MAINTAINERS: mark megasas as maintained
[qemu/ar7.git] / block / qed.c
blobc130e42d0db8bcbf79684a0ed2c3b788c1efd8e9
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
33 static const AIOCBInfo qed_aiocb_info = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
41 const QEDHeader *header = (const QEDHeader *)buf;
43 if (buf_size < sizeof(*header)) {
44 return 0;
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
49 return 100;
52 /**
53 * Check whether an image format is raw
55 * @fmt: Backing file format, may be NULL
57 static bool qed_fmt_is_raw(const char *fmt)
59 return fmt && strcmp(fmt, "raw") == 0;
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
92 int qed_write_header_sync(BDRVQEDState *s)
94 QEDHeader le;
95 int ret;
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
102 return 0;
105 typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112 } QEDWriteHeaderCB;
114 static void qed_write_header_cb(void *opaque, int ret)
116 QEDWriteHeaderCB *write_header_cb = opaque;
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
122 static void qed_write_header_read_cb(void *opaque, int ret)
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
141 * Update header in-place (does not rewrite backing filename or other strings)
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147 void *opaque)
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156 BDRV_SECTOR_SIZE;
157 size_t len = nsectors * BDRV_SECTOR_SIZE;
158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159 cb, opaque);
161 write_header_cb->s = s;
162 write_header_cb->nsectors = nsectors;
163 write_header_cb->buf = qemu_blockalign(s->bs, len);
164 write_header_cb->iov.iov_base = write_header_cb->buf;
165 write_header_cb->iov.iov_len = len;
166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169 qed_write_header_read_cb, write_header_cb);
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
174 uint64_t table_entries;
175 uint64_t l2_size;
177 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178 l2_size = table_entries * cluster_size;
180 return l2_size * table_entries;
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
185 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186 cluster_size > QED_MAX_CLUSTER_SIZE) {
187 return false;
189 if (cluster_size & (cluster_size - 1)) {
190 return false; /* not power of 2 */
192 return true;
195 static bool qed_is_table_size_valid(uint32_t table_size)
197 if (table_size < QED_MIN_TABLE_SIZE ||
198 table_size > QED_MAX_TABLE_SIZE) {
199 return false;
201 if (table_size & (table_size - 1)) {
202 return false; /* not power of 2 */
204 return true;
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208 uint32_t table_size)
210 if (image_size % BDRV_SECTOR_SIZE != 0) {
211 return false; /* not multiple of sector size */
213 if (image_size > qed_max_image_size(cluster_size, table_size)) {
214 return false; /* image is too large */
216 return true;
220 * Read a string of known length from the image file
222 * @file: Image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
229 * The string is NUL-terminated.
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232 char *buf, size_t buflen)
234 int ret;
235 if (n >= buflen) {
236 return -EINVAL;
238 ret = bdrv_pread(file, offset, buf, n);
239 if (ret < 0) {
240 return ret;
242 buf[n] = '\0';
243 return 0;
247 * Allocate new clusters
249 * @s: QED state
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
255 * file.
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
259 uint64_t offset = s->file_size;
260 s->file_size += n * s->header.cluster_size;
261 return offset;
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s->bs,
268 s->header.cluster_size * s->header.table_size);
272 * Allocate a new zeroed L2 table
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
278 l2_table->table = qed_alloc_table(s);
279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
281 memset(l2_table->table->offsets, 0,
282 s->header.cluster_size * s->header.table_size);
283 return l2_table;
286 static void qed_aio_next_io(void *opaque, int ret);
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
290 assert(!s->allocating_write_reqs_plugged);
292 s->allocating_write_reqs_plugged = true;
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
297 QEDAIOCB *acb;
299 assert(s->allocating_write_reqs_plugged);
301 s->allocating_write_reqs_plugged = false;
303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304 if (acb) {
305 qed_aio_next_io(acb, 0);
309 static void qed_finish_clear_need_check(void *opaque, int ret)
311 /* Do nothing */
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
316 BDRVQEDState *s = opaque;
318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s);
324 static void qed_clear_need_check(void *opaque, int ret)
326 BDRVQEDState *s = opaque;
328 if (ret) {
329 qed_unplug_allocating_write_reqs(s);
330 return;
333 s->header.features &= ~QED_F_NEED_CHECK;
334 qed_write_header(s, qed_flush_after_clear_need_check, s);
337 static void qed_need_check_timer_cb(void *opaque)
339 BDRVQEDState *s = opaque;
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
344 trace_qed_need_check_timer_cb(s);
346 qed_plug_allocating_write_reqs(s);
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
352 static void qed_start_need_check_timer(BDRVQEDState *s)
354 trace_qed_start_need_check_timer(s);
356 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357 * migration.
359 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
366 trace_qed_cancel_need_check_timer(s);
367 timer_del(s->need_check_timer);
370 static void bdrv_qed_rebind(BlockDriverState *bs)
372 BDRVQEDState *s = bs->opaque;
373 s->bs = bs;
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
377 Error **errp)
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
391 qed_header_le_to_cpu(&le_header, &s->header);
393 if (s->header.magic != QED_MAGIC) {
394 error_setg(errp, "Image not in QED format");
395 return -EINVAL;
397 if (s->header.features & ~QED_FEATURE_MASK) {
398 /* image uses unsupported feature bits */
399 char buf[64];
400 snprintf(buf, sizeof(buf), "%" PRIx64,
401 s->header.features & ~QED_FEATURE_MASK);
402 error_set(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
403 bs->device_name, "QED", buf);
404 return -ENOTSUP;
406 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
407 return -EINVAL;
410 /* Round down file size to the last cluster */
411 file_size = bdrv_getlength(bs->file);
412 if (file_size < 0) {
413 return file_size;
415 s->file_size = qed_start_of_cluster(s, file_size);
417 if (!qed_is_table_size_valid(s->header.table_size)) {
418 return -EINVAL;
420 if (!qed_is_image_size_valid(s->header.image_size,
421 s->header.cluster_size,
422 s->header.table_size)) {
423 return -EINVAL;
425 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
426 return -EINVAL;
429 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
430 sizeof(uint64_t);
431 s->l2_shift = ffs(s->header.cluster_size) - 1;
432 s->l2_mask = s->table_nelems - 1;
433 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
435 if ((s->header.features & QED_F_BACKING_FILE)) {
436 if ((uint64_t)s->header.backing_filename_offset +
437 s->header.backing_filename_size >
438 s->header.cluster_size * s->header.header_size) {
439 return -EINVAL;
442 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
443 s->header.backing_filename_size, bs->backing_file,
444 sizeof(bs->backing_file));
445 if (ret < 0) {
446 return ret;
449 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
450 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
454 /* Reset unknown autoclear feature bits. This is a backwards
455 * compatibility mechanism that allows images to be opened by older
456 * programs, which "knock out" unknown feature bits. When an image is
457 * opened by a newer program again it can detect that the autoclear
458 * feature is no longer valid.
460 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
461 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
462 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
464 ret = qed_write_header_sync(s);
465 if (ret) {
466 return ret;
469 /* From here on only known autoclear feature bits are valid */
470 bdrv_flush(bs->file);
473 s->l1_table = qed_alloc_table(s);
474 qed_init_l2_cache(&s->l2_cache);
476 ret = qed_read_l1_table_sync(s);
477 if (ret) {
478 goto out;
481 /* If image was not closed cleanly, check consistency */
482 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
483 /* Read-only images cannot be fixed. There is no risk of corruption
484 * since write operations are not possible. Therefore, allow
485 * potentially inconsistent images to be opened read-only. This can
486 * aid data recovery from an otherwise inconsistent image.
488 if (!bdrv_is_read_only(bs->file) &&
489 !(flags & BDRV_O_INCOMING)) {
490 BdrvCheckResult result = {0};
492 ret = qed_check(s, &result, true);
493 if (ret) {
494 goto out;
499 s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
500 qed_need_check_timer_cb, s);
502 out:
503 if (ret) {
504 qed_free_l2_cache(&s->l2_cache);
505 qemu_vfree(s->l1_table);
507 return ret;
510 static int bdrv_qed_refresh_limits(BlockDriverState *bs)
512 BDRVQEDState *s = bs->opaque;
514 bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
516 return 0;
519 /* We have nothing to do for QED reopen, stubs just return
520 * success */
521 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
522 BlockReopenQueue *queue, Error **errp)
524 return 0;
527 static void bdrv_qed_close(BlockDriverState *bs)
529 BDRVQEDState *s = bs->opaque;
531 qed_cancel_need_check_timer(s);
532 timer_free(s->need_check_timer);
534 /* Ensure writes reach stable storage */
535 bdrv_flush(bs->file);
537 /* Clean shutdown, no check required on next open */
538 if (s->header.features & QED_F_NEED_CHECK) {
539 s->header.features &= ~QED_F_NEED_CHECK;
540 qed_write_header_sync(s);
543 qed_free_l2_cache(&s->l2_cache);
544 qemu_vfree(s->l1_table);
547 static int qed_create(const char *filename, uint32_t cluster_size,
548 uint64_t image_size, uint32_t table_size,
549 const char *backing_file, const char *backing_fmt,
550 Error **errp)
552 QEDHeader header = {
553 .magic = QED_MAGIC,
554 .cluster_size = cluster_size,
555 .table_size = table_size,
556 .header_size = 1,
557 .features = 0,
558 .compat_features = 0,
559 .l1_table_offset = cluster_size,
560 .image_size = image_size,
562 QEDHeader le_header;
563 uint8_t *l1_table = NULL;
564 size_t l1_size = header.cluster_size * header.table_size;
565 Error *local_err = NULL;
566 int ret = 0;
567 BlockDriverState *bs;
569 ret = bdrv_create_file(filename, NULL, &local_err);
570 if (ret < 0) {
571 error_propagate(errp, local_err);
572 return ret;
575 bs = NULL;
576 ret = bdrv_open(&bs, filename, NULL, NULL,
577 BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_PROTOCOL, NULL,
578 &local_err);
579 if (ret < 0) {
580 error_propagate(errp, local_err);
581 return ret;
584 /* File must start empty and grow, check truncate is supported */
585 ret = bdrv_truncate(bs, 0);
586 if (ret < 0) {
587 goto out;
590 if (backing_file) {
591 header.features |= QED_F_BACKING_FILE;
592 header.backing_filename_offset = sizeof(le_header);
593 header.backing_filename_size = strlen(backing_file);
595 if (qed_fmt_is_raw(backing_fmt)) {
596 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
600 qed_header_cpu_to_le(&header, &le_header);
601 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
602 if (ret < 0) {
603 goto out;
605 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
606 header.backing_filename_size);
607 if (ret < 0) {
608 goto out;
611 l1_table = g_malloc0(l1_size);
612 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
613 if (ret < 0) {
614 goto out;
617 ret = 0; /* success */
618 out:
619 g_free(l1_table);
620 bdrv_unref(bs);
621 return ret;
624 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options,
625 Error **errp)
627 uint64_t image_size = 0;
628 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
629 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
630 const char *backing_file = NULL;
631 const char *backing_fmt = NULL;
633 while (options && options->name) {
634 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
635 image_size = options->value.n;
636 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
637 backing_file = options->value.s;
638 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
639 backing_fmt = options->value.s;
640 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
641 if (options->value.n) {
642 cluster_size = options->value.n;
644 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
645 if (options->value.n) {
646 table_size = options->value.n;
649 options++;
652 if (!qed_is_cluster_size_valid(cluster_size)) {
653 error_setg(errp, "QED cluster size must be within range [%u, %u] "
654 "and power of 2",
655 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
656 return -EINVAL;
658 if (!qed_is_table_size_valid(table_size)) {
659 error_setg(errp, "QED table size must be within range [%u, %u] "
660 "and power of 2",
661 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
662 return -EINVAL;
664 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
665 error_setg(errp, "QED image size must be a non-zero multiple of "
666 "cluster size and less than %" PRIu64 " bytes",
667 qed_max_image_size(cluster_size, table_size));
668 return -EINVAL;
671 return qed_create(filename, cluster_size, image_size, table_size,
672 backing_file, backing_fmt, errp);
675 typedef struct {
676 BlockDriverState *bs;
677 Coroutine *co;
678 uint64_t pos;
679 int64_t status;
680 int *pnum;
681 } QEDIsAllocatedCB;
683 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
685 QEDIsAllocatedCB *cb = opaque;
686 BDRVQEDState *s = cb->bs->opaque;
687 *cb->pnum = len / BDRV_SECTOR_SIZE;
688 switch (ret) {
689 case QED_CLUSTER_FOUND:
690 offset |= qed_offset_into_cluster(s, cb->pos);
691 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
692 break;
693 case QED_CLUSTER_ZERO:
694 cb->status = BDRV_BLOCK_ZERO;
695 break;
696 case QED_CLUSTER_L2:
697 case QED_CLUSTER_L1:
698 cb->status = 0;
699 break;
700 default:
701 assert(ret < 0);
702 cb->status = ret;
703 break;
706 if (cb->co) {
707 qemu_coroutine_enter(cb->co, NULL);
711 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
712 int64_t sector_num,
713 int nb_sectors, int *pnum)
715 BDRVQEDState *s = bs->opaque;
716 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
717 QEDIsAllocatedCB cb = {
718 .bs = bs,
719 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
720 .status = BDRV_BLOCK_OFFSET_MASK,
721 .pnum = pnum,
723 QEDRequest request = { .l2_table = NULL };
725 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
727 /* Now sleep if the callback wasn't invoked immediately */
728 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
729 cb.co = qemu_coroutine_self();
730 qemu_coroutine_yield();
733 qed_unref_l2_cache_entry(request.l2_table);
735 return cb.status;
738 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
740 return acb->common.bs->opaque;
744 * Read from the backing file or zero-fill if no backing file
746 * @s: QED state
747 * @pos: Byte position in device
748 * @qiov: Destination I/O vector
749 * @cb: Completion function
750 * @opaque: User data for completion function
752 * This function reads qiov->size bytes starting at pos from the backing file.
753 * If there is no backing file then zeroes are read.
755 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
756 QEMUIOVector *qiov,
757 BlockDriverCompletionFunc *cb, void *opaque)
759 uint64_t backing_length = 0;
760 size_t size;
762 /* If there is a backing file, get its length. Treat the absence of a
763 * backing file like a zero length backing file.
765 if (s->bs->backing_hd) {
766 int64_t l = bdrv_getlength(s->bs->backing_hd);
767 if (l < 0) {
768 cb(opaque, l);
769 return;
771 backing_length = l;
774 /* Zero all sectors if reading beyond the end of the backing file */
775 if (pos >= backing_length ||
776 pos + qiov->size > backing_length) {
777 qemu_iovec_memset(qiov, 0, 0, qiov->size);
780 /* Complete now if there are no backing file sectors to read */
781 if (pos >= backing_length) {
782 cb(opaque, 0);
783 return;
786 /* If the read straddles the end of the backing file, shorten it */
787 size = MIN((uint64_t)backing_length - pos, qiov->size);
789 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
790 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
791 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
794 typedef struct {
795 GenericCB gencb;
796 BDRVQEDState *s;
797 QEMUIOVector qiov;
798 struct iovec iov;
799 uint64_t offset;
800 } CopyFromBackingFileCB;
802 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
804 CopyFromBackingFileCB *copy_cb = opaque;
805 qemu_vfree(copy_cb->iov.iov_base);
806 gencb_complete(&copy_cb->gencb, ret);
809 static void qed_copy_from_backing_file_write(void *opaque, int ret)
811 CopyFromBackingFileCB *copy_cb = opaque;
812 BDRVQEDState *s = copy_cb->s;
814 if (ret) {
815 qed_copy_from_backing_file_cb(copy_cb, ret);
816 return;
819 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
820 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
821 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
822 qed_copy_from_backing_file_cb, copy_cb);
826 * Copy data from backing file into the image
828 * @s: QED state
829 * @pos: Byte position in device
830 * @len: Number of bytes
831 * @offset: Byte offset in image file
832 * @cb: Completion function
833 * @opaque: User data for completion function
835 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
836 uint64_t len, uint64_t offset,
837 BlockDriverCompletionFunc *cb,
838 void *opaque)
840 CopyFromBackingFileCB *copy_cb;
842 /* Skip copy entirely if there is no work to do */
843 if (len == 0) {
844 cb(opaque, 0);
845 return;
848 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
849 copy_cb->s = s;
850 copy_cb->offset = offset;
851 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
852 copy_cb->iov.iov_len = len;
853 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
855 qed_read_backing_file(s, pos, &copy_cb->qiov,
856 qed_copy_from_backing_file_write, copy_cb);
860 * Link one or more contiguous clusters into a table
862 * @s: QED state
863 * @table: L2 table
864 * @index: First cluster index
865 * @n: Number of contiguous clusters
866 * @cluster: First cluster offset
868 * The cluster offset may be an allocated byte offset in the image file, the
869 * zero cluster marker, or the unallocated cluster marker.
871 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
872 unsigned int n, uint64_t cluster)
874 int i;
875 for (i = index; i < index + n; i++) {
876 table->offsets[i] = cluster;
877 if (!qed_offset_is_unalloc_cluster(cluster) &&
878 !qed_offset_is_zero_cluster(cluster)) {
879 cluster += s->header.cluster_size;
884 static void qed_aio_complete_bh(void *opaque)
886 QEDAIOCB *acb = opaque;
887 BlockDriverCompletionFunc *cb = acb->common.cb;
888 void *user_opaque = acb->common.opaque;
889 int ret = acb->bh_ret;
890 bool *finished = acb->finished;
892 qemu_bh_delete(acb->bh);
893 qemu_aio_release(acb);
895 /* Invoke callback */
896 cb(user_opaque, ret);
898 /* Signal cancel completion */
899 if (finished) {
900 *finished = true;
904 static void qed_aio_complete(QEDAIOCB *acb, int ret)
906 BDRVQEDState *s = acb_to_s(acb);
908 trace_qed_aio_complete(s, acb, ret);
910 /* Free resources */
911 qemu_iovec_destroy(&acb->cur_qiov);
912 qed_unref_l2_cache_entry(acb->request.l2_table);
914 /* Free the buffer we may have allocated for zero writes */
915 if (acb->flags & QED_AIOCB_ZERO) {
916 qemu_vfree(acb->qiov->iov[0].iov_base);
917 acb->qiov->iov[0].iov_base = NULL;
920 /* Arrange for a bh to invoke the completion function */
921 acb->bh_ret = ret;
922 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
923 qemu_bh_schedule(acb->bh);
925 /* Start next allocating write request waiting behind this one. Note that
926 * requests enqueue themselves when they first hit an unallocated cluster
927 * but they wait until the entire request is finished before waking up the
928 * next request in the queue. This ensures that we don't cycle through
929 * requests multiple times but rather finish one at a time completely.
931 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
932 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
933 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
934 if (acb) {
935 qed_aio_next_io(acb, 0);
936 } else if (s->header.features & QED_F_NEED_CHECK) {
937 qed_start_need_check_timer(s);
943 * Commit the current L2 table to the cache
945 static void qed_commit_l2_update(void *opaque, int ret)
947 QEDAIOCB *acb = opaque;
948 BDRVQEDState *s = acb_to_s(acb);
949 CachedL2Table *l2_table = acb->request.l2_table;
950 uint64_t l2_offset = l2_table->offset;
952 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
954 /* This is guaranteed to succeed because we just committed the entry to the
955 * cache.
957 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
958 assert(acb->request.l2_table != NULL);
960 qed_aio_next_io(opaque, ret);
964 * Update L1 table with new L2 table offset and write it out
966 static void qed_aio_write_l1_update(void *opaque, int ret)
968 QEDAIOCB *acb = opaque;
969 BDRVQEDState *s = acb_to_s(acb);
970 int index;
972 if (ret) {
973 qed_aio_complete(acb, ret);
974 return;
977 index = qed_l1_index(s, acb->cur_pos);
978 s->l1_table->offsets[index] = acb->request.l2_table->offset;
980 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
984 * Update L2 table with new cluster offsets and write them out
986 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
988 BDRVQEDState *s = acb_to_s(acb);
989 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
990 int index;
992 if (ret) {
993 goto err;
996 if (need_alloc) {
997 qed_unref_l2_cache_entry(acb->request.l2_table);
998 acb->request.l2_table = qed_new_l2_table(s);
1001 index = qed_l2_index(s, acb->cur_pos);
1002 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1003 offset);
1005 if (need_alloc) {
1006 /* Write out the whole new L2 table */
1007 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1008 qed_aio_write_l1_update, acb);
1009 } else {
1010 /* Write out only the updated part of the L2 table */
1011 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1012 qed_aio_next_io, acb);
1014 return;
1016 err:
1017 qed_aio_complete(acb, ret);
1020 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1022 QEDAIOCB *acb = opaque;
1023 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1027 * Flush new data clusters before updating the L2 table
1029 * This flush is necessary when a backing file is in use. A crash during an
1030 * allocating write could result in empty clusters in the image. If the write
1031 * only touched a subregion of the cluster, then backing image sectors have
1032 * been lost in the untouched region. The solution is to flush after writing a
1033 * new data cluster and before updating the L2 table.
1035 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1037 QEDAIOCB *acb = opaque;
1038 BDRVQEDState *s = acb_to_s(acb);
1040 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1041 qed_aio_complete(acb, -EIO);
1046 * Write data to the image file
1048 static void qed_aio_write_main(void *opaque, int ret)
1050 QEDAIOCB *acb = opaque;
1051 BDRVQEDState *s = acb_to_s(acb);
1052 uint64_t offset = acb->cur_cluster +
1053 qed_offset_into_cluster(s, acb->cur_pos);
1054 BlockDriverCompletionFunc *next_fn;
1056 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1058 if (ret) {
1059 qed_aio_complete(acb, ret);
1060 return;
1063 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1064 next_fn = qed_aio_next_io;
1065 } else {
1066 if (s->bs->backing_hd) {
1067 next_fn = qed_aio_write_flush_before_l2_update;
1068 } else {
1069 next_fn = qed_aio_write_l2_update_cb;
1073 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1074 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1075 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1076 next_fn, acb);
1080 * Populate back untouched region of new data cluster
1082 static void qed_aio_write_postfill(void *opaque, int ret)
1084 QEDAIOCB *acb = opaque;
1085 BDRVQEDState *s = acb_to_s(acb);
1086 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1087 uint64_t len =
1088 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1089 uint64_t offset = acb->cur_cluster +
1090 qed_offset_into_cluster(s, acb->cur_pos) +
1091 acb->cur_qiov.size;
1093 if (ret) {
1094 qed_aio_complete(acb, ret);
1095 return;
1098 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1099 qed_copy_from_backing_file(s, start, len, offset,
1100 qed_aio_write_main, acb);
1104 * Populate front untouched region of new data cluster
1106 static void qed_aio_write_prefill(void *opaque, int ret)
1108 QEDAIOCB *acb = opaque;
1109 BDRVQEDState *s = acb_to_s(acb);
1110 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1111 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1113 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1114 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1115 qed_aio_write_postfill, acb);
1119 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1121 static bool qed_should_set_need_check(BDRVQEDState *s)
1123 /* The flush before L2 update path ensures consistency */
1124 if (s->bs->backing_hd) {
1125 return false;
1128 return !(s->header.features & QED_F_NEED_CHECK);
1131 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1133 QEDAIOCB *acb = opaque;
1135 if (ret) {
1136 qed_aio_complete(acb, ret);
1137 return;
1140 qed_aio_write_l2_update(acb, 0, 1);
1144 * Write new data cluster
1146 * @acb: Write request
1147 * @len: Length in bytes
1149 * This path is taken when writing to previously unallocated clusters.
1151 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1153 BDRVQEDState *s = acb_to_s(acb);
1154 BlockDriverCompletionFunc *cb;
1156 /* Cancel timer when the first allocating request comes in */
1157 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1158 qed_cancel_need_check_timer(s);
1161 /* Freeze this request if another allocating write is in progress */
1162 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1163 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1165 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1166 s->allocating_write_reqs_plugged) {
1167 return; /* wait for existing request to finish */
1170 acb->cur_nclusters = qed_bytes_to_clusters(s,
1171 qed_offset_into_cluster(s, acb->cur_pos) + len);
1172 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1174 if (acb->flags & QED_AIOCB_ZERO) {
1175 /* Skip ahead if the clusters are already zero */
1176 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1177 qed_aio_next_io(acb, 0);
1178 return;
1181 cb = qed_aio_write_zero_cluster;
1182 } else {
1183 cb = qed_aio_write_prefill;
1184 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1187 if (qed_should_set_need_check(s)) {
1188 s->header.features |= QED_F_NEED_CHECK;
1189 qed_write_header(s, cb, acb);
1190 } else {
1191 cb(acb, 0);
1196 * Write data cluster in place
1198 * @acb: Write request
1199 * @offset: Cluster offset in bytes
1200 * @len: Length in bytes
1202 * This path is taken when writing to already allocated clusters.
1204 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1206 /* Allocate buffer for zero writes */
1207 if (acb->flags & QED_AIOCB_ZERO) {
1208 struct iovec *iov = acb->qiov->iov;
1210 if (!iov->iov_base) {
1211 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1212 memset(iov->iov_base, 0, iov->iov_len);
1216 /* Calculate the I/O vector */
1217 acb->cur_cluster = offset;
1218 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1220 /* Do the actual write */
1221 qed_aio_write_main(acb, 0);
1225 * Write data cluster
1227 * @opaque: Write request
1228 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1229 * or -errno
1230 * @offset: Cluster offset in bytes
1231 * @len: Length in bytes
1233 * Callback from qed_find_cluster().
1235 static void qed_aio_write_data(void *opaque, int ret,
1236 uint64_t offset, size_t len)
1238 QEDAIOCB *acb = opaque;
1240 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1242 acb->find_cluster_ret = ret;
1244 switch (ret) {
1245 case QED_CLUSTER_FOUND:
1246 qed_aio_write_inplace(acb, offset, len);
1247 break;
1249 case QED_CLUSTER_L2:
1250 case QED_CLUSTER_L1:
1251 case QED_CLUSTER_ZERO:
1252 qed_aio_write_alloc(acb, len);
1253 break;
1255 default:
1256 qed_aio_complete(acb, ret);
1257 break;
1262 * Read data cluster
1264 * @opaque: Read request
1265 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1266 * or -errno
1267 * @offset: Cluster offset in bytes
1268 * @len: Length in bytes
1270 * Callback from qed_find_cluster().
1272 static void qed_aio_read_data(void *opaque, int ret,
1273 uint64_t offset, size_t len)
1275 QEDAIOCB *acb = opaque;
1276 BDRVQEDState *s = acb_to_s(acb);
1277 BlockDriverState *bs = acb->common.bs;
1279 /* Adjust offset into cluster */
1280 offset += qed_offset_into_cluster(s, acb->cur_pos);
1282 trace_qed_aio_read_data(s, acb, ret, offset, len);
1284 if (ret < 0) {
1285 goto err;
1288 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1290 /* Handle zero cluster and backing file reads */
1291 if (ret == QED_CLUSTER_ZERO) {
1292 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1293 qed_aio_next_io(acb, 0);
1294 return;
1295 } else if (ret != QED_CLUSTER_FOUND) {
1296 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1297 qed_aio_next_io, acb);
1298 return;
1301 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1302 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1303 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1304 qed_aio_next_io, acb);
1305 return;
1307 err:
1308 qed_aio_complete(acb, ret);
1312 * Begin next I/O or complete the request
1314 static void qed_aio_next_io(void *opaque, int ret)
1316 QEDAIOCB *acb = opaque;
1317 BDRVQEDState *s = acb_to_s(acb);
1318 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1319 qed_aio_write_data : qed_aio_read_data;
1321 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1323 /* Handle I/O error */
1324 if (ret) {
1325 qed_aio_complete(acb, ret);
1326 return;
1329 acb->qiov_offset += acb->cur_qiov.size;
1330 acb->cur_pos += acb->cur_qiov.size;
1331 qemu_iovec_reset(&acb->cur_qiov);
1333 /* Complete request */
1334 if (acb->cur_pos >= acb->end_pos) {
1335 qed_aio_complete(acb, 0);
1336 return;
1339 /* Find next cluster and start I/O */
1340 qed_find_cluster(s, &acb->request,
1341 acb->cur_pos, acb->end_pos - acb->cur_pos,
1342 io_fn, acb);
1345 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1346 int64_t sector_num,
1347 QEMUIOVector *qiov, int nb_sectors,
1348 BlockDriverCompletionFunc *cb,
1349 void *opaque, int flags)
1351 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1353 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1354 opaque, flags);
1356 acb->flags = flags;
1357 acb->finished = NULL;
1358 acb->qiov = qiov;
1359 acb->qiov_offset = 0;
1360 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1361 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1362 acb->request.l2_table = NULL;
1363 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1365 /* Start request */
1366 qed_aio_next_io(acb, 0);
1367 return &acb->common;
1370 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1371 int64_t sector_num,
1372 QEMUIOVector *qiov, int nb_sectors,
1373 BlockDriverCompletionFunc *cb,
1374 void *opaque)
1376 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1379 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1380 int64_t sector_num,
1381 QEMUIOVector *qiov, int nb_sectors,
1382 BlockDriverCompletionFunc *cb,
1383 void *opaque)
1385 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1386 opaque, QED_AIOCB_WRITE);
1389 typedef struct {
1390 Coroutine *co;
1391 int ret;
1392 bool done;
1393 } QEDWriteZeroesCB;
1395 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1397 QEDWriteZeroesCB *cb = opaque;
1399 cb->done = true;
1400 cb->ret = ret;
1401 if (cb->co) {
1402 qemu_coroutine_enter(cb->co, NULL);
1406 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1407 int64_t sector_num,
1408 int nb_sectors,
1409 BdrvRequestFlags flags)
1411 BlockDriverAIOCB *blockacb;
1412 BDRVQEDState *s = bs->opaque;
1413 QEDWriteZeroesCB cb = { .done = false };
1414 QEMUIOVector qiov;
1415 struct iovec iov;
1417 /* Refuse if there are untouched backing file sectors */
1418 if (bs->backing_hd) {
1419 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1420 return -ENOTSUP;
1422 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1423 return -ENOTSUP;
1427 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1428 * then it will be allocated during request processing.
1430 iov.iov_base = NULL,
1431 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1433 qemu_iovec_init_external(&qiov, &iov, 1);
1434 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1435 qed_co_write_zeroes_cb, &cb,
1436 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1437 if (!blockacb) {
1438 return -EIO;
1440 if (!cb.done) {
1441 cb.co = qemu_coroutine_self();
1442 qemu_coroutine_yield();
1444 assert(cb.done);
1445 return cb.ret;
1448 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1450 BDRVQEDState *s = bs->opaque;
1451 uint64_t old_image_size;
1452 int ret;
1454 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1455 s->header.table_size)) {
1456 return -EINVAL;
1459 /* Shrinking is currently not supported */
1460 if ((uint64_t)offset < s->header.image_size) {
1461 return -ENOTSUP;
1464 old_image_size = s->header.image_size;
1465 s->header.image_size = offset;
1466 ret = qed_write_header_sync(s);
1467 if (ret < 0) {
1468 s->header.image_size = old_image_size;
1470 return ret;
1473 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1475 BDRVQEDState *s = bs->opaque;
1476 return s->header.image_size;
1479 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1481 BDRVQEDState *s = bs->opaque;
1483 memset(bdi, 0, sizeof(*bdi));
1484 bdi->cluster_size = s->header.cluster_size;
1485 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1486 bdi->unallocated_blocks_are_zero = true;
1487 bdi->can_write_zeroes_with_unmap = true;
1488 return 0;
1491 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1492 const char *backing_file,
1493 const char *backing_fmt)
1495 BDRVQEDState *s = bs->opaque;
1496 QEDHeader new_header, le_header;
1497 void *buffer;
1498 size_t buffer_len, backing_file_len;
1499 int ret;
1501 /* Refuse to set backing filename if unknown compat feature bits are
1502 * active. If the image uses an unknown compat feature then we may not
1503 * know the layout of data following the header structure and cannot safely
1504 * add a new string.
1506 if (backing_file && (s->header.compat_features &
1507 ~QED_COMPAT_FEATURE_MASK)) {
1508 return -ENOTSUP;
1511 memcpy(&new_header, &s->header, sizeof(new_header));
1513 new_header.features &= ~(QED_F_BACKING_FILE |
1514 QED_F_BACKING_FORMAT_NO_PROBE);
1516 /* Adjust feature flags */
1517 if (backing_file) {
1518 new_header.features |= QED_F_BACKING_FILE;
1520 if (qed_fmt_is_raw(backing_fmt)) {
1521 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1525 /* Calculate new header size */
1526 backing_file_len = 0;
1528 if (backing_file) {
1529 backing_file_len = strlen(backing_file);
1532 buffer_len = sizeof(new_header);
1533 new_header.backing_filename_offset = buffer_len;
1534 new_header.backing_filename_size = backing_file_len;
1535 buffer_len += backing_file_len;
1537 /* Make sure we can rewrite header without failing */
1538 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1539 return -ENOSPC;
1542 /* Prepare new header */
1543 buffer = g_malloc(buffer_len);
1545 qed_header_cpu_to_le(&new_header, &le_header);
1546 memcpy(buffer, &le_header, sizeof(le_header));
1547 buffer_len = sizeof(le_header);
1549 if (backing_file) {
1550 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1551 buffer_len += backing_file_len;
1554 /* Write new header */
1555 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1556 g_free(buffer);
1557 if (ret == 0) {
1558 memcpy(&s->header, &new_header, sizeof(new_header));
1560 return ret;
1563 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1565 BDRVQEDState *s = bs->opaque;
1566 Error *local_err = NULL;
1567 int ret;
1569 bdrv_qed_close(bs);
1571 bdrv_invalidate_cache(bs->file, &local_err);
1572 if (local_err) {
1573 error_propagate(errp, local_err);
1574 return;
1577 memset(s, 0, sizeof(BDRVQEDState));
1578 ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1579 if (local_err) {
1580 error_setg(errp, "Could not reopen qed layer: %s",
1581 error_get_pretty(local_err));
1582 error_free(local_err);
1583 return;
1584 } else if (ret < 0) {
1585 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1586 return;
1590 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1591 BdrvCheckMode fix)
1593 BDRVQEDState *s = bs->opaque;
1595 return qed_check(s, result, !!fix);
1598 static QEMUOptionParameter qed_create_options[] = {
1600 .name = BLOCK_OPT_SIZE,
1601 .type = OPT_SIZE,
1602 .help = "Virtual disk size (in bytes)"
1603 }, {
1604 .name = BLOCK_OPT_BACKING_FILE,
1605 .type = OPT_STRING,
1606 .help = "File name of a base image"
1607 }, {
1608 .name = BLOCK_OPT_BACKING_FMT,
1609 .type = OPT_STRING,
1610 .help = "Image format of the base image"
1611 }, {
1612 .name = BLOCK_OPT_CLUSTER_SIZE,
1613 .type = OPT_SIZE,
1614 .help = "Cluster size (in bytes)",
1615 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1616 }, {
1617 .name = BLOCK_OPT_TABLE_SIZE,
1618 .type = OPT_SIZE,
1619 .help = "L1/L2 table size (in clusters)"
1621 { /* end of list */ }
1624 static BlockDriver bdrv_qed = {
1625 .format_name = "qed",
1626 .instance_size = sizeof(BDRVQEDState),
1627 .create_options = qed_create_options,
1629 .bdrv_probe = bdrv_qed_probe,
1630 .bdrv_rebind = bdrv_qed_rebind,
1631 .bdrv_open = bdrv_qed_open,
1632 .bdrv_close = bdrv_qed_close,
1633 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1634 .bdrv_create = bdrv_qed_create,
1635 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1636 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1637 .bdrv_aio_readv = bdrv_qed_aio_readv,
1638 .bdrv_aio_writev = bdrv_qed_aio_writev,
1639 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1640 .bdrv_truncate = bdrv_qed_truncate,
1641 .bdrv_getlength = bdrv_qed_getlength,
1642 .bdrv_get_info = bdrv_qed_get_info,
1643 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1644 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1645 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1646 .bdrv_check = bdrv_qed_check,
1649 static void bdrv_qed_init(void)
1651 bdrv_register(&bdrv_qed);
1654 block_init(bdrv_qed_init);