Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / target-arm / op_helper.c
blob9da92d6b47750a80840988a12d16d97538ddaecd
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/cpu_ldst.h"
25 #define SIGNBIT (uint32_t)0x80000000
26 #define SIGNBIT64 ((uint64_t)1 << 63)
28 static void QEMU_NORETURN
29 raise_exception(CPUARMState *env, uint32_t excp,
30 uint32_t syndrome, uint32_t target_el)
32 CPUState *cs = CPU(arm_env_get_cpu(env));
34 assert(!excp_is_internal(excp));
35 cs->exception_index = excp;
36 env->exception.syndrome = syndrome;
37 env->exception.target_el = target_el;
38 cpu_loop_exit(cs);
41 static int exception_target_el(CPUARMState *env)
43 int target_el = MAX(1, arm_current_el(env));
45 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
46 * to EL3 in this case.
48 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
49 target_el = 3;
52 return target_el;
55 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
56 uint32_t rn, uint32_t maxindex)
58 uint32_t val;
59 uint32_t tmp;
60 int index;
61 int shift;
62 uint64_t *table;
63 table = (uint64_t *)&env->vfp.regs[rn];
64 val = 0;
65 for (shift = 0; shift < 32; shift += 8) {
66 index = (ireg >> shift) & 0xff;
67 if (index < maxindex) {
68 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
69 val |= tmp << shift;
70 } else {
71 val |= def & (0xff << shift);
74 return val;
77 #if !defined(CONFIG_USER_ONLY)
79 /* try to fill the TLB and return an exception if error. If retaddr is
80 * NULL, it means that the function was called in C code (i.e. not
81 * from generated code or from helper.c)
83 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
84 uintptr_t retaddr)
86 bool ret;
87 uint32_t fsr = 0;
88 ARMMMUFaultInfo fi = {};
90 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi);
91 if (unlikely(ret)) {
92 ARMCPU *cpu = ARM_CPU(cs);
93 CPUARMState *env = &cpu->env;
94 uint32_t syn, exc;
95 unsigned int target_el;
96 bool same_el;
98 if (retaddr) {
99 /* now we have a real cpu fault */
100 cpu_restore_state(cs, retaddr);
103 target_el = exception_target_el(env);
104 if (fi.stage2) {
105 target_el = 2;
106 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
108 same_el = arm_current_el(env) == target_el;
109 /* AArch64 syndrome does not have an LPAE bit */
110 syn = fsr & ~(1 << 9);
112 /* For insn and data aborts we assume there is no instruction syndrome
113 * information; this is always true for exceptions reported to EL1.
115 if (is_write == 2) {
116 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
117 exc = EXCP_PREFETCH_ABORT;
118 } else {
119 syn = syn_data_abort_no_iss(same_el,
120 0, 0, fi.s1ptw, is_write == 1, syn);
121 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
122 fsr |= (1 << 11);
124 exc = EXCP_DATA_ABORT;
127 env->exception.vaddress = addr;
128 env->exception.fsr = fsr;
129 raise_exception(env, exc, syn, target_el);
133 /* Raise a data fault alignment exception for the specified virtual address */
134 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write,
135 int is_user, uintptr_t retaddr)
137 ARMCPU *cpu = ARM_CPU(cs);
138 CPUARMState *env = &cpu->env;
139 int target_el;
140 bool same_el;
142 if (retaddr) {
143 /* now we have a real cpu fault */
144 cpu_restore_state(cs, retaddr);
147 target_el = exception_target_el(env);
148 same_el = (arm_current_el(env) == target_el);
150 env->exception.vaddress = vaddr;
152 /* the DFSR for an alignment fault depends on whether we're using
153 * the LPAE long descriptor format, or the short descriptor format
155 if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
156 env->exception.fsr = 0x21;
157 } else {
158 env->exception.fsr = 0x1;
161 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
162 env->exception.fsr |= (1 << 11);
165 raise_exception(env, EXCP_DATA_ABORT,
166 syn_data_abort_no_iss(same_el,
167 0, 0, 0, is_write == 1, 0x21),
168 target_el);
171 #endif /* !defined(CONFIG_USER_ONLY) */
173 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
175 uint32_t res = a + b;
176 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
177 env->QF = 1;
178 return res;
181 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
183 uint32_t res = a + b;
184 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
185 env->QF = 1;
186 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
188 return res;
191 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
193 uint32_t res = a - b;
194 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
195 env->QF = 1;
196 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
198 return res;
201 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
203 uint32_t res;
204 if (val >= 0x40000000) {
205 res = ~SIGNBIT;
206 env->QF = 1;
207 } else if (val <= (int32_t)0xc0000000) {
208 res = SIGNBIT;
209 env->QF = 1;
210 } else {
211 res = val << 1;
213 return res;
216 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
218 uint32_t res = a + b;
219 if (res < a) {
220 env->QF = 1;
221 res = ~0;
223 return res;
226 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
228 uint32_t res = a - b;
229 if (res > a) {
230 env->QF = 1;
231 res = 0;
233 return res;
236 /* Signed saturation. */
237 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
239 int32_t top;
240 uint32_t mask;
242 top = val >> shift;
243 mask = (1u << shift) - 1;
244 if (top > 0) {
245 env->QF = 1;
246 return mask;
247 } else if (top < -1) {
248 env->QF = 1;
249 return ~mask;
251 return val;
254 /* Unsigned saturation. */
255 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
257 uint32_t max;
259 max = (1u << shift) - 1;
260 if (val < 0) {
261 env->QF = 1;
262 return 0;
263 } else if (val > max) {
264 env->QF = 1;
265 return max;
267 return val;
270 /* Signed saturate. */
271 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
273 return do_ssat(env, x, shift);
276 /* Dual halfword signed saturate. */
277 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
279 uint32_t res;
281 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
282 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
283 return res;
286 /* Unsigned saturate. */
287 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
289 return do_usat(env, x, shift);
292 /* Dual halfword unsigned saturate. */
293 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
295 uint32_t res;
297 res = (uint16_t)do_usat(env, (int16_t)x, shift);
298 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
299 return res;
302 void HELPER(setend)(CPUARMState *env)
304 env->uncached_cpsr ^= CPSR_E;
307 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
308 * The function returns the target EL (1-3) if the instruction is to be trapped;
309 * otherwise it returns 0 indicating it is not trapped.
311 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
313 int cur_el = arm_current_el(env);
314 uint64_t mask;
316 /* If we are currently in EL0 then we need to check if SCTLR is set up for
317 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
319 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
320 int target_el;
322 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
323 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
324 /* Secure EL0 and Secure PL1 is at EL3 */
325 target_el = 3;
326 } else {
327 target_el = 1;
330 if (!(env->cp15.sctlr_el[target_el] & mask)) {
331 return target_el;
335 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
336 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
337 * bits will be zero indicating no trap.
339 if (cur_el < 2 && !arm_is_secure(env)) {
340 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
341 if (env->cp15.hcr_el2 & mask) {
342 return 2;
346 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
347 if (cur_el < 3) {
348 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
349 if (env->cp15.scr_el3 & mask) {
350 return 3;
354 return 0;
357 void HELPER(wfi)(CPUARMState *env)
359 CPUState *cs = CPU(arm_env_get_cpu(env));
360 int target_el = check_wfx_trap(env, false);
362 if (cpu_has_work(cs)) {
363 /* Don't bother to go into our "low power state" if
364 * we would just wake up immediately.
366 return;
369 if (target_el) {
370 env->pc -= 4;
371 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
374 cs->exception_index = EXCP_HLT;
375 cs->halted = 1;
376 cpu_loop_exit(cs);
379 void QEMU_NORETURN HELPER(wfe)(CPUARMState *env)
381 /* This is a hint instruction that is semantically different
382 * from YIELD even though we currently implement it identically.
383 * Don't actually halt the CPU, just yield back to top
384 * level loop. This is not going into a "low power state"
385 * (ie halting until some event occurs), so we never take
386 * a configurable trap to a different exception level.
388 HELPER(yield)(env);
391 void QEMU_NORETURN HELPER(yield)(CPUARMState *env)
393 ARMCPU *cpu = arm_env_get_cpu(env);
394 CPUState *cs = CPU(cpu);
396 /* This is a non-trappable hint instruction that generally indicates
397 * that the guest is currently busy-looping. Yield control back to the
398 * top level loop so that a more deserving VCPU has a chance to run.
400 cs->exception_index = EXCP_YIELD;
401 cpu_loop_exit(cs);
404 /* Raise an internal-to-QEMU exception. This is limited to only
405 * those EXCP values which are special cases for QEMU to interrupt
406 * execution and not to be used for exceptions which are passed to
407 * the guest (those must all have syndrome information and thus should
408 * use exception_with_syndrome).
410 void QEMU_NORETURN HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
412 CPUState *cs = CPU(arm_env_get_cpu(env));
414 assert(excp_is_internal(excp));
415 cs->exception_index = excp;
416 cpu_loop_exit(cs);
419 /* Raise an exception with the specified syndrome register value */
420 void QEMU_NORETURN
421 HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
422 uint32_t syndrome, uint32_t target_el)
424 raise_exception(env, excp, syndrome, target_el);
427 uint32_t HELPER(cpsr_read)(CPUARMState *env)
429 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
432 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
434 cpsr_write(env, val, mask, CPSRWriteByInstr);
437 /* Write the CPSR for a 32-bit exception return */
438 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
440 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
443 /* Access to user mode registers from privileged modes. */
444 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
446 uint32_t val;
448 if (regno == 13) {
449 val = env->banked_r13[BANK_USRSYS];
450 } else if (regno == 14) {
451 val = env->banked_r14[BANK_USRSYS];
452 } else if (regno >= 8
453 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
454 val = env->usr_regs[regno - 8];
455 } else {
456 val = env->regs[regno];
458 return val;
461 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
463 if (regno == 13) {
464 env->banked_r13[BANK_USRSYS] = val;
465 } else if (regno == 14) {
466 env->banked_r14[BANK_USRSYS] = val;
467 } else if (regno >= 8
468 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
469 env->usr_regs[regno - 8] = val;
470 } else {
471 env->regs[regno] = val;
475 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
477 if ((env->uncached_cpsr & CPSR_M) == mode) {
478 env->regs[13] = val;
479 } else {
480 env->banked_r13[bank_number(mode)] = val;
484 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
486 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
487 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
488 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
490 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
491 exception_target_el(env));
494 if ((env->uncached_cpsr & CPSR_M) == mode) {
495 return env->regs[13];
496 } else {
497 return env->banked_r13[bank_number(mode)];
501 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
502 uint32_t regno)
504 /* Raise an exception if the requested access is one of the UNPREDICTABLE
505 * cases; otherwise return. This broadly corresponds to the pseudocode
506 * BankedRegisterAccessValid() and SPSRAccessValid(),
507 * except that we have already handled some cases at translate time.
509 int curmode = env->uncached_cpsr & CPSR_M;
511 if (curmode == tgtmode) {
512 goto undef;
515 if (tgtmode == ARM_CPU_MODE_USR) {
516 switch (regno) {
517 case 8 ... 12:
518 if (curmode != ARM_CPU_MODE_FIQ) {
519 goto undef;
521 break;
522 case 13:
523 if (curmode == ARM_CPU_MODE_SYS) {
524 goto undef;
526 break;
527 case 14:
528 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
529 goto undef;
531 break;
532 default:
533 break;
537 if (tgtmode == ARM_CPU_MODE_HYP) {
538 switch (regno) {
539 case 17: /* ELR_Hyp */
540 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
541 goto undef;
543 break;
544 default:
545 if (curmode != ARM_CPU_MODE_MON) {
546 goto undef;
548 break;
552 return;
554 undef:
555 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
556 exception_target_el(env));
559 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
560 uint32_t regno)
562 msr_mrs_banked_exc_checks(env, tgtmode, regno);
564 switch (regno) {
565 case 16: /* SPSRs */
566 env->banked_spsr[bank_number(tgtmode)] = value;
567 break;
568 case 17: /* ELR_Hyp */
569 env->elr_el[2] = value;
570 break;
571 case 13:
572 env->banked_r13[bank_number(tgtmode)] = value;
573 break;
574 case 14:
575 env->banked_r14[bank_number(tgtmode)] = value;
576 break;
577 case 8 ... 12:
578 switch (tgtmode) {
579 case ARM_CPU_MODE_USR:
580 env->usr_regs[regno - 8] = value;
581 break;
582 case ARM_CPU_MODE_FIQ:
583 env->fiq_regs[regno - 8] = value;
584 break;
585 default:
586 g_assert_not_reached();
588 break;
589 default:
590 g_assert_not_reached();
594 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
596 msr_mrs_banked_exc_checks(env, tgtmode, regno);
598 switch (regno) {
599 case 16: /* SPSRs */
600 return env->banked_spsr[bank_number(tgtmode)];
601 case 17: /* ELR_Hyp */
602 return env->elr_el[2];
603 case 13:
604 return env->banked_r13[bank_number(tgtmode)];
605 case 14:
606 return env->banked_r14[bank_number(tgtmode)];
607 case 8 ... 12:
608 switch (tgtmode) {
609 case ARM_CPU_MODE_USR:
610 return env->usr_regs[regno - 8];
611 case ARM_CPU_MODE_FIQ:
612 return env->fiq_regs[regno - 8];
613 default:
614 g_assert_not_reached();
616 default:
617 g_assert_not_reached();
621 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
622 uint32_t isread)
624 const ARMCPRegInfo *ri = rip;
625 int target_el;
627 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
628 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
629 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
632 if (!ri->accessfn) {
633 return;
636 switch (ri->accessfn(env, ri, isread)) {
637 case CP_ACCESS_OK:
638 return;
639 case CP_ACCESS_TRAP:
640 target_el = exception_target_el(env);
641 break;
642 case CP_ACCESS_TRAP_EL2:
643 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
644 * a bug in the access function.
646 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
647 target_el = 2;
648 break;
649 case CP_ACCESS_TRAP_EL3:
650 target_el = 3;
651 break;
652 case CP_ACCESS_TRAP_UNCATEGORIZED:
653 target_el = exception_target_el(env);
654 syndrome = syn_uncategorized();
655 break;
656 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
657 target_el = 2;
658 syndrome = syn_uncategorized();
659 break;
660 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
661 target_el = 3;
662 syndrome = syn_uncategorized();
663 break;
664 case CP_ACCESS_TRAP_FP_EL2:
665 target_el = 2;
666 /* Since we are an implementation that takes exceptions on a trapped
667 * conditional insn only if the insn has passed its condition code
668 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
669 * (which is also the required value for AArch64 traps).
671 syndrome = syn_fp_access_trap(1, 0xe, false);
672 break;
673 case CP_ACCESS_TRAP_FP_EL3:
674 target_el = 3;
675 syndrome = syn_fp_access_trap(1, 0xe, false);
676 break;
677 default:
678 g_assert_not_reached();
681 raise_exception(env, EXCP_UDEF, syndrome, target_el);
684 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
686 const ARMCPRegInfo *ri = rip;
688 ri->writefn(env, ri, value);
691 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
693 const ARMCPRegInfo *ri = rip;
695 return ri->readfn(env, ri);
698 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
700 const ARMCPRegInfo *ri = rip;
702 ri->writefn(env, ri, value);
705 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
707 const ARMCPRegInfo *ri = rip;
709 return ri->readfn(env, ri);
712 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
714 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
715 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
716 * to catch that case at translate time.
718 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
719 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
720 extract32(op, 3, 3), 4,
721 imm, 0x1f, 0);
722 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
725 switch (op) {
726 case 0x05: /* SPSel */
727 update_spsel(env, imm);
728 break;
729 case 0x1e: /* DAIFSet */
730 env->daif |= (imm << 6) & PSTATE_DAIF;
731 break;
732 case 0x1f: /* DAIFClear */
733 env->daif &= ~((imm << 6) & PSTATE_DAIF);
734 break;
735 default:
736 g_assert_not_reached();
740 void HELPER(clear_pstate_ss)(CPUARMState *env)
742 env->pstate &= ~PSTATE_SS;
745 void HELPER(pre_hvc)(CPUARMState *env)
747 ARMCPU *cpu = arm_env_get_cpu(env);
748 int cur_el = arm_current_el(env);
749 /* FIXME: Use actual secure state. */
750 bool secure = false;
751 bool undef;
753 if (arm_is_psci_call(cpu, EXCP_HVC)) {
754 /* If PSCI is enabled and this looks like a valid PSCI call then
755 * that overrides the architecturally mandated HVC behaviour.
757 return;
760 if (!arm_feature(env, ARM_FEATURE_EL2)) {
761 /* If EL2 doesn't exist, HVC always UNDEFs */
762 undef = true;
763 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
764 /* EL3.HCE has priority over EL2.HCD. */
765 undef = !(env->cp15.scr_el3 & SCR_HCE);
766 } else {
767 undef = env->cp15.hcr_el2 & HCR_HCD;
770 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
771 * For ARMv8/AArch64, HVC is allowed in EL3.
772 * Note that we've already trapped HVC from EL0 at translation
773 * time.
775 if (secure && (!is_a64(env) || cur_el == 1)) {
776 undef = true;
779 if (undef) {
780 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
781 exception_target_el(env));
785 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
787 ARMCPU *cpu = arm_env_get_cpu(env);
788 int cur_el = arm_current_el(env);
789 bool secure = arm_is_secure(env);
790 bool smd = env->cp15.scr_el3 & SCR_SMD;
791 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
792 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
793 * extensions, SMD only applies to NS state.
794 * On ARMv7 without the Virtualization extensions, the SMD bit
795 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
796 * so we need not special case this here.
798 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
800 if (arm_is_psci_call(cpu, EXCP_SMC)) {
801 /* If PSCI is enabled and this looks like a valid PSCI call then
802 * that overrides the architecturally mandated SMC behaviour.
804 return;
807 if (!arm_feature(env, ARM_FEATURE_EL3)) {
808 /* If we have no EL3 then SMC always UNDEFs */
809 undef = true;
810 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
811 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
812 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
815 if (undef) {
816 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
817 exception_target_el(env));
821 static int el_from_spsr(uint32_t spsr)
823 /* Return the exception level that this SPSR is requesting a return to,
824 * or -1 if it is invalid (an illegal return)
826 if (spsr & PSTATE_nRW) {
827 switch (spsr & CPSR_M) {
828 case ARM_CPU_MODE_USR:
829 return 0;
830 case ARM_CPU_MODE_HYP:
831 return 2;
832 case ARM_CPU_MODE_FIQ:
833 case ARM_CPU_MODE_IRQ:
834 case ARM_CPU_MODE_SVC:
835 case ARM_CPU_MODE_ABT:
836 case ARM_CPU_MODE_UND:
837 case ARM_CPU_MODE_SYS:
838 return 1;
839 case ARM_CPU_MODE_MON:
840 /* Returning to Mon from AArch64 is never possible,
841 * so this is an illegal return.
843 default:
844 return -1;
846 } else {
847 if (extract32(spsr, 1, 1)) {
848 /* Return with reserved M[1] bit set */
849 return -1;
851 if (extract32(spsr, 0, 4) == 1) {
852 /* return to EL0 with M[0] bit set */
853 return -1;
855 return extract32(spsr, 2, 2);
859 void HELPER(exception_return)(CPUARMState *env)
861 int cur_el = arm_current_el(env);
862 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
863 uint32_t spsr = env->banked_spsr[spsr_idx];
864 int new_el;
865 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
867 aarch64_save_sp(env, cur_el);
869 env->exclusive_addr = -1;
871 /* We must squash the PSTATE.SS bit to zero unless both of the
872 * following hold:
873 * 1. debug exceptions are currently disabled
874 * 2. singlestep will be active in the EL we return to
875 * We check 1 here and 2 after we've done the pstate/cpsr write() to
876 * transition to the EL we're going to.
878 if (arm_generate_debug_exceptions(env)) {
879 spsr &= ~PSTATE_SS;
882 new_el = el_from_spsr(spsr);
883 if (new_el == -1) {
884 goto illegal_return;
886 if (new_el > cur_el
887 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
888 /* Disallow return to an EL which is unimplemented or higher
889 * than the current one.
891 goto illegal_return;
894 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
895 /* Return to an EL which is configured for a different register width */
896 goto illegal_return;
899 if (new_el == 2 && arm_is_secure_below_el3(env)) {
900 /* Return to the non-existent secure-EL2 */
901 goto illegal_return;
904 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
905 && !arm_is_secure_below_el3(env)) {
906 goto illegal_return;
909 if (!return_to_aa64) {
910 env->aarch64 = 0;
911 /* We do a raw CPSR write because aarch64_sync_64_to_32()
912 * will sort the register banks out for us, and we've already
913 * caught all the bad-mode cases in el_from_spsr().
915 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
916 if (!arm_singlestep_active(env)) {
917 env->uncached_cpsr &= ~PSTATE_SS;
919 aarch64_sync_64_to_32(env);
921 if (spsr & CPSR_T) {
922 env->regs[15] = env->elr_el[cur_el] & ~0x1;
923 } else {
924 env->regs[15] = env->elr_el[cur_el] & ~0x3;
926 } else {
927 env->aarch64 = 1;
928 pstate_write(env, spsr);
929 if (!arm_singlestep_active(env)) {
930 env->pstate &= ~PSTATE_SS;
932 aarch64_restore_sp(env, new_el);
933 env->pc = env->elr_el[cur_el];
936 return;
938 illegal_return:
939 /* Illegal return events of various kinds have architecturally
940 * mandated behaviour:
941 * restore NZCV and DAIF from SPSR_ELx
942 * set PSTATE.IL
943 * restore PC from ELR_ELx
944 * no change to exception level, execution state or stack pointer
946 env->pstate |= PSTATE_IL;
947 env->pc = env->elr_el[cur_el];
948 spsr &= PSTATE_NZCV | PSTATE_DAIF;
949 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
950 pstate_write(env, spsr);
951 if (!arm_singlestep_active(env)) {
952 env->pstate &= ~PSTATE_SS;
956 /* Return true if the linked breakpoint entry lbn passes its checks */
957 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
959 CPUARMState *env = &cpu->env;
960 uint64_t bcr = env->cp15.dbgbcr[lbn];
961 int brps = extract32(cpu->dbgdidr, 24, 4);
962 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
963 int bt;
964 uint32_t contextidr;
966 /* Links to unimplemented or non-context aware breakpoints are
967 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
968 * as if linked to an UNKNOWN context-aware breakpoint (in which
969 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
970 * We choose the former.
972 if (lbn > brps || lbn < (brps - ctx_cmps)) {
973 return false;
976 bcr = env->cp15.dbgbcr[lbn];
978 if (extract64(bcr, 0, 1) == 0) {
979 /* Linked breakpoint disabled : generate no events */
980 return false;
983 bt = extract64(bcr, 20, 4);
985 /* We match the whole register even if this is AArch32 using the
986 * short descriptor format (in which case it holds both PROCID and ASID),
987 * since we don't implement the optional v7 context ID masking.
989 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
991 switch (bt) {
992 case 3: /* linked context ID match */
993 if (arm_current_el(env) > 1) {
994 /* Context matches never fire in EL2 or (AArch64) EL3 */
995 return false;
997 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
998 case 5: /* linked address mismatch (reserved in AArch64) */
999 case 9: /* linked VMID match (reserved if no EL2) */
1000 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1001 default:
1002 /* Links to Unlinked context breakpoints must generate no
1003 * events; we choose to do the same for reserved values too.
1005 return false;
1008 return false;
1011 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1013 CPUARMState *env = &cpu->env;
1014 uint64_t cr;
1015 int pac, hmc, ssc, wt, lbn;
1016 /* Note that for watchpoints the check is against the CPU security
1017 * state, not the S/NS attribute on the offending data access.
1019 bool is_secure = arm_is_secure(env);
1020 int access_el = arm_current_el(env);
1022 if (is_wp) {
1023 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1025 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1026 return false;
1028 cr = env->cp15.dbgwcr[n];
1029 if (wp->hitattrs.user) {
1030 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1031 * match watchpoints as if they were accesses done at EL0, even if
1032 * the CPU is at EL1 or higher.
1034 access_el = 0;
1036 } else {
1037 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1039 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1040 return false;
1042 cr = env->cp15.dbgbcr[n];
1044 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1045 * enabled and that the address and access type match; for breakpoints
1046 * we know the address matched; check the remaining fields, including
1047 * linked breakpoints. We rely on WCR and BCR having the same layout
1048 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1049 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1050 * must act either like some valid combination or as if the watchpoint
1051 * were disabled. We choose the former, and use this together with
1052 * the fact that EL3 must always be Secure and EL2 must always be
1053 * Non-Secure to simplify the code slightly compared to the full
1054 * table in the ARM ARM.
1056 pac = extract64(cr, 1, 2);
1057 hmc = extract64(cr, 13, 1);
1058 ssc = extract64(cr, 14, 2);
1060 switch (ssc) {
1061 case 0:
1062 break;
1063 case 1:
1064 case 3:
1065 if (is_secure) {
1066 return false;
1068 break;
1069 case 2:
1070 if (!is_secure) {
1071 return false;
1073 break;
1076 switch (access_el) {
1077 case 3:
1078 case 2:
1079 if (!hmc) {
1080 return false;
1082 break;
1083 case 1:
1084 if (extract32(pac, 0, 1) == 0) {
1085 return false;
1087 break;
1088 case 0:
1089 if (extract32(pac, 1, 1) == 0) {
1090 return false;
1092 break;
1093 default:
1094 g_assert_not_reached();
1097 wt = extract64(cr, 20, 1);
1098 lbn = extract64(cr, 16, 4);
1100 if (wt && !linked_bp_matches(cpu, lbn)) {
1101 return false;
1104 return true;
1107 static bool check_watchpoints(ARMCPU *cpu)
1109 CPUARMState *env = &cpu->env;
1110 int n;
1112 /* If watchpoints are disabled globally or we can't take debug
1113 * exceptions here then watchpoint firings are ignored.
1115 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1116 || !arm_generate_debug_exceptions(env)) {
1117 return false;
1120 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1121 if (bp_wp_matches(cpu, n, true)) {
1122 return true;
1125 return false;
1128 static bool check_breakpoints(ARMCPU *cpu)
1130 CPUARMState *env = &cpu->env;
1131 int n;
1133 /* If breakpoints are disabled globally or we can't take debug
1134 * exceptions here then breakpoint firings are ignored.
1136 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1137 || !arm_generate_debug_exceptions(env)) {
1138 return false;
1141 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1142 if (bp_wp_matches(cpu, n, false)) {
1143 return true;
1146 return false;
1149 void HELPER(check_breakpoints)(CPUARMState *env)
1151 ARMCPU *cpu = arm_env_get_cpu(env);
1153 if (check_breakpoints(cpu)) {
1154 HELPER(exception_internal(env, EXCP_DEBUG));
1158 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1160 /* Called by core code when a CPU watchpoint fires; need to check if this
1161 * is also an architectural watchpoint match.
1163 ARMCPU *cpu = ARM_CPU(cs);
1165 return check_watchpoints(cpu);
1168 void arm_debug_excp_handler(CPUState *cs)
1170 /* Called by core code when a watchpoint or breakpoint fires;
1171 * need to check which one and raise the appropriate exception.
1173 ARMCPU *cpu = ARM_CPU(cs);
1174 CPUARMState *env = &cpu->env;
1175 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1177 if (wp_hit) {
1178 if (wp_hit->flags & BP_CPU) {
1179 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1180 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1182 cs->watchpoint_hit = NULL;
1184 if (extended_addresses_enabled(env)) {
1185 env->exception.fsr = (1 << 9) | 0x22;
1186 } else {
1187 env->exception.fsr = 0x2;
1189 env->exception.vaddress = wp_hit->hitaddr;
1190 raise_exception(env, EXCP_DATA_ABORT,
1191 syn_watchpoint(same_el, 0, wnr),
1192 arm_debug_target_el(env));
1194 } else {
1195 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1196 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1198 /* (1) GDB breakpoints should be handled first.
1199 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1200 * since singlestep is also done by generating a debug internal
1201 * exception.
1203 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1204 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1205 return;
1208 if (extended_addresses_enabled(env)) {
1209 env->exception.fsr = (1 << 9) | 0x22;
1210 } else {
1211 env->exception.fsr = 0x2;
1213 /* FAR is UNKNOWN, so doesn't need setting */
1214 raise_exception(env, EXCP_PREFETCH_ABORT,
1215 syn_breakpoint(same_el),
1216 arm_debug_target_el(env));
1220 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1221 The only way to do that in TCG is a conditional branch, which clobbers
1222 all our temporaries. For now implement these as helper functions. */
1224 /* Similarly for variable shift instructions. */
1226 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1228 int shift = i & 0xff;
1229 if (shift >= 32) {
1230 if (shift == 32)
1231 env->CF = x & 1;
1232 else
1233 env->CF = 0;
1234 return 0;
1235 } else if (shift != 0) {
1236 env->CF = (x >> (32 - shift)) & 1;
1237 return x << shift;
1239 return x;
1242 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1244 int shift = i & 0xff;
1245 if (shift >= 32) {
1246 if (shift == 32)
1247 env->CF = (x >> 31) & 1;
1248 else
1249 env->CF = 0;
1250 return 0;
1251 } else if (shift != 0) {
1252 env->CF = (x >> (shift - 1)) & 1;
1253 return x >> shift;
1255 return x;
1258 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1260 int shift = i & 0xff;
1261 if (shift >= 32) {
1262 env->CF = (x >> 31) & 1;
1263 return (int32_t)x >> 31;
1264 } else if (shift != 0) {
1265 env->CF = (x >> (shift - 1)) & 1;
1266 return (int32_t)x >> shift;
1268 return x;
1271 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1273 int shift1, shift;
1274 shift1 = i & 0xff;
1275 shift = shift1 & 0x1f;
1276 if (shift == 0) {
1277 if (shift1 != 0)
1278 env->CF = (x >> 31) & 1;
1279 return x;
1280 } else {
1281 env->CF = (x >> (shift - 1)) & 1;
1282 return ((uint32_t)x >> shift) | (x << (32 - shift));