exec/memory: Use struct Object typedef
[qemu/ar7.git] / hw / mips / malta.c
blob9afc0b427bf7bc22a0bd00fd716b9e1ee6afb421
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "cpu.h"
31 #include "hw/clock.h"
32 #include "hw/southbridge/piix.h"
33 #include "hw/isa/superio.h"
34 #include "hw/char/serial.h"
35 #include "net/net.h"
36 #include "hw/boards.h"
37 #include "hw/i2c/smbus_eeprom.h"
38 #include "hw/block/flash.h"
39 #include "hw/mips/mips.h"
40 #include "hw/mips/cpudevs.h"
41 #include "hw/pci/pci.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/arch_init.h"
44 #include "qemu/log.h"
45 #include "hw/mips/bios.h"
46 #include "hw/ide.h"
47 #include "hw/irq.h"
48 #include "hw/loader.h"
49 #include "elf.h"
50 #include "exec/address-spaces.h"
51 #include "qom/object.h"
52 #include "hw/sysbus.h" /* SysBusDevice */
53 #include "qemu/host-utils.h"
54 #include "sysemu/qtest.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/runstate.h"
57 #include "qapi/error.h"
58 #include "qemu/error-report.h"
59 #include "hw/misc/empty_slot.h"
60 #include "sysemu/kvm.h"
61 #include "hw/semihosting/semihost.h"
62 #include "hw/mips/cps.h"
63 #include "hw/qdev-clock.h"
65 #define ENVP_PADDR 0x2000
66 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
67 #define ENVP_NB_ENTRIES 16
68 #define ENVP_ENTRY_SIZE 256
70 /* Hardware addresses */
71 #define FLASH_ADDRESS 0x1e000000ULL
72 #define FPGA_ADDRESS 0x1f000000ULL
73 #define RESET_ADDRESS 0x1fc00000ULL
75 #define FLASH_SIZE 0x400000
77 #define MAX_IDE_BUS 2
79 typedef struct {
80 MemoryRegion iomem;
81 MemoryRegion iomem_lo; /* 0 - 0x900 */
82 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
83 uint32_t leds;
84 uint32_t brk;
85 uint32_t gpout;
86 uint32_t i2cin;
87 uint32_t i2coe;
88 uint32_t i2cout;
89 uint32_t i2csel;
90 CharBackend display;
91 char display_text[9];
92 SerialMM *uart;
93 bool display_inited;
94 } MaltaFPGAState;
96 #define TYPE_MIPS_MALTA "mips-malta"
97 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
99 struct MaltaState {
100 SysBusDevice parent_obj;
102 Clock *cpuclk;
103 MIPSCPSState cps;
104 qemu_irq i8259[ISA_NUM_IRQS];
107 static struct _loaderparams {
108 int ram_size, ram_low_size;
109 const char *kernel_filename;
110 const char *kernel_cmdline;
111 const char *initrd_filename;
112 } loaderparams;
114 /* Malta FPGA */
115 static void malta_fpga_update_display(void *opaque)
117 char leds_text[9];
118 int i;
119 MaltaFPGAState *s = opaque;
121 for (i = 7 ; i >= 0 ; i--) {
122 if (s->leds & (1 << i)) {
123 leds_text[i] = '#';
124 } else {
125 leds_text[i] = ' ';
128 leds_text[8] = '\0';
130 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
131 leds_text);
132 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
133 s->display_text);
137 * EEPROM 24C01 / 24C02 emulation.
139 * Emulation for serial EEPROMs:
140 * 24C01 - 1024 bit (128 x 8)
141 * 24C02 - 2048 bit (256 x 8)
143 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
146 #if defined(DEBUG)
147 # define logout(fmt, ...) \
148 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
149 #else
150 # define logout(fmt, ...) ((void)0)
151 #endif
153 struct _eeprom24c0x_t {
154 uint8_t tick;
155 uint8_t address;
156 uint8_t command;
157 uint8_t ack;
158 uint8_t scl;
159 uint8_t sda;
160 uint8_t data;
161 /* uint16_t size; */
162 uint8_t contents[256];
165 typedef struct _eeprom24c0x_t eeprom24c0x_t;
167 static eeprom24c0x_t spd_eeprom = {
168 .contents = {
169 /* 00000000: */
170 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
171 /* 00000008: */
172 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
173 /* 00000010: */
174 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
175 /* 00000018: */
176 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
177 /* 00000020: */
178 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
179 /* 00000028: */
180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
181 /* 00000030: */
182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183 /* 00000038: */
184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
185 /* 00000040: */
186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
187 /* 00000048: */
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189 /* 00000050: */
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191 /* 00000058: */
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193 /* 00000060: */
194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
195 /* 00000068: */
196 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
197 /* 00000070: */
198 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
199 /* 00000078: */
200 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
204 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
206 enum { SDR = 0x4, DDR2 = 0x8 } type;
207 uint8_t *spd = spd_eeprom.contents;
208 uint8_t nbanks = 0;
209 uint16_t density = 0;
210 int i;
212 /* work in terms of MB */
213 ram_size /= MiB;
215 while ((ram_size >= 4) && (nbanks <= 2)) {
216 int sz_log2 = MIN(31 - clz32(ram_size), 14);
217 nbanks++;
218 density |= 1 << (sz_log2 - 2);
219 ram_size -= 1 << sz_log2;
222 /* split to 2 banks if possible */
223 if ((nbanks == 1) && (density > 1)) {
224 nbanks++;
225 density >>= 1;
228 if (density & 0xff00) {
229 density = (density & 0xe0) | ((density >> 8) & 0x1f);
230 type = DDR2;
231 } else if (!(density & 0x1f)) {
232 type = DDR2;
233 } else {
234 type = SDR;
237 if (ram_size) {
238 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
239 " of SDRAM", ram_size);
242 /* fill in SPD memory information */
243 spd[2] = type;
244 spd[5] = nbanks;
245 spd[31] = density;
247 /* checksum */
248 spd[63] = 0;
249 for (i = 0; i < 63; i++) {
250 spd[63] += spd[i];
253 /* copy for SMBUS */
254 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
257 static void generate_eeprom_serial(uint8_t *eeprom)
259 int i, pos = 0;
260 uint8_t mac[6] = { 0x00 };
261 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
263 /* version */
264 eeprom[pos++] = 0x01;
266 /* count */
267 eeprom[pos++] = 0x02;
269 /* MAC address */
270 eeprom[pos++] = 0x01; /* MAC */
271 eeprom[pos++] = 0x06; /* length */
272 memcpy(&eeprom[pos], mac, sizeof(mac));
273 pos += sizeof(mac);
275 /* serial number */
276 eeprom[pos++] = 0x02; /* serial */
277 eeprom[pos++] = 0x05; /* length */
278 memcpy(&eeprom[pos], sn, sizeof(sn));
279 pos += sizeof(sn);
281 /* checksum */
282 eeprom[pos] = 0;
283 for (i = 0; i < pos; i++) {
284 eeprom[pos] += eeprom[i];
288 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
290 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
291 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
292 return eeprom->sda;
295 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
297 if (eeprom->scl && scl && (eeprom->sda != sda)) {
298 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
299 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
300 sda ? "stop" : "start");
301 if (!sda) {
302 eeprom->tick = 1;
303 eeprom->command = 0;
305 } else if (eeprom->tick == 0 && !eeprom->ack) {
306 /* Waiting for start. */
307 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
308 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
309 } else if (!eeprom->scl && scl) {
310 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
311 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
312 if (eeprom->ack) {
313 logout("\ti2c ack bit = 0\n");
314 sda = 0;
315 eeprom->ack = 0;
316 } else if (eeprom->sda == sda) {
317 uint8_t bit = (sda != 0);
318 logout("\ti2c bit = %d\n", bit);
319 if (eeprom->tick < 9) {
320 eeprom->command <<= 1;
321 eeprom->command += bit;
322 eeprom->tick++;
323 if (eeprom->tick == 9) {
324 logout("\tcommand 0x%04x, %s\n", eeprom->command,
325 bit ? "read" : "write");
326 eeprom->ack = 1;
328 } else if (eeprom->tick < 17) {
329 if (eeprom->command & 1) {
330 sda = ((eeprom->data & 0x80) != 0);
332 eeprom->address <<= 1;
333 eeprom->address += bit;
334 eeprom->tick++;
335 eeprom->data <<= 1;
336 if (eeprom->tick == 17) {
337 eeprom->data = eeprom->contents[eeprom->address];
338 logout("\taddress 0x%04x, data 0x%02x\n",
339 eeprom->address, eeprom->data);
340 eeprom->ack = 1;
341 eeprom->tick = 0;
343 } else if (eeprom->tick >= 17) {
344 sda = 0;
346 } else {
347 logout("\tsda changed with raising scl\n");
349 } else {
350 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
351 scl, eeprom->sda, sda);
353 eeprom->scl = scl;
354 eeprom->sda = sda;
357 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
358 unsigned size)
360 MaltaFPGAState *s = opaque;
361 uint32_t val = 0;
362 uint32_t saddr;
364 saddr = (addr & 0xfffff);
366 switch (saddr) {
368 /* SWITCH Register */
369 case 0x00200:
370 val = 0x00000000;
371 break;
373 /* STATUS Register */
374 case 0x00208:
375 #ifdef TARGET_WORDS_BIGENDIAN
376 val = 0x00000012;
377 #else
378 val = 0x00000010;
379 #endif
380 break;
382 /* JMPRS Register */
383 case 0x00210:
384 val = 0x00;
385 break;
387 /* LEDBAR Register */
388 case 0x00408:
389 val = s->leds;
390 break;
392 /* BRKRES Register */
393 case 0x00508:
394 val = s->brk;
395 break;
397 /* UART Registers are handled directly by the serial device */
399 /* GPOUT Register */
400 case 0x00a00:
401 val = s->gpout;
402 break;
404 /* XXX: implement a real I2C controller */
406 /* GPINP Register */
407 case 0x00a08:
408 /* IN = OUT until a real I2C control is implemented */
409 if (s->i2csel) {
410 val = s->i2cout;
411 } else {
412 val = 0x00;
414 break;
416 /* I2CINP Register */
417 case 0x00b00:
418 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
419 break;
421 /* I2COE Register */
422 case 0x00b08:
423 val = s->i2coe;
424 break;
426 /* I2COUT Register */
427 case 0x00b10:
428 val = s->i2cout;
429 break;
431 /* I2CSEL Register */
432 case 0x00b18:
433 val = s->i2csel;
434 break;
436 default:
437 qemu_log_mask(LOG_GUEST_ERROR,
438 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
439 addr);
440 break;
442 return val;
445 static void malta_fpga_write(void *opaque, hwaddr addr,
446 uint64_t val, unsigned size)
448 MaltaFPGAState *s = opaque;
449 uint32_t saddr;
451 saddr = (addr & 0xfffff);
453 switch (saddr) {
455 /* SWITCH Register */
456 case 0x00200:
457 break;
459 /* JMPRS Register */
460 case 0x00210:
461 break;
463 /* LEDBAR Register */
464 case 0x00408:
465 s->leds = val & 0xff;
466 malta_fpga_update_display(s);
467 break;
469 /* ASCIIWORD Register */
470 case 0x00410:
471 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
472 malta_fpga_update_display(s);
473 break;
475 /* ASCIIPOS0 to ASCIIPOS7 Registers */
476 case 0x00418:
477 case 0x00420:
478 case 0x00428:
479 case 0x00430:
480 case 0x00438:
481 case 0x00440:
482 case 0x00448:
483 case 0x00450:
484 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
485 malta_fpga_update_display(s);
486 break;
488 /* SOFTRES Register */
489 case 0x00500:
490 if (val == 0x42) {
491 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
493 break;
495 /* BRKRES Register */
496 case 0x00508:
497 s->brk = val & 0xff;
498 break;
500 /* UART Registers are handled directly by the serial device */
502 /* GPOUT Register */
503 case 0x00a00:
504 s->gpout = val & 0xff;
505 break;
507 /* I2COE Register */
508 case 0x00b08:
509 s->i2coe = val & 0x03;
510 break;
512 /* I2COUT Register */
513 case 0x00b10:
514 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
515 s->i2cout = val;
516 break;
518 /* I2CSEL Register */
519 case 0x00b18:
520 s->i2csel = val & 0x01;
521 break;
523 default:
524 qemu_log_mask(LOG_GUEST_ERROR,
525 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
526 addr);
527 break;
531 static const MemoryRegionOps malta_fpga_ops = {
532 .read = malta_fpga_read,
533 .write = malta_fpga_write,
534 .endianness = DEVICE_NATIVE_ENDIAN,
537 static void malta_fpga_reset(void *opaque)
539 MaltaFPGAState *s = opaque;
541 s->leds = 0x00;
542 s->brk = 0x0a;
543 s->gpout = 0x00;
544 s->i2cin = 0x3;
545 s->i2coe = 0x0;
546 s->i2cout = 0x3;
547 s->i2csel = 0x1;
549 s->display_text[8] = '\0';
550 snprintf(s->display_text, 9, " ");
553 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
555 MaltaFPGAState *s = opaque;
557 if (event == CHR_EVENT_OPENED && !s->display_inited) {
558 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
559 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
560 qemu_chr_fe_printf(&s->display, "+ +\r\n");
561 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562 qemu_chr_fe_printf(&s->display, "\n");
563 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
564 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
565 qemu_chr_fe_printf(&s->display, "+ +\r\n");
566 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
567 s->display_inited = true;
571 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
572 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
574 MaltaFPGAState *s;
575 Chardev *chr;
577 s = g_new0(MaltaFPGAState, 1);
579 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
580 "malta-fpga", 0x100000);
581 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
582 &s->iomem, 0, 0x900);
583 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
584 &s->iomem, 0xa00, 0x100000 - 0xa00);
586 memory_region_add_subregion(address_space, base, &s->iomem_lo);
587 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
589 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
590 qemu_chr_fe_init(&s->display, chr, NULL);
591 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
592 malta_fgpa_display_event, NULL, s, NULL, true);
594 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
595 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
597 malta_fpga_reset(s);
598 qemu_register_reset(malta_fpga_reset, s);
600 return s;
603 /* Network support */
604 static void network_init(PCIBus *pci_bus)
606 int i;
608 for (i = 0; i < nb_nics; i++) {
609 NICInfo *nd = &nd_table[i];
610 const char *default_devaddr = NULL;
612 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
613 /* The malta board has a PCNet card using PCI SLOT 11 */
614 default_devaddr = "0b";
616 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
620 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
621 uint64_t kernel_entry)
623 uint16_t *p;
625 /* Small bootloader */
626 p = (uint16_t *)base;
628 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
629 #define NM_HI2(VAL) \
630 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
631 #define NM_LO(VAL) ((VAL) & 0xfff)
633 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
634 /* bc to_here */
635 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
636 /* nop */
637 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
638 /* nop */
639 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
640 /* nop */
641 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
642 /* nop */
643 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
644 /* nop */
645 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
646 /* nop */
647 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
648 /* nop */
650 /* to_here: */
651 if (semihosting_get_argc()) {
652 /* Preserve a0 content as arguments have been passed */
653 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
654 /* nop */
655 } else {
656 stw_p(p++, 0x0080); stw_p(p++, 0x0002);
657 /* li a0,2 */
660 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
662 stw_p(p++, NM_HI2(ENVP_VADDR - 64));
663 /* lui sp,%hi(ENVP_VADDR - 64) */
665 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
666 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
668 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
670 stw_p(p++, NM_HI2(ENVP_VADDR));
671 /* lui a1,%hi(ENVP_VADDR) */
673 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
674 /* ori a1,a1,%lo(ENVP_VADDR) */
676 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
678 stw_p(p++, NM_HI2(ENVP_VADDR + 8));
679 /* lui a2,%hi(ENVP_VADDR + 8) */
681 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
682 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
684 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
686 stw_p(p++, NM_HI2(loaderparams.ram_low_size));
687 /* lui a3,%hi(loaderparams.ram_low_size) */
689 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
690 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
693 * Load BAR registers as done by YAMON:
695 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
696 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
697 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
700 stw_p(p++, 0xe040); stw_p(p++, 0x0681);
701 /* lui t1, %hi(0xb4000000) */
703 #ifdef TARGET_WORDS_BIGENDIAN
705 stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
706 /* lui t0, %hi(0xdf000000) */
708 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
709 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
710 /* sw t0, 0x68(t1) */
712 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
713 /* lui t1, %hi(0xbbe00000) */
715 stw_p(p++, 0xe020); stw_p(p++, 0x0801);
716 /* lui t0, %hi(0xc0000000) */
718 /* 0x48 corresponds to GT_PCI0IOLD */
719 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
720 /* sw t0, 0x48(t1) */
722 stw_p(p++, 0xe020); stw_p(p++, 0x0800);
723 /* lui t0, %hi(0x40000000) */
725 /* 0x50 corresponds to GT_PCI0IOHD */
726 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
727 /* sw t0, 0x50(t1) */
729 stw_p(p++, 0xe020); stw_p(p++, 0x0001);
730 /* lui t0, %hi(0x80000000) */
732 /* 0x58 corresponds to GT_PCI0M0LD */
733 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
734 /* sw t0, 0x58(t1) */
736 stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
737 /* lui t0, %hi(0x3f000000) */
739 /* 0x60 corresponds to GT_PCI0M0HD */
740 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
741 /* sw t0, 0x60(t1) */
743 stw_p(p++, 0xe020); stw_p(p++, 0x0821);
744 /* lui t0, %hi(0xc1000000) */
746 /* 0x80 corresponds to GT_PCI0M1LD */
747 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
748 /* sw t0, 0x80(t1) */
750 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
751 /* lui t0, %hi(0x5e000000) */
753 #else
755 stw_p(p++, 0x0020); stw_p(p++, 0x00df);
756 /* addiu[32] t0, $0, 0xdf */
758 /* 0x68 corresponds to GT_ISD */
759 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
760 /* sw t0, 0x68(t1) */
762 /* Use kseg2 remapped address 0x1be00000 */
763 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
764 /* lui t1, %hi(0xbbe00000) */
766 stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
767 /* addiu[32] t0, $0, 0xc0 */
769 /* 0x48 corresponds to GT_PCI0IOLD */
770 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
771 /* sw t0, 0x48(t1) */
773 stw_p(p++, 0x0020); stw_p(p++, 0x0040);
774 /* addiu[32] t0, $0, 0x40 */
776 /* 0x50 corresponds to GT_PCI0IOHD */
777 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
778 /* sw t0, 0x50(t1) */
780 stw_p(p++, 0x0020); stw_p(p++, 0x0080);
781 /* addiu[32] t0, $0, 0x80 */
783 /* 0x58 corresponds to GT_PCI0M0LD */
784 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
785 /* sw t0, 0x58(t1) */
787 stw_p(p++, 0x0020); stw_p(p++, 0x003f);
788 /* addiu[32] t0, $0, 0x3f */
790 /* 0x60 corresponds to GT_PCI0M0HD */
791 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
792 /* sw t0, 0x60(t1) */
794 stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
795 /* addiu[32] t0, $0, 0xc1 */
797 /* 0x80 corresponds to GT_PCI0M1LD */
798 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
799 /* sw t0, 0x80(t1) */
801 stw_p(p++, 0x0020); stw_p(p++, 0x005e);
802 /* addiu[32] t0, $0, 0x5e */
804 #endif
806 /* 0x88 corresponds to GT_PCI0M1HD */
807 stw_p(p++, 0x8422); stw_p(p++, 0x9088);
808 /* sw t0, 0x88(t1) */
810 stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
812 stw_p(p++, NM_HI2(kernel_entry));
813 /* lui t9,%hi(kernel_entry) */
815 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
816 /* ori t9,t9,%lo(kernel_entry) */
818 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
819 /* jalrc t8 */
823 * ROM and pseudo bootloader
825 * The following code implements a very very simple bootloader. It first
826 * loads the registers a0 to a3 to the values expected by the OS, and
827 * then jump at the kernel address.
829 * The bootloader should pass the locations of the kernel arguments and
830 * environment variables tables. Those tables contain the 32-bit address
831 * of NULL terminated strings. The environment variables table should be
832 * terminated by a NULL address.
834 * For a simpler implementation, the number of kernel arguments is fixed
835 * to two (the name of the kernel and the command line), and the two
836 * tables are actually the same one.
838 * The registers a0 to a3 should contain the following values:
839 * a0 - number of kernel arguments
840 * a1 - 32-bit address of the kernel arguments table
841 * a2 - 32-bit address of the environment variables table
842 * a3 - RAM size in bytes
844 static void write_bootloader(uint8_t *base, uint64_t run_addr,
845 uint64_t kernel_entry)
847 uint32_t *p;
849 /* Small bootloader */
850 p = (uint32_t *)base;
852 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
853 ((run_addr + 0x580) & 0x0fffffff) >> 2);
854 stl_p(p++, 0x00000000); /* nop */
856 /* YAMON service vector */
857 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
858 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
859 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
860 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
861 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
862 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
863 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
864 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
865 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
866 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
867 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
868 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
869 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
872 /* Second part of the bootloader */
873 p = (uint32_t *) (base + 0x580);
875 if (semihosting_get_argc()) {
876 /* Preserve a0 content as arguments have been passed */
877 stl_p(p++, 0x00000000); /* nop */
878 } else {
879 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
882 /* lui sp, high(ENVP_VADDR) */
883 stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
884 /* ori sp, sp, low(ENVP_VADDR) */
885 stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
886 /* lui a1, high(ENVP_VADDR) */
887 stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
888 /* ori a1, a1, low(ENVP_VADDR) */
889 stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
890 /* lui a2, high(ENVP_VADDR + 8) */
891 stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
892 /* ori a2, a2, low(ENVP_VADDR + 8) */
893 stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
894 /* lui a3, high(ram_low_size) */
895 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
896 /* ori a3, a3, low(ram_low_size) */
897 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
899 /* Load BAR registers as done by YAMON */
900 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
902 #ifdef TARGET_WORDS_BIGENDIAN
903 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
904 #else
905 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
906 #endif
907 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
909 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
911 #ifdef TARGET_WORDS_BIGENDIAN
912 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
913 #else
914 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
915 #endif
916 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
917 #ifdef TARGET_WORDS_BIGENDIAN
918 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
919 #else
920 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
921 #endif
922 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
924 #ifdef TARGET_WORDS_BIGENDIAN
925 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
926 #else
927 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
928 #endif
929 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
930 #ifdef TARGET_WORDS_BIGENDIAN
931 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
932 #else
933 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
934 #endif
935 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
937 #ifdef TARGET_WORDS_BIGENDIAN
938 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
939 #else
940 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
941 #endif
942 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
943 #ifdef TARGET_WORDS_BIGENDIAN
944 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
945 #else
946 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
947 #endif
948 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
950 /* Jump to kernel code */
951 stl_p(p++, 0x3c1f0000 |
952 ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
953 stl_p(p++, 0x37ff0000 |
954 (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
955 stl_p(p++, 0x03e00009); /* jalr ra */
956 stl_p(p++, 0x00000000); /* nop */
958 /* YAMON subroutines */
959 p = (uint32_t *) (base + 0x800);
960 stl_p(p++, 0x03e00009); /* jalr ra */
961 stl_p(p++, 0x24020000); /* li v0,0 */
962 /* 808 YAMON print */
963 stl_p(p++, 0x03e06821); /* move t5,ra */
964 stl_p(p++, 0x00805821); /* move t3,a0 */
965 stl_p(p++, 0x00a05021); /* move t2,a1 */
966 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
967 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
968 stl_p(p++, 0x10800005); /* beqz a0,834 */
969 stl_p(p++, 0x00000000); /* nop */
970 stl_p(p++, 0x0ff0021c); /* jal 870 */
971 stl_p(p++, 0x00000000); /* nop */
972 stl_p(p++, 0x1000fff9); /* b 814 */
973 stl_p(p++, 0x00000000); /* nop */
974 stl_p(p++, 0x01a00009); /* jalr t5 */
975 stl_p(p++, 0x01602021); /* move a0,t3 */
976 /* 0x83c YAMON print_count */
977 stl_p(p++, 0x03e06821); /* move t5,ra */
978 stl_p(p++, 0x00805821); /* move t3,a0 */
979 stl_p(p++, 0x00a05021); /* move t2,a1 */
980 stl_p(p++, 0x00c06021); /* move t4,a2 */
981 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
982 stl_p(p++, 0x0ff0021c); /* jal 870 */
983 stl_p(p++, 0x00000000); /* nop */
984 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
985 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
986 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
987 stl_p(p++, 0x00000000); /* nop */
988 stl_p(p++, 0x01a00009); /* jalr t5 */
989 stl_p(p++, 0x01602021); /* move a0,t3 */
990 /* 0x870 */
991 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
992 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
993 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
994 stl_p(p++, 0x00000000); /* nop */
995 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
996 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
997 stl_p(p++, 0x00000000); /* nop */
998 stl_p(p++, 0x03e00009); /* jalr ra */
999 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
1003 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1004 const char *string, ...)
1006 va_list ap;
1007 uint32_t table_addr;
1009 if (index >= ENVP_NB_ENTRIES) {
1010 return;
1013 if (string == NULL) {
1014 prom_buf[index] = 0;
1015 return;
1018 table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1019 prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1021 va_start(ap, string);
1022 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1023 va_end(ap);
1026 /* Kernel */
1027 static uint64_t load_kernel(void)
1029 uint64_t kernel_entry, kernel_high, initrd_size;
1030 long kernel_size;
1031 ram_addr_t initrd_offset;
1032 int big_endian;
1033 uint32_t *prom_buf;
1034 long prom_size;
1035 int prom_index = 0;
1036 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1038 #ifdef TARGET_WORDS_BIGENDIAN
1039 big_endian = 1;
1040 #else
1041 big_endian = 0;
1042 #endif
1044 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1045 cpu_mips_kseg0_to_phys, NULL,
1046 &kernel_entry, NULL,
1047 &kernel_high, NULL, big_endian, EM_MIPS,
1048 1, 0);
1049 if (kernel_size < 0) {
1050 error_report("could not load kernel '%s': %s",
1051 loaderparams.kernel_filename,
1052 load_elf_strerror(kernel_size));
1053 exit(1);
1056 /* Check where the kernel has been linked */
1057 if (kernel_entry & 0x80000000ll) {
1058 if (kvm_enabled()) {
1059 error_report("KVM guest kernels must be linked in useg. "
1060 "Did you forget to enable CONFIG_KVM_GUEST?");
1061 exit(1);
1064 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1065 } else {
1066 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1067 mips_um_ksegs_enable();
1069 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1072 /* load initrd */
1073 initrd_size = 0;
1074 initrd_offset = 0;
1075 if (loaderparams.initrd_filename) {
1076 initrd_size = get_image_size(loaderparams.initrd_filename);
1077 if (initrd_size > 0) {
1079 * The kernel allocates the bootmap memory in the low memory after
1080 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1081 * pages.
1083 initrd_offset = ROUND_UP(loaderparams.ram_low_size
1084 - (initrd_size + 128 * KiB),
1085 INITRD_PAGE_SIZE);
1086 if (kernel_high >= initrd_offset) {
1087 error_report("memory too small for initial ram disk '%s'",
1088 loaderparams.initrd_filename);
1089 exit(1);
1091 initrd_size = load_image_targphys(loaderparams.initrd_filename,
1092 initrd_offset,
1093 loaderparams.ram_size - initrd_offset);
1095 if (initrd_size == (target_ulong) -1) {
1096 error_report("could not load initial ram disk '%s'",
1097 loaderparams.initrd_filename);
1098 exit(1);
1102 /* Setup prom parameters. */
1103 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1104 prom_buf = g_malloc(prom_size);
1106 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1107 if (initrd_size > 0) {
1108 prom_set(prom_buf, prom_index++,
1109 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1110 xlate_to_kseg0(NULL, initrd_offset),
1111 initrd_size, loaderparams.kernel_cmdline);
1112 } else {
1113 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1116 prom_set(prom_buf, prom_index++, "memsize");
1117 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1119 prom_set(prom_buf, prom_index++, "ememsize");
1120 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1122 prom_set(prom_buf, prom_index++, "modetty0");
1123 prom_set(prom_buf, prom_index++, "38400n8r");
1124 prom_set(prom_buf, prom_index++, NULL);
1126 rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1128 g_free(prom_buf);
1129 return kernel_entry;
1132 static void malta_mips_config(MIPSCPU *cpu)
1134 MachineState *ms = MACHINE(qdev_get_machine());
1135 unsigned int smp_cpus = ms->smp.cpus;
1136 CPUMIPSState *env = &cpu->env;
1137 CPUState *cs = CPU(cpu);
1139 if (ase_mt_available(env)) {
1140 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1141 CP0MVPC0_PTC, 8,
1142 smp_cpus * cs->nr_threads - 1);
1143 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1144 CP0MVPC0_PVPE, 4, smp_cpus - 1);
1148 static void main_cpu_reset(void *opaque)
1150 MIPSCPU *cpu = opaque;
1151 CPUMIPSState *env = &cpu->env;
1153 cpu_reset(CPU(cpu));
1156 * The bootloader does not need to be rewritten as it is located in a
1157 * read only location. The kernel location and the arguments table
1158 * location does not change.
1160 if (loaderparams.kernel_filename) {
1161 env->CP0_Status &= ~(1 << CP0St_ERL);
1164 malta_mips_config(cpu);
1166 if (kvm_enabled()) {
1167 /* Start running from the bootloader we wrote to end of RAM */
1168 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1172 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1173 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1175 CPUMIPSState *env;
1176 MIPSCPU *cpu;
1177 int i;
1179 for (i = 0; i < ms->smp.cpus; i++) {
1180 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1182 /* Init internal devices */
1183 cpu_mips_irq_init_cpu(cpu);
1184 cpu_mips_clock_init(cpu);
1185 qemu_register_reset(main_cpu_reset, cpu);
1188 cpu = MIPS_CPU(first_cpu);
1189 env = &cpu->env;
1190 *i8259_irq = env->irq[2];
1191 *cbus_irq = env->irq[4];
1194 static void create_cps(MachineState *ms, MaltaState *s,
1195 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1197 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1198 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1199 &error_fatal);
1200 object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1201 &error_fatal);
1202 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1203 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1205 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1207 *i8259_irq = get_cps_irq(&s->cps, 3);
1208 *cbus_irq = NULL;
1211 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1212 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1214 if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1215 create_cps(ms, s, cbus_irq, i8259_irq);
1216 } else {
1217 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1221 static
1222 void mips_malta_init(MachineState *machine)
1224 ram_addr_t ram_size = machine->ram_size;
1225 ram_addr_t ram_low_size;
1226 const char *kernel_filename = machine->kernel_filename;
1227 const char *kernel_cmdline = machine->kernel_cmdline;
1228 const char *initrd_filename = machine->initrd_filename;
1229 char *filename;
1230 PFlashCFI01 *fl;
1231 MemoryRegion *system_memory = get_system_memory();
1232 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1233 MemoryRegion *ram_low_postio;
1234 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1235 const size_t smbus_eeprom_size = 8 * 256;
1236 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1237 uint64_t kernel_entry, bootloader_run_addr;
1238 PCIBus *pci_bus;
1239 ISABus *isa_bus;
1240 qemu_irq cbus_irq, i8259_irq;
1241 I2CBus *smbus;
1242 DriveInfo *dinfo;
1243 int fl_idx = 0;
1244 int be;
1245 MaltaState *s;
1246 DeviceState *dev;
1248 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1249 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1251 /* create CPU */
1252 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1254 /* allocate RAM */
1255 if (ram_size > 2 * GiB) {
1256 error_report("Too much memory for this machine: %" PRId64 "MB,"
1257 " maximum 2048MB", ram_size / MiB);
1258 exit(1);
1261 /* register RAM at high address where it is undisturbed by IO */
1262 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1264 /* alias for pre IO hole access */
1265 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1266 machine->ram, 0, MIN(ram_size, 256 * MiB));
1267 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1269 /* alias for post IO hole access, if there is enough RAM */
1270 if (ram_size > 512 * MiB) {
1271 ram_low_postio = g_new(MemoryRegion, 1);
1272 memory_region_init_alias(ram_low_postio, NULL,
1273 "mips_malta_low_postio.ram",
1274 machine->ram, 512 * MiB,
1275 ram_size - 512 * MiB);
1276 memory_region_add_subregion(system_memory, 512 * MiB,
1277 ram_low_postio);
1280 #ifdef TARGET_WORDS_BIGENDIAN
1281 be = 1;
1282 #else
1283 be = 0;
1284 #endif
1286 /* FPGA */
1288 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1289 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1291 /* Load firmware in flash / BIOS. */
1292 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1293 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1294 FLASH_SIZE,
1295 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1296 65536,
1297 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1298 bios = pflash_cfi01_get_memory(fl);
1299 fl_idx++;
1300 if (kernel_filename) {
1301 ram_low_size = MIN(ram_size, 256 * MiB);
1302 /* For KVM we reserve 1MB of RAM for running bootloader */
1303 if (kvm_enabled()) {
1304 ram_low_size -= 0x100000;
1305 bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1306 } else {
1307 bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1310 /* Write a small bootloader to the flash location. */
1311 loaderparams.ram_size = ram_size;
1312 loaderparams.ram_low_size = ram_low_size;
1313 loaderparams.kernel_filename = kernel_filename;
1314 loaderparams.kernel_cmdline = kernel_cmdline;
1315 loaderparams.initrd_filename = initrd_filename;
1316 kernel_entry = load_kernel();
1318 if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1319 write_bootloader(memory_region_get_ram_ptr(bios),
1320 bootloader_run_addr, kernel_entry);
1321 } else {
1322 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1323 bootloader_run_addr, kernel_entry);
1325 if (kvm_enabled()) {
1326 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1327 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1328 ram_low_size,
1329 bootloader_run_addr, kernel_entry);
1331 } else {
1332 target_long bios_size = FLASH_SIZE;
1333 /* The flash region isn't executable from a KVM guest */
1334 if (kvm_enabled()) {
1335 error_report("KVM enabled but no -kernel argument was specified. "
1336 "Booting from flash is not supported with KVM.");
1337 exit(1);
1339 /* Load firmware from flash. */
1340 if (!dinfo) {
1341 /* Load a BIOS image. */
1342 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1343 machine->firmware ?: BIOS_FILENAME);
1344 if (filename) {
1345 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1346 BIOS_SIZE);
1347 g_free(filename);
1348 } else {
1349 bios_size = -1;
1351 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1352 machine->firmware && !qtest_enabled()) {
1353 error_report("Could not load MIPS bios '%s'", machine->firmware);
1354 exit(1);
1358 * In little endian mode the 32bit words in the bios are swapped,
1359 * a neat trick which allows bi-endian firmware.
1361 #ifndef TARGET_WORDS_BIGENDIAN
1363 uint32_t *end, *addr;
1364 const size_t swapsize = MIN(bios_size, 0x3e0000);
1365 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1366 if (!addr) {
1367 addr = memory_region_get_ram_ptr(bios);
1369 end = (void *)addr + swapsize;
1370 while (addr < end) {
1371 bswap32s(addr);
1372 addr++;
1375 #endif
1379 * Map the BIOS at a 2nd physical location, as on the real board.
1380 * Copy it so that we can patch in the MIPS revision, which cannot be
1381 * handled by an overlapping region as the resulting ROM code subpage
1382 * regions are not executable.
1384 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1385 &error_fatal);
1386 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1387 FLASH_ADDRESS, BIOS_SIZE)) {
1388 memcpy(memory_region_get_ram_ptr(bios_copy),
1389 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1391 memory_region_set_readonly(bios_copy, true);
1392 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1394 /* Board ID = 0x420 (Malta Board with CoreLV) */
1395 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1397 /* Northbridge */
1398 pci_bus = gt64120_register(s->i8259);
1400 * The whole address space decoded by the GT-64120A doesn't generate
1401 * exception when accessing invalid memory. Create an empty slot to
1402 * emulate this feature.
1404 empty_slot_init("GT64120", 0, 0x20000000);
1406 /* Southbridge */
1407 dev = piix4_create(pci_bus, &isa_bus, &smbus);
1409 /* Interrupt controller */
1410 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1411 for (int i = 0; i < ISA_NUM_IRQS; i++) {
1412 s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1415 /* generate SPD EEPROM data */
1416 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1417 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1418 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1419 g_free(smbus_eeprom_buf);
1421 /* Super I/O: SMS FDC37M817 */
1422 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1424 /* Network card */
1425 network_init(pci_bus);
1427 /* Optional PCI video card */
1428 pci_vga_init(pci_bus);
1431 static void mips_malta_instance_init(Object *obj)
1433 MaltaState *s = MIPS_MALTA(obj);
1435 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1436 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1439 static const TypeInfo mips_malta_device = {
1440 .name = TYPE_MIPS_MALTA,
1441 .parent = TYPE_SYS_BUS_DEVICE,
1442 .instance_size = sizeof(MaltaState),
1443 .instance_init = mips_malta_instance_init,
1446 static void mips_malta_machine_init(MachineClass *mc)
1448 mc->desc = "MIPS Malta Core LV";
1449 mc->init = mips_malta_init;
1450 mc->block_default_type = IF_IDE;
1451 mc->max_cpus = 16;
1452 mc->is_default = true;
1453 #ifdef TARGET_MIPS64
1454 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1455 #else
1456 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1457 #endif
1458 mc->default_ram_id = "mips_malta.ram";
1461 DEFINE_MACHINE("malta", mips_malta_machine_init)
1463 static void mips_malta_register_types(void)
1465 type_register_static(&mips_malta_device);
1468 type_init(mips_malta_register_types)