scsi: esp: check buffer length before reading scsi command
[qemu/ar7.git] / hw / nvram / fw_cfg.c
blob74a0079ca6d9533a0e45c89f8c56636ebaceb5d8
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/dma.h"
28 #include "hw/boards.h"
29 #include "hw/isa/isa.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "hw/boards.h"
33 #include "trace.h"
34 #include "qemu/error-report.h"
35 #include "qemu/config-file.h"
36 #include "qemu/cutils.h"
38 #define FW_CFG_NAME "fw_cfg"
39 #define FW_CFG_PATH "/machine/" FW_CFG_NAME
41 #define TYPE_FW_CFG "fw_cfg"
42 #define TYPE_FW_CFG_IO "fw_cfg_io"
43 #define TYPE_FW_CFG_MEM "fw_cfg_mem"
45 #define FW_CFG(obj) OBJECT_CHECK(FWCfgState, (obj), TYPE_FW_CFG)
46 #define FW_CFG_IO(obj) OBJECT_CHECK(FWCfgIoState, (obj), TYPE_FW_CFG_IO)
47 #define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM)
49 /* FW_CFG_VERSION bits */
50 #define FW_CFG_VERSION 0x01
51 #define FW_CFG_VERSION_DMA 0x02
53 /* FW_CFG_DMA_CONTROL bits */
54 #define FW_CFG_DMA_CTL_ERROR 0x01
55 #define FW_CFG_DMA_CTL_READ 0x02
56 #define FW_CFG_DMA_CTL_SKIP 0x04
57 #define FW_CFG_DMA_CTL_SELECT 0x08
59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
61 typedef struct FWCfgEntry {
62 uint32_t len;
63 uint8_t *data;
64 void *callback_opaque;
65 FWCfgReadCallback read_callback;
66 } FWCfgEntry;
68 struct FWCfgState {
69 /*< private >*/
70 SysBusDevice parent_obj;
71 /*< public >*/
73 FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
74 int entry_order[FW_CFG_MAX_ENTRY];
75 FWCfgFiles *files;
76 uint16_t cur_entry;
77 uint32_t cur_offset;
78 Notifier machine_ready;
80 int fw_cfg_order_override;
82 bool dma_enabled;
83 dma_addr_t dma_addr;
84 AddressSpace *dma_as;
85 MemoryRegion dma_iomem;
88 struct FWCfgIoState {
89 /*< private >*/
90 FWCfgState parent_obj;
91 /*< public >*/
93 MemoryRegion comb_iomem;
94 uint32_t iobase, dma_iobase;
97 struct FWCfgMemState {
98 /*< private >*/
99 FWCfgState parent_obj;
100 /*< public >*/
102 MemoryRegion ctl_iomem, data_iomem;
103 uint32_t data_width;
104 MemoryRegionOps wide_data_ops;
107 #define JPG_FILE 0
108 #define BMP_FILE 1
110 static char *read_splashfile(char *filename, gsize *file_sizep,
111 int *file_typep)
113 GError *err = NULL;
114 gboolean res;
115 gchar *content;
116 int file_type;
117 unsigned int filehead;
118 int bmp_bpp;
120 res = g_file_get_contents(filename, &content, file_sizep, &err);
121 if (res == FALSE) {
122 error_report("failed to read splash file '%s'", filename);
123 g_error_free(err);
124 return NULL;
127 /* check file size */
128 if (*file_sizep < 30) {
129 goto error;
132 /* check magic ID */
133 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
134 if (filehead == 0xd8ff) {
135 file_type = JPG_FILE;
136 } else if (filehead == 0x4d42) {
137 file_type = BMP_FILE;
138 } else {
139 goto error;
142 /* check BMP bpp */
143 if (file_type == BMP_FILE) {
144 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
145 if (bmp_bpp != 24) {
146 goto error;
150 /* return values */
151 *file_typep = file_type;
153 return content;
155 error:
156 error_report("splash file '%s' format not recognized; must be JPEG "
157 "or 24 bit BMP", filename);
158 g_free(content);
159 return NULL;
162 static void fw_cfg_bootsplash(FWCfgState *s)
164 int boot_splash_time = -1;
165 const char *boot_splash_filename = NULL;
166 char *p;
167 char *filename, *file_data;
168 gsize file_size;
169 int file_type;
170 const char *temp;
172 /* get user configuration */
173 QemuOptsList *plist = qemu_find_opts("boot-opts");
174 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
175 if (opts != NULL) {
176 temp = qemu_opt_get(opts, "splash");
177 if (temp != NULL) {
178 boot_splash_filename = temp;
180 temp = qemu_opt_get(opts, "splash-time");
181 if (temp != NULL) {
182 p = (char *)temp;
183 boot_splash_time = strtol(p, (char **)&p, 10);
187 /* insert splash time if user configurated */
188 if (boot_splash_time >= 0) {
189 /* validate the input */
190 if (boot_splash_time > 0xffff) {
191 error_report("splash time is big than 65535, force it to 65535.");
192 boot_splash_time = 0xffff;
194 /* use little endian format */
195 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
196 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
197 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
200 /* insert splash file if user configurated */
201 if (boot_splash_filename != NULL) {
202 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
203 if (filename == NULL) {
204 error_report("failed to find file '%s'.", boot_splash_filename);
205 return;
208 /* loading file data */
209 file_data = read_splashfile(filename, &file_size, &file_type);
210 if (file_data == NULL) {
211 g_free(filename);
212 return;
214 g_free(boot_splash_filedata);
215 boot_splash_filedata = (uint8_t *)file_data;
216 boot_splash_filedata_size = file_size;
218 /* insert data */
219 if (file_type == JPG_FILE) {
220 fw_cfg_add_file(s, "bootsplash.jpg",
221 boot_splash_filedata, boot_splash_filedata_size);
222 } else {
223 fw_cfg_add_file(s, "bootsplash.bmp",
224 boot_splash_filedata, boot_splash_filedata_size);
226 g_free(filename);
230 static void fw_cfg_reboot(FWCfgState *s)
232 int reboot_timeout = -1;
233 char *p;
234 const char *temp;
236 /* get user configuration */
237 QemuOptsList *plist = qemu_find_opts("boot-opts");
238 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
239 if (opts != NULL) {
240 temp = qemu_opt_get(opts, "reboot-timeout");
241 if (temp != NULL) {
242 p = (char *)temp;
243 reboot_timeout = strtol(p, (char **)&p, 10);
246 /* validate the input */
247 if (reboot_timeout > 0xffff) {
248 error_report("reboot timeout is larger than 65535, force it to 65535.");
249 reboot_timeout = 0xffff;
251 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
254 static void fw_cfg_write(FWCfgState *s, uint8_t value)
256 /* nothing, write support removed in QEMU v2.4+ */
259 static int fw_cfg_select(FWCfgState *s, uint16_t key)
261 int arch, ret;
262 FWCfgEntry *e;
264 s->cur_offset = 0;
265 if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
266 s->cur_entry = FW_CFG_INVALID;
267 ret = 0;
268 } else {
269 s->cur_entry = key;
270 ret = 1;
271 /* entry successfully selected, now run callback if present */
272 arch = !!(key & FW_CFG_ARCH_LOCAL);
273 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
274 if (e->read_callback) {
275 e->read_callback(e->callback_opaque);
279 trace_fw_cfg_select(s, key, ret);
280 return ret;
283 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
285 FWCfgState *s = opaque;
286 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
287 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
288 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
289 uint64_t value = 0;
291 assert(size > 0 && size <= sizeof(value));
292 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
293 /* The least significant 'size' bytes of the return value are
294 * expected to contain a string preserving portion of the item
295 * data, padded with zeros on the right in case we run out early.
296 * In technical terms, we're composing the host-endian representation
297 * of the big endian interpretation of the fw_cfg string.
299 do {
300 value = (value << 8) | e->data[s->cur_offset++];
301 } while (--size && s->cur_offset < e->len);
302 /* If size is still not zero, we *did* run out early, so continue
303 * left-shifting, to add the appropriate number of padding zeros
304 * on the right.
306 value <<= 8 * size;
309 trace_fw_cfg_read(s, value);
310 return value;
313 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
314 uint64_t value, unsigned size)
316 FWCfgState *s = opaque;
317 unsigned i = size;
319 do {
320 fw_cfg_write(s, value >> (8 * --i));
321 } while (i);
324 static void fw_cfg_dma_transfer(FWCfgState *s)
326 dma_addr_t len;
327 FWCfgDmaAccess dma;
328 int arch;
329 FWCfgEntry *e;
330 int read;
331 dma_addr_t dma_addr;
333 /* Reset the address before the next access */
334 dma_addr = s->dma_addr;
335 s->dma_addr = 0;
337 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
338 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
339 FW_CFG_DMA_CTL_ERROR);
340 return;
343 dma.address = be64_to_cpu(dma.address);
344 dma.length = be32_to_cpu(dma.length);
345 dma.control = be32_to_cpu(dma.control);
347 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
348 fw_cfg_select(s, dma.control >> 16);
351 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
352 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
353 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
355 if (dma.control & FW_CFG_DMA_CTL_READ) {
356 read = 1;
357 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
358 read = 0;
359 } else {
360 dma.length = 0;
363 dma.control = 0;
365 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
366 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
367 s->cur_offset >= e->len) {
368 len = dma.length;
370 /* If the access is not a read access, it will be a skip access,
371 * tested before.
373 if (read) {
374 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
375 dma.control |= FW_CFG_DMA_CTL_ERROR;
379 } else {
380 if (dma.length <= (e->len - s->cur_offset)) {
381 len = dma.length;
382 } else {
383 len = (e->len - s->cur_offset);
386 /* If the access is not a read access, it will be a skip access,
387 * tested before.
389 if (read) {
390 if (dma_memory_write(s->dma_as, dma.address,
391 &e->data[s->cur_offset], len)) {
392 dma.control |= FW_CFG_DMA_CTL_ERROR;
396 s->cur_offset += len;
399 dma.address += len;
400 dma.length -= len;
404 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
405 dma.control);
407 trace_fw_cfg_read(s, 0);
410 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
411 unsigned size)
413 /* Return a signature value (and handle various read sizes) */
414 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
417 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
418 uint64_t value, unsigned size)
420 FWCfgState *s = opaque;
422 if (size == 4) {
423 if (addr == 0) {
424 /* FWCfgDmaAccess high address */
425 s->dma_addr = value << 32;
426 } else if (addr == 4) {
427 /* FWCfgDmaAccess low address */
428 s->dma_addr |= value;
429 fw_cfg_dma_transfer(s);
431 } else if (size == 8 && addr == 0) {
432 s->dma_addr = value;
433 fw_cfg_dma_transfer(s);
437 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
438 unsigned size, bool is_write)
440 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
441 (size == 8 && addr == 0));
444 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
445 unsigned size, bool is_write)
447 return addr == 0;
450 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
451 uint64_t value, unsigned size)
453 fw_cfg_select(opaque, (uint16_t)value);
456 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
457 unsigned size, bool is_write)
459 return is_write && size == 2;
462 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
463 uint64_t value, unsigned size)
465 switch (size) {
466 case 1:
467 fw_cfg_write(opaque, (uint8_t)value);
468 break;
469 case 2:
470 fw_cfg_select(opaque, (uint16_t)value);
471 break;
475 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
476 unsigned size, bool is_write)
478 return (size == 1) || (is_write && size == 2);
481 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
482 .write = fw_cfg_ctl_mem_write,
483 .endianness = DEVICE_BIG_ENDIAN,
484 .valid.accepts = fw_cfg_ctl_mem_valid,
487 static const MemoryRegionOps fw_cfg_data_mem_ops = {
488 .read = fw_cfg_data_read,
489 .write = fw_cfg_data_mem_write,
490 .endianness = DEVICE_BIG_ENDIAN,
491 .valid = {
492 .min_access_size = 1,
493 .max_access_size = 1,
494 .accepts = fw_cfg_data_mem_valid,
498 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
499 .read = fw_cfg_data_read,
500 .write = fw_cfg_comb_write,
501 .endianness = DEVICE_LITTLE_ENDIAN,
502 .valid.accepts = fw_cfg_comb_valid,
505 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
506 .read = fw_cfg_dma_mem_read,
507 .write = fw_cfg_dma_mem_write,
508 .endianness = DEVICE_BIG_ENDIAN,
509 .valid.accepts = fw_cfg_dma_mem_valid,
510 .valid.max_access_size = 8,
511 .impl.max_access_size = 8,
514 static void fw_cfg_reset(DeviceState *d)
516 FWCfgState *s = FW_CFG(d);
518 /* we never register a read callback for FW_CFG_SIGNATURE */
519 fw_cfg_select(s, FW_CFG_SIGNATURE);
522 /* Save restore 32 bit int as uint16_t
523 This is a Big hack, but it is how the old state did it.
524 Or we broke compatibility in the state, or we can't use struct tm
527 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size)
529 uint32_t *v = pv;
530 *v = qemu_get_be16(f);
531 return 0;
534 static void put_unused(QEMUFile *f, void *pv, size_t size)
536 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
537 fprintf(stderr, "This functions shouldn't be called.\n");
540 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
541 .name = "int32_as_uint16",
542 .get = get_uint32_as_uint16,
543 .put = put_unused,
546 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
547 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
550 static bool is_version_1(void *opaque, int version_id)
552 return version_id == 1;
555 static bool fw_cfg_dma_enabled(void *opaque)
557 FWCfgState *s = opaque;
559 return s->dma_enabled;
562 static const VMStateDescription vmstate_fw_cfg_dma = {
563 .name = "fw_cfg/dma",
564 .needed = fw_cfg_dma_enabled,
565 .fields = (VMStateField[]) {
566 VMSTATE_UINT64(dma_addr, FWCfgState),
567 VMSTATE_END_OF_LIST()
571 static const VMStateDescription vmstate_fw_cfg = {
572 .name = "fw_cfg",
573 .version_id = 2,
574 .minimum_version_id = 1,
575 .fields = (VMStateField[]) {
576 VMSTATE_UINT16(cur_entry, FWCfgState),
577 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
578 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
579 VMSTATE_END_OF_LIST()
581 .subsections = (const VMStateDescription*[]) {
582 &vmstate_fw_cfg_dma,
583 NULL,
587 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key,
588 FWCfgReadCallback callback,
589 void *callback_opaque,
590 void *data, size_t len)
592 int arch = !!(key & FW_CFG_ARCH_LOCAL);
594 key &= FW_CFG_ENTRY_MASK;
596 assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX);
597 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
599 s->entries[arch][key].data = data;
600 s->entries[arch][key].len = (uint32_t)len;
601 s->entries[arch][key].read_callback = callback;
602 s->entries[arch][key].callback_opaque = callback_opaque;
605 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
606 void *data, size_t len)
608 void *ptr;
609 int arch = !!(key & FW_CFG_ARCH_LOCAL);
611 key &= FW_CFG_ENTRY_MASK;
613 assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX);
615 /* return the old data to the function caller, avoid memory leak */
616 ptr = s->entries[arch][key].data;
617 s->entries[arch][key].data = data;
618 s->entries[arch][key].len = len;
619 s->entries[arch][key].callback_opaque = NULL;
621 return ptr;
624 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
626 fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len);
629 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
631 size_t sz = strlen(value) + 1;
633 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
636 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
638 uint16_t *copy;
640 copy = g_malloc(sizeof(value));
641 *copy = cpu_to_le16(value);
642 fw_cfg_add_bytes(s, key, copy, sizeof(value));
645 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
647 uint16_t *copy, *old;
649 copy = g_malloc(sizeof(value));
650 *copy = cpu_to_le16(value);
651 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
652 g_free(old);
655 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
657 uint32_t *copy;
659 copy = g_malloc(sizeof(value));
660 *copy = cpu_to_le32(value);
661 fw_cfg_add_bytes(s, key, copy, sizeof(value));
664 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
666 uint64_t *copy;
668 copy = g_malloc(sizeof(value));
669 *copy = cpu_to_le64(value);
670 fw_cfg_add_bytes(s, key, copy, sizeof(value));
673 void fw_cfg_set_order_override(FWCfgState *s, int order)
675 assert(s->fw_cfg_order_override == 0);
676 s->fw_cfg_order_override = order;
679 void fw_cfg_reset_order_override(FWCfgState *s)
681 assert(s->fw_cfg_order_override != 0);
682 s->fw_cfg_order_override = 0;
686 * This is the legacy order list. For legacy systems, files are in
687 * the fw_cfg in the order defined below, by the "order" value. Note
688 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
689 * specific area, but there may be more than one and they occur in the
690 * order that the user specifies them on the command line. Those are
691 * handled in a special manner, using the order override above.
693 * For non-legacy, the files are sorted by filename to avoid this kind
694 * of complexity in the future.
696 * This is only for x86, other arches don't implement versioning so
697 * they won't set legacy mode.
699 static struct {
700 const char *name;
701 int order;
702 } fw_cfg_order[] = {
703 { "etc/boot-menu-wait", 10 },
704 { "bootsplash.jpg", 11 },
705 { "bootsplash.bmp", 12 },
706 { "etc/boot-fail-wait", 15 },
707 { "etc/smbios/smbios-tables", 20 },
708 { "etc/smbios/smbios-anchor", 30 },
709 { "etc/e820", 40 },
710 { "etc/reserved-memory-end", 50 },
711 { "genroms/kvmvapic.bin", 55 },
712 { "genroms/linuxboot.bin", 60 },
713 { }, /* VGA ROMs from pc_vga_init come here, 70. */
714 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
715 { "etc/system-states", 90 },
716 { }, /* User ROMs come here, 100. */
717 { }, /* Device FW comes here, 110. */
718 { "etc/extra-pci-roots", 120 },
719 { "etc/acpi/tables", 130 },
720 { "etc/table-loader", 140 },
721 { "etc/tpm/log", 150 },
722 { "etc/acpi/rsdp", 160 },
723 { "bootorder", 170 },
725 #define FW_CFG_ORDER_OVERRIDE_LAST 200
728 static int get_fw_cfg_order(FWCfgState *s, const char *name)
730 int i;
732 if (s->fw_cfg_order_override > 0) {
733 return s->fw_cfg_order_override;
736 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
737 if (fw_cfg_order[i].name == NULL) {
738 continue;
741 if (strcmp(name, fw_cfg_order[i].name) == 0) {
742 return fw_cfg_order[i].order;
746 /* Stick unknown stuff at the end. */
747 error_report("warning: Unknown firmware file in legacy mode: %s\n", name);
748 return FW_CFG_ORDER_OVERRIDE_LAST;
751 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
752 FWCfgReadCallback callback, void *callback_opaque,
753 void *data, size_t len)
755 int i, index, count;
756 size_t dsize;
757 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
758 int order = 0;
760 if (!s->files) {
761 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * FW_CFG_FILE_SLOTS;
762 s->files = g_malloc0(dsize);
763 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
766 count = be32_to_cpu(s->files->count);
767 assert(count < FW_CFG_FILE_SLOTS);
769 /* Find the insertion point. */
770 if (mc->legacy_fw_cfg_order) {
772 * Sort by order. For files with the same order, we keep them
773 * in the sequence in which they were added.
775 order = get_fw_cfg_order(s, filename);
776 for (index = count;
777 index > 0 && order < s->entry_order[index - 1];
778 index--);
779 } else {
780 /* Sort by file name. */
781 for (index = count;
782 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
783 index--);
787 * Move all the entries from the index point and after down one
788 * to create a slot for the new entry. Because calculations are
789 * being done with the index, make it so that "i" is the current
790 * index and "i - 1" is the one being copied from, thus the
791 * unusual start and end in the for statement.
793 for (i = count + 1; i > index; i--) {
794 s->files->f[i] = s->files->f[i - 1];
795 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
796 s->entries[0][FW_CFG_FILE_FIRST + i] =
797 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
798 s->entry_order[i] = s->entry_order[i - 1];
801 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
802 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
804 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
805 for (i = 0; i <= count; i++) {
806 if (i != index &&
807 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
808 error_report("duplicate fw_cfg file name: %s",
809 s->files->f[index].name);
810 exit(1);
814 fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index,
815 callback, callback_opaque, data, len);
817 s->files->f[index].size = cpu_to_be32(len);
818 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
819 s->entry_order[index] = order;
820 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
822 s->files->count = cpu_to_be32(count+1);
825 void fw_cfg_add_file(FWCfgState *s, const char *filename,
826 void *data, size_t len)
828 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len);
831 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
832 void *data, size_t len)
834 int i, index;
835 void *ptr = NULL;
837 assert(s->files);
839 index = be32_to_cpu(s->files->count);
840 assert(index < FW_CFG_FILE_SLOTS);
842 for (i = 0; i < index; i++) {
843 if (strcmp(filename, s->files->f[i].name) == 0) {
844 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
845 data, len);
846 s->files->f[i].size = cpu_to_be32(len);
847 return ptr;
850 /* add new one */
851 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len);
852 return NULL;
855 static void fw_cfg_machine_reset(void *opaque)
857 void *ptr;
858 size_t len;
859 FWCfgState *s = opaque;
860 char *bootindex = get_boot_devices_list(&len, false);
862 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
863 g_free(ptr);
866 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
868 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
869 qemu_register_reset(fw_cfg_machine_reset, s);
874 static void fw_cfg_init1(DeviceState *dev)
876 FWCfgState *s = FW_CFG(dev);
877 MachineState *machine = MACHINE(qdev_get_machine());
879 assert(!object_resolve_path(FW_CFG_PATH, NULL));
881 object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL);
883 qdev_init_nofail(dev);
885 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
886 fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16);
887 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
888 fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
889 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
890 fw_cfg_bootsplash(s);
891 fw_cfg_reboot(s);
893 s->machine_ready.notify = fw_cfg_machine_ready;
894 qemu_add_machine_init_done_notifier(&s->machine_ready);
897 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
898 AddressSpace *dma_as)
900 DeviceState *dev;
901 FWCfgState *s;
902 uint32_t version = FW_CFG_VERSION;
903 bool dma_requested = dma_iobase && dma_as;
905 dev = qdev_create(NULL, TYPE_FW_CFG_IO);
906 qdev_prop_set_uint32(dev, "iobase", iobase);
907 qdev_prop_set_uint32(dev, "dma_iobase", dma_iobase);
908 if (!dma_requested) {
909 qdev_prop_set_bit(dev, "dma_enabled", false);
912 fw_cfg_init1(dev);
913 s = FW_CFG(dev);
915 if (s->dma_enabled) {
916 /* 64 bits for the address field */
917 s->dma_as = dma_as;
918 s->dma_addr = 0;
920 version |= FW_CFG_VERSION_DMA;
923 fw_cfg_add_i32(s, FW_CFG_ID, version);
925 return s;
928 FWCfgState *fw_cfg_init_io(uint32_t iobase)
930 return fw_cfg_init_io_dma(iobase, 0, NULL);
933 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
934 hwaddr data_addr, uint32_t data_width,
935 hwaddr dma_addr, AddressSpace *dma_as)
937 DeviceState *dev;
938 SysBusDevice *sbd;
939 FWCfgState *s;
940 uint32_t version = FW_CFG_VERSION;
941 bool dma_requested = dma_addr && dma_as;
943 dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
944 qdev_prop_set_uint32(dev, "data_width", data_width);
945 if (!dma_requested) {
946 qdev_prop_set_bit(dev, "dma_enabled", false);
949 fw_cfg_init1(dev);
951 sbd = SYS_BUS_DEVICE(dev);
952 sysbus_mmio_map(sbd, 0, ctl_addr);
953 sysbus_mmio_map(sbd, 1, data_addr);
955 s = FW_CFG(dev);
957 if (s->dma_enabled) {
958 s->dma_as = dma_as;
959 s->dma_addr = 0;
960 sysbus_mmio_map(sbd, 2, dma_addr);
961 version |= FW_CFG_VERSION_DMA;
964 fw_cfg_add_i32(s, FW_CFG_ID, version);
966 return s;
969 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
971 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
972 fw_cfg_data_mem_ops.valid.max_access_size,
973 0, NULL);
977 FWCfgState *fw_cfg_find(void)
979 return FW_CFG(object_resolve_path(FW_CFG_PATH, NULL));
982 static void fw_cfg_class_init(ObjectClass *klass, void *data)
984 DeviceClass *dc = DEVICE_CLASS(klass);
986 dc->reset = fw_cfg_reset;
987 dc->vmsd = &vmstate_fw_cfg;
990 static const TypeInfo fw_cfg_info = {
991 .name = TYPE_FW_CFG,
992 .parent = TYPE_SYS_BUS_DEVICE,
993 .instance_size = sizeof(FWCfgState),
994 .class_init = fw_cfg_class_init,
998 static Property fw_cfg_io_properties[] = {
999 DEFINE_PROP_UINT32("iobase", FWCfgIoState, iobase, -1),
1000 DEFINE_PROP_UINT32("dma_iobase", FWCfgIoState, dma_iobase, -1),
1001 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1002 true),
1003 DEFINE_PROP_END_OF_LIST(),
1006 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1008 FWCfgIoState *s = FW_CFG_IO(dev);
1009 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1011 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1012 * with half of the 16-bit control register. Hence, the total size
1013 * of the i/o region used is FW_CFG_CTL_SIZE */
1014 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1015 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1016 sysbus_add_io(sbd, s->iobase, &s->comb_iomem);
1018 if (FW_CFG(s)->dma_enabled) {
1019 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1020 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1021 sizeof(dma_addr_t));
1022 sysbus_add_io(sbd, s->dma_iobase, &FW_CFG(s)->dma_iomem);
1026 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1028 DeviceClass *dc = DEVICE_CLASS(klass);
1030 dc->realize = fw_cfg_io_realize;
1031 dc->props = fw_cfg_io_properties;
1034 static const TypeInfo fw_cfg_io_info = {
1035 .name = TYPE_FW_CFG_IO,
1036 .parent = TYPE_FW_CFG,
1037 .instance_size = sizeof(FWCfgIoState),
1038 .class_init = fw_cfg_io_class_init,
1042 static Property fw_cfg_mem_properties[] = {
1043 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1044 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1045 true),
1046 DEFINE_PROP_END_OF_LIST(),
1049 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1051 FWCfgMemState *s = FW_CFG_MEM(dev);
1052 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1053 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1055 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1056 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1057 sysbus_init_mmio(sbd, &s->ctl_iomem);
1059 if (s->data_width > data_ops->valid.max_access_size) {
1060 /* memberwise copy because the "old_mmio" member is const */
1061 s->wide_data_ops.read = data_ops->read;
1062 s->wide_data_ops.write = data_ops->write;
1063 s->wide_data_ops.endianness = data_ops->endianness;
1064 s->wide_data_ops.valid = data_ops->valid;
1065 s->wide_data_ops.impl = data_ops->impl;
1067 s->wide_data_ops.valid.max_access_size = s->data_width;
1068 s->wide_data_ops.impl.max_access_size = s->data_width;
1069 data_ops = &s->wide_data_ops;
1071 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1072 "fwcfg.data", data_ops->valid.max_access_size);
1073 sysbus_init_mmio(sbd, &s->data_iomem);
1075 if (FW_CFG(s)->dma_enabled) {
1076 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1077 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1078 sizeof(dma_addr_t));
1079 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1083 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1085 DeviceClass *dc = DEVICE_CLASS(klass);
1087 dc->realize = fw_cfg_mem_realize;
1088 dc->props = fw_cfg_mem_properties;
1091 static const TypeInfo fw_cfg_mem_info = {
1092 .name = TYPE_FW_CFG_MEM,
1093 .parent = TYPE_FW_CFG,
1094 .instance_size = sizeof(FWCfgMemState),
1095 .class_init = fw_cfg_mem_class_init,
1099 static void fw_cfg_register_types(void)
1101 type_register_static(&fw_cfg_info);
1102 type_register_static(&fw_cfg_io_info);
1103 type_register_static(&fw_cfg_mem_info);
1106 type_init(fw_cfg_register_types)