exec/memory: Use struct Object typedef
[qemu/ar7.git] / hw / ssi / aspeed_smc.c
blob16addee4dc8dcc8d31a0b6a8cd52ce49ef39d99c
1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
4 * Copyright (C) 2016 IBM Corp.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/units.h"
34 #include "trace.h"
36 #include "hw/irq.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/ssi/aspeed_smc.h"
40 /* CE Type Setting Register */
41 #define R_CONF (0x00 / 4)
42 #define CONF_LEGACY_DISABLE (1 << 31)
43 #define CONF_ENABLE_W4 20
44 #define CONF_ENABLE_W3 19
45 #define CONF_ENABLE_W2 18
46 #define CONF_ENABLE_W1 17
47 #define CONF_ENABLE_W0 16
48 #define CONF_FLASH_TYPE4 8
49 #define CONF_FLASH_TYPE3 6
50 #define CONF_FLASH_TYPE2 4
51 #define CONF_FLASH_TYPE1 2
52 #define CONF_FLASH_TYPE0 0
53 #define CONF_FLASH_TYPE_NOR 0x0
54 #define CONF_FLASH_TYPE_NAND 0x1
55 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
57 /* CE Control Register */
58 #define R_CE_CTRL (0x04 / 4)
59 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
62 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
63 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
65 /* Interrupt Control and Status Register */
66 #define R_INTR_CTRL (0x08 / 4)
67 #define INTR_CTRL_DMA_STATUS (1 << 11)
68 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
69 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
70 #define INTR_CTRL_DMA_EN (1 << 3)
71 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
72 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
74 /* Command Control Register */
75 #define R_CE_CMD_CTRL (0x0C / 4)
76 #define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4
77 #define CTRL_DATA_BYTE0_DISABLE_SHIFT 0
79 #define aspeed_smc_addr_byte_enabled(s, i) \
80 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
81 #define aspeed_smc_data_byte_enabled(s, i) \
82 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
84 /* CEx Control Register */
85 #define R_CTRL0 (0x10 / 4)
86 #define CTRL_IO_QPI (1 << 31)
87 #define CTRL_IO_QUAD_DATA (1 << 30)
88 #define CTRL_IO_DUAL_DATA (1 << 29)
89 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
90 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
91 #define CTRL_CMD_SHIFT 16
92 #define CTRL_CMD_MASK 0xff
93 #define CTRL_DUMMY_HIGH_SHIFT 14
94 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
95 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
96 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
97 #define CE_CTRL_CLOCK_FREQ(div) \
98 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
99 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
100 #define CTRL_CE_STOP_ACTIVE (1 << 2)
101 #define CTRL_CMD_MODE_MASK 0x3
102 #define CTRL_READMODE 0x0
103 #define CTRL_FREADMODE 0x1
104 #define CTRL_WRITEMODE 0x2
105 #define CTRL_USERMODE 0x3
106 #define R_CTRL1 (0x14 / 4)
107 #define R_CTRL2 (0x18 / 4)
108 #define R_CTRL3 (0x1C / 4)
109 #define R_CTRL4 (0x20 / 4)
111 /* CEx Segment Address Register */
112 #define R_SEG_ADDR0 (0x30 / 4)
113 #define SEG_END_SHIFT 24 /* 8MB units */
114 #define SEG_END_MASK 0xff
115 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
116 #define SEG_START_MASK 0xff
117 #define R_SEG_ADDR1 (0x34 / 4)
118 #define R_SEG_ADDR2 (0x38 / 4)
119 #define R_SEG_ADDR3 (0x3C / 4)
120 #define R_SEG_ADDR4 (0x40 / 4)
122 /* Misc Control Register #1 */
123 #define R_MISC_CTRL1 (0x50 / 4)
125 /* SPI dummy cycle data */
126 #define R_DUMMY_DATA (0x54 / 4)
128 /* DMA Control/Status Register */
129 #define R_DMA_CTRL (0x80 / 4)
130 #define DMA_CTRL_DELAY_MASK 0xf
131 #define DMA_CTRL_DELAY_SHIFT 8
132 #define DMA_CTRL_FREQ_MASK 0xf
133 #define DMA_CTRL_FREQ_SHIFT 4
134 #define DMA_CTRL_CALIB (1 << 3)
135 #define DMA_CTRL_CKSUM (1 << 2)
136 #define DMA_CTRL_WRITE (1 << 1)
137 #define DMA_CTRL_ENABLE (1 << 0)
139 /* DMA Flash Side Address */
140 #define R_DMA_FLASH_ADDR (0x84 / 4)
142 /* DMA DRAM Side Address */
143 #define R_DMA_DRAM_ADDR (0x88 / 4)
145 /* DMA Length Register */
146 #define R_DMA_LEN (0x8C / 4)
148 /* Checksum Calculation Result */
149 #define R_DMA_CHECKSUM (0x90 / 4)
151 /* Read Timing Compensation Register */
152 #define R_TIMINGS (0x94 / 4)
154 /* SPI controller registers and bits (AST2400) */
155 #define R_SPI_CONF (0x00 / 4)
156 #define SPI_CONF_ENABLE_W0 0
157 #define R_SPI_CTRL0 (0x4 / 4)
158 #define R_SPI_MISC_CTRL (0x10 / 4)
159 #define R_SPI_TIMINGS (0x14 / 4)
161 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
162 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
164 #define ASPEED_SOC_SMC_FLASH_BASE 0x10000000
165 #define ASPEED_SOC_FMC_FLASH_BASE 0x20000000
166 #define ASPEED_SOC_SPI_FLASH_BASE 0x30000000
167 #define ASPEED_SOC_SPI2_FLASH_BASE 0x38000000
170 * DMA DRAM addresses should be 4 bytes aligned and the valid address
171 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
172 * 0x80000000 - 0xBFFFFFFF (AST2500)
174 * DMA flash addresses should be 4 bytes aligned and the valid address
175 * range is 0x20000000 - 0x2FFFFFFF.
177 * DMA length is from 4 bytes to 32MB
178 * 0: 4 bytes
179 * 0x7FFFFF: 32M bytes
181 #define DMA_DRAM_ADDR(s, val) ((s)->sdram_base | \
182 ((val) & (s)->ctrl->dma_dram_mask))
183 #define DMA_FLASH_ADDR(s, val) ((s)->ctrl->flash_window_base | \
184 ((val) & (s)->ctrl->dma_flash_mask))
185 #define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
187 /* Flash opcodes. */
188 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
190 #define SNOOP_OFF 0xFF
191 #define SNOOP_START 0x0
194 * Default segments mapping addresses and size for each peripheral per
195 * controller. These can be changed when board is initialized with the
196 * Segment Address Registers.
198 static const AspeedSegments aspeed_segments_legacy[] = {
199 { 0x10000000, 32 * 1024 * 1024 },
202 static const AspeedSegments aspeed_segments_fmc[] = {
203 { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
204 { 0x24000000, 32 * 1024 * 1024 },
205 { 0x26000000, 32 * 1024 * 1024 },
206 { 0x28000000, 32 * 1024 * 1024 },
207 { 0x2A000000, 32 * 1024 * 1024 }
210 static const AspeedSegments aspeed_segments_spi[] = {
211 { 0x30000000, 64 * 1024 * 1024 },
214 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
215 { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
216 { 0x28000000, 32 * 1024 * 1024 },
217 { 0x2A000000, 32 * 1024 * 1024 },
220 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
221 { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
222 { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
225 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
226 { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
227 { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
229 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
230 const AspeedSegments *seg);
231 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
232 AspeedSegments *seg);
235 * AST2600 definitions
237 #define ASPEED26_SOC_FMC_FLASH_BASE 0x20000000
238 #define ASPEED26_SOC_SPI_FLASH_BASE 0x30000000
239 #define ASPEED26_SOC_SPI2_FLASH_BASE 0x50000000
241 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
242 { 0x0, 128 * MiB }, /* start address is readonly */
243 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
244 { 0x0, 0 }, /* disabled */
247 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
248 { 0x0, 128 * MiB }, /* start address is readonly */
249 { 0x0, 0 }, /* disabled */
252 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
253 { 0x0, 128 * MiB }, /* start address is readonly */
254 { 0x0, 0 }, /* disabled */
255 { 0x0, 0 }, /* disabled */
258 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
259 const AspeedSegments *seg);
260 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
261 uint32_t reg, AspeedSegments *seg);
263 static const AspeedSMCController controllers[] = {
265 .name = "aspeed.smc-ast2400",
266 .r_conf = R_CONF,
267 .r_ce_ctrl = R_CE_CTRL,
268 .r_ctrl0 = R_CTRL0,
269 .r_timings = R_TIMINGS,
270 .nregs_timings = 1,
271 .conf_enable_w0 = CONF_ENABLE_W0,
272 .max_peripherals = 1,
273 .segments = aspeed_segments_legacy,
274 .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
275 .flash_window_size = 0x6000000,
276 .has_dma = false,
277 .nregs = ASPEED_SMC_R_SMC_MAX,
278 .segment_to_reg = aspeed_smc_segment_to_reg,
279 .reg_to_segment = aspeed_smc_reg_to_segment,
280 }, {
281 .name = "aspeed.fmc-ast2400",
282 .r_conf = R_CONF,
283 .r_ce_ctrl = R_CE_CTRL,
284 .r_ctrl0 = R_CTRL0,
285 .r_timings = R_TIMINGS,
286 .nregs_timings = 1,
287 .conf_enable_w0 = CONF_ENABLE_W0,
288 .max_peripherals = 5,
289 .segments = aspeed_segments_fmc,
290 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
291 .flash_window_size = 0x10000000,
292 .has_dma = true,
293 .dma_flash_mask = 0x0FFFFFFC,
294 .dma_dram_mask = 0x1FFFFFFC,
295 .nregs = ASPEED_SMC_R_MAX,
296 .segment_to_reg = aspeed_smc_segment_to_reg,
297 .reg_to_segment = aspeed_smc_reg_to_segment,
298 }, {
299 .name = "aspeed.spi1-ast2400",
300 .r_conf = R_SPI_CONF,
301 .r_ce_ctrl = 0xff,
302 .r_ctrl0 = R_SPI_CTRL0,
303 .r_timings = R_SPI_TIMINGS,
304 .nregs_timings = 1,
305 .conf_enable_w0 = SPI_CONF_ENABLE_W0,
306 .max_peripherals = 1,
307 .segments = aspeed_segments_spi,
308 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
309 .flash_window_size = 0x10000000,
310 .has_dma = false,
311 .nregs = ASPEED_SMC_R_SPI_MAX,
312 .segment_to_reg = aspeed_smc_segment_to_reg,
313 .reg_to_segment = aspeed_smc_reg_to_segment,
314 }, {
315 .name = "aspeed.fmc-ast2500",
316 .r_conf = R_CONF,
317 .r_ce_ctrl = R_CE_CTRL,
318 .r_ctrl0 = R_CTRL0,
319 .r_timings = R_TIMINGS,
320 .nregs_timings = 1,
321 .conf_enable_w0 = CONF_ENABLE_W0,
322 .max_peripherals = 3,
323 .segments = aspeed_segments_ast2500_fmc,
324 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
325 .flash_window_size = 0x10000000,
326 .has_dma = true,
327 .dma_flash_mask = 0x0FFFFFFC,
328 .dma_dram_mask = 0x3FFFFFFC,
329 .nregs = ASPEED_SMC_R_MAX,
330 .segment_to_reg = aspeed_smc_segment_to_reg,
331 .reg_to_segment = aspeed_smc_reg_to_segment,
332 }, {
333 .name = "aspeed.spi1-ast2500",
334 .r_conf = R_CONF,
335 .r_ce_ctrl = R_CE_CTRL,
336 .r_ctrl0 = R_CTRL0,
337 .r_timings = R_TIMINGS,
338 .nregs_timings = 1,
339 .conf_enable_w0 = CONF_ENABLE_W0,
340 .max_peripherals = 2,
341 .segments = aspeed_segments_ast2500_spi1,
342 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
343 .flash_window_size = 0x8000000,
344 .has_dma = false,
345 .nregs = ASPEED_SMC_R_MAX,
346 .segment_to_reg = aspeed_smc_segment_to_reg,
347 .reg_to_segment = aspeed_smc_reg_to_segment,
348 }, {
349 .name = "aspeed.spi2-ast2500",
350 .r_conf = R_CONF,
351 .r_ce_ctrl = R_CE_CTRL,
352 .r_ctrl0 = R_CTRL0,
353 .r_timings = R_TIMINGS,
354 .nregs_timings = 1,
355 .conf_enable_w0 = CONF_ENABLE_W0,
356 .max_peripherals = 2,
357 .segments = aspeed_segments_ast2500_spi2,
358 .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
359 .flash_window_size = 0x8000000,
360 .has_dma = false,
361 .nregs = ASPEED_SMC_R_MAX,
362 .segment_to_reg = aspeed_smc_segment_to_reg,
363 .reg_to_segment = aspeed_smc_reg_to_segment,
364 }, {
365 .name = "aspeed.fmc-ast2600",
366 .r_conf = R_CONF,
367 .r_ce_ctrl = R_CE_CTRL,
368 .r_ctrl0 = R_CTRL0,
369 .r_timings = R_TIMINGS,
370 .nregs_timings = 1,
371 .conf_enable_w0 = CONF_ENABLE_W0,
372 .max_peripherals = 3,
373 .segments = aspeed_segments_ast2600_fmc,
374 .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
375 .flash_window_size = 0x10000000,
376 .has_dma = true,
377 .dma_flash_mask = 0x0FFFFFFC,
378 .dma_dram_mask = 0x3FFFFFFC,
379 .nregs = ASPEED_SMC_R_MAX,
380 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
381 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
382 }, {
383 .name = "aspeed.spi1-ast2600",
384 .r_conf = R_CONF,
385 .r_ce_ctrl = R_CE_CTRL,
386 .r_ctrl0 = R_CTRL0,
387 .r_timings = R_TIMINGS,
388 .nregs_timings = 2,
389 .conf_enable_w0 = CONF_ENABLE_W0,
390 .max_peripherals = 2,
391 .segments = aspeed_segments_ast2600_spi1,
392 .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
393 .flash_window_size = 0x10000000,
394 .has_dma = true,
395 .dma_flash_mask = 0x0FFFFFFC,
396 .dma_dram_mask = 0x3FFFFFFC,
397 .nregs = ASPEED_SMC_R_MAX,
398 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
399 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
400 }, {
401 .name = "aspeed.spi2-ast2600",
402 .r_conf = R_CONF,
403 .r_ce_ctrl = R_CE_CTRL,
404 .r_ctrl0 = R_CTRL0,
405 .r_timings = R_TIMINGS,
406 .nregs_timings = 3,
407 .conf_enable_w0 = CONF_ENABLE_W0,
408 .max_peripherals = 3,
409 .segments = aspeed_segments_ast2600_spi2,
410 .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
411 .flash_window_size = 0x10000000,
412 .has_dma = true,
413 .dma_flash_mask = 0x0FFFFFFC,
414 .dma_dram_mask = 0x3FFFFFFC,
415 .nregs = ASPEED_SMC_R_MAX,
416 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
417 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
422 * The Segment Registers of the AST2400 and AST2500 have a 8MB
423 * unit. The address range of a flash SPI peripheral is encoded with
424 * absolute addresses which should be part of the overall controller
425 * window.
427 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
428 const AspeedSegments *seg)
430 uint32_t reg = 0;
431 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
432 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
433 return reg;
436 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
437 uint32_t reg, AspeedSegments *seg)
439 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
440 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
444 * The Segment Registers of the AST2600 have a 1MB unit. The address
445 * range of a flash SPI peripheral is encoded with offsets in the overall
446 * controller window. The previous SoC AST2400 and AST2500 used
447 * absolute addresses. Only bits [27:20] are relevant and the end
448 * address is an upper bound limit.
450 #define AST2600_SEG_ADDR_MASK 0x0ff00000
452 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
453 const AspeedSegments *seg)
455 uint32_t reg = 0;
457 /* Disabled segments have a nil register */
458 if (!seg->size) {
459 return 0;
462 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
463 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
464 return reg;
467 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
468 uint32_t reg, AspeedSegments *seg)
470 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
471 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
473 if (reg) {
474 seg->addr = s->ctrl->flash_window_base + start_offset;
475 seg->size = end_offset + MiB - start_offset;
476 } else {
477 seg->addr = s->ctrl->flash_window_base;
478 seg->size = 0;
482 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
483 const AspeedSegments *new,
484 int cs)
486 AspeedSegments seg;
487 int i;
489 for (i = 0; i < s->ctrl->max_peripherals; i++) {
490 if (i == cs) {
491 continue;
494 s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
496 if (new->addr + new->size > seg.addr &&
497 new->addr < seg.addr + seg.size) {
498 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
499 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
500 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
501 s->ctrl->name, cs, new->addr, new->addr + new->size,
502 i, seg.addr, seg.addr + seg.size);
503 return true;
506 return false;
509 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
510 uint64_t regval)
512 AspeedSMCFlash *fl = &s->flashes[cs];
513 AspeedSegments seg;
515 s->ctrl->reg_to_segment(s, regval, &seg);
517 memory_region_transaction_begin();
518 memory_region_set_size(&fl->mmio, seg.size);
519 memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
520 memory_region_set_enabled(&fl->mmio, !!seg.size);
521 memory_region_transaction_commit();
523 s->regs[R_SEG_ADDR0 + cs] = regval;
526 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
527 uint64_t new)
529 AspeedSegments seg;
531 s->ctrl->reg_to_segment(s, new, &seg);
533 trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
535 /* The start address of CS0 is read-only */
536 if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
537 qemu_log_mask(LOG_GUEST_ERROR,
538 "%s: Tried to change CS0 start address to 0x%"
539 HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
540 seg.addr = s->ctrl->flash_window_base;
541 new = s->ctrl->segment_to_reg(s, &seg);
545 * The end address of the AST2500 spi controllers is also
546 * read-only.
548 if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
549 s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
550 cs == s->ctrl->max_peripherals &&
551 seg.addr + seg.size != s->ctrl->segments[cs].addr +
552 s->ctrl->segments[cs].size) {
553 qemu_log_mask(LOG_GUEST_ERROR,
554 "%s: Tried to change CS%d end address to 0x%"
555 HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
556 seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
557 seg.addr;
558 new = s->ctrl->segment_to_reg(s, &seg);
561 /* Keep the segment in the overall flash window */
562 if (seg.size &&
563 (seg.addr + seg.size <= s->ctrl->flash_window_base ||
564 seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size)) {
565 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
566 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
567 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
568 return;
571 /* Check start address vs. alignment */
572 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
573 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
574 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
575 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
578 /* And segments should not overlap (in the specs) */
579 aspeed_smc_flash_overlap(s, &seg, cs);
581 /* All should be fine now to move the region */
582 aspeed_smc_flash_set_segment_region(s, cs, new);
585 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
586 unsigned size)
588 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
589 PRIx64 "\n", __func__, addr, size);
590 return 0;
593 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
594 uint64_t data, unsigned size)
596 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
597 PRIx64 "\n", __func__, addr, size, data);
600 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
601 .read = aspeed_smc_flash_default_read,
602 .write = aspeed_smc_flash_default_write,
603 .endianness = DEVICE_LITTLE_ENDIAN,
604 .valid = {
605 .min_access_size = 1,
606 .max_access_size = 4,
610 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
612 const AspeedSMCState *s = fl->controller;
614 return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
617 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
619 const AspeedSMCState *s = fl->controller;
621 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
624 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
626 const AspeedSMCState *s = fl->controller;
627 int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
630 * In read mode, the default SPI command is READ (0x3). In other
631 * modes, the command should necessarily be defined
633 * TODO: add support for READ4 (0x13) on AST2600
635 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
636 cmd = SPI_OP_READ;
639 if (!cmd) {
640 qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
641 __func__, aspeed_smc_flash_mode(fl));
644 return cmd;
647 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
649 const AspeedSMCState *s = fl->controller;
651 if (s->ctrl->segments == aspeed_segments_spi) {
652 return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
653 } else {
654 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
658 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
660 AspeedSMCState *s = fl->controller;
662 trace_aspeed_smc_flash_select(fl->id, unselect ? "un" : "");
664 qemu_set_irq(s->cs_lines[fl->id], unselect);
667 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
669 aspeed_smc_flash_do_select(fl, false);
672 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
674 aspeed_smc_flash_do_select(fl, true);
677 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
678 uint32_t addr)
680 const AspeedSMCState *s = fl->controller;
681 AspeedSegments seg;
683 s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
684 if ((addr % seg.size) != addr) {
685 qemu_log_mask(LOG_GUEST_ERROR,
686 "%s: invalid address 0x%08x for CS%d segment : "
687 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
688 s->ctrl->name, addr, fl->id, seg.addr,
689 seg.addr + seg.size);
690 addr %= seg.size;
693 return addr;
696 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
698 const AspeedSMCState *s = fl->controller;
699 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
700 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
701 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
702 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
704 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
705 dummies /= 2;
708 return dummies;
711 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
713 const AspeedSMCState *s = fl->controller;
714 uint8_t cmd = aspeed_smc_flash_cmd(fl);
715 int i = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
717 /* Flash access can not exceed CS segment */
718 addr = aspeed_smc_check_segment_addr(fl, addr);
720 ssi_transfer(s->spi, cmd);
721 while (i--) {
722 if (aspeed_smc_addr_byte_enabled(s, i)) {
723 ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
728 * Use fake transfers to model dummy bytes. The value should
729 * be configured to some non-zero value in fast read mode and
730 * zero in read mode. But, as the HW allows inconsistent
731 * settings, let's check for fast read mode.
733 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
734 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
735 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
740 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
742 AspeedSMCFlash *fl = opaque;
743 AspeedSMCState *s = fl->controller;
744 uint64_t ret = 0;
745 int i;
747 switch (aspeed_smc_flash_mode(fl)) {
748 case CTRL_USERMODE:
749 for (i = 0; i < size; i++) {
750 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
752 break;
753 case CTRL_READMODE:
754 case CTRL_FREADMODE:
755 aspeed_smc_flash_select(fl);
756 aspeed_smc_flash_setup(fl, addr);
758 for (i = 0; i < size; i++) {
759 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
762 aspeed_smc_flash_unselect(fl);
763 break;
764 default:
765 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
766 __func__, aspeed_smc_flash_mode(fl));
769 trace_aspeed_smc_flash_read(fl->id, addr, size, ret,
770 aspeed_smc_flash_mode(fl));
771 return ret;
775 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
776 * common include header.
778 typedef enum {
779 READ = 0x3, READ_4 = 0x13,
780 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
781 DOR = 0x3b, DOR_4 = 0x3c,
782 QOR = 0x6b, QOR_4 = 0x6c,
783 DIOR = 0xbb, DIOR_4 = 0xbc,
784 QIOR = 0xeb, QIOR_4 = 0xec,
786 PP = 0x2, PP_4 = 0x12,
787 DPP = 0xa2,
788 QPP = 0x32, QPP_4 = 0x34,
789 } FlashCMD;
791 static int aspeed_smc_num_dummies(uint8_t command)
793 switch (command) { /* check for dummies */
794 case READ: /* no dummy bytes/cycles */
795 case PP:
796 case DPP:
797 case QPP:
798 case READ_4:
799 case PP_4:
800 case QPP_4:
801 return 0;
802 case FAST_READ:
803 case DOR:
804 case QOR:
805 case FAST_READ_4:
806 case DOR_4:
807 case QOR_4:
808 return 1;
809 case DIOR:
810 case DIOR_4:
811 return 2;
812 case QIOR:
813 case QIOR_4:
814 return 4;
815 default:
816 return -1;
820 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
821 unsigned size)
823 AspeedSMCState *s = fl->controller;
824 uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
826 trace_aspeed_smc_do_snoop(fl->id, s->snoop_index, s->snoop_dummies,
827 (uint8_t) data & 0xff);
829 if (s->snoop_index == SNOOP_OFF) {
830 return false; /* Do nothing */
832 } else if (s->snoop_index == SNOOP_START) {
833 uint8_t cmd = data & 0xff;
834 int ndummies = aspeed_smc_num_dummies(cmd);
837 * No dummy cycles are expected with the current command. Turn
838 * off snooping and let the transfer proceed normally.
840 if (ndummies <= 0) {
841 s->snoop_index = SNOOP_OFF;
842 return false;
845 s->snoop_dummies = ndummies * 8;
847 } else if (s->snoop_index >= addr_width + 1) {
849 /* The SPI transfer has reached the dummy cycles sequence */
850 for (; s->snoop_dummies; s->snoop_dummies--) {
851 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
854 /* If no more dummy cycles are expected, turn off snooping */
855 if (!s->snoop_dummies) {
856 s->snoop_index = SNOOP_OFF;
857 } else {
858 s->snoop_index += size;
862 * Dummy cycles have been faked already. Ignore the current
863 * SPI transfer
865 return true;
868 s->snoop_index += size;
869 return false;
872 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
873 unsigned size)
875 AspeedSMCFlash *fl = opaque;
876 AspeedSMCState *s = fl->controller;
877 int i;
879 trace_aspeed_smc_flash_write(fl->id, addr, size, data,
880 aspeed_smc_flash_mode(fl));
882 if (!aspeed_smc_is_writable(fl)) {
883 qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
884 HWADDR_PRIx "\n", __func__, addr);
885 return;
888 switch (aspeed_smc_flash_mode(fl)) {
889 case CTRL_USERMODE:
890 if (aspeed_smc_do_snoop(fl, data, size)) {
891 break;
894 for (i = 0; i < size; i++) {
895 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
897 break;
898 case CTRL_WRITEMODE:
899 aspeed_smc_flash_select(fl);
900 aspeed_smc_flash_setup(fl, addr);
902 for (i = 0; i < size; i++) {
903 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
906 aspeed_smc_flash_unselect(fl);
907 break;
908 default:
909 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
910 __func__, aspeed_smc_flash_mode(fl));
914 static const MemoryRegionOps aspeed_smc_flash_ops = {
915 .read = aspeed_smc_flash_read,
916 .write = aspeed_smc_flash_write,
917 .endianness = DEVICE_LITTLE_ENDIAN,
918 .valid = {
919 .min_access_size = 1,
920 .max_access_size = 4,
924 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
926 AspeedSMCState *s = fl->controller;
927 bool unselect;
929 /* User mode selects the CS, other modes unselect */
930 unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
932 /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
933 if (!(s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE) &&
934 value & CTRL_CE_STOP_ACTIVE) {
935 unselect = true;
938 s->regs[s->r_ctrl0 + fl->id] = value;
940 s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
942 aspeed_smc_flash_do_select(fl, unselect);
945 static void aspeed_smc_reset(DeviceState *d)
947 AspeedSMCState *s = ASPEED_SMC(d);
948 int i;
950 memset(s->regs, 0, sizeof s->regs);
952 /* Unselect all peripherals */
953 for (i = 0; i < s->num_cs; ++i) {
954 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
955 qemu_set_irq(s->cs_lines[i], true);
958 /* setup the default segment register values and regions for all */
959 for (i = 0; i < s->ctrl->max_peripherals; ++i) {
960 aspeed_smc_flash_set_segment_region(s, i,
961 s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]));
964 /* HW strapping flash type for the AST2600 controllers */
965 if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
966 /* flash type is fixed to SPI for all */
967 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
968 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
969 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
972 /* HW strapping flash type for FMC controllers */
973 if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
974 /* flash type is fixed to SPI for CE0 and CE1 */
975 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
976 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
979 /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
980 * configuration of the palmetto-bmc machine */
981 if (s->ctrl->segments == aspeed_segments_fmc) {
982 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
985 s->snoop_index = SNOOP_OFF;
986 s->snoop_dummies = 0;
989 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
991 AspeedSMCState *s = ASPEED_SMC(opaque);
993 addr >>= 2;
995 if (addr == s->r_conf ||
996 (addr >= s->r_timings &&
997 addr < s->r_timings + s->ctrl->nregs_timings) ||
998 addr == s->r_ce_ctrl ||
999 addr == R_CE_CMD_CTRL ||
1000 addr == R_INTR_CTRL ||
1001 addr == R_DUMMY_DATA ||
1002 (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
1003 (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
1004 (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
1005 (s->ctrl->has_dma && addr == R_DMA_LEN) ||
1006 (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
1007 (addr >= R_SEG_ADDR0 &&
1008 addr < R_SEG_ADDR0 + s->ctrl->max_peripherals) ||
1009 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_peripherals)) {
1011 trace_aspeed_smc_read(addr, size, s->regs[addr]);
1013 return s->regs[addr];
1014 } else {
1015 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1016 __func__, addr);
1017 return -1;
1021 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
1023 /* HCLK/1 .. HCLK/16 */
1024 const uint8_t hclk_divisors[] = {
1025 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
1027 int i;
1029 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
1030 if (hclk_mask == hclk_divisors[i]) {
1031 return i + 1;
1035 qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
1036 return 0;
1040 * When doing calibration, the SPI clock rate in the CE0 Control
1041 * Register and the read delay cycles in the Read Timing Compensation
1042 * Register are set using bit[11:4] of the DMA Control Register.
1044 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
1046 uint8_t delay =
1047 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1048 uint8_t hclk_mask =
1049 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1050 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
1051 uint32_t hclk_shift = (hclk_div - 1) << 2;
1052 uint8_t cs;
1055 * The Read Timing Compensation Register values apply to all CS on
1056 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
1058 if (hclk_div && hclk_div < 6) {
1059 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
1060 s->regs[s->r_timings] |= delay << hclk_shift;
1064 * TODO: compute the CS from the DMA address and the segment
1065 * registers. This is not really a problem for now because the
1066 * Timing Register values apply to all CS and software uses CS0 to
1067 * do calibration.
1069 cs = 0;
1070 s->regs[s->r_ctrl0 + cs] &=
1071 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1072 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1076 * Emulate read errors in the DMA Checksum Register for high
1077 * frequencies and optimistic settings of the Read Timing Compensation
1078 * Register. This will help in tuning the SPI timing calibration
1079 * algorithm.
1081 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1083 uint8_t delay =
1084 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1085 uint8_t hclk_mask =
1086 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1089 * Typical values of a palmetto-bmc machine.
1091 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1092 case 4 ... 16:
1093 return false;
1094 case 3: /* at least one HCLK cycle delay */
1095 return (delay & 0x7) < 1;
1096 case 2: /* at least two HCLK cycle delay */
1097 return (delay & 0x7) < 2;
1098 case 1: /* (> 100MHz) is above the max freq of the controller */
1099 return true;
1100 default:
1101 g_assert_not_reached();
1106 * Accumulate the result of the reads to provide a checksum that will
1107 * be used to validate the read timing settings.
1109 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1111 MemTxResult result;
1112 uint32_t data;
1114 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1115 qemu_log_mask(LOG_GUEST_ERROR,
1116 "%s: invalid direction for DMA checksum\n", __func__);
1117 return;
1120 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1121 aspeed_smc_dma_calibration(s);
1124 while (s->regs[R_DMA_LEN]) {
1125 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1126 MEMTXATTRS_UNSPECIFIED, &result);
1127 if (result != MEMTX_OK) {
1128 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1129 __func__, s->regs[R_DMA_FLASH_ADDR]);
1130 return;
1132 trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
1135 * When the DMA is on-going, the DMA registers are updated
1136 * with the current working addresses and length.
1138 s->regs[R_DMA_CHECKSUM] += data;
1139 s->regs[R_DMA_FLASH_ADDR] += 4;
1140 s->regs[R_DMA_LEN] -= 4;
1143 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1144 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1149 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1151 MemTxResult result;
1152 uint32_t data;
1154 trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
1155 "write" : "read",
1156 s->regs[R_DMA_FLASH_ADDR],
1157 s->regs[R_DMA_DRAM_ADDR],
1158 s->regs[R_DMA_LEN]);
1159 while (s->regs[R_DMA_LEN]) {
1160 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1161 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1162 MEMTXATTRS_UNSPECIFIED, &result);
1163 if (result != MEMTX_OK) {
1164 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1165 __func__, s->regs[R_DMA_DRAM_ADDR]);
1166 return;
1169 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1170 data, MEMTXATTRS_UNSPECIFIED, &result);
1171 if (result != MEMTX_OK) {
1172 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1173 __func__, s->regs[R_DMA_FLASH_ADDR]);
1174 return;
1176 } else {
1177 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1178 MEMTXATTRS_UNSPECIFIED, &result);
1179 if (result != MEMTX_OK) {
1180 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1181 __func__, s->regs[R_DMA_FLASH_ADDR]);
1182 return;
1185 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1186 data, MEMTXATTRS_UNSPECIFIED, &result);
1187 if (result != MEMTX_OK) {
1188 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1189 __func__, s->regs[R_DMA_DRAM_ADDR]);
1190 return;
1195 * When the DMA is on-going, the DMA registers are updated
1196 * with the current working addresses and length.
1198 s->regs[R_DMA_FLASH_ADDR] += 4;
1199 s->regs[R_DMA_DRAM_ADDR] += 4;
1200 s->regs[R_DMA_LEN] -= 4;
1201 s->regs[R_DMA_CHECKSUM] += data;
1205 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1208 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1209 * engine is idle
1211 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1212 s->regs[R_DMA_CHECKSUM] = 0;
1215 * Lower the DMA irq in any case. The IRQ control register could
1216 * have been cleared before disabling the DMA.
1218 qemu_irq_lower(s->irq);
1222 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1223 * can start even if the result of the previous was not collected.
1225 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1227 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1228 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1231 static void aspeed_smc_dma_done(AspeedSMCState *s)
1233 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1234 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1235 qemu_irq_raise(s->irq);
1239 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1241 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1242 s->regs[R_DMA_CTRL] = dma_ctrl;
1244 aspeed_smc_dma_stop(s);
1245 return;
1248 if (aspeed_smc_dma_in_progress(s)) {
1249 qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n", __func__);
1250 return;
1253 s->regs[R_DMA_CTRL] = dma_ctrl;
1255 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1256 aspeed_smc_dma_checksum(s);
1257 } else {
1258 aspeed_smc_dma_rw(s);
1261 aspeed_smc_dma_done(s);
1264 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1265 unsigned int size)
1267 AspeedSMCState *s = ASPEED_SMC(opaque);
1268 uint32_t value = data;
1270 addr >>= 2;
1272 trace_aspeed_smc_write(addr, size, data);
1274 if (addr == s->r_conf ||
1275 (addr >= s->r_timings &&
1276 addr < s->r_timings + s->ctrl->nregs_timings) ||
1277 addr == s->r_ce_ctrl) {
1278 s->regs[addr] = value;
1279 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1280 int cs = addr - s->r_ctrl0;
1281 aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1282 } else if (addr >= R_SEG_ADDR0 &&
1283 addr < R_SEG_ADDR0 + s->ctrl->max_peripherals) {
1284 int cs = addr - R_SEG_ADDR0;
1286 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1287 aspeed_smc_flash_set_segment(s, cs, value);
1289 } else if (addr == R_CE_CMD_CTRL) {
1290 s->regs[addr] = value & 0xff;
1291 } else if (addr == R_DUMMY_DATA) {
1292 s->regs[addr] = value & 0xff;
1293 } else if (addr == R_INTR_CTRL) {
1294 s->regs[addr] = value;
1295 } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1296 aspeed_smc_dma_ctrl(s, value);
1297 } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1298 s->regs[addr] = DMA_DRAM_ADDR(s, value);
1299 } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1300 s->regs[addr] = DMA_FLASH_ADDR(s, value);
1301 } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1302 s->regs[addr] = DMA_LENGTH(value);
1303 } else {
1304 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1305 __func__, addr);
1306 return;
1310 static const MemoryRegionOps aspeed_smc_ops = {
1311 .read = aspeed_smc_read,
1312 .write = aspeed_smc_write,
1313 .endianness = DEVICE_LITTLE_ENDIAN,
1317 * Initialize the custom address spaces for DMAs
1319 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1321 char *name;
1323 if (!s->dram_mr) {
1324 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1325 return;
1328 name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1329 address_space_init(&s->flash_as, &s->mmio_flash, name);
1330 g_free(name);
1332 name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1333 address_space_init(&s->dram_as, s->dram_mr, name);
1334 g_free(name);
1337 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1339 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1340 AspeedSMCState *s = ASPEED_SMC(dev);
1341 AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1342 int i;
1343 char name[32];
1344 hwaddr offset = 0;
1346 s->ctrl = mc->ctrl;
1348 /* keep a copy under AspeedSMCState to speed up accesses */
1349 s->r_conf = s->ctrl->r_conf;
1350 s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1351 s->r_ctrl0 = s->ctrl->r_ctrl0;
1352 s->r_timings = s->ctrl->r_timings;
1353 s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1355 /* Enforce some real HW limits */
1356 if (s->num_cs > s->ctrl->max_peripherals) {
1357 qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1358 __func__, s->ctrl->max_peripherals);
1359 s->num_cs = s->ctrl->max_peripherals;
1362 /* DMA irq. Keep it first for the initialization in the SoC */
1363 sysbus_init_irq(sbd, &s->irq);
1365 s->spi = ssi_create_bus(dev, "spi");
1367 /* Setup cs_lines for peripherals */
1368 s->cs_lines = g_new0(qemu_irq, s->num_cs);
1370 for (i = 0; i < s->num_cs; ++i) {
1371 sysbus_init_irq(sbd, &s->cs_lines[i]);
1374 /* The memory region for the controller registers */
1375 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1376 s->ctrl->name, s->ctrl->nregs * 4);
1377 sysbus_init_mmio(sbd, &s->mmio);
1380 * The container memory region representing the address space
1381 * window in which the flash modules are mapped. The size and
1382 * address depends on the SoC model and controller type.
1384 snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1386 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1387 &aspeed_smc_flash_default_ops, s, name,
1388 s->ctrl->flash_window_size);
1389 sysbus_init_mmio(sbd, &s->mmio_flash);
1391 s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_peripherals);
1394 * Let's create a sub memory region for each possible peripheral. All
1395 * have a configurable memory segment in the overall flash mapping
1396 * window of the controller but, there is not necessarily a flash
1397 * module behind to handle the memory accesses. This depends on
1398 * the board configuration.
1400 for (i = 0; i < s->ctrl->max_peripherals; ++i) {
1401 AspeedSMCFlash *fl = &s->flashes[i];
1403 snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1405 fl->id = i;
1406 fl->controller = s;
1407 fl->size = s->ctrl->segments[i].size;
1408 memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1409 fl, name, fl->size);
1410 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1411 offset += fl->size;
1414 /* DMA support */
1415 if (s->ctrl->has_dma) {
1416 aspeed_smc_dma_setup(s, errp);
1420 static const VMStateDescription vmstate_aspeed_smc = {
1421 .name = "aspeed.smc",
1422 .version_id = 2,
1423 .minimum_version_id = 2,
1424 .fields = (VMStateField[]) {
1425 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1426 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1427 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1428 VMSTATE_END_OF_LIST()
1432 static Property aspeed_smc_properties[] = {
1433 DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1434 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1435 DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1436 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1437 TYPE_MEMORY_REGION, MemoryRegion *),
1438 DEFINE_PROP_END_OF_LIST(),
1441 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1443 DeviceClass *dc = DEVICE_CLASS(klass);
1444 AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1446 dc->realize = aspeed_smc_realize;
1447 dc->reset = aspeed_smc_reset;
1448 device_class_set_props(dc, aspeed_smc_properties);
1449 dc->vmsd = &vmstate_aspeed_smc;
1450 mc->ctrl = data;
1453 static const TypeInfo aspeed_smc_info = {
1454 .name = TYPE_ASPEED_SMC,
1455 .parent = TYPE_SYS_BUS_DEVICE,
1456 .instance_size = sizeof(AspeedSMCState),
1457 .class_size = sizeof(AspeedSMCClass),
1458 .abstract = true,
1461 static void aspeed_smc_register_types(void)
1463 int i;
1465 type_register_static(&aspeed_smc_info);
1466 for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1467 TypeInfo ti = {
1468 .name = controllers[i].name,
1469 .parent = TYPE_ASPEED_SMC,
1470 .class_init = aspeed_smc_class_init,
1471 .class_data = (void *)&controllers[i],
1473 type_register(&ti);
1477 type_init(aspeed_smc_register_types)