target-arm: Eliminate unnecessary zero-extend in disas_bitfield
[qemu/ar7.git] / target-ppc / mem_helper.c
blob6d37dae7b0fb594a199a753766cb929c21a259c2
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "cpu.h"
20 #include "qemu/host-utils.h"
21 #include "exec/helper-proto.h"
23 #include "helper_regs.h"
24 #include "exec/cpu_ldst.h"
26 //#define DEBUG_OP
28 static inline bool needs_byteswap(const CPUPPCState *env)
30 #if defined(TARGET_WORDS_BIGENDIAN)
31 return msr_le;
32 #else
33 return !msr_le;
34 #endif
37 /*****************************************************************************/
38 /* Memory load and stores */
40 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
41 target_long arg)
43 #if defined(TARGET_PPC64)
44 if (!msr_is_64bit(env, env->msr)) {
45 return (uint32_t)(addr + arg);
46 } else
47 #endif
49 return addr + arg;
53 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
55 for (; reg < 32; reg++) {
56 if (needs_byteswap(env)) {
57 env->gpr[reg] = bswap32(cpu_ldl_data(env, addr));
58 } else {
59 env->gpr[reg] = cpu_ldl_data(env, addr);
61 addr = addr_add(env, addr, 4);
65 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
67 for (; reg < 32; reg++) {
68 if (needs_byteswap(env)) {
69 cpu_stl_data(env, addr, bswap32((uint32_t)env->gpr[reg]));
70 } else {
71 cpu_stl_data(env, addr, (uint32_t)env->gpr[reg]);
73 addr = addr_add(env, addr, 4);
77 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
79 int sh;
81 for (; nb > 3; nb -= 4) {
82 env->gpr[reg] = cpu_ldl_data(env, addr);
83 reg = (reg + 1) % 32;
84 addr = addr_add(env, addr, 4);
86 if (unlikely(nb > 0)) {
87 env->gpr[reg] = 0;
88 for (sh = 24; nb > 0; nb--, sh -= 8) {
89 env->gpr[reg] |= cpu_ldub_data(env, addr) << sh;
90 addr = addr_add(env, addr, 1);
94 /* PPC32 specification says we must generate an exception if
95 * rA is in the range of registers to be loaded.
96 * In an other hand, IBM says this is valid, but rA won't be loaded.
97 * For now, I'll follow the spec...
99 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
100 uint32_t ra, uint32_t rb)
102 if (likely(xer_bc != 0)) {
103 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
104 (reg < rb && (reg + xer_bc) > rb))) {
105 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
106 POWERPC_EXCP_INVAL |
107 POWERPC_EXCP_INVAL_LSWX);
108 } else {
109 helper_lsw(env, addr, xer_bc, reg);
114 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
115 uint32_t reg)
117 int sh;
119 for (; nb > 3; nb -= 4) {
120 cpu_stl_data(env, addr, env->gpr[reg]);
121 reg = (reg + 1) % 32;
122 addr = addr_add(env, addr, 4);
124 if (unlikely(nb > 0)) {
125 for (sh = 24; nb > 0; nb--, sh -= 8) {
126 cpu_stb_data(env, addr, (env->gpr[reg] >> sh) & 0xFF);
127 addr = addr_add(env, addr, 1);
132 static void do_dcbz(CPUPPCState *env, target_ulong addr, int dcache_line_size)
134 int i;
136 addr &= ~(dcache_line_size - 1);
137 for (i = 0; i < dcache_line_size; i += 4) {
138 cpu_stl_data(env, addr + i, 0);
140 if (env->reserve_addr == addr) {
141 env->reserve_addr = (target_ulong)-1ULL;
145 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t is_dcbzl)
147 int dcbz_size = env->dcache_line_size;
149 #if defined(TARGET_PPC64)
150 if (!is_dcbzl &&
151 (env->excp_model == POWERPC_EXCP_970) &&
152 ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
153 dcbz_size = 32;
155 #endif
157 /* XXX add e500mc support */
159 do_dcbz(env, addr, dcbz_size);
162 void helper_icbi(CPUPPCState *env, target_ulong addr)
164 addr &= ~(env->dcache_line_size - 1);
165 /* Invalidate one cache line :
166 * PowerPC specification says this is to be treated like a load
167 * (not a fetch) by the MMU. To be sure it will be so,
168 * do the load "by hand".
170 cpu_ldl_data(env, addr);
173 /* XXX: to be tested */
174 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
175 uint32_t ra, uint32_t rb)
177 int i, c, d;
179 d = 24;
180 for (i = 0; i < xer_bc; i++) {
181 c = cpu_ldub_data(env, addr);
182 addr = addr_add(env, addr, 1);
183 /* ra (if not 0) and rb are never modified */
184 if (likely(reg != rb && (ra == 0 || reg != ra))) {
185 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
187 if (unlikely(c == xer_cmp)) {
188 break;
190 if (likely(d != 0)) {
191 d -= 8;
192 } else {
193 d = 24;
194 reg++;
195 reg = reg & 0x1F;
198 return i;
201 /*****************************************************************************/
202 /* Altivec extension helpers */
203 #if defined(HOST_WORDS_BIGENDIAN)
204 #define HI_IDX 0
205 #define LO_IDX 1
206 #else
207 #define HI_IDX 1
208 #define LO_IDX 0
209 #endif
211 /* We use msr_le to determine index ordering in a vector. However,
212 byteswapping is not simply controlled by msr_le. We also need to take
213 into account endianness of the target. This is done for the little-endian
214 PPC64 user-mode target. */
216 #define LVE(name, access, swap, element) \
217 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
218 target_ulong addr) \
220 size_t n_elems = ARRAY_SIZE(r->element); \
221 int adjust = HI_IDX*(n_elems - 1); \
222 int sh = sizeof(r->element[0]) >> 1; \
223 int index = (addr & 0xf) >> sh; \
224 if (msr_le) { \
225 index = n_elems - index - 1; \
228 if (needs_byteswap(env)) { \
229 r->element[LO_IDX ? index : (adjust - index)] = \
230 swap(access(env, addr)); \
231 } else { \
232 r->element[LO_IDX ? index : (adjust - index)] = \
233 access(env, addr); \
236 #define I(x) (x)
237 LVE(lvebx, cpu_ldub_data, I, u8)
238 LVE(lvehx, cpu_lduw_data, bswap16, u16)
239 LVE(lvewx, cpu_ldl_data, bswap32, u32)
240 #undef I
241 #undef LVE
243 #define STVE(name, access, swap, element) \
244 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
245 target_ulong addr) \
247 size_t n_elems = ARRAY_SIZE(r->element); \
248 int adjust = HI_IDX * (n_elems - 1); \
249 int sh = sizeof(r->element[0]) >> 1; \
250 int index = (addr & 0xf) >> sh; \
251 if (msr_le) { \
252 index = n_elems - index - 1; \
255 if (needs_byteswap(env)) { \
256 access(env, addr, swap(r->element[LO_IDX ? index : \
257 (adjust - index)])); \
258 } else { \
259 access(env, addr, r->element[LO_IDX ? index : \
260 (adjust - index)]); \
263 #define I(x) (x)
264 STVE(stvebx, cpu_stb_data, I, u8)
265 STVE(stvehx, cpu_stw_data, bswap16, u16)
266 STVE(stvewx, cpu_stl_data, bswap32, u32)
267 #undef I
268 #undef LVE
270 #undef HI_IDX
271 #undef LO_IDX
273 void helper_tbegin(CPUPPCState *env)
275 /* As a degenerate implementation, always fail tbegin. The reason
276 * given is "Nesting overflow". The "persistent" bit is set,
277 * providing a hint to the error handler to not retry. The TFIAR
278 * captures the address of the failure, which is this tbegin
279 * instruction. Instruction execution will continue with the
280 * next instruction in memory, which is precisely what we want.
283 env->spr[SPR_TEXASR] =
284 (1ULL << TEXASR_FAILURE_PERSISTENT) |
285 (1ULL << TEXASR_NESTING_OVERFLOW) |
286 (msr_hv << TEXASR_PRIVILEGE_HV) |
287 (msr_pr << TEXASR_PRIVILEGE_PR) |
288 (1ULL << TEXASR_FAILURE_SUMMARY) |
289 (1ULL << TEXASR_TFIAR_EXACT);
290 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
291 env->spr[SPR_TFHAR] = env->nip + 4;
292 env->crf[0] = 0xB; /* 0b1010 = transaction failure */