exec/memory: Use struct Object typedef
[qemu/ar7.git] / hw / arm / armsse.c
blob26e1a8c95b6e6024a9b11a06e1b6e157f0995b2b
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 #include "hw/qdev-clock.h"
26 /* Format of the System Information block SYS_CONFIG register */
27 typedef enum SysConfigFormat {
28 IoTKitFormat,
29 SSE200Format,
30 } SysConfigFormat;
32 struct ARMSSEInfo {
33 const char *name;
34 int sram_banks;
35 int num_cpus;
36 uint32_t sys_version;
37 uint32_t cpuwait_rst;
38 SysConfigFormat sys_config_format;
39 bool has_mhus;
40 bool has_ppus;
41 bool has_cachectrl;
42 bool has_cpusecctrl;
43 bool has_cpuid;
44 Property *props;
47 static Property iotkit_properties[] = {
48 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
49 MemoryRegion *),
50 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55 DEFINE_PROP_END_OF_LIST()
58 static Property armsse_properties[] = {
59 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60 MemoryRegion *),
61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
63 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
64 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
65 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
66 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
67 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
68 DEFINE_PROP_END_OF_LIST()
71 static const ARMSSEInfo armsse_variants[] = {
73 .name = TYPE_IOTKIT,
74 .sram_banks = 1,
75 .num_cpus = 1,
76 .sys_version = 0x41743,
77 .cpuwait_rst = 0,
78 .sys_config_format = IoTKitFormat,
79 .has_mhus = false,
80 .has_ppus = false,
81 .has_cachectrl = false,
82 .has_cpusecctrl = false,
83 .has_cpuid = false,
84 .props = iotkit_properties,
87 .name = TYPE_SSE200,
88 .sram_banks = 4,
89 .num_cpus = 2,
90 .sys_version = 0x22041743,
91 .cpuwait_rst = 2,
92 .sys_config_format = SSE200Format,
93 .has_mhus = true,
94 .has_ppus = true,
95 .has_cachectrl = true,
96 .has_cpusecctrl = true,
97 .has_cpuid = true,
98 .props = armsse_properties,
102 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 /* Return the SYS_CONFIG value for this SSE */
105 uint32_t sys_config;
107 switch (info->sys_config_format) {
108 case IoTKitFormat:
109 sys_config = 0;
110 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
111 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
112 break;
113 case SSE200Format:
114 sys_config = 0;
115 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
116 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
117 sys_config = deposit32(sys_config, 24, 4, 2);
118 if (info->num_cpus > 1) {
119 sys_config = deposit32(sys_config, 10, 1, 1);
120 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
121 sys_config = deposit32(sys_config, 28, 4, 2);
123 break;
124 default:
125 g_assert_not_reached();
127 return sys_config;
130 /* Clock frequency in HZ of the 32KHz "slow clock" */
131 #define S32KCLK (32 * 1000)
133 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
134 static bool irq_is_common[32] = {
135 [0 ... 5] = true,
136 /* 6, 7: per-CPU MHU interrupts */
137 [8 ... 12] = true,
138 /* 13: per-CPU icache interrupt */
139 /* 14: reserved */
140 [15 ... 20] = true,
141 /* 21: reserved */
142 [22 ... 26] = true,
143 /* 27: reserved */
144 /* 28, 29: per-CPU CTI interrupts */
145 /* 30, 31: reserved */
149 * Create an alias region in @container of @size bytes starting at @base
150 * which mirrors the memory starting at @orig.
152 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
153 const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 memory_region_init_alias(mr, NULL, name, container, orig, size);
156 /* The alias is even lower priority than unimplemented_device regions */
157 memory_region_add_subregion_overlap(container, base, mr, -1500);
160 static void irq_status_forwarder(void *opaque, int n, int level)
162 qemu_irq destirq = opaque;
164 qemu_set_irq(destirq, level);
167 static void nsccfg_handler(void *opaque, int n, int level)
169 ARMSSE *s = ARM_SSE(opaque);
171 s->nsccfg = level;
174 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
177 * system using the ARMSSE has a collection of control lines which
178 * are provided by the security controller and which we want to
179 * expose as control lines on the ARMSSE device itself, so the
180 * code using the ARMSSE can wire them up to the PPCs.
182 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
183 DeviceState *armssedev = DEVICE(s);
184 DeviceState *dev_secctl = DEVICE(&s->secctl);
185 DeviceState *dev_splitter = DEVICE(splitter);
186 char *name;
188 name = g_strdup_printf("%s_nonsec", ppcname);
189 qdev_pass_gpios(dev_secctl, armssedev, name);
190 g_free(name);
191 name = g_strdup_printf("%s_ap", ppcname);
192 qdev_pass_gpios(dev_secctl, armssedev, name);
193 g_free(name);
194 name = g_strdup_printf("%s_irq_enable", ppcname);
195 qdev_pass_gpios(dev_secctl, armssedev, name);
196 g_free(name);
197 name = g_strdup_printf("%s_irq_clear", ppcname);
198 qdev_pass_gpios(dev_secctl, armssedev, name);
199 g_free(name);
201 /* irq_status is a little more tricky, because we need to
202 * split it so we can send it both to the security controller
203 * and to our OR gate for the NVIC interrupt line.
204 * Connect up the splitter's outputs, and create a GPIO input
205 * which will pass the line state to the input splitter.
207 name = g_strdup_printf("%s_irq_status", ppcname);
208 qdev_connect_gpio_out(dev_splitter, 0,
209 qdev_get_gpio_in_named(dev_secctl,
210 name, 0));
211 qdev_connect_gpio_out(dev_splitter, 1,
212 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
213 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
214 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
215 s->irq_status_in[ppcnum], name, 1);
216 g_free(name);
219 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 /* Forward the 3rd output from the splitter device as a
222 * named GPIO output of the armsse object.
224 DeviceState *dev = DEVICE(s);
225 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
228 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
229 s->sec_resp_cfg, 1);
230 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
233 static void armsse_mainclk_update(void *opaque)
235 ARMSSE *s = ARM_SSE(opaque);
237 * Set system_clock_scale from our Clock input; this is what
238 * controls the tick rate of the CPU SysTick timer.
240 system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
243 static void armsse_init(Object *obj)
245 ARMSSE *s = ARM_SSE(obj);
246 ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
247 const ARMSSEInfo *info = asc->info;
248 int i;
250 assert(info->sram_banks <= MAX_SRAM_BANKS);
251 assert(info->num_cpus <= SSE_MAX_CPUS);
253 s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
254 armsse_mainclk_update, s);
255 s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL);
257 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
259 for (i = 0; i < info->num_cpus; i++) {
261 * We put each CPU in its own cluster as they are logically
262 * distinct and may be configured differently.
264 char *name;
266 name = g_strdup_printf("cluster%d", i);
267 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
268 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
269 g_free(name);
271 name = g_strdup_printf("armv7m%d", i);
272 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
273 TYPE_ARMV7M);
274 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
275 ARM_CPU_TYPE_NAME("cortex-m33"));
276 g_free(name);
277 name = g_strdup_printf("arm-sse-cpu-container%d", i);
278 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
279 g_free(name);
280 if (i > 0) {
281 name = g_strdup_printf("arm-sse-container-alias%d", i);
282 memory_region_init_alias(&s->container_alias[i - 1], obj,
283 name, &s->container, 0, UINT64_MAX);
284 g_free(name);
288 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
289 object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
290 object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
291 for (i = 0; i < info->sram_banks; i++) {
292 char *name = g_strdup_printf("mpc%d", i);
293 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
294 g_free(name);
296 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
297 TYPE_OR_IRQ);
299 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
300 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
301 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
303 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
304 g_free(name);
306 object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
307 object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
308 object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
309 TYPE_CMSDK_APB_TIMER);
310 object_initialize_child(obj, "dualtimer", &s->dualtimer,
311 TYPE_CMSDK_APB_DUALTIMER);
312 object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
313 TYPE_CMSDK_APB_WATCHDOG);
314 object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
315 TYPE_CMSDK_APB_WATCHDOG);
316 object_initialize_child(obj, "swatchdog", &s->swatchdog,
317 TYPE_CMSDK_APB_WATCHDOG);
318 object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
319 TYPE_IOTKIT_SYSCTL);
320 object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
321 TYPE_IOTKIT_SYSINFO);
322 if (info->has_mhus) {
323 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
324 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
326 if (info->has_ppus) {
327 for (i = 0; i < info->num_cpus; i++) {
328 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
329 int ppuidx = CPU0CORE_PPU + i;
331 object_initialize_child(obj, name, &s->ppu[ppuidx],
332 TYPE_UNIMPLEMENTED_DEVICE);
333 g_free(name);
335 object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
336 TYPE_UNIMPLEMENTED_DEVICE);
337 for (i = 0; i < info->sram_banks; i++) {
338 char *name = g_strdup_printf("RAM%d_PPU", i);
339 int ppuidx = RAM0_PPU + i;
341 object_initialize_child(obj, name, &s->ppu[ppuidx],
342 TYPE_UNIMPLEMENTED_DEVICE);
343 g_free(name);
346 if (info->has_cachectrl) {
347 for (i = 0; i < info->num_cpus; i++) {
348 char *name = g_strdup_printf("cachectrl%d", i);
350 object_initialize_child(obj, name, &s->cachectrl[i],
351 TYPE_UNIMPLEMENTED_DEVICE);
352 g_free(name);
355 if (info->has_cpusecctrl) {
356 for (i = 0; i < info->num_cpus; i++) {
357 char *name = g_strdup_printf("cpusecctrl%d", i);
359 object_initialize_child(obj, name, &s->cpusecctrl[i],
360 TYPE_UNIMPLEMENTED_DEVICE);
361 g_free(name);
364 if (info->has_cpuid) {
365 for (i = 0; i < info->num_cpus; i++) {
366 char *name = g_strdup_printf("cpuid%d", i);
368 object_initialize_child(obj, name, &s->cpuid[i],
369 TYPE_ARMSSE_CPUID);
370 g_free(name);
373 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
374 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
375 TYPE_OR_IRQ);
376 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
377 TYPE_SPLIT_IRQ);
378 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
379 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
380 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
382 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
383 g_free(name);
385 if (info->num_cpus > 1) {
386 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
387 if (irq_is_common[i]) {
388 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
389 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
391 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
392 g_free(name);
398 static void armsse_exp_irq(void *opaque, int n, int level)
400 qemu_irq *irqarray = opaque;
402 qemu_set_irq(irqarray[n], level);
405 static void armsse_mpcexp_status(void *opaque, int n, int level)
407 ARMSSE *s = ARM_SSE(opaque);
408 qemu_set_irq(s->mpcexp_status_in[n], level);
411 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
414 * Return a qemu_irq which can be used to signal IRQ n to
415 * all CPUs in the SSE.
417 ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
418 const ARMSSEInfo *info = asc->info;
420 assert(irq_is_common[irqno]);
422 if (info->num_cpus == 1) {
423 /* Only one CPU -- just connect directly to it */
424 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
425 } else {
426 /* Connect to the splitter which feeds all CPUs */
427 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
431 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
433 /* Map a PPU unimplemented device stub */
434 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
436 qdev_prop_set_string(dev, "name", name);
437 qdev_prop_set_uint64(dev, "size", 0x1000);
438 sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
439 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
442 static void armsse_realize(DeviceState *dev, Error **errp)
444 ARMSSE *s = ARM_SSE(dev);
445 ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
446 const ARMSSEInfo *info = asc->info;
447 int i;
448 MemoryRegion *mr;
449 Error *err = NULL;
450 SysBusDevice *sbd_apb_ppc0;
451 SysBusDevice *sbd_secctl;
452 DeviceState *dev_apb_ppc0;
453 DeviceState *dev_apb_ppc1;
454 DeviceState *dev_secctl;
455 DeviceState *dev_splitter;
456 uint32_t addr_width_max;
458 if (!s->board_memory) {
459 error_setg(errp, "memory property was not set");
460 return;
463 if (!clock_has_source(s->mainclk)) {
464 error_setg(errp, "MAINCLK clock was not connected");
466 if (!clock_has_source(s->s32kclk)) {
467 error_setg(errp, "S32KCLK clock was not connected");
470 assert(info->num_cpus <= SSE_MAX_CPUS);
472 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
473 assert(is_power_of_2(info->sram_banks));
474 addr_width_max = 24 - ctz32(info->sram_banks);
475 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
476 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
477 addr_width_max);
478 return;
481 /* Handling of which devices should be available only to secure
482 * code is usually done differently for M profile than for A profile.
483 * Instead of putting some devices only into the secure address space,
484 * devices exist in both address spaces but with hard-wired security
485 * permissions that will cause the CPU to fault for non-secure accesses.
487 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
488 * which specifies hard-wired security permissions for different
489 * areas of the physical address space. For the ARMSSE IDAU, the
490 * top 4 bits of the physical address are the IDAU region ID, and
491 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
492 * region, otherwise it is an S region.
494 * The various devices and RAMs are generally all mapped twice,
495 * once into a region that the IDAU defines as secure and once
496 * into a non-secure region. They sit behind either a Memory
497 * Protection Controller (for RAM) or a Peripheral Protection
498 * Controller (for devices), which allow a more fine grained
499 * configuration of whether non-secure accesses are permitted.
501 * (The other place that guest software can configure security
502 * permissions is in the architected SAU (Security Attribution
503 * Unit), which is entirely inside the CPU. The IDAU can upgrade
504 * the security attributes for a region to more restrictive than
505 * the SAU specifies, but cannot downgrade them.)
507 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
508 * 0x20000000..0x2007ffff 32KB FPGA block RAM
509 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
510 * 0x40000000..0x4000ffff base peripheral region 1
511 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
512 * 0x40020000..0x4002ffff system control element peripherals
513 * 0x40080000..0x400fffff base peripheral region 2
514 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
517 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
519 for (i = 0; i < info->num_cpus; i++) {
520 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
521 Object *cpuobj = OBJECT(&s->armv7m[i]);
522 int j;
523 char *gpioname;
525 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
527 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
528 * registers in the IoT Kit System Control Register block. In QEMU
529 * we set the initial value here, and also the reset value of the
530 * sysctl register, from this object's QOM init-svtor property.
531 * If the guest changes the INITSVTOR* registers at runtime then the
532 * code in iotkit-sysctl.c will update the CPU init-svtor property
533 * (which will then take effect on the next CPU warm-reset).
535 * Note that typically a board using the SSE-200 will have a system
536 * control processor whose boot firmware initializes the INITSVTOR*
537 * registers before powering up the CPUs. QEMU doesn't emulate
538 * the control processor, so instead we behave in the way that the
539 * firmware does: the initial value should be set by the board code
540 * (using the init-svtor property on the ARMSSE object) to match
541 * whatever its firmware does.
543 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
545 * CPUs start powered down if the corresponding bit in the CPUWAIT
546 * register is 1. In real hardware the CPUWAIT register reset value is
547 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
548 * CPUWAIT1_RST parameters), but since all the boards we care about
549 * start CPU0 and leave CPU1 powered off, we hard-code that in
550 * info->cpuwait_rst for now. We can add QOM properties for this
551 * later if necessary.
553 if (extract32(info->cpuwait_rst, i, 1)) {
554 if (!object_property_set_bool(cpuobj, "start-powered-off", true,
555 errp)) {
556 return;
559 if (!s->cpu_fpu[i]) {
560 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
561 return;
564 if (!s->cpu_dsp[i]) {
565 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
566 return;
570 if (i > 0) {
571 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
572 &s->container_alias[i - 1], -1);
573 } else {
574 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
575 &s->container, -1);
577 object_property_set_link(cpuobj, "memory",
578 OBJECT(&s->cpu_container[i]), &error_abort);
579 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
580 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
581 return;
584 * The cluster must be realized after the armv7m container, as
585 * the container's CPU object is only created on realize, and the
586 * CPU must exist and have been parented into the cluster before
587 * the cluster is realized.
589 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
590 return;
593 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
594 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
595 for (j = 0; j < s->exp_numirq; j++) {
596 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
598 if (i == 0) {
599 gpioname = g_strdup("EXP_IRQ");
600 } else {
601 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
603 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
604 s->exp_irqs[i],
605 gpioname, s->exp_numirq);
606 g_free(gpioname);
609 /* Wire up the splitters that connect common IRQs to all CPUs */
610 if (info->num_cpus > 1) {
611 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
612 if (irq_is_common[i]) {
613 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
614 DeviceState *devs = DEVICE(splitter);
615 int cpunum;
617 if (!object_property_set_int(splitter, "num-lines",
618 info->num_cpus, errp)) {
619 return;
621 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
622 return;
624 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
625 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
627 qdev_connect_gpio_out(devs, cpunum,
628 qdev_get_gpio_in(cpudev, i));
634 /* Set up the big aliases first */
635 make_alias(s, &s->alias1, &s->container, "alias 1",
636 0x10000000, 0x10000000, 0x00000000);
637 make_alias(s, &s->alias2, &s->container,
638 "alias 2", 0x30000000, 0x10000000, 0x20000000);
639 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
640 * a few extra devices that only appear there (generally the
641 * control interfaces for the protection controllers).
642 * We implement this by mapping those devices over the top of this
643 * alias MR at a higher priority. Some of the devices in this range
644 * are per-CPU, so we must put this alias in the per-cpu containers.
646 for (i = 0; i < info->num_cpus; i++) {
647 make_alias(s, &s->alias3[i], &s->cpu_container[i],
648 "alias 3", 0x50000000, 0x10000000, 0x40000000);
651 /* Security controller */
652 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
653 return;
655 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
656 dev_secctl = DEVICE(&s->secctl);
657 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
658 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
660 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
661 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
663 /* The sec_resp_cfg output from the security controller must be split into
664 * multiple lines, one for each of the PPCs within the ARMSSE and one
665 * that will be an output from the ARMSSE to the system.
667 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
668 "num-lines", 3, errp)) {
669 return;
671 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
672 return;
674 dev_splitter = DEVICE(&s->sec_resp_splitter);
675 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
676 qdev_get_gpio_in(dev_splitter, 0));
678 /* Each SRAM bank lives behind its own Memory Protection Controller */
679 for (i = 0; i < info->sram_banks; i++) {
680 char *ramname = g_strdup_printf("armsse.sram%d", i);
681 SysBusDevice *sbd_mpc;
682 uint32_t sram_bank_size = 1 << s->sram_addr_width;
684 memory_region_init_ram(&s->sram[i], NULL, ramname,
685 sram_bank_size, &err);
686 g_free(ramname);
687 if (err) {
688 error_propagate(errp, err);
689 return;
691 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
692 OBJECT(&s->sram[i]), &error_abort);
693 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
694 return;
696 /* Map the upstream end of the MPC into the right place... */
697 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
698 memory_region_add_subregion(&s->container,
699 0x20000000 + i * sram_bank_size,
700 sysbus_mmio_get_region(sbd_mpc, 1));
701 /* ...and its register interface */
702 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
703 sysbus_mmio_get_region(sbd_mpc, 0));
706 /* We must OR together lines from the MPC splitters to go to the NVIC */
707 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
708 IOTS_NUM_EXP_MPC + info->sram_banks,
709 errp)) {
710 return;
712 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
713 return;
715 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
716 armsse_get_common_irq_in(s, 9));
718 /* Devices behind APB PPC0:
719 * 0x40000000: timer0
720 * 0x40001000: timer1
721 * 0x40002000: dual timer
722 * 0x40003000: MHU0 (SSE-200 only)
723 * 0x40004000: MHU1 (SSE-200 only)
724 * We must configure and realize each downstream device and connect
725 * it to the appropriate PPC port; then we can realize the PPC and
726 * map its upstream ends to the right place in the container.
728 qdev_connect_clock_in(DEVICE(&s->timer0), "pclk", s->mainclk);
729 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
730 return;
732 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
733 armsse_get_common_irq_in(s, 3));
734 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
735 object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
736 &error_abort);
738 qdev_connect_clock_in(DEVICE(&s->timer1), "pclk", s->mainclk);
739 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
740 return;
742 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
743 armsse_get_common_irq_in(s, 4));
744 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
745 object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
746 &error_abort);
748 qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
749 if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
750 return;
752 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
753 armsse_get_common_irq_in(s, 5));
754 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
755 object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
756 &error_abort);
758 if (info->has_mhus) {
760 * An SSE-200 with only one CPU should have only one MHU created,
761 * with the region where the second MHU usually is being RAZ/WI.
762 * We don't implement that SSE-200 config; if we want to support
763 * it then this code needs to be enhanced to handle creating the
764 * RAZ/WI region instead of the second MHU.
766 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
768 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
769 char *port;
770 int cpunum;
771 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
773 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
774 return;
776 port = g_strdup_printf("port[%d]", i + 3);
777 mr = sysbus_mmio_get_region(mhu_sbd, 0);
778 object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
779 &error_abort);
780 g_free(port);
783 * Each MHU has an irq line for each CPU:
784 * MHU 0 irq line 0 -> CPU 0 IRQ 6
785 * MHU 0 irq line 1 -> CPU 1 IRQ 6
786 * MHU 1 irq line 0 -> CPU 0 IRQ 7
787 * MHU 1 irq line 1 -> CPU 1 IRQ 7
789 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
790 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
792 sysbus_connect_irq(mhu_sbd, cpunum,
793 qdev_get_gpio_in(cpudev, 6 + i));
798 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
799 return;
802 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
803 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
805 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
806 memory_region_add_subregion(&s->container, 0x40000000, mr);
807 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
808 memory_region_add_subregion(&s->container, 0x40001000, mr);
809 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
810 memory_region_add_subregion(&s->container, 0x40002000, mr);
811 if (info->has_mhus) {
812 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
813 memory_region_add_subregion(&s->container, 0x40003000, mr);
814 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
815 memory_region_add_subregion(&s->container, 0x40004000, mr);
817 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
818 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
819 qdev_get_gpio_in_named(dev_apb_ppc0,
820 "cfg_nonsec", i));
821 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
822 qdev_get_gpio_in_named(dev_apb_ppc0,
823 "cfg_ap", i));
825 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
826 qdev_get_gpio_in_named(dev_apb_ppc0,
827 "irq_enable", 0));
828 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
829 qdev_get_gpio_in_named(dev_apb_ppc0,
830 "irq_clear", 0));
831 qdev_connect_gpio_out(dev_splitter, 0,
832 qdev_get_gpio_in_named(dev_apb_ppc0,
833 "cfg_sec_resp", 0));
835 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
836 * ones) are sent individually to the security controller, and also
837 * ORed together to give a single combined PPC interrupt to the NVIC.
839 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
840 "num-lines", NUM_PPCS, errp)) {
841 return;
843 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
844 return;
846 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
847 armsse_get_common_irq_in(s, 10));
850 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
851 * private per-CPU region (all these devices are SSE-200 only):
852 * 0x50010000: L1 icache control registers
853 * 0x50011000: CPUSECCTRL (CPU local security control registers)
854 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
856 if (info->has_cachectrl) {
857 for (i = 0; i < info->num_cpus; i++) {
858 char *name = g_strdup_printf("cachectrl%d", i);
859 MemoryRegion *mr;
861 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
862 g_free(name);
863 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
864 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
865 return;
868 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
869 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
872 if (info->has_cpusecctrl) {
873 for (i = 0; i < info->num_cpus; i++) {
874 char *name = g_strdup_printf("CPUSECCTRL%d", i);
875 MemoryRegion *mr;
877 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
878 g_free(name);
879 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
880 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
881 return;
884 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
885 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
888 if (info->has_cpuid) {
889 for (i = 0; i < info->num_cpus; i++) {
890 MemoryRegion *mr;
892 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
893 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
894 return;
897 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
898 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
902 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
903 /* Devices behind APB PPC1:
904 * 0x4002f000: S32K timer
906 qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
907 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
908 return;
910 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
911 armsse_get_common_irq_in(s, 2));
912 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
913 object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
914 &error_abort);
916 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
917 return;
919 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
920 memory_region_add_subregion(&s->container, 0x4002f000, mr);
922 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
923 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
924 qdev_get_gpio_in_named(dev_apb_ppc1,
925 "cfg_nonsec", 0));
926 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
927 qdev_get_gpio_in_named(dev_apb_ppc1,
928 "cfg_ap", 0));
929 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
930 qdev_get_gpio_in_named(dev_apb_ppc1,
931 "irq_enable", 0));
932 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
933 qdev_get_gpio_in_named(dev_apb_ppc1,
934 "irq_clear", 0));
935 qdev_connect_gpio_out(dev_splitter, 1,
936 qdev_get_gpio_in_named(dev_apb_ppc1,
937 "cfg_sec_resp", 0));
939 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
940 info->sys_version, errp)) {
941 return;
943 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
944 armsse_sys_config_value(s, info), errp)) {
945 return;
947 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
948 return;
950 /* System information registers */
951 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
952 /* System control registers */
953 object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
954 info->sys_version, &error_abort);
955 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
956 info->cpuwait_rst, &error_abort);
957 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
958 s->init_svtor, &error_abort);
959 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
960 s->init_svtor, &error_abort);
961 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
962 return;
964 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
966 if (info->has_ppus) {
967 /* CPUnCORE_PPU for each CPU */
968 for (i = 0; i < info->num_cpus; i++) {
969 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
971 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
973 * We don't support CPU debug so don't create the
974 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
976 g_free(name);
978 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
980 for (i = 0; i < info->sram_banks; i++) {
981 char *name = g_strdup_printf("RAM%d_PPU", i);
983 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
984 g_free(name);
988 /* This OR gate wires together outputs from the secure watchdogs to NMI */
989 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
990 errp)) {
991 return;
993 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
994 return;
996 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
997 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
999 qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
1000 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
1001 return;
1003 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1004 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1005 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1007 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1009 qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
1010 if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
1011 return;
1013 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1014 armsse_get_common_irq_in(s, 1));
1015 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1017 qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
1018 if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1019 return;
1021 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1022 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1023 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1025 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1026 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1028 if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1029 return;
1031 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1032 return;
1036 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1037 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1039 armsse_forward_ppc(s, ppcname, i);
1040 g_free(ppcname);
1043 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1044 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1046 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1047 g_free(ppcname);
1050 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1051 /* Wire up IRQ splitter for internal PPCs */
1052 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1053 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1054 i - NUM_EXTERNAL_PPCS);
1055 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1057 qdev_connect_gpio_out(devs, 0,
1058 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1059 qdev_connect_gpio_out(devs, 1,
1060 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1061 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1062 qdev_get_gpio_in(devs, 0));
1063 g_free(gpioname);
1066 /* Wire up the splitters for the MPC IRQs */
1067 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1068 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1069 DeviceState *dev_splitter = DEVICE(splitter);
1071 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1072 errp)) {
1073 return;
1075 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1076 return;
1079 if (i < IOTS_NUM_EXP_MPC) {
1080 /* Splitter input is from GPIO input line */
1081 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1082 qdev_connect_gpio_out(dev_splitter, 0,
1083 qdev_get_gpio_in_named(dev_secctl,
1084 "mpcexp_status", i));
1085 } else {
1086 /* Splitter input is from our own MPC */
1087 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1088 "irq", 0,
1089 qdev_get_gpio_in(dev_splitter, 0));
1090 qdev_connect_gpio_out(dev_splitter, 0,
1091 qdev_get_gpio_in_named(dev_secctl,
1092 "mpc_status",
1093 i - IOTS_NUM_EXP_MPC));
1096 qdev_connect_gpio_out(dev_splitter, 1,
1097 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1099 /* Create GPIO inputs which will pass the line state for our
1100 * mpcexp_irq inputs to the correct splitter devices.
1102 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1103 IOTS_NUM_EXP_MPC);
1105 armsse_forward_sec_resp_cfg(s);
1107 /* Forward the MSC related signals */
1108 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1109 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1110 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1111 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1112 armsse_get_common_irq_in(s, 11));
1115 * Expose our container region to the board model; this corresponds
1116 * to the AHB Slave Expansion ports which allow bus master devices
1117 * (eg DMA controllers) in the board model to make transactions into
1118 * devices in the ARMSSE.
1120 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1122 /* Set initial system_clock_scale from MAINCLK */
1123 armsse_mainclk_update(s);
1126 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1127 int *iregion, bool *exempt, bool *ns, bool *nsc)
1130 * For ARMSSE systems the IDAU responses are simple logical functions
1131 * of the address bits. The NSC attribute is guest-adjustable via the
1132 * NSCCFG register in the security controller.
1134 ARMSSE *s = ARM_SSE(ii);
1135 int region = extract32(address, 28, 4);
1137 *ns = !(region & 1);
1138 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1139 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1140 *exempt = (address & 0xeff00000) == 0xe0000000;
1141 *iregion = region;
1144 static const VMStateDescription armsse_vmstate = {
1145 .name = "iotkit",
1146 .version_id = 2,
1147 .minimum_version_id = 2,
1148 .fields = (VMStateField[]) {
1149 VMSTATE_CLOCK(mainclk, ARMSSE),
1150 VMSTATE_CLOCK(s32kclk, ARMSSE),
1151 VMSTATE_UINT32(nsccfg, ARMSSE),
1152 VMSTATE_END_OF_LIST()
1156 static void armsse_reset(DeviceState *dev)
1158 ARMSSE *s = ARM_SSE(dev);
1160 s->nsccfg = 0;
1163 static void armsse_class_init(ObjectClass *klass, void *data)
1165 DeviceClass *dc = DEVICE_CLASS(klass);
1166 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1167 ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1168 const ARMSSEInfo *info = data;
1170 dc->realize = armsse_realize;
1171 dc->vmsd = &armsse_vmstate;
1172 device_class_set_props(dc, info->props);
1173 dc->reset = armsse_reset;
1174 iic->check = armsse_idau_check;
1175 asc->info = info;
1178 static const TypeInfo armsse_info = {
1179 .name = TYPE_ARM_SSE,
1180 .parent = TYPE_SYS_BUS_DEVICE,
1181 .instance_size = sizeof(ARMSSE),
1182 .class_size = sizeof(ARMSSEClass),
1183 .instance_init = armsse_init,
1184 .abstract = true,
1185 .interfaces = (InterfaceInfo[]) {
1186 { TYPE_IDAU_INTERFACE },
1191 static void armsse_register_types(void)
1193 int i;
1195 type_register_static(&armsse_info);
1197 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1198 TypeInfo ti = {
1199 .name = armsse_variants[i].name,
1200 .parent = TYPE_ARM_SSE,
1201 .class_init = armsse_class_init,
1202 .class_data = (void *)&armsse_variants[i],
1204 type_register(&ti);
1208 type_init(armsse_register_types);