2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
21 #include "qapi/qmp/qerror.h"
22 #include "migration/migration.h"
23 #include "sysemu/block-backend.h"
25 static const AIOCBInfo qed_aiocb_info
= {
26 .aiocb_size
= sizeof(QEDAIOCB
),
29 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
32 const QEDHeader
*header
= (const QEDHeader
*)buf
;
34 if (buf_size
< sizeof(*header
)) {
37 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
44 * Check whether an image format is raw
46 * @fmt: Backing file format, may be NULL
48 static bool qed_fmt_is_raw(const char *fmt
)
50 return fmt
&& strcmp(fmt
, "raw") == 0;
53 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
55 cpu
->magic
= le32_to_cpu(le
->magic
);
56 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
57 cpu
->table_size
= le32_to_cpu(le
->table_size
);
58 cpu
->header_size
= le32_to_cpu(le
->header_size
);
59 cpu
->features
= le64_to_cpu(le
->features
);
60 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
61 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
62 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
63 cpu
->image_size
= le64_to_cpu(le
->image_size
);
64 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
65 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
68 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
70 le
->magic
= cpu_to_le32(cpu
->magic
);
71 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
72 le
->table_size
= cpu_to_le32(cpu
->table_size
);
73 le
->header_size
= cpu_to_le32(cpu
->header_size
);
74 le
->features
= cpu_to_le64(cpu
->features
);
75 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
76 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
77 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
78 le
->image_size
= cpu_to_le64(cpu
->image_size
);
79 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
80 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
83 int qed_write_header_sync(BDRVQEDState
*s
)
88 qed_header_cpu_to_le(&s
->header
, &le
);
89 ret
= bdrv_pwrite(s
->bs
->file
->bs
, 0, &le
, sizeof(le
));
90 if (ret
!= sizeof(le
)) {
105 static void qed_write_header_cb(void *opaque
, int ret
)
107 QEDWriteHeaderCB
*write_header_cb
= opaque
;
109 qemu_vfree(write_header_cb
->buf
);
110 gencb_complete(write_header_cb
, ret
);
113 static void qed_write_header_read_cb(void *opaque
, int ret
)
115 QEDWriteHeaderCB
*write_header_cb
= opaque
;
116 BDRVQEDState
*s
= write_header_cb
->s
;
119 qed_write_header_cb(write_header_cb
, ret
);
124 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*)write_header_cb
->buf
);
126 bdrv_aio_writev(s
->bs
->file
->bs
, 0, &write_header_cb
->qiov
,
127 write_header_cb
->nsectors
, qed_write_header_cb
,
132 * Update header in-place (does not rewrite backing filename or other strings)
134 * This function only updates known header fields in-place and does not affect
135 * extra data after the QED header.
137 static void qed_write_header(BDRVQEDState
*s
, BlockCompletionFunc cb
,
140 /* We must write full sectors for O_DIRECT but cannot necessarily generate
141 * the data following the header if an unrecognized compat feature is
142 * active. Therefore, first read the sectors containing the header, update
143 * them, and write back.
146 int nsectors
= (sizeof(QEDHeader
) + BDRV_SECTOR_SIZE
- 1) /
148 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
149 QEDWriteHeaderCB
*write_header_cb
= gencb_alloc(sizeof(*write_header_cb
),
152 write_header_cb
->s
= s
;
153 write_header_cb
->nsectors
= nsectors
;
154 write_header_cb
->buf
= qemu_blockalign(s
->bs
, len
);
155 write_header_cb
->iov
.iov_base
= write_header_cb
->buf
;
156 write_header_cb
->iov
.iov_len
= len
;
157 qemu_iovec_init_external(&write_header_cb
->qiov
, &write_header_cb
->iov
, 1);
159 bdrv_aio_readv(s
->bs
->file
->bs
, 0, &write_header_cb
->qiov
, nsectors
,
160 qed_write_header_read_cb
, write_header_cb
);
163 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
165 uint64_t table_entries
;
168 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
169 l2_size
= table_entries
* cluster_size
;
171 return l2_size
* table_entries
;
174 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
176 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
177 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
180 if (cluster_size
& (cluster_size
- 1)) {
181 return false; /* not power of 2 */
186 static bool qed_is_table_size_valid(uint32_t table_size
)
188 if (table_size
< QED_MIN_TABLE_SIZE
||
189 table_size
> QED_MAX_TABLE_SIZE
) {
192 if (table_size
& (table_size
- 1)) {
193 return false; /* not power of 2 */
198 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
201 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
202 return false; /* not multiple of sector size */
204 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
205 return false; /* image is too large */
211 * Read a string of known length from the image file
214 * @offset: File offset to start of string, in bytes
215 * @n: String length in bytes
216 * @buf: Destination buffer
217 * @buflen: Destination buffer length in bytes
218 * @ret: 0 on success, -errno on failure
220 * The string is NUL-terminated.
222 static int qed_read_string(BlockDriverState
*file
, uint64_t offset
, size_t n
,
223 char *buf
, size_t buflen
)
229 ret
= bdrv_pread(file
, offset
, buf
, n
);
238 * Allocate new clusters
241 * @n: Number of contiguous clusters to allocate
242 * @ret: Offset of first allocated cluster
244 * This function only produces the offset where the new clusters should be
245 * written. It updates BDRVQEDState but does not make any changes to the image
248 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
250 uint64_t offset
= s
->file_size
;
251 s
->file_size
+= n
* s
->header
.cluster_size
;
255 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
257 /* Honor O_DIRECT memory alignment requirements */
258 return qemu_blockalign(s
->bs
,
259 s
->header
.cluster_size
* s
->header
.table_size
);
263 * Allocate a new zeroed L2 table
265 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
267 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
269 l2_table
->table
= qed_alloc_table(s
);
270 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
272 memset(l2_table
->table
->offsets
, 0,
273 s
->header
.cluster_size
* s
->header
.table_size
);
277 static void qed_aio_next_io(void *opaque
, int ret
);
279 static void qed_plug_allocating_write_reqs(BDRVQEDState
*s
)
281 assert(!s
->allocating_write_reqs_plugged
);
283 s
->allocating_write_reqs_plugged
= true;
286 static void qed_unplug_allocating_write_reqs(BDRVQEDState
*s
)
290 assert(s
->allocating_write_reqs_plugged
);
292 s
->allocating_write_reqs_plugged
= false;
294 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
296 qed_aio_next_io(acb
, 0);
300 static void qed_finish_clear_need_check(void *opaque
, int ret
)
305 static void qed_flush_after_clear_need_check(void *opaque
, int ret
)
307 BDRVQEDState
*s
= opaque
;
309 bdrv_aio_flush(s
->bs
, qed_finish_clear_need_check
, s
);
311 /* No need to wait until flush completes */
312 qed_unplug_allocating_write_reqs(s
);
315 static void qed_clear_need_check(void *opaque
, int ret
)
317 BDRVQEDState
*s
= opaque
;
320 qed_unplug_allocating_write_reqs(s
);
324 s
->header
.features
&= ~QED_F_NEED_CHECK
;
325 qed_write_header(s
, qed_flush_after_clear_need_check
, s
);
328 static void qed_need_check_timer_cb(void *opaque
)
330 BDRVQEDState
*s
= opaque
;
332 /* The timer should only fire when allocating writes have drained */
333 assert(!QSIMPLEQ_FIRST(&s
->allocating_write_reqs
));
335 trace_qed_need_check_timer_cb(s
);
337 qed_plug_allocating_write_reqs(s
);
339 /* Ensure writes are on disk before clearing flag */
340 bdrv_aio_flush(s
->bs
, qed_clear_need_check
, s
);
343 static void qed_start_need_check_timer(BDRVQEDState
*s
)
345 trace_qed_start_need_check_timer(s
);
347 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
350 timer_mod(s
->need_check_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
351 NANOSECONDS_PER_SECOND
* QED_NEED_CHECK_TIMEOUT
);
354 /* It's okay to call this multiple times or when no timer is started */
355 static void qed_cancel_need_check_timer(BDRVQEDState
*s
)
357 trace_qed_cancel_need_check_timer(s
);
358 timer_del(s
->need_check_timer
);
361 static void bdrv_qed_detach_aio_context(BlockDriverState
*bs
)
363 BDRVQEDState
*s
= bs
->opaque
;
365 qed_cancel_need_check_timer(s
);
366 timer_free(s
->need_check_timer
);
369 static void bdrv_qed_attach_aio_context(BlockDriverState
*bs
,
370 AioContext
*new_context
)
372 BDRVQEDState
*s
= bs
->opaque
;
374 s
->need_check_timer
= aio_timer_new(new_context
,
375 QEMU_CLOCK_VIRTUAL
, SCALE_NS
,
376 qed_need_check_timer_cb
, s
);
377 if (s
->header
.features
& QED_F_NEED_CHECK
) {
378 qed_start_need_check_timer(s
);
382 static int bdrv_qed_open(BlockDriverState
*bs
, QDict
*options
, int flags
,
385 BDRVQEDState
*s
= bs
->opaque
;
391 QSIMPLEQ_INIT(&s
->allocating_write_reqs
);
393 ret
= bdrv_pread(bs
->file
->bs
, 0, &le_header
, sizeof(le_header
));
397 qed_header_le_to_cpu(&le_header
, &s
->header
);
399 if (s
->header
.magic
!= QED_MAGIC
) {
400 error_setg(errp
, "Image not in QED format");
403 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
404 /* image uses unsupported feature bits */
405 error_setg(errp
, "Unsupported QED features: %" PRIx64
,
406 s
->header
.features
& ~QED_FEATURE_MASK
);
409 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
413 /* Round down file size to the last cluster */
414 file_size
= bdrv_getlength(bs
->file
->bs
);
418 s
->file_size
= qed_start_of_cluster(s
, file_size
);
420 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
423 if (!qed_is_image_size_valid(s
->header
.image_size
,
424 s
->header
.cluster_size
,
425 s
->header
.table_size
)) {
428 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
432 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
434 s
->l2_shift
= ctz32(s
->header
.cluster_size
);
435 s
->l2_mask
= s
->table_nelems
- 1;
436 s
->l1_shift
= s
->l2_shift
+ ctz32(s
->table_nelems
);
438 /* Header size calculation must not overflow uint32_t */
439 if (s
->header
.header_size
> UINT32_MAX
/ s
->header
.cluster_size
) {
443 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
444 if ((uint64_t)s
->header
.backing_filename_offset
+
445 s
->header
.backing_filename_size
>
446 s
->header
.cluster_size
* s
->header
.header_size
) {
450 ret
= qed_read_string(bs
->file
->bs
, s
->header
.backing_filename_offset
,
451 s
->header
.backing_filename_size
, bs
->backing_file
,
452 sizeof(bs
->backing_file
));
457 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
458 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
462 /* Reset unknown autoclear feature bits. This is a backwards
463 * compatibility mechanism that allows images to be opened by older
464 * programs, which "knock out" unknown feature bits. When an image is
465 * opened by a newer program again it can detect that the autoclear
466 * feature is no longer valid.
468 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
469 !bdrv_is_read_only(bs
->file
->bs
) && !(flags
& BDRV_O_INACTIVE
)) {
470 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
472 ret
= qed_write_header_sync(s
);
477 /* From here on only known autoclear feature bits are valid */
478 bdrv_flush(bs
->file
->bs
);
481 s
->l1_table
= qed_alloc_table(s
);
482 qed_init_l2_cache(&s
->l2_cache
);
484 ret
= qed_read_l1_table_sync(s
);
489 /* If image was not closed cleanly, check consistency */
490 if (!(flags
& BDRV_O_CHECK
) && (s
->header
.features
& QED_F_NEED_CHECK
)) {
491 /* Read-only images cannot be fixed. There is no risk of corruption
492 * since write operations are not possible. Therefore, allow
493 * potentially inconsistent images to be opened read-only. This can
494 * aid data recovery from an otherwise inconsistent image.
496 if (!bdrv_is_read_only(bs
->file
->bs
) &&
497 !(flags
& BDRV_O_INACTIVE
)) {
498 BdrvCheckResult result
= {0};
500 ret
= qed_check(s
, &result
, true);
507 bdrv_qed_attach_aio_context(bs
, bdrv_get_aio_context(bs
));
511 qed_free_l2_cache(&s
->l2_cache
);
512 qemu_vfree(s
->l1_table
);
517 static void bdrv_qed_refresh_limits(BlockDriverState
*bs
, Error
**errp
)
519 BDRVQEDState
*s
= bs
->opaque
;
521 bs
->bl
.write_zeroes_alignment
= s
->header
.cluster_size
>> BDRV_SECTOR_BITS
;
524 /* We have nothing to do for QED reopen, stubs just return
526 static int bdrv_qed_reopen_prepare(BDRVReopenState
*state
,
527 BlockReopenQueue
*queue
, Error
**errp
)
532 static void bdrv_qed_close(BlockDriverState
*bs
)
534 BDRVQEDState
*s
= bs
->opaque
;
536 bdrv_qed_detach_aio_context(bs
);
538 /* Ensure writes reach stable storage */
539 bdrv_flush(bs
->file
->bs
);
541 /* Clean shutdown, no check required on next open */
542 if (s
->header
.features
& QED_F_NEED_CHECK
) {
543 s
->header
.features
&= ~QED_F_NEED_CHECK
;
544 qed_write_header_sync(s
);
547 qed_free_l2_cache(&s
->l2_cache
);
548 qemu_vfree(s
->l1_table
);
551 static int qed_create(const char *filename
, uint32_t cluster_size
,
552 uint64_t image_size
, uint32_t table_size
,
553 const char *backing_file
, const char *backing_fmt
,
554 QemuOpts
*opts
, Error
**errp
)
558 .cluster_size
= cluster_size
,
559 .table_size
= table_size
,
562 .compat_features
= 0,
563 .l1_table_offset
= cluster_size
,
564 .image_size
= image_size
,
567 uint8_t *l1_table
= NULL
;
568 size_t l1_size
= header
.cluster_size
* header
.table_size
;
569 Error
*local_err
= NULL
;
573 ret
= bdrv_create_file(filename
, opts
, &local_err
);
575 error_propagate(errp
, local_err
);
579 blk
= blk_new_open(filename
, NULL
, NULL
,
580 BDRV_O_RDWR
| BDRV_O_PROTOCOL
, &local_err
);
582 error_propagate(errp
, local_err
);
586 blk_set_allow_write_beyond_eof(blk
, true);
588 /* File must start empty and grow, check truncate is supported */
589 ret
= blk_truncate(blk
, 0);
595 header
.features
|= QED_F_BACKING_FILE
;
596 header
.backing_filename_offset
= sizeof(le_header
);
597 header
.backing_filename_size
= strlen(backing_file
);
599 if (qed_fmt_is_raw(backing_fmt
)) {
600 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
604 qed_header_cpu_to_le(&header
, &le_header
);
605 ret
= blk_pwrite(blk
, 0, &le_header
, sizeof(le_header
), 0);
609 ret
= blk_pwrite(blk
, sizeof(le_header
), backing_file
,
610 header
.backing_filename_size
, 0);
615 l1_table
= g_malloc0(l1_size
);
616 ret
= blk_pwrite(blk
, header
.l1_table_offset
, l1_table
, l1_size
, 0);
621 ret
= 0; /* success */
628 static int bdrv_qed_create(const char *filename
, QemuOpts
*opts
, Error
**errp
)
630 uint64_t image_size
= 0;
631 uint32_t cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
632 uint32_t table_size
= QED_DEFAULT_TABLE_SIZE
;
633 char *backing_file
= NULL
;
634 char *backing_fmt
= NULL
;
637 image_size
= ROUND_UP(qemu_opt_get_size_del(opts
, BLOCK_OPT_SIZE
, 0),
639 backing_file
= qemu_opt_get_del(opts
, BLOCK_OPT_BACKING_FILE
);
640 backing_fmt
= qemu_opt_get_del(opts
, BLOCK_OPT_BACKING_FMT
);
641 cluster_size
= qemu_opt_get_size_del(opts
,
642 BLOCK_OPT_CLUSTER_SIZE
,
643 QED_DEFAULT_CLUSTER_SIZE
);
644 table_size
= qemu_opt_get_size_del(opts
, BLOCK_OPT_TABLE_SIZE
,
645 QED_DEFAULT_TABLE_SIZE
);
647 if (!qed_is_cluster_size_valid(cluster_size
)) {
648 error_setg(errp
, "QED cluster size must be within range [%u, %u] "
650 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
654 if (!qed_is_table_size_valid(table_size
)) {
655 error_setg(errp
, "QED table size must be within range [%u, %u] "
657 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
661 if (!qed_is_image_size_valid(image_size
, cluster_size
, table_size
)) {
662 error_setg(errp
, "QED image size must be a non-zero multiple of "
663 "cluster size and less than %" PRIu64
" bytes",
664 qed_max_image_size(cluster_size
, table_size
));
669 ret
= qed_create(filename
, cluster_size
, image_size
, table_size
,
670 backing_file
, backing_fmt
, opts
, errp
);
673 g_free(backing_file
);
679 BlockDriverState
*bs
;
684 BlockDriverState
**file
;
687 static void qed_is_allocated_cb(void *opaque
, int ret
, uint64_t offset
, size_t len
)
689 QEDIsAllocatedCB
*cb
= opaque
;
690 BDRVQEDState
*s
= cb
->bs
->opaque
;
691 *cb
->pnum
= len
/ BDRV_SECTOR_SIZE
;
693 case QED_CLUSTER_FOUND
:
694 offset
|= qed_offset_into_cluster(s
, cb
->pos
);
695 cb
->status
= BDRV_BLOCK_DATA
| BDRV_BLOCK_OFFSET_VALID
| offset
;
696 *cb
->file
= cb
->bs
->file
->bs
;
698 case QED_CLUSTER_ZERO
:
699 cb
->status
= BDRV_BLOCK_ZERO
;
712 qemu_coroutine_enter(cb
->co
, NULL
);
716 static int64_t coroutine_fn
bdrv_qed_co_get_block_status(BlockDriverState
*bs
,
718 int nb_sectors
, int *pnum
,
719 BlockDriverState
**file
)
721 BDRVQEDState
*s
= bs
->opaque
;
722 size_t len
= (size_t)nb_sectors
* BDRV_SECTOR_SIZE
;
723 QEDIsAllocatedCB cb
= {
725 .pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
,
726 .status
= BDRV_BLOCK_OFFSET_MASK
,
730 QEDRequest request
= { .l2_table
= NULL
};
732 qed_find_cluster(s
, &request
, cb
.pos
, len
, qed_is_allocated_cb
, &cb
);
734 /* Now sleep if the callback wasn't invoked immediately */
735 while (cb
.status
== BDRV_BLOCK_OFFSET_MASK
) {
736 cb
.co
= qemu_coroutine_self();
737 qemu_coroutine_yield();
740 qed_unref_l2_cache_entry(request
.l2_table
);
745 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
747 return acb
->common
.bs
->opaque
;
751 * Read from the backing file or zero-fill if no backing file
754 * @pos: Byte position in device
755 * @qiov: Destination I/O vector
756 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
757 * @cb: Completion function
758 * @opaque: User data for completion function
760 * This function reads qiov->size bytes starting at pos from the backing file.
761 * If there is no backing file then zeroes are read.
763 static void qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
765 QEMUIOVector
**backing_qiov
,
766 BlockCompletionFunc
*cb
, void *opaque
)
768 uint64_t backing_length
= 0;
771 /* If there is a backing file, get its length. Treat the absence of a
772 * backing file like a zero length backing file.
774 if (s
->bs
->backing
) {
775 int64_t l
= bdrv_getlength(s
->bs
->backing
->bs
);
783 /* Zero all sectors if reading beyond the end of the backing file */
784 if (pos
>= backing_length
||
785 pos
+ qiov
->size
> backing_length
) {
786 qemu_iovec_memset(qiov
, 0, 0, qiov
->size
);
789 /* Complete now if there are no backing file sectors to read */
790 if (pos
>= backing_length
) {
795 /* If the read straddles the end of the backing file, shorten it */
796 size
= MIN((uint64_t)backing_length
- pos
, qiov
->size
);
798 assert(*backing_qiov
== NULL
);
799 *backing_qiov
= g_new(QEMUIOVector
, 1);
800 qemu_iovec_init(*backing_qiov
, qiov
->niov
);
801 qemu_iovec_concat(*backing_qiov
, qiov
, 0, size
);
803 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING_AIO
);
804 bdrv_aio_readv(s
->bs
->backing
->bs
, pos
/ BDRV_SECTOR_SIZE
,
805 *backing_qiov
, size
/ BDRV_SECTOR_SIZE
, cb
, opaque
);
812 QEMUIOVector
*backing_qiov
;
815 } CopyFromBackingFileCB
;
817 static void qed_copy_from_backing_file_cb(void *opaque
, int ret
)
819 CopyFromBackingFileCB
*copy_cb
= opaque
;
820 qemu_vfree(copy_cb
->iov
.iov_base
);
821 gencb_complete(©_cb
->gencb
, ret
);
824 static void qed_copy_from_backing_file_write(void *opaque
, int ret
)
826 CopyFromBackingFileCB
*copy_cb
= opaque
;
827 BDRVQEDState
*s
= copy_cb
->s
;
829 if (copy_cb
->backing_qiov
) {
830 qemu_iovec_destroy(copy_cb
->backing_qiov
);
831 g_free(copy_cb
->backing_qiov
);
832 copy_cb
->backing_qiov
= NULL
;
836 qed_copy_from_backing_file_cb(copy_cb
, ret
);
840 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
841 bdrv_aio_writev(s
->bs
->file
->bs
, copy_cb
->offset
/ BDRV_SECTOR_SIZE
,
842 ©_cb
->qiov
, copy_cb
->qiov
.size
/ BDRV_SECTOR_SIZE
,
843 qed_copy_from_backing_file_cb
, copy_cb
);
847 * Copy data from backing file into the image
850 * @pos: Byte position in device
851 * @len: Number of bytes
852 * @offset: Byte offset in image file
853 * @cb: Completion function
854 * @opaque: User data for completion function
856 static void qed_copy_from_backing_file(BDRVQEDState
*s
, uint64_t pos
,
857 uint64_t len
, uint64_t offset
,
858 BlockCompletionFunc
*cb
,
861 CopyFromBackingFileCB
*copy_cb
;
863 /* Skip copy entirely if there is no work to do */
869 copy_cb
= gencb_alloc(sizeof(*copy_cb
), cb
, opaque
);
871 copy_cb
->offset
= offset
;
872 copy_cb
->backing_qiov
= NULL
;
873 copy_cb
->iov
.iov_base
= qemu_blockalign(s
->bs
, len
);
874 copy_cb
->iov
.iov_len
= len
;
875 qemu_iovec_init_external(©_cb
->qiov
, ©_cb
->iov
, 1);
877 qed_read_backing_file(s
, pos
, ©_cb
->qiov
, ©_cb
->backing_qiov
,
878 qed_copy_from_backing_file_write
, copy_cb
);
882 * Link one or more contiguous clusters into a table
886 * @index: First cluster index
887 * @n: Number of contiguous clusters
888 * @cluster: First cluster offset
890 * The cluster offset may be an allocated byte offset in the image file, the
891 * zero cluster marker, or the unallocated cluster marker.
893 static void qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
, int index
,
894 unsigned int n
, uint64_t cluster
)
897 for (i
= index
; i
< index
+ n
; i
++) {
898 table
->offsets
[i
] = cluster
;
899 if (!qed_offset_is_unalloc_cluster(cluster
) &&
900 !qed_offset_is_zero_cluster(cluster
)) {
901 cluster
+= s
->header
.cluster_size
;
906 static void qed_aio_complete_bh(void *opaque
)
908 QEDAIOCB
*acb
= opaque
;
909 BlockCompletionFunc
*cb
= acb
->common
.cb
;
910 void *user_opaque
= acb
->common
.opaque
;
911 int ret
= acb
->bh_ret
;
913 qemu_bh_delete(acb
->bh
);
916 /* Invoke callback */
917 cb(user_opaque
, ret
);
920 static void qed_aio_complete(QEDAIOCB
*acb
, int ret
)
922 BDRVQEDState
*s
= acb_to_s(acb
);
924 trace_qed_aio_complete(s
, acb
, ret
);
927 qemu_iovec_destroy(&acb
->cur_qiov
);
928 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
930 /* Free the buffer we may have allocated for zero writes */
931 if (acb
->flags
& QED_AIOCB_ZERO
) {
932 qemu_vfree(acb
->qiov
->iov
[0].iov_base
);
933 acb
->qiov
->iov
[0].iov_base
= NULL
;
936 /* Arrange for a bh to invoke the completion function */
938 acb
->bh
= aio_bh_new(bdrv_get_aio_context(acb
->common
.bs
),
939 qed_aio_complete_bh
, acb
);
940 qemu_bh_schedule(acb
->bh
);
942 /* Start next allocating write request waiting behind this one. Note that
943 * requests enqueue themselves when they first hit an unallocated cluster
944 * but they wait until the entire request is finished before waking up the
945 * next request in the queue. This ensures that we don't cycle through
946 * requests multiple times but rather finish one at a time completely.
948 if (acb
== QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
949 QSIMPLEQ_REMOVE_HEAD(&s
->allocating_write_reqs
, next
);
950 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
952 qed_aio_next_io(acb
, 0);
953 } else if (s
->header
.features
& QED_F_NEED_CHECK
) {
954 qed_start_need_check_timer(s
);
960 * Commit the current L2 table to the cache
962 static void qed_commit_l2_update(void *opaque
, int ret
)
964 QEDAIOCB
*acb
= opaque
;
965 BDRVQEDState
*s
= acb_to_s(acb
);
966 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
967 uint64_t l2_offset
= l2_table
->offset
;
969 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
971 /* This is guaranteed to succeed because we just committed the entry to the
974 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
, l2_offset
);
975 assert(acb
->request
.l2_table
!= NULL
);
977 qed_aio_next_io(opaque
, ret
);
981 * Update L1 table with new L2 table offset and write it out
983 static void qed_aio_write_l1_update(void *opaque
, int ret
)
985 QEDAIOCB
*acb
= opaque
;
986 BDRVQEDState
*s
= acb_to_s(acb
);
990 qed_aio_complete(acb
, ret
);
994 index
= qed_l1_index(s
, acb
->cur_pos
);
995 s
->l1_table
->offsets
[index
] = acb
->request
.l2_table
->offset
;
997 qed_write_l1_table(s
, index
, 1, qed_commit_l2_update
, acb
);
1001 * Update L2 table with new cluster offsets and write them out
1003 static void qed_aio_write_l2_update(QEDAIOCB
*acb
, int ret
, uint64_t offset
)
1005 BDRVQEDState
*s
= acb_to_s(acb
);
1006 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
1014 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
1015 acb
->request
.l2_table
= qed_new_l2_table(s
);
1018 index
= qed_l2_index(s
, acb
->cur_pos
);
1019 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
1023 /* Write out the whole new L2 table */
1024 qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true,
1025 qed_aio_write_l1_update
, acb
);
1027 /* Write out only the updated part of the L2 table */
1028 qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
, false,
1029 qed_aio_next_io
, acb
);
1034 qed_aio_complete(acb
, ret
);
1037 static void qed_aio_write_l2_update_cb(void *opaque
, int ret
)
1039 QEDAIOCB
*acb
= opaque
;
1040 qed_aio_write_l2_update(acb
, ret
, acb
->cur_cluster
);
1044 * Flush new data clusters before updating the L2 table
1046 * This flush is necessary when a backing file is in use. A crash during an
1047 * allocating write could result in empty clusters in the image. If the write
1048 * only touched a subregion of the cluster, then backing image sectors have
1049 * been lost in the untouched region. The solution is to flush after writing a
1050 * new data cluster and before updating the L2 table.
1052 static void qed_aio_write_flush_before_l2_update(void *opaque
, int ret
)
1054 QEDAIOCB
*acb
= opaque
;
1055 BDRVQEDState
*s
= acb_to_s(acb
);
1057 if (!bdrv_aio_flush(s
->bs
->file
->bs
, qed_aio_write_l2_update_cb
, opaque
)) {
1058 qed_aio_complete(acb
, -EIO
);
1063 * Write data to the image file
1065 static void qed_aio_write_main(void *opaque
, int ret
)
1067 QEDAIOCB
*acb
= opaque
;
1068 BDRVQEDState
*s
= acb_to_s(acb
);
1069 uint64_t offset
= acb
->cur_cluster
+
1070 qed_offset_into_cluster(s
, acb
->cur_pos
);
1071 BlockCompletionFunc
*next_fn
;
1073 trace_qed_aio_write_main(s
, acb
, ret
, offset
, acb
->cur_qiov
.size
);
1076 qed_aio_complete(acb
, ret
);
1080 if (acb
->find_cluster_ret
== QED_CLUSTER_FOUND
) {
1081 next_fn
= qed_aio_next_io
;
1083 if (s
->bs
->backing
) {
1084 next_fn
= qed_aio_write_flush_before_l2_update
;
1086 next_fn
= qed_aio_write_l2_update_cb
;
1090 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
1091 bdrv_aio_writev(s
->bs
->file
->bs
, offset
/ BDRV_SECTOR_SIZE
,
1092 &acb
->cur_qiov
, acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1097 * Populate back untouched region of new data cluster
1099 static void qed_aio_write_postfill(void *opaque
, int ret
)
1101 QEDAIOCB
*acb
= opaque
;
1102 BDRVQEDState
*s
= acb_to_s(acb
);
1103 uint64_t start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
1105 qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
1106 uint64_t offset
= acb
->cur_cluster
+
1107 qed_offset_into_cluster(s
, acb
->cur_pos
) +
1111 qed_aio_complete(acb
, ret
);
1115 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
1116 qed_copy_from_backing_file(s
, start
, len
, offset
,
1117 qed_aio_write_main
, acb
);
1121 * Populate front untouched region of new data cluster
1123 static void qed_aio_write_prefill(void *opaque
, int ret
)
1125 QEDAIOCB
*acb
= opaque
;
1126 BDRVQEDState
*s
= acb_to_s(acb
);
1127 uint64_t start
= qed_start_of_cluster(s
, acb
->cur_pos
);
1128 uint64_t len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
1130 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
1131 qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
,
1132 qed_aio_write_postfill
, acb
);
1136 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1138 static bool qed_should_set_need_check(BDRVQEDState
*s
)
1140 /* The flush before L2 update path ensures consistency */
1141 if (s
->bs
->backing
) {
1145 return !(s
->header
.features
& QED_F_NEED_CHECK
);
1148 static void qed_aio_write_zero_cluster(void *opaque
, int ret
)
1150 QEDAIOCB
*acb
= opaque
;
1153 qed_aio_complete(acb
, ret
);
1157 qed_aio_write_l2_update(acb
, 0, 1);
1161 * Write new data cluster
1163 * @acb: Write request
1164 * @len: Length in bytes
1166 * This path is taken when writing to previously unallocated clusters.
1168 static void qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
1170 BDRVQEDState
*s
= acb_to_s(acb
);
1171 BlockCompletionFunc
*cb
;
1173 /* Cancel timer when the first allocating request comes in */
1174 if (QSIMPLEQ_EMPTY(&s
->allocating_write_reqs
)) {
1175 qed_cancel_need_check_timer(s
);
1178 /* Freeze this request if another allocating write is in progress */
1179 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
1180 QSIMPLEQ_INSERT_TAIL(&s
->allocating_write_reqs
, acb
, next
);
1182 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
) ||
1183 s
->allocating_write_reqs_plugged
) {
1184 return; /* wait for existing request to finish */
1187 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
1188 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
1189 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1191 if (acb
->flags
& QED_AIOCB_ZERO
) {
1192 /* Skip ahead if the clusters are already zero */
1193 if (acb
->find_cluster_ret
== QED_CLUSTER_ZERO
) {
1194 qed_aio_next_io(acb
, 0);
1198 cb
= qed_aio_write_zero_cluster
;
1200 cb
= qed_aio_write_prefill
;
1201 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
1204 if (qed_should_set_need_check(s
)) {
1205 s
->header
.features
|= QED_F_NEED_CHECK
;
1206 qed_write_header(s
, cb
, acb
);
1213 * Write data cluster in place
1215 * @acb: Write request
1216 * @offset: Cluster offset in bytes
1217 * @len: Length in bytes
1219 * This path is taken when writing to already allocated clusters.
1221 static void qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
, size_t len
)
1223 /* Allocate buffer for zero writes */
1224 if (acb
->flags
& QED_AIOCB_ZERO
) {
1225 struct iovec
*iov
= acb
->qiov
->iov
;
1227 if (!iov
->iov_base
) {
1228 iov
->iov_base
= qemu_try_blockalign(acb
->common
.bs
, iov
->iov_len
);
1229 if (iov
->iov_base
== NULL
) {
1230 qed_aio_complete(acb
, -ENOMEM
);
1233 memset(iov
->iov_base
, 0, iov
->iov_len
);
1237 /* Calculate the I/O vector */
1238 acb
->cur_cluster
= offset
;
1239 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1241 /* Do the actual write */
1242 qed_aio_write_main(acb
, 0);
1246 * Write data cluster
1248 * @opaque: Write request
1249 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1251 * @offset: Cluster offset in bytes
1252 * @len: Length in bytes
1254 * Callback from qed_find_cluster().
1256 static void qed_aio_write_data(void *opaque
, int ret
,
1257 uint64_t offset
, size_t len
)
1259 QEDAIOCB
*acb
= opaque
;
1261 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1263 acb
->find_cluster_ret
= ret
;
1266 case QED_CLUSTER_FOUND
:
1267 qed_aio_write_inplace(acb
, offset
, len
);
1270 case QED_CLUSTER_L2
:
1271 case QED_CLUSTER_L1
:
1272 case QED_CLUSTER_ZERO
:
1273 qed_aio_write_alloc(acb
, len
);
1277 qed_aio_complete(acb
, ret
);
1285 * @opaque: Read request
1286 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1288 * @offset: Cluster offset in bytes
1289 * @len: Length in bytes
1291 * Callback from qed_find_cluster().
1293 static void qed_aio_read_data(void *opaque
, int ret
,
1294 uint64_t offset
, size_t len
)
1296 QEDAIOCB
*acb
= opaque
;
1297 BDRVQEDState
*s
= acb_to_s(acb
);
1298 BlockDriverState
*bs
= acb
->common
.bs
;
1300 /* Adjust offset into cluster */
1301 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1303 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1309 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1311 /* Handle zero cluster and backing file reads */
1312 if (ret
== QED_CLUSTER_ZERO
) {
1313 qemu_iovec_memset(&acb
->cur_qiov
, 0, 0, acb
->cur_qiov
.size
);
1314 qed_aio_next_io(acb
, 0);
1316 } else if (ret
!= QED_CLUSTER_FOUND
) {
1317 qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
,
1318 &acb
->backing_qiov
, qed_aio_next_io
, acb
);
1322 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1323 bdrv_aio_readv(bs
->file
->bs
, offset
/ BDRV_SECTOR_SIZE
,
1324 &acb
->cur_qiov
, acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1325 qed_aio_next_io
, acb
);
1329 qed_aio_complete(acb
, ret
);
1333 * Begin next I/O or complete the request
1335 static void qed_aio_next_io(void *opaque
, int ret
)
1337 QEDAIOCB
*acb
= opaque
;
1338 BDRVQEDState
*s
= acb_to_s(acb
);
1339 QEDFindClusterFunc
*io_fn
= (acb
->flags
& QED_AIOCB_WRITE
) ?
1340 qed_aio_write_data
: qed_aio_read_data
;
1342 trace_qed_aio_next_io(s
, acb
, ret
, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1344 if (acb
->backing_qiov
) {
1345 qemu_iovec_destroy(acb
->backing_qiov
);
1346 g_free(acb
->backing_qiov
);
1347 acb
->backing_qiov
= NULL
;
1350 /* Handle I/O error */
1352 qed_aio_complete(acb
, ret
);
1356 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1357 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1358 qemu_iovec_reset(&acb
->cur_qiov
);
1360 /* Complete request */
1361 if (acb
->cur_pos
>= acb
->end_pos
) {
1362 qed_aio_complete(acb
, 0);
1366 /* Find next cluster and start I/O */
1367 qed_find_cluster(s
, &acb
->request
,
1368 acb
->cur_pos
, acb
->end_pos
- acb
->cur_pos
,
1372 static BlockAIOCB
*qed_aio_setup(BlockDriverState
*bs
,
1374 QEMUIOVector
*qiov
, int nb_sectors
,
1375 BlockCompletionFunc
*cb
,
1376 void *opaque
, int flags
)
1378 QEDAIOCB
*acb
= qemu_aio_get(&qed_aiocb_info
, bs
, cb
, opaque
);
1380 trace_qed_aio_setup(bs
->opaque
, acb
, sector_num
, nb_sectors
,
1385 acb
->qiov_offset
= 0;
1386 acb
->cur_pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
1387 acb
->end_pos
= acb
->cur_pos
+ nb_sectors
* BDRV_SECTOR_SIZE
;
1388 acb
->backing_qiov
= NULL
;
1389 acb
->request
.l2_table
= NULL
;
1390 qemu_iovec_init(&acb
->cur_qiov
, qiov
->niov
);
1393 qed_aio_next_io(acb
, 0);
1394 return &acb
->common
;
1397 static BlockAIOCB
*bdrv_qed_aio_readv(BlockDriverState
*bs
,
1399 QEMUIOVector
*qiov
, int nb_sectors
,
1400 BlockCompletionFunc
*cb
,
1403 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
, opaque
, 0);
1406 static BlockAIOCB
*bdrv_qed_aio_writev(BlockDriverState
*bs
,
1408 QEMUIOVector
*qiov
, int nb_sectors
,
1409 BlockCompletionFunc
*cb
,
1412 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
,
1413 opaque
, QED_AIOCB_WRITE
);
1422 static void coroutine_fn
qed_co_write_zeroes_cb(void *opaque
, int ret
)
1424 QEDWriteZeroesCB
*cb
= opaque
;
1429 qemu_coroutine_enter(cb
->co
, NULL
);
1433 static int coroutine_fn
bdrv_qed_co_write_zeroes(BlockDriverState
*bs
,
1436 BdrvRequestFlags flags
)
1438 BlockAIOCB
*blockacb
;
1439 BDRVQEDState
*s
= bs
->opaque
;
1440 QEDWriteZeroesCB cb
= { .done
= false };
1444 /* Refuse if there are untouched backing file sectors */
1446 if (qed_offset_into_cluster(s
, sector_num
* BDRV_SECTOR_SIZE
) != 0) {
1449 if (qed_offset_into_cluster(s
, nb_sectors
* BDRV_SECTOR_SIZE
) != 0) {
1454 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1455 * then it will be allocated during request processing.
1457 iov
.iov_base
= NULL
,
1458 iov
.iov_len
= nb_sectors
* BDRV_SECTOR_SIZE
,
1460 qemu_iovec_init_external(&qiov
, &iov
, 1);
1461 blockacb
= qed_aio_setup(bs
, sector_num
, &qiov
, nb_sectors
,
1462 qed_co_write_zeroes_cb
, &cb
,
1463 QED_AIOCB_WRITE
| QED_AIOCB_ZERO
);
1468 cb
.co
= qemu_coroutine_self();
1469 qemu_coroutine_yield();
1475 static int bdrv_qed_truncate(BlockDriverState
*bs
, int64_t offset
)
1477 BDRVQEDState
*s
= bs
->opaque
;
1478 uint64_t old_image_size
;
1481 if (!qed_is_image_size_valid(offset
, s
->header
.cluster_size
,
1482 s
->header
.table_size
)) {
1486 /* Shrinking is currently not supported */
1487 if ((uint64_t)offset
< s
->header
.image_size
) {
1491 old_image_size
= s
->header
.image_size
;
1492 s
->header
.image_size
= offset
;
1493 ret
= qed_write_header_sync(s
);
1495 s
->header
.image_size
= old_image_size
;
1500 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1502 BDRVQEDState
*s
= bs
->opaque
;
1503 return s
->header
.image_size
;
1506 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1508 BDRVQEDState
*s
= bs
->opaque
;
1510 memset(bdi
, 0, sizeof(*bdi
));
1511 bdi
->cluster_size
= s
->header
.cluster_size
;
1512 bdi
->is_dirty
= s
->header
.features
& QED_F_NEED_CHECK
;
1513 bdi
->unallocated_blocks_are_zero
= true;
1514 bdi
->can_write_zeroes_with_unmap
= true;
1518 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1519 const char *backing_file
,
1520 const char *backing_fmt
)
1522 BDRVQEDState
*s
= bs
->opaque
;
1523 QEDHeader new_header
, le_header
;
1525 size_t buffer_len
, backing_file_len
;
1528 /* Refuse to set backing filename if unknown compat feature bits are
1529 * active. If the image uses an unknown compat feature then we may not
1530 * know the layout of data following the header structure and cannot safely
1533 if (backing_file
&& (s
->header
.compat_features
&
1534 ~QED_COMPAT_FEATURE_MASK
)) {
1538 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1540 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1541 QED_F_BACKING_FORMAT_NO_PROBE
);
1543 /* Adjust feature flags */
1545 new_header
.features
|= QED_F_BACKING_FILE
;
1547 if (qed_fmt_is_raw(backing_fmt
)) {
1548 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1552 /* Calculate new header size */
1553 backing_file_len
= 0;
1556 backing_file_len
= strlen(backing_file
);
1559 buffer_len
= sizeof(new_header
);
1560 new_header
.backing_filename_offset
= buffer_len
;
1561 new_header
.backing_filename_size
= backing_file_len
;
1562 buffer_len
+= backing_file_len
;
1564 /* Make sure we can rewrite header without failing */
1565 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1569 /* Prepare new header */
1570 buffer
= g_malloc(buffer_len
);
1572 qed_header_cpu_to_le(&new_header
, &le_header
);
1573 memcpy(buffer
, &le_header
, sizeof(le_header
));
1574 buffer_len
= sizeof(le_header
);
1577 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1578 buffer_len
+= backing_file_len
;
1581 /* Write new header */
1582 ret
= bdrv_pwrite_sync(bs
->file
->bs
, 0, buffer
, buffer_len
);
1585 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1590 static void bdrv_qed_invalidate_cache(BlockDriverState
*bs
, Error
**errp
)
1592 BDRVQEDState
*s
= bs
->opaque
;
1593 Error
*local_err
= NULL
;
1598 memset(s
, 0, sizeof(BDRVQEDState
));
1599 ret
= bdrv_qed_open(bs
, NULL
, bs
->open_flags
, &local_err
);
1601 error_propagate(errp
, local_err
);
1602 error_prepend(errp
, "Could not reopen qed layer: ");
1604 } else if (ret
< 0) {
1605 error_setg_errno(errp
, -ret
, "Could not reopen qed layer");
1610 static int bdrv_qed_check(BlockDriverState
*bs
, BdrvCheckResult
*result
,
1613 BDRVQEDState
*s
= bs
->opaque
;
1615 return qed_check(s
, result
, !!fix
);
1618 static QemuOptsList qed_create_opts
= {
1619 .name
= "qed-create-opts",
1620 .head
= QTAILQ_HEAD_INITIALIZER(qed_create_opts
.head
),
1623 .name
= BLOCK_OPT_SIZE
,
1624 .type
= QEMU_OPT_SIZE
,
1625 .help
= "Virtual disk size"
1628 .name
= BLOCK_OPT_BACKING_FILE
,
1629 .type
= QEMU_OPT_STRING
,
1630 .help
= "File name of a base image"
1633 .name
= BLOCK_OPT_BACKING_FMT
,
1634 .type
= QEMU_OPT_STRING
,
1635 .help
= "Image format of the base image"
1638 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1639 .type
= QEMU_OPT_SIZE
,
1640 .help
= "Cluster size (in bytes)",
1641 .def_value_str
= stringify(QED_DEFAULT_CLUSTER_SIZE
)
1644 .name
= BLOCK_OPT_TABLE_SIZE
,
1645 .type
= QEMU_OPT_SIZE
,
1646 .help
= "L1/L2 table size (in clusters)"
1648 { /* end of list */ }
1652 static BlockDriver bdrv_qed
= {
1653 .format_name
= "qed",
1654 .instance_size
= sizeof(BDRVQEDState
),
1655 .create_opts
= &qed_create_opts
,
1656 .supports_backing
= true,
1658 .bdrv_probe
= bdrv_qed_probe
,
1659 .bdrv_open
= bdrv_qed_open
,
1660 .bdrv_close
= bdrv_qed_close
,
1661 .bdrv_reopen_prepare
= bdrv_qed_reopen_prepare
,
1662 .bdrv_create
= bdrv_qed_create
,
1663 .bdrv_has_zero_init
= bdrv_has_zero_init_1
,
1664 .bdrv_co_get_block_status
= bdrv_qed_co_get_block_status
,
1665 .bdrv_aio_readv
= bdrv_qed_aio_readv
,
1666 .bdrv_aio_writev
= bdrv_qed_aio_writev
,
1667 .bdrv_co_write_zeroes
= bdrv_qed_co_write_zeroes
,
1668 .bdrv_truncate
= bdrv_qed_truncate
,
1669 .bdrv_getlength
= bdrv_qed_getlength
,
1670 .bdrv_get_info
= bdrv_qed_get_info
,
1671 .bdrv_refresh_limits
= bdrv_qed_refresh_limits
,
1672 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1673 .bdrv_invalidate_cache
= bdrv_qed_invalidate_cache
,
1674 .bdrv_check
= bdrv_qed_check
,
1675 .bdrv_detach_aio_context
= bdrv_qed_detach_aio_context
,
1676 .bdrv_attach_aio_context
= bdrv_qed_attach_aio_context
,
1679 static void bdrv_qed_init(void)
1681 bdrv_register(&bdrv_qed
);
1684 block_init(bdrv_qed_init
);