 2K performs specific
315 * state changes (side effects) in addition to setting/returning the
316 * interrupt management area context of the processor thread.
318 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
320 return xive_tctx_accept(tctx, TM_QW1_OS);
323 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
324 uint64_t value, unsigned size)
326 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
330 * Adjust the IPB to allow a CPU to process event queues of other
331 * priorities during one physical interrupt cycle.
333 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
334 uint64_t value, unsigned size)
336 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
337 xive_tctx_notify(tctx, TM_QW1_OS);
340 static uint64_t xive_tm_pull_os_ctx(XiveTCTX *tctx, hwaddr offset,
341 unsigned size)
343 uint32_t qw1w2_prev = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
344 uint32_t qw1w2;
346 qw1w2 = xive_set_field32(TM_QW1W2_VO, qw1w2_prev, 0);
347 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
348 return qw1w2;
352 * Define a mapping of "special" operations depending on the TIMA page
353 * offset and the size of the operation.
355 typedef struct XiveTmOp {
356 uint8_t page_offset;
357 uint32_t op_offset;
358 unsigned size;
359 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
360 unsigned size);
361 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
362 } XiveTmOp;
364 static const XiveTmOp xive_tm_operations[] = {
366 * MMIOs below 2K : raw values and special operations without side
367 * effects
369 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
370 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
371 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
372 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
374 /* MMIOs above 2K : special operations with side effects */
375 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
376 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
377 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
378 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
379 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
380 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
381 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
384 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
386 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
387 uint32_t op_offset = offset & 0xFFF;
388 int i;
390 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
391 const XiveTmOp *xto = &xive_tm_operations[i];
393 /* Accesses done from a more privileged TIMA page is allowed */
394 if (xto->page_offset >= page_offset &&
395 xto->op_offset == op_offset &&
396 xto->size == size &&
397 ((write && xto->write_handler) || (!write && xto->read_handler))) {
398 return xto;
401 return NULL;
405 * TIMA MMIO handlers
407 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
408 unsigned size)
410 const XiveTmOp *xto;
413 * TODO: check V bit in Q[0-3]W2
417 * First, check for special operations in the 2K region
419 if (offset & 0x800) {
420 xto = xive_tm_find_op(offset, size, true);
421 if (!xto) {
422 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
423 "@%"HWADDR_PRIx"\n", offset);
424 } else {
425 xto->write_handler(tctx, offset, value, size);
427 return;
431 * Then, for special operations in the region below 2K.
433 xto = xive_tm_find_op(offset, size, true);
434 if (xto) {
435 xto->write_handler(tctx, offset, value, size);
436 return;
440 * Finish with raw access to the register values
442 xive_tm_raw_write(tctx, offset, value, size);
445 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
447 const XiveTmOp *xto;
450 * TODO: check V bit in Q[0-3]W2
454 * First, check for special operations in the 2K region
456 if (offset & 0x800) {
457 xto = xive_tm_find_op(offset, size, false);
458 if (!xto) {
459 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
460 "@%"HWADDR_PRIx"\n", offset);
461 return -1;
463 return xto->read_handler(tctx, offset, size);
467 * Then, for special operations in the region below 2K.
469 xto = xive_tm_find_op(offset, size, false);
470 if (xto) {
471 return xto->read_handler(tctx, offset, size);
475 * Finish with raw access to the register values
477 return xive_tm_raw_read(tctx, offset, size);
480 static void xive_tm_write(void *opaque, hwaddr offset,
481 uint64_t value, unsigned size)
483 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
485 xive_tctx_tm_write(tctx, offset, value, size);
488 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
490 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
492 return xive_tctx_tm_read(tctx, offset, size);
495 const MemoryRegionOps xive_tm_ops = {
496 .read = xive_tm_read,
497 .write = xive_tm_write,
498 .endianness = DEVICE_BIG_ENDIAN,
499 .valid = {
500 .min_access_size = 1,
501 .max_access_size = 8,
503 .impl = {
504 .min_access_size = 1,
505 .max_access_size = 8,
509 static char *xive_tctx_ring_print(uint8_t *ring)
511 uint32_t w2 = xive_tctx_word2(ring);
513 return g_strdup_printf("%02x %02x %02x %02x %02x "
514 "%02x %02x %02x %08x",
515 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
516 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
517 be32_to_cpu(w2));
520 static const char * const xive_tctx_ring_names[] = {
521 "USER", "OS", "POOL", "PHYS",
524 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
526 int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
527 int i;
529 if (kvm_irqchip_in_kernel()) {
530 Error *local_err = NULL;
532 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
533 if (local_err) {
534 error_report_err(local_err);
535 return;
539 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
540 " W2\n", cpu_index);
542 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
543 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
544 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
545 xive_tctx_ring_names[i], s);
546 g_free(s);
550 void xive_tctx_reset(XiveTCTX *tctx)
552 memset(tctx->regs, 0, sizeof(tctx->regs));
554 /* Set some defaults */
555 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
556 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
557 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
560 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
561 * CPPR is first set.
563 tctx->regs[TM_QW1_OS + TM_PIPR] =
564 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
565 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
566 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
569 static void xive_tctx_realize(DeviceState *dev, Error **errp)
571 XiveTCTX *tctx = XIVE_TCTX(dev);
572 PowerPCCPU *cpu;
573 CPUPPCState *env;
574 Object *obj;
575 Error *local_err = NULL;
577 obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
578 if (!obj) {
579 error_propagate(errp, local_err);
580 error_prepend(errp, "required link 'cpu' not found: ");
581 return;
584 cpu = POWERPC_CPU(obj);
585 tctx->cs = CPU(obj);
587 env = &cpu->env;
588 switch (PPC_INPUT(env)) {
589 case PPC_FLAGS_INPUT_POWER9:
590 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
591 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
592 break;
594 default:
595 error_setg(errp, "XIVE interrupt controller does not support "
596 "this CPU bus model");
597 return;
600 /* Connect the presenter to the VCPU (required for CPU hotplug) */
601 if (kvm_irqchip_in_kernel()) {
602 kvmppc_xive_cpu_connect(tctx, &local_err);
603 if (local_err) {
604 error_propagate(errp, local_err);
605 return;
610 static int vmstate_xive_tctx_pre_save(void *opaque)
612 Error *local_err = NULL;
614 if (kvm_irqchip_in_kernel()) {
615 kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
616 if (local_err) {
617 error_report_err(local_err);
618 return -1;
622 return 0;
625 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
627 Error *local_err = NULL;
629 if (kvm_irqchip_in_kernel()) {
631 * Required for hotplugged CPU, for which the state comes
632 * after all states of the machine.
634 kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
635 if (local_err) {
636 error_report_err(local_err);
637 return -1;
641 return 0;
644 static const VMStateDescription vmstate_xive_tctx = {
645 .name = TYPE_XIVE_TCTX,
646 .version_id = 1,
647 .minimum_version_id = 1,
648 .pre_save = vmstate_xive_tctx_pre_save,
649 .post_load = vmstate_xive_tctx_post_load,
650 .fields = (VMStateField[]) {
651 VMSTATE_BUFFER(regs, XiveTCTX),
652 VMSTATE_END_OF_LIST()
656 static void xive_tctx_class_init(ObjectClass *klass, void *data)
658 DeviceClass *dc = DEVICE_CLASS(klass);
660 dc->desc = "XIVE Interrupt Thread Context";
661 dc->realize = xive_tctx_realize;
662 dc->vmsd = &vmstate_xive_tctx;
664 * Reason: part of XIVE interrupt controller, needs to be wired up
665 * by xive_tctx_create().
667 dc->user_creatable = false;
670 static const TypeInfo xive_tctx_info = {
671 .name = TYPE_XIVE_TCTX,
672 .parent = TYPE_DEVICE,
673 .instance_size = sizeof(XiveTCTX),
674 .class_init = xive_tctx_class_init,
677 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
679 Error *local_err = NULL;
680 Object *obj;
682 obj = object_new(TYPE_XIVE_TCTX);
683 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
684 object_unref(obj);
685 object_property_add_const_link(obj, "cpu", cpu, &error_abort);
686 object_property_set_bool(obj, true, "realized", &local_err);
687 if (local_err) {
688 goto error;
691 return obj;
693 error:
694 object_unparent(obj);
695 error_propagate(errp, local_err);
696 return NULL;
700 * XIVE ESB helpers
703 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
705 uint8_t old_pq = *pq & 0x3;
707 *pq &= ~0x3;
708 *pq |= value & 0x3;
710 return old_pq;
713 static bool xive_esb_trigger(uint8_t *pq)
715 uint8_t old_pq = *pq & 0x3;
717 switch (old_pq) {
718 case XIVE_ESB_RESET:
719 xive_esb_set(pq, XIVE_ESB_PENDING);
720 return true;
721 case XIVE_ESB_PENDING:
722 case XIVE_ESB_QUEUED:
723 xive_esb_set(pq, XIVE_ESB_QUEUED);
724 return false;
725 case XIVE_ESB_OFF:
726 xive_esb_set(pq, XIVE_ESB_OFF);
727 return false;
728 default:
729 g_assert_not_reached();
733 static bool xive_esb_eoi(uint8_t *pq)
735 uint8_t old_pq = *pq & 0x3;
737 switch (old_pq) {
738 case XIVE_ESB_RESET:
739 case XIVE_ESB_PENDING:
740 xive_esb_set(pq, XIVE_ESB_RESET);
741 return false;
742 case XIVE_ESB_QUEUED:
743 xive_esb_set(pq, XIVE_ESB_PENDING);
744 return true;
745 case XIVE_ESB_OFF:
746 xive_esb_set(pq, XIVE_ESB_OFF);
747 return false;
748 default:
749 g_assert_not_reached();
754 * XIVE Interrupt Source (or IVSE)
757 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
759 assert(srcno < xsrc->nr_irqs);
761 return xsrc->status[srcno] & 0x3;
764 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
766 assert(srcno < xsrc->nr_irqs);
768 return xive_esb_set(&xsrc->status[srcno], pq);
772 * Returns whether the event notification should be forwarded.
774 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
776 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
778 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
780 switch (old_pq) {
781 case XIVE_ESB_RESET:
782 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
783 return true;
784 default:
785 return false;
790 * Returns whether the event notification should be forwarded.
792 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
794 bool ret;
796 assert(srcno < xsrc->nr_irqs);
798 ret = xive_esb_trigger(&xsrc->status[srcno]);
800 if (xive_source_irq_is_lsi(xsrc, srcno) &&
801 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
802 qemu_log_mask(LOG_GUEST_ERROR,
803 "XIVE: queued an event on LSI IRQ %d\n", srcno);
806 return ret;
810 * Returns whether the event notification should be forwarded.
812 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
814 bool ret;
816 assert(srcno < xsrc->nr_irqs);
818 ret = xive_esb_eoi(&xsrc->status[srcno]);
821 * LSI sources do not set the Q bit but they can still be
822 * asserted, in which case we should forward a new event
823 * notification
825 if (xive_source_irq_is_lsi(xsrc, srcno) &&
826 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
827 ret = xive_source_lsi_trigger(xsrc, srcno);
830 return ret;
834 * Forward the source event notification to the Router
836 static void xive_source_notify(XiveSource *xsrc, int srcno)
838 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
840 if (xnc->notify) {
841 xnc->notify(xsrc->xive, srcno);
846 * In a two pages ESB MMIO setting, even page is the trigger page, odd
847 * page is for management
849 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
851 return !((addr >> shift) & 1);
854 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
856 return xive_source_esb_has_2page(xsrc) &&
857 addr_is_even(addr, xsrc->esb_shift - 1);
861 * ESB MMIO loads
862 * Trigger page Management/EOI page
864 * ESB MMIO setting 2 pages 1 or 2 pages
866 * 0x000 .. 0x3FF -1 EOI and return 0|1
867 * 0x400 .. 0x7FF -1 EOI and return 0|1
868 * 0x800 .. 0xBFF -1 return PQ
869 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
870 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
871 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
872 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
874 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
876 XiveSource *xsrc = XIVE_SOURCE(opaque);
877 uint32_t offset = addr & 0xFFF;
878 uint32_t srcno = addr >> xsrc->esb_shift;
879 uint64_t ret = -1;
881 /* In a two pages ESB MMIO setting, trigger page should not be read */
882 if (xive_source_is_trigger_page(xsrc, addr)) {
883 qemu_log_mask(LOG_GUEST_ERROR,
884 "XIVE: invalid load on IRQ %d trigger page at "
885 "0x%"HWADDR_PRIx"\n", srcno, addr);
886 return -1;
889 switch (offset) {
890 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
891 ret = xive_source_esb_eoi(xsrc, srcno);
893 /* Forward the source event notification for routing */
894 if (ret) {
895 xive_source_notify(xsrc, srcno);
897 break;
899 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
900 ret = xive_source_esb_get(xsrc, srcno);
901 break;
903 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
904 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
905 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
906 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
907 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
908 break;
909 default:
910 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
911 offset);
914 return ret;
918 * ESB MMIO stores
919 * Trigger page Management/EOI page
921 * ESB MMIO setting 2 pages 1 or 2 pages
923 * 0x000 .. 0x3FF Trigger Trigger
924 * 0x400 .. 0x7FF Trigger EOI
925 * 0x800 .. 0xBFF Trigger undefined
926 * 0xC00 .. 0xCFF Trigger PQ=00
927 * 0xD00 .. 0xDFF Trigger PQ=01
928 * 0xE00 .. 0xDFF Trigger PQ=10
929 * 0xF00 .. 0xDFF Trigger PQ=11
931 static void xive_source_esb_write(void *opaque, hwaddr addr,
932 uint64_t value, unsigned size)
934 XiveSource *xsrc = XIVE_SOURCE(opaque);
935 uint32_t offset = addr & 0xFFF;
936 uint32_t srcno = addr >> xsrc->esb_shift;
937 bool notify = false;
939 /* In a two pages ESB MMIO setting, trigger page only triggers */
940 if (xive_source_is_trigger_page(xsrc, addr)) {
941 notify = xive_source_esb_trigger(xsrc, srcno);
942 goto out;
945 switch (offset) {
946 case 0 ... 0x3FF:
947 notify = xive_source_esb_trigger(xsrc, srcno);
948 break;
950 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
951 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
952 qemu_log_mask(LOG_GUEST_ERROR,
953 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
954 return;
957 notify = xive_source_esb_eoi(xsrc, srcno);
958 break;
960 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
961 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
962 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
963 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
964 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
965 break;
967 default:
968 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
969 offset);
970 return;
973 out:
974 /* Forward the source event notification for routing */
975 if (notify) {
976 xive_source_notify(xsrc, srcno);
980 static const MemoryRegionOps xive_source_esb_ops = {
981 .read = xive_source_esb_read,
982 .write = xive_source_esb_write,
983 .endianness = DEVICE_BIG_ENDIAN,
984 .valid = {
985 .min_access_size = 8,
986 .max_access_size = 8,
988 .impl = {
989 .min_access_size = 8,
990 .max_access_size = 8,
994 void xive_source_set_irq(void *opaque, int srcno, int val)
996 XiveSource *xsrc = XIVE_SOURCE(opaque);
997 bool notify = false;
999 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1000 if (val) {
1001 notify = xive_source_lsi_trigger(xsrc, srcno);
1002 } else {
1003 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1005 } else {
1006 if (val) {
1007 notify = xive_source_esb_trigger(xsrc, srcno);
1011 /* Forward the source event notification for routing */
1012 if (notify) {
1013 xive_source_notify(xsrc, srcno);
1017 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1019 int i;
1021 for (i = 0; i < xsrc->nr_irqs; i++) {
1022 uint8_t pq = xive_source_esb_get(xsrc, i);
1024 if (pq == XIVE_ESB_OFF) {
1025 continue;
1028 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1029 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1030 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1031 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1032 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1036 static void xive_source_reset(void *dev)
1038 XiveSource *xsrc = XIVE_SOURCE(dev);
1040 /* Do not clear the LSI bitmap */
1042 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1043 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1046 static void xive_source_realize(DeviceState *dev, Error **errp)
1048 XiveSource *xsrc = XIVE_SOURCE(dev);
1049 Object *obj;
1050 Error *local_err = NULL;
1052 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1053 if (!obj) {
1054 error_propagate(errp, local_err);
1055 error_prepend(errp, "required link 'xive' not found: ");
1056 return;
1059 xsrc->xive = XIVE_NOTIFIER(obj);
1061 if (!xsrc->nr_irqs) {
1062 error_setg(errp, "Number of interrupt needs to be greater than 0");
1063 return;
1066 if (xsrc->esb_shift != XIVE_ESB_4K &&
1067 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1068 xsrc->esb_shift != XIVE_ESB_64K &&
1069 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1070 error_setg(errp, "Invalid ESB shift setting");
1071 return;
1074 xsrc->status = g_malloc0(xsrc->nr_irqs);
1075 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1077 if (!kvm_irqchip_in_kernel()) {
1078 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1079 &xive_source_esb_ops, xsrc, "xive.esb",
1080 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1083 qemu_register_reset(xive_source_reset, dev);
1086 static const VMStateDescription vmstate_xive_source = {
1087 .name = TYPE_XIVE_SOURCE,
1088 .version_id = 1,
1089 .minimum_version_id = 1,
1090 .fields = (VMStateField[]) {
1091 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1092 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1093 VMSTATE_END_OF_LIST()
1098 * The default XIVE interrupt source setting for the ESB MMIOs is two
1099 * 64k pages without Store EOI, to be in sync with KVM.
1101 static Property xive_source_properties[] = {
1102 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1103 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1104 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1105 DEFINE_PROP_END_OF_LIST(),
1108 static void xive_source_class_init(ObjectClass *klass, void *data)
1110 DeviceClass *dc = DEVICE_CLASS(klass);
1112 dc->desc = "XIVE Interrupt Source";
1113 dc->props = xive_source_properties;
1114 dc->realize = xive_source_realize;
1115 dc->vmsd = &vmstate_xive_source;
1117 * Reason: part of XIVE interrupt controller, needs to be wired up,
1118 * e.g. by spapr_xive_instance_init().
1120 dc->user_creatable = false;
1123 static const TypeInfo xive_source_info = {
1124 .name = TYPE_XIVE_SOURCE,
1125 .parent = TYPE_DEVICE,
1126 .instance_size = sizeof(XiveSource),
1127 .class_init = xive_source_class_init,
1131 * XiveEND helpers
1134 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1136 uint64_t qaddr_base = xive_end_qaddr(end);
1137 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1138 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1139 uint32_t qentries = 1 << (qsize + 10);
1140 int i;
1143 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1145 monitor_printf(mon, " [ ");
1146 qindex = (qindex - (width - 1)) & (qentries - 1);
1147 for (i = 0; i < width; i++) {
1148 uint64_t qaddr = qaddr_base + (qindex << 2);
1149 uint32_t qdata = -1;
1151 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1152 sizeof(qdata))) {
1153 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1154 HWADDR_PRIx "\n", qaddr);
1155 return;
1157 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1158 be32_to_cpu(qdata));
1159 qindex = (qindex + 1) & (qentries - 1);
1161 monitor_printf(mon, "]");
1164 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1166 uint64_t qaddr_base = xive_end_qaddr(end);
1167 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1168 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1169 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1170 uint32_t qentries = 1 << (qsize + 10);
1172 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1173 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1174 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1175 uint8_t pq;
1177 if (!xive_end_is_valid(end)) {
1178 return;
1181 pq = xive_get_field32(END_W1_ESn, end->w1);
1183 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1184 end_idx,
1185 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1186 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1187 xive_end_is_valid(end) ? 'v' : '-',
1188 xive_end_is_enqueue(end) ? 'q' : '-',
1189 xive_end_is_notify(end) ? 'n' : '-',
1190 xive_end_is_backlog(end) ? 'b' : '-',
1191 xive_end_is_escalate(end) ? 'e' : '-',
1192 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1193 xive_end_is_silent_escalation(end) ? 's' : '-',
1194 priority, nvt_blk, nvt_idx);
1196 if (qaddr_base) {
1197 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1198 qaddr_base, qindex, qentries, qgen);
1199 xive_end_queue_pic_print_info(end, 6, mon);
1201 monitor_printf(mon, "\n");
1204 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1206 uint64_t qaddr_base = xive_end_qaddr(end);
1207 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1208 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1209 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1211 uint64_t qaddr = qaddr_base + (qindex << 2);
1212 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1213 uint32_t qentries = 1 << (qsize + 10);
1215 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1216 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1217 HWADDR_PRIx "\n", qaddr);
1218 return;
1221 qindex = (qindex + 1) & (qentries - 1);
1222 if (qindex == 0) {
1223 qgen ^= 1;
1224 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1226 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1229 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1230 Monitor *mon)
1232 XiveEAS *eas = (XiveEAS *) &end->w4;
1233 uint8_t pq;
1235 if (!xive_end_is_escalate(end)) {
1236 return;
1239 pq = xive_get_field32(END_W1_ESe, end->w1);
1241 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1242 end_idx,
1243 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1244 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1245 xive_eas_is_valid(eas) ? 'V' : ' ',
1246 xive_eas_is_masked(eas) ? 'M' : ' ',
1247 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1248 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1249 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1253 * XIVE Router (aka. Virtualization Controller or IVRE)
1256 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1257 XiveEAS *eas)
1259 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1261 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1264 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1265 XiveEND *end)
1267 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1269 return xrc->get_end(xrtr, end_blk, end_idx, end);
1272 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1273 XiveEND *end, uint8_t word_number)
1275 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1277 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1280 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1281 XiveNVT *nvt)
1283 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1285 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1288 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1289 XiveNVT *nvt, uint8_t word_number)
1291 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1293 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1296 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1298 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1300 return xrc->get_tctx(xrtr, cs);
1304 * Encode the HW CAM line in the block group mode format :
1306 * chip << 19 | 0000000 0 0001 thread (7Bit)
1308 static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
1310 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1311 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1313 return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
1317 * The thread context register words are in big-endian format.
1319 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1320 uint8_t nvt_blk, uint32_t nvt_idx,
1321 bool cam_ignore, uint32_t logic_serv)
1323 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1324 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1325 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1326 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1327 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1330 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1331 * identifier are ignored in the "CAM" match.
1334 if (format == 0) {
1335 if (cam_ignore == true) {
1337 * F=0 & i=1: Logical server notification (bits ignored at
1338 * the end of the NVT identifier)
1340 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1341 nvt_blk, nvt_idx);
1342 return -1;
1345 /* F=0 & i=0: Specific NVT notification */
1347 /* PHYS ring */
1348 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1349 cam == xive_tctx_hw_cam_line(tctx)) {
1350 return TM_QW3_HV_PHYS;
1353 /* HV POOL ring */
1354 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1355 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1356 return TM_QW2_HV_POOL;
1359 /* OS ring */
1360 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1361 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1362 return TM_QW1_OS;
1364 } else {
1365 /* F=1 : User level Event-Based Branch (EBB) notification */
1367 /* USER ring */
1368 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1369 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1370 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1371 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1372 return TM_QW0_USER;
1375 return -1;
1378 typedef struct XiveTCTXMatch {
1379 XiveTCTX *tctx;
1380 uint8_t ring;
1381 } XiveTCTXMatch;
1383 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1384 uint8_t nvt_blk, uint32_t nvt_idx,
1385 bool cam_ignore, uint8_t priority,
1386 uint32_t logic_serv, XiveTCTXMatch *match)
1388 CPUState *cs;
1391 * TODO (PowerNV): handle chip_id overwrite of block field for
1392 * hardwired CAM compares
1395 CPU_FOREACH(cs) {
1396 XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1397 int ring;
1400 * Skip partially initialized vCPUs. This can happen when
1401 * vCPUs are hotplugged.
1403 if (!tctx) {
1404 continue;
1408 * HW checks that the CPU is enabled in the Physical Thread
1409 * Enable Register (PTER).
1413 * Check the thread context CAM lines and record matches. We
1414 * will handle CPU exception delivery later
1416 ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1417 cam_ignore, logic_serv);
1419 * Save the context and follow on to catch duplicates, that we
1420 * don't support yet.
1422 if (ring != -1) {
1423 if (match->tctx) {
1424 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1425 "context NVT %x/%x\n", nvt_blk, nvt_idx);
1426 return false;
1429 match->ring = ring;
1430 match->tctx = tctx;
1434 if (!match->tctx) {
1435 qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1436 nvt_blk, nvt_idx);
1437 return false;
1440 return true;
1444 * This is our simple Xive Presenter Engine model. It is merged in the
1445 * Router as it does not require an extra object.
1447 * It receives notification requests sent by the IVRE to find one
1448 * matching NVT (or more) dispatched on the processor threads. In case
1449 * of a single NVT notification, the process is abreviated and the
1450 * thread is signaled if a match is found. In case of a logical server
1451 * notification (bits ignored at the end of the NVT identifier), the
1452 * IVPE and IVRE select a winning thread using different filters. This
1453 * involves 2 or 3 exchanges on the PowerBus that the model does not
1454 * support.
1456 * The parameters represent what is sent on the PowerBus
1458 static bool xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1459 uint8_t nvt_blk, uint32_t nvt_idx,
1460 bool cam_ignore, uint8_t priority,
1461 uint32_t logic_serv)
1463 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1464 bool found;
1466 found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1467 priority, logic_serv, &match);
1468 if (found) {
1469 ipb_update(&match.tctx->regs[match.ring], priority);
1470 xive_tctx_notify(match.tctx, match.ring);
1473 return found;
1477 * Notification using the END ESe/ESn bit (Event State Buffer for
1478 * escalation and notification). Profide futher coalescing in the
1479 * Router.
1481 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1482 uint32_t end_idx, XiveEND *end,
1483 uint32_t end_esmask)
1485 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1486 bool notify = xive_esb_trigger(&pq);
1488 if (pq != xive_get_field32(end_esmask, end->w1)) {
1489 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1490 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1493 /* ESe/n[Q]=1 : end of notification */
1494 return notify;
1498 * An END trigger can come from an event trigger (IPI or HW) or from
1499 * another chip. We don't model the PowerBus but the END trigger
1500 * message has the same parameters than in the function below.
1502 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1503 uint32_t end_idx, uint32_t end_data)
1505 XiveEND end;
1506 uint8_t priority;
1507 uint8_t format;
1508 uint8_t nvt_blk;
1509 uint32_t nvt_idx;
1510 XiveNVT nvt;
1511 bool found;
1513 /* END cache lookup */
1514 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1515 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1516 end_idx);
1517 return;
1520 if (!xive_end_is_valid(&end)) {
1521 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1522 end_blk, end_idx);
1523 return;
1526 if (xive_end_is_enqueue(&end)) {
1527 xive_end_enqueue(&end, end_data);
1528 /* Enqueuing event data modifies the EQ toggle and index */
1529 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1533 * When the END is silent, we skip the notification part.
1535 if (xive_end_is_silent_escalation(&end)) {
1536 goto do_escalation;
1540 * The W7 format depends on the F bit in W6. It defines the type
1541 * of the notification :
1543 * F=0 : single or multiple NVT notification
1544 * F=1 : User level Event-Based Branch (EBB) notification, no
1545 * priority
1547 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1548 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1550 /* The END is masked */
1551 if (format == 0 && priority == 0xff) {
1552 return;
1556 * Check the END ESn (Event State Buffer for notification) for
1557 * even futher coalescing in the Router
1559 if (!xive_end_is_notify(&end)) {
1560 /* ESn[Q]=1 : end of notification */
1561 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1562 &end, END_W1_ESn)) {
1563 return;
1568 * Follows IVPE notification
1570 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1571 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1573 /* NVT cache lookup */
1574 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1575 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1576 nvt_blk, nvt_idx);
1577 return;
1580 if (!xive_nvt_is_valid(&nvt)) {
1581 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1582 nvt_blk, nvt_idx);
1583 return;
1586 found = xive_presenter_notify(xrtr, format, nvt_blk, nvt_idx,
1587 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1588 priority,
1589 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1591 /* TODO: Auto EOI. */
1593 if (found) {
1594 return;
1598 * If no matching NVT is dispatched on a HW thread :
1599 * - specific VP: update the NVT structure if backlog is activated
1600 * - logical server : forward request to IVPE (not supported)
1602 if (xive_end_is_backlog(&end)) {
1603 if (format == 1) {
1604 qemu_log_mask(LOG_GUEST_ERROR,
1605 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1606 end_blk, end_idx);
1607 return;
1609 /* Record the IPB in the associated NVT structure */
1610 ipb_update((uint8_t *) &nvt.w4, priority);
1611 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1614 * On HW, follows a "Broadcast Backlog" to IVPEs
1618 do_escalation:
1620 * If activated, escalate notification using the ESe PQ bits and
1621 * the EAS in w4-5
1623 if (!xive_end_is_escalate(&end)) {
1624 return;
1628 * Check the END ESe (Event State Buffer for escalation) for even
1629 * futher coalescing in the Router
1631 if (!xive_end_is_uncond_escalation(&end)) {
1632 /* ESe[Q]=1 : end of notification */
1633 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1634 &end, END_W1_ESe)) {
1635 return;
1640 * The END trigger becomes an Escalation trigger
1642 xive_router_end_notify(xrtr,
1643 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1644 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1645 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1648 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1650 XiveRouter *xrtr = XIVE_ROUTER(xn);
1651 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1652 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1653 XiveEAS eas;
1655 /* EAS cache lookup */
1656 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1657 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1658 return;
1662 * The IVRE checks the State Bit Cache at this point. We skip the
1663 * SBC lookup because the state bits of the sources are modeled
1664 * internally in QEMU.
1667 if (!xive_eas_is_valid(&eas)) {
1668 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1669 return;
1672 if (xive_eas_is_masked(&eas)) {
1673 /* Notification completed */
1674 return;
1678 * The event trigger becomes an END trigger
1680 xive_router_end_notify(xrtr,
1681 xive_get_field64(EAS_END_BLOCK, eas.w),
1682 xive_get_field64(EAS_END_INDEX, eas.w),
1683 xive_get_field64(EAS_END_DATA, eas.w));
1686 static void xive_router_class_init(ObjectClass *klass, void *data)
1688 DeviceClass *dc = DEVICE_CLASS(klass);
1689 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1691 dc->desc = "XIVE Router Engine";
1692 xnc->notify = xive_router_notify;
1695 static const TypeInfo xive_router_info = {
1696 .name = TYPE_XIVE_ROUTER,
1697 .parent = TYPE_SYS_BUS_DEVICE,
1698 .abstract = true,
1699 .class_size = sizeof(XiveRouterClass),
1700 .class_init = xive_router_class_init,
1701 .interfaces = (InterfaceInfo[]) {
1702 { TYPE_XIVE_NOTIFIER },
1707 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1709 if (!xive_eas_is_valid(eas)) {
1710 return;
1713 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1714 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1715 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1716 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1717 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1721 * END ESB MMIO loads
1723 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1725 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1726 uint32_t offset = addr & 0xFFF;
1727 uint8_t end_blk;
1728 uint32_t end_idx;
1729 XiveEND end;
1730 uint32_t end_esmask;
1731 uint8_t pq;
1732 uint64_t ret = -1;
1734 end_blk = xsrc->block_id;
1735 end_idx = addr >> (xsrc->esb_shift + 1);
1737 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1738 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1739 end_idx);
1740 return -1;
1743 if (!xive_end_is_valid(&end)) {
1744 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1745 end_blk, end_idx);
1746 return -1;
1749 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1750 pq = xive_get_field32(end_esmask, end.w1);
1752 switch (offset) {
1753 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1754 ret = xive_esb_eoi(&pq);
1756 /* Forward the source event notification for routing ?? */
1757 break;
1759 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1760 ret = pq;
1761 break;
1763 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1764 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1765 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1766 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1767 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1768 break;
1769 default:
1770 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1771 offset);
1772 return -1;
1775 if (pq != xive_get_field32(end_esmask, end.w1)) {
1776 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1777 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1780 return ret;
1784 * END ESB MMIO stores are invalid
1786 static void xive_end_source_write(void *opaque, hwaddr addr,
1787 uint64_t value, unsigned size)
1789 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1790 HWADDR_PRIx"\n", addr);
1793 static const MemoryRegionOps xive_end_source_ops = {
1794 .read = xive_end_source_read,
1795 .write = xive_end_source_write,
1796 .endianness = DEVICE_BIG_ENDIAN,
1797 .valid = {
1798 .min_access_size = 8,
1799 .max_access_size = 8,
1801 .impl = {
1802 .min_access_size = 8,
1803 .max_access_size = 8,
1807 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1809 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1810 Object *obj;
1811 Error *local_err = NULL;
1813 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1814 if (!obj) {
1815 error_propagate(errp, local_err);
1816 error_prepend(errp, "required link 'xive' not found: ");
1817 return;
1820 xsrc->xrtr = XIVE_ROUTER(obj);
1822 if (!xsrc->nr_ends) {
1823 error_setg(errp, "Number of interrupt needs to be greater than 0");
1824 return;
1827 if (xsrc->esb_shift != XIVE_ESB_4K &&
1828 xsrc->esb_shift != XIVE_ESB_64K) {
1829 error_setg(errp, "Invalid ESB shift setting");
1830 return;
1834 * Each END is assigned an even/odd pair of MMIO pages, the even page
1835 * manages the ESn field while the odd page manages the ESe field.
1837 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1838 &xive_end_source_ops, xsrc, "xive.end",
1839 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1842 static Property xive_end_source_properties[] = {
1843 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1844 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1845 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1846 DEFINE_PROP_END_OF_LIST(),
1849 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1851 DeviceClass *dc = DEVICE_CLASS(klass);
1853 dc->desc = "XIVE END Source";
1854 dc->props = xive_end_source_properties;
1855 dc->realize = xive_end_source_realize;
1857 * Reason: part of XIVE interrupt controller, needs to be wired up,
1858 * e.g. by spapr_xive_instance_init().
1860 dc->user_creatable = false;
1863 static const TypeInfo xive_end_source_info = {
1864 .name = TYPE_XIVE_END_SOURCE,
1865 .parent = TYPE_DEVICE,
1866 .instance_size = sizeof(XiveENDSource),
1867 .class_init = xive_end_source_class_init,
1871 * XIVE Notifier
1873 static const TypeInfo xive_notifier_info = {
1874 .name = TYPE_XIVE_NOTIFIER,
1875 .parent = TYPE_INTERFACE,
1876 .class_size = sizeof(XiveNotifierClass),
1879 static void xive_register_types(void)
1881 type_register_static(&xive_source_info);
1882 type_register_static(&xive_notifier_info);
1883 type_register_static(&xive_router_info);
1884 type_register_static(&xive_end_source_info);
1885 type_register_static(&xive_tctx_info);
1888 type_init(xive_register_types)