block: m25p80: n25q256a/n25q512a models
[qemu/ar7.git] / block / io.c
blobc4869b96c502a633dba0e68ac5ddf074b7a15d10
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "block/throttle-groups.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
38 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
39 BlockCompletionFunc *cb, void *opaque);
40 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
41 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
42 BlockCompletionFunc *cb, void *opaque);
43 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
44 int64_t sector_num, int nb_sectors,
45 QEMUIOVector *iov);
46 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
47 int64_t sector_num, int nb_sectors,
48 QEMUIOVector *iov);
49 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
50 int64_t sector_num,
51 QEMUIOVector *qiov,
52 int nb_sectors,
53 BdrvRequestFlags flags,
54 BlockCompletionFunc *cb,
55 void *opaque,
56 bool is_write);
57 static void coroutine_fn bdrv_co_do_rw(void *opaque);
58 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
59 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
61 /* throttling disk I/O limits */
62 void bdrv_set_io_limits(BlockDriverState *bs,
63 ThrottleConfig *cfg)
65 int i;
67 throttle_group_config(bs, cfg);
69 for (i = 0; i < 2; i++) {
70 qemu_co_enter_next(&bs->throttled_reqs[i]);
74 /* this function drain all the throttled IOs */
75 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
77 bool drained = false;
78 bool enabled = bs->io_limits_enabled;
79 int i;
81 bs->io_limits_enabled = false;
83 for (i = 0; i < 2; i++) {
84 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
85 drained = true;
89 bs->io_limits_enabled = enabled;
91 return drained;
94 void bdrv_io_limits_disable(BlockDriverState *bs)
96 bs->io_limits_enabled = false;
97 bdrv_start_throttled_reqs(bs);
98 throttle_group_unregister_bs(bs);
101 /* should be called before bdrv_set_io_limits if a limit is set */
102 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
104 assert(!bs->io_limits_enabled);
105 throttle_group_register_bs(bs, group);
106 bs->io_limits_enabled = true;
109 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
111 /* this bs is not part of any group */
112 if (!bs->throttle_state) {
113 return;
116 /* this bs is a part of the same group than the one we want */
117 if (!g_strcmp0(throttle_group_get_name(bs), group)) {
118 return;
121 /* need to change the group this bs belong to */
122 bdrv_io_limits_disable(bs);
123 bdrv_io_limits_enable(bs, group);
126 void bdrv_setup_io_funcs(BlockDriver *bdrv)
128 /* Block drivers without coroutine functions need emulation */
129 if (!bdrv->bdrv_co_readv) {
130 bdrv->bdrv_co_readv = bdrv_co_readv_em;
131 bdrv->bdrv_co_writev = bdrv_co_writev_em;
133 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
134 * the block driver lacks aio we need to emulate that too.
136 if (!bdrv->bdrv_aio_readv) {
137 /* add AIO emulation layer */
138 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
139 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
144 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
146 BlockDriver *drv = bs->drv;
147 Error *local_err = NULL;
149 memset(&bs->bl, 0, sizeof(bs->bl));
151 if (!drv) {
152 return;
155 /* Take some limits from the children as a default */
156 if (bs->file) {
157 bdrv_refresh_limits(bs->file->bs, &local_err);
158 if (local_err) {
159 error_propagate(errp, local_err);
160 return;
162 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
163 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
164 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
165 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
166 bs->bl.max_iov = bs->file->bs->bl.max_iov;
167 } else {
168 bs->bl.min_mem_alignment = 512;
169 bs->bl.opt_mem_alignment = getpagesize();
171 /* Safe default since most protocols use readv()/writev()/etc */
172 bs->bl.max_iov = IOV_MAX;
175 if (bs->backing) {
176 bdrv_refresh_limits(bs->backing->bs, &local_err);
177 if (local_err) {
178 error_propagate(errp, local_err);
179 return;
181 bs->bl.opt_transfer_length =
182 MAX(bs->bl.opt_transfer_length,
183 bs->backing->bs->bl.opt_transfer_length);
184 bs->bl.max_transfer_length =
185 MIN_NON_ZERO(bs->bl.max_transfer_length,
186 bs->backing->bs->bl.max_transfer_length);
187 bs->bl.opt_mem_alignment =
188 MAX(bs->bl.opt_mem_alignment,
189 bs->backing->bs->bl.opt_mem_alignment);
190 bs->bl.min_mem_alignment =
191 MAX(bs->bl.min_mem_alignment,
192 bs->backing->bs->bl.min_mem_alignment);
193 bs->bl.max_iov =
194 MIN(bs->bl.max_iov,
195 bs->backing->bs->bl.max_iov);
198 /* Then let the driver override it */
199 if (drv->bdrv_refresh_limits) {
200 drv->bdrv_refresh_limits(bs, errp);
205 * The copy-on-read flag is actually a reference count so multiple users may
206 * use the feature without worrying about clobbering its previous state.
207 * Copy-on-read stays enabled until all users have called to disable it.
209 void bdrv_enable_copy_on_read(BlockDriverState *bs)
211 bs->copy_on_read++;
214 void bdrv_disable_copy_on_read(BlockDriverState *bs)
216 assert(bs->copy_on_read > 0);
217 bs->copy_on_read--;
220 /* Check if any requests are in-flight (including throttled requests) */
221 bool bdrv_requests_pending(BlockDriverState *bs)
223 BdrvChild *child;
225 if (!QLIST_EMPTY(&bs->tracked_requests)) {
226 return true;
228 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
229 return true;
231 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
232 return true;
235 QLIST_FOREACH(child, &bs->children, next) {
236 if (bdrv_requests_pending(child->bs)) {
237 return true;
241 return false;
244 static void bdrv_drain_recurse(BlockDriverState *bs)
246 BdrvChild *child;
248 if (bs->drv && bs->drv->bdrv_drain) {
249 bs->drv->bdrv_drain(bs);
251 QLIST_FOREACH(child, &bs->children, next) {
252 bdrv_drain_recurse(child->bs);
257 * Wait for pending requests to complete on a single BlockDriverState subtree,
258 * and suspend block driver's internal I/O until next request arrives.
260 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
261 * AioContext.
263 * Only this BlockDriverState's AioContext is run, so in-flight requests must
264 * not depend on events in other AioContexts. In that case, use
265 * bdrv_drain_all() instead.
267 void bdrv_drain(BlockDriverState *bs)
269 bool busy = true;
271 bdrv_drain_recurse(bs);
272 while (busy) {
273 /* Keep iterating */
274 bdrv_flush_io_queue(bs);
275 busy = bdrv_requests_pending(bs);
276 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
281 * Wait for pending requests to complete across all BlockDriverStates
283 * This function does not flush data to disk, use bdrv_flush_all() for that
284 * after calling this function.
286 void bdrv_drain_all(void)
288 /* Always run first iteration so any pending completion BHs run */
289 bool busy = true;
290 BlockDriverState *bs = NULL;
291 GSList *aio_ctxs = NULL, *ctx;
293 while ((bs = bdrv_next(bs))) {
294 AioContext *aio_context = bdrv_get_aio_context(bs);
296 aio_context_acquire(aio_context);
297 if (bs->job) {
298 block_job_pause(bs->job);
300 bdrv_drain_recurse(bs);
301 aio_context_release(aio_context);
303 if (!g_slist_find(aio_ctxs, aio_context)) {
304 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
308 /* Note that completion of an asynchronous I/O operation can trigger any
309 * number of other I/O operations on other devices---for example a
310 * coroutine can submit an I/O request to another device in response to
311 * request completion. Therefore we must keep looping until there was no
312 * more activity rather than simply draining each device independently.
314 while (busy) {
315 busy = false;
317 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
318 AioContext *aio_context = ctx->data;
319 bs = NULL;
321 aio_context_acquire(aio_context);
322 while ((bs = bdrv_next(bs))) {
323 if (aio_context == bdrv_get_aio_context(bs)) {
324 bdrv_flush_io_queue(bs);
325 if (bdrv_requests_pending(bs)) {
326 busy = true;
327 aio_poll(aio_context, busy);
331 busy |= aio_poll(aio_context, false);
332 aio_context_release(aio_context);
336 bs = NULL;
337 while ((bs = bdrv_next(bs))) {
338 AioContext *aio_context = bdrv_get_aio_context(bs);
340 aio_context_acquire(aio_context);
341 if (bs->job) {
342 block_job_resume(bs->job);
344 aio_context_release(aio_context);
346 g_slist_free(aio_ctxs);
350 * Remove an active request from the tracked requests list
352 * This function should be called when a tracked request is completing.
354 static void tracked_request_end(BdrvTrackedRequest *req)
356 if (req->serialising) {
357 req->bs->serialising_in_flight--;
360 QLIST_REMOVE(req, list);
361 qemu_co_queue_restart_all(&req->wait_queue);
365 * Add an active request to the tracked requests list
367 static void tracked_request_begin(BdrvTrackedRequest *req,
368 BlockDriverState *bs,
369 int64_t offset,
370 unsigned int bytes,
371 enum BdrvTrackedRequestType type)
373 *req = (BdrvTrackedRequest){
374 .bs = bs,
375 .offset = offset,
376 .bytes = bytes,
377 .type = type,
378 .co = qemu_coroutine_self(),
379 .serialising = false,
380 .overlap_offset = offset,
381 .overlap_bytes = bytes,
384 qemu_co_queue_init(&req->wait_queue);
386 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
389 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
391 int64_t overlap_offset = req->offset & ~(align - 1);
392 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
393 - overlap_offset;
395 if (!req->serialising) {
396 req->bs->serialising_in_flight++;
397 req->serialising = true;
400 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
401 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
405 * Round a region to cluster boundaries
407 void bdrv_round_to_clusters(BlockDriverState *bs,
408 int64_t sector_num, int nb_sectors,
409 int64_t *cluster_sector_num,
410 int *cluster_nb_sectors)
412 BlockDriverInfo bdi;
414 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
415 *cluster_sector_num = sector_num;
416 *cluster_nb_sectors = nb_sectors;
417 } else {
418 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
419 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
420 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
421 nb_sectors, c);
425 static int bdrv_get_cluster_size(BlockDriverState *bs)
427 BlockDriverInfo bdi;
428 int ret;
430 ret = bdrv_get_info(bs, &bdi);
431 if (ret < 0 || bdi.cluster_size == 0) {
432 return bs->request_alignment;
433 } else {
434 return bdi.cluster_size;
438 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
439 int64_t offset, unsigned int bytes)
441 /* aaaa bbbb */
442 if (offset >= req->overlap_offset + req->overlap_bytes) {
443 return false;
445 /* bbbb aaaa */
446 if (req->overlap_offset >= offset + bytes) {
447 return false;
449 return true;
452 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
454 BlockDriverState *bs = self->bs;
455 BdrvTrackedRequest *req;
456 bool retry;
457 bool waited = false;
459 if (!bs->serialising_in_flight) {
460 return false;
463 do {
464 retry = false;
465 QLIST_FOREACH(req, &bs->tracked_requests, list) {
466 if (req == self || (!req->serialising && !self->serialising)) {
467 continue;
469 if (tracked_request_overlaps(req, self->overlap_offset,
470 self->overlap_bytes))
472 /* Hitting this means there was a reentrant request, for
473 * example, a block driver issuing nested requests. This must
474 * never happen since it means deadlock.
476 assert(qemu_coroutine_self() != req->co);
478 /* If the request is already (indirectly) waiting for us, or
479 * will wait for us as soon as it wakes up, then just go on
480 * (instead of producing a deadlock in the former case). */
481 if (!req->waiting_for) {
482 self->waiting_for = req;
483 qemu_co_queue_wait(&req->wait_queue);
484 self->waiting_for = NULL;
485 retry = true;
486 waited = true;
487 break;
491 } while (retry);
493 return waited;
496 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
497 size_t size)
499 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
500 return -EIO;
503 if (!bdrv_is_inserted(bs)) {
504 return -ENOMEDIUM;
507 if (offset < 0) {
508 return -EIO;
511 return 0;
514 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
515 int nb_sectors)
517 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
518 return -EIO;
521 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
522 nb_sectors * BDRV_SECTOR_SIZE);
525 typedef struct RwCo {
526 BlockDriverState *bs;
527 int64_t offset;
528 QEMUIOVector *qiov;
529 bool is_write;
530 int ret;
531 BdrvRequestFlags flags;
532 } RwCo;
534 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
536 RwCo *rwco = opaque;
538 if (!rwco->is_write) {
539 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
540 rwco->qiov->size, rwco->qiov,
541 rwco->flags);
542 } else {
543 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
544 rwco->qiov->size, rwco->qiov,
545 rwco->flags);
550 * Process a vectored synchronous request using coroutines
552 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
553 QEMUIOVector *qiov, bool is_write,
554 BdrvRequestFlags flags)
556 Coroutine *co;
557 RwCo rwco = {
558 .bs = bs,
559 .offset = offset,
560 .qiov = qiov,
561 .is_write = is_write,
562 .ret = NOT_DONE,
563 .flags = flags,
567 * In sync call context, when the vcpu is blocked, this throttling timer
568 * will not fire; so the I/O throttling function has to be disabled here
569 * if it has been enabled.
571 if (bs->io_limits_enabled) {
572 fprintf(stderr, "Disabling I/O throttling on '%s' due "
573 "to synchronous I/O.\n", bdrv_get_device_name(bs));
574 bdrv_io_limits_disable(bs);
577 if (qemu_in_coroutine()) {
578 /* Fast-path if already in coroutine context */
579 bdrv_rw_co_entry(&rwco);
580 } else {
581 AioContext *aio_context = bdrv_get_aio_context(bs);
583 co = qemu_coroutine_create(bdrv_rw_co_entry);
584 qemu_coroutine_enter(co, &rwco);
585 while (rwco.ret == NOT_DONE) {
586 aio_poll(aio_context, true);
589 return rwco.ret;
593 * Process a synchronous request using coroutines
595 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
596 int nb_sectors, bool is_write, BdrvRequestFlags flags)
598 QEMUIOVector qiov;
599 struct iovec iov = {
600 .iov_base = (void *)buf,
601 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
604 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
605 return -EINVAL;
608 qemu_iovec_init_external(&qiov, &iov, 1);
609 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
610 &qiov, is_write, flags);
613 /* return < 0 if error. See bdrv_write() for the return codes */
614 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
615 uint8_t *buf, int nb_sectors)
617 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
620 /* Return < 0 if error. Important errors are:
621 -EIO generic I/O error (may happen for all errors)
622 -ENOMEDIUM No media inserted.
623 -EINVAL Invalid sector number or nb_sectors
624 -EACCES Trying to write a read-only device
626 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
627 const uint8_t *buf, int nb_sectors)
629 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
632 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
633 int nb_sectors, BdrvRequestFlags flags)
635 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
636 BDRV_REQ_ZERO_WRITE | flags);
640 * Completely zero out a block device with the help of bdrv_write_zeroes.
641 * The operation is sped up by checking the block status and only writing
642 * zeroes to the device if they currently do not return zeroes. Optional
643 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
645 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
647 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
649 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
650 BlockDriverState *file;
651 int n;
653 target_sectors = bdrv_nb_sectors(bs);
654 if (target_sectors < 0) {
655 return target_sectors;
658 for (;;) {
659 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
660 if (nb_sectors <= 0) {
661 return 0;
663 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
664 if (ret < 0) {
665 error_report("error getting block status at sector %" PRId64 ": %s",
666 sector_num, strerror(-ret));
667 return ret;
669 if (ret & BDRV_BLOCK_ZERO) {
670 sector_num += n;
671 continue;
673 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
674 if (ret < 0) {
675 error_report("error writing zeroes at sector %" PRId64 ": %s",
676 sector_num, strerror(-ret));
677 return ret;
679 sector_num += n;
683 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
685 QEMUIOVector qiov;
686 struct iovec iov = {
687 .iov_base = (void *)buf,
688 .iov_len = bytes,
690 int ret;
692 if (bytes < 0) {
693 return -EINVAL;
696 qemu_iovec_init_external(&qiov, &iov, 1);
697 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
698 if (ret < 0) {
699 return ret;
702 return bytes;
705 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
707 int ret;
709 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
710 if (ret < 0) {
711 return ret;
714 return qiov->size;
717 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
718 const void *buf, int bytes)
720 QEMUIOVector qiov;
721 struct iovec iov = {
722 .iov_base = (void *) buf,
723 .iov_len = bytes,
726 if (bytes < 0) {
727 return -EINVAL;
730 qemu_iovec_init_external(&qiov, &iov, 1);
731 return bdrv_pwritev(bs, offset, &qiov);
735 * Writes to the file and ensures that no writes are reordered across this
736 * request (acts as a barrier)
738 * Returns 0 on success, -errno in error cases.
740 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
741 const void *buf, int count)
743 int ret;
745 ret = bdrv_pwrite(bs, offset, buf, count);
746 if (ret < 0) {
747 return ret;
750 ret = bdrv_flush(bs);
751 if (ret < 0) {
752 return ret;
755 return 0;
758 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
759 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
761 /* Perform I/O through a temporary buffer so that users who scribble over
762 * their read buffer while the operation is in progress do not end up
763 * modifying the image file. This is critical for zero-copy guest I/O
764 * where anything might happen inside guest memory.
766 void *bounce_buffer;
768 BlockDriver *drv = bs->drv;
769 struct iovec iov;
770 QEMUIOVector bounce_qiov;
771 int64_t cluster_sector_num;
772 int cluster_nb_sectors;
773 size_t skip_bytes;
774 int ret;
776 /* Cover entire cluster so no additional backing file I/O is required when
777 * allocating cluster in the image file.
779 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
780 &cluster_sector_num, &cluster_nb_sectors);
782 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
783 cluster_sector_num, cluster_nb_sectors);
785 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
786 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
787 if (bounce_buffer == NULL) {
788 ret = -ENOMEM;
789 goto err;
792 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
794 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
795 &bounce_qiov);
796 if (ret < 0) {
797 goto err;
800 if (drv->bdrv_co_write_zeroes &&
801 buffer_is_zero(bounce_buffer, iov.iov_len)) {
802 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
803 cluster_nb_sectors, 0);
804 } else {
805 /* This does not change the data on the disk, it is not necessary
806 * to flush even in cache=writethrough mode.
808 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
809 &bounce_qiov);
812 if (ret < 0) {
813 /* It might be okay to ignore write errors for guest requests. If this
814 * is a deliberate copy-on-read then we don't want to ignore the error.
815 * Simply report it in all cases.
817 goto err;
820 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
821 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
822 nb_sectors * BDRV_SECTOR_SIZE);
824 err:
825 qemu_vfree(bounce_buffer);
826 return ret;
830 * Forwards an already correctly aligned request to the BlockDriver. This
831 * handles copy on read and zeroing after EOF; any other features must be
832 * implemented by the caller.
834 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
835 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
836 int64_t align, QEMUIOVector *qiov, int flags)
838 BlockDriver *drv = bs->drv;
839 int ret;
841 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
842 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
844 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
845 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
846 assert(!qiov || bytes == qiov->size);
847 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
849 /* Handle Copy on Read and associated serialisation */
850 if (flags & BDRV_REQ_COPY_ON_READ) {
851 /* If we touch the same cluster it counts as an overlap. This
852 * guarantees that allocating writes will be serialized and not race
853 * with each other for the same cluster. For example, in copy-on-read
854 * it ensures that the CoR read and write operations are atomic and
855 * guest writes cannot interleave between them. */
856 mark_request_serialising(req, bdrv_get_cluster_size(bs));
859 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
860 wait_serialising_requests(req);
863 if (flags & BDRV_REQ_COPY_ON_READ) {
864 int pnum;
866 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
867 if (ret < 0) {
868 goto out;
871 if (!ret || pnum != nb_sectors) {
872 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
873 goto out;
877 /* Forward the request to the BlockDriver */
878 if (!bs->zero_beyond_eof) {
879 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
880 } else {
881 /* Read zeros after EOF */
882 int64_t total_sectors, max_nb_sectors;
884 total_sectors = bdrv_nb_sectors(bs);
885 if (total_sectors < 0) {
886 ret = total_sectors;
887 goto out;
890 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
891 align >> BDRV_SECTOR_BITS);
892 if (nb_sectors < max_nb_sectors) {
893 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
894 } else if (max_nb_sectors > 0) {
895 QEMUIOVector local_qiov;
897 qemu_iovec_init(&local_qiov, qiov->niov);
898 qemu_iovec_concat(&local_qiov, qiov, 0,
899 max_nb_sectors * BDRV_SECTOR_SIZE);
901 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
902 &local_qiov);
904 qemu_iovec_destroy(&local_qiov);
905 } else {
906 ret = 0;
909 /* Reading beyond end of file is supposed to produce zeroes */
910 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
911 uint64_t offset = MAX(0, total_sectors - sector_num);
912 uint64_t bytes = (sector_num + nb_sectors - offset) *
913 BDRV_SECTOR_SIZE;
914 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
918 out:
919 return ret;
923 * Handle a read request in coroutine context
925 int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
926 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
927 BdrvRequestFlags flags)
929 BlockDriver *drv = bs->drv;
930 BdrvTrackedRequest req;
932 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
933 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
934 uint8_t *head_buf = NULL;
935 uint8_t *tail_buf = NULL;
936 QEMUIOVector local_qiov;
937 bool use_local_qiov = false;
938 int ret;
940 if (!drv) {
941 return -ENOMEDIUM;
944 ret = bdrv_check_byte_request(bs, offset, bytes);
945 if (ret < 0) {
946 return ret;
949 /* Don't do copy-on-read if we read data before write operation */
950 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
951 flags |= BDRV_REQ_COPY_ON_READ;
954 /* throttling disk I/O */
955 if (bs->io_limits_enabled) {
956 throttle_group_co_io_limits_intercept(bs, bytes, false);
959 /* Align read if necessary by padding qiov */
960 if (offset & (align - 1)) {
961 head_buf = qemu_blockalign(bs, align);
962 qemu_iovec_init(&local_qiov, qiov->niov + 2);
963 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
964 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
965 use_local_qiov = true;
967 bytes += offset & (align - 1);
968 offset = offset & ~(align - 1);
971 if ((offset + bytes) & (align - 1)) {
972 if (!use_local_qiov) {
973 qemu_iovec_init(&local_qiov, qiov->niov + 1);
974 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
975 use_local_qiov = true;
977 tail_buf = qemu_blockalign(bs, align);
978 qemu_iovec_add(&local_qiov, tail_buf,
979 align - ((offset + bytes) & (align - 1)));
981 bytes = ROUND_UP(bytes, align);
984 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
985 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
986 use_local_qiov ? &local_qiov : qiov,
987 flags);
988 tracked_request_end(&req);
990 if (use_local_qiov) {
991 qemu_iovec_destroy(&local_qiov);
992 qemu_vfree(head_buf);
993 qemu_vfree(tail_buf);
996 return ret;
999 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1000 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1001 BdrvRequestFlags flags)
1003 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1004 return -EINVAL;
1007 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1008 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1011 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1012 int nb_sectors, QEMUIOVector *qiov)
1014 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1016 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1019 int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs,
1020 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1022 trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors);
1024 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1025 BDRV_REQ_NO_SERIALISING);
1028 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1029 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1031 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1033 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1034 BDRV_REQ_COPY_ON_READ);
1037 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1039 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1040 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1042 BlockDriver *drv = bs->drv;
1043 QEMUIOVector qiov;
1044 struct iovec iov = {0};
1045 int ret = 0;
1047 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1048 BDRV_REQUEST_MAX_SECTORS);
1050 while (nb_sectors > 0 && !ret) {
1051 int num = nb_sectors;
1053 /* Align request. Block drivers can expect the "bulk" of the request
1054 * to be aligned.
1056 if (bs->bl.write_zeroes_alignment
1057 && num > bs->bl.write_zeroes_alignment) {
1058 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1059 /* Make a small request up to the first aligned sector. */
1060 num = bs->bl.write_zeroes_alignment;
1061 num -= sector_num % bs->bl.write_zeroes_alignment;
1062 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1063 /* Shorten the request to the last aligned sector. num cannot
1064 * underflow because num > bs->bl.write_zeroes_alignment.
1066 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1070 /* limit request size */
1071 if (num > max_write_zeroes) {
1072 num = max_write_zeroes;
1075 ret = -ENOTSUP;
1076 /* First try the efficient write zeroes operation */
1077 if (drv->bdrv_co_write_zeroes) {
1078 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1081 if (ret == -ENOTSUP) {
1082 /* Fall back to bounce buffer if write zeroes is unsupported */
1083 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1084 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1085 num = MIN(num, max_xfer_len);
1086 iov.iov_len = num * BDRV_SECTOR_SIZE;
1087 if (iov.iov_base == NULL) {
1088 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1089 if (iov.iov_base == NULL) {
1090 ret = -ENOMEM;
1091 goto fail;
1093 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1095 qemu_iovec_init_external(&qiov, &iov, 1);
1097 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1099 /* Keep bounce buffer around if it is big enough for all
1100 * all future requests.
1102 if (num < max_xfer_len) {
1103 qemu_vfree(iov.iov_base);
1104 iov.iov_base = NULL;
1108 sector_num += num;
1109 nb_sectors -= num;
1112 fail:
1113 qemu_vfree(iov.iov_base);
1114 return ret;
1118 * Forwards an already correctly aligned write request to the BlockDriver.
1120 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1121 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1122 QEMUIOVector *qiov, int flags)
1124 BlockDriver *drv = bs->drv;
1125 bool waited;
1126 int ret;
1128 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1129 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1131 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1132 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1133 assert(!qiov || bytes == qiov->size);
1134 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1136 waited = wait_serialising_requests(req);
1137 assert(!waited || !req->serialising);
1138 assert(req->overlap_offset <= offset);
1139 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1141 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1143 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1144 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1145 qemu_iovec_is_zero(qiov)) {
1146 flags |= BDRV_REQ_ZERO_WRITE;
1147 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1148 flags |= BDRV_REQ_MAY_UNMAP;
1152 if (ret < 0) {
1153 /* Do nothing, write notifier decided to fail this request */
1154 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1155 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1156 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1157 } else if (drv->bdrv_co_writev_flags) {
1158 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1159 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
1160 flags);
1161 } else {
1162 assert(drv->supported_write_flags == 0);
1163 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1164 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1166 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1168 if (ret == 0 && (flags & BDRV_REQ_FUA) &&
1169 !(drv->supported_write_flags & BDRV_REQ_FUA))
1171 ret = bdrv_co_flush(bs);
1174 bdrv_set_dirty(bs, sector_num, nb_sectors);
1176 if (bs->wr_highest_offset < offset + bytes) {
1177 bs->wr_highest_offset = offset + bytes;
1180 if (ret >= 0) {
1181 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1184 return ret;
1187 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1188 int64_t offset,
1189 unsigned int bytes,
1190 BdrvRequestFlags flags,
1191 BdrvTrackedRequest *req)
1193 uint8_t *buf = NULL;
1194 QEMUIOVector local_qiov;
1195 struct iovec iov;
1196 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1197 unsigned int head_padding_bytes, tail_padding_bytes;
1198 int ret = 0;
1200 head_padding_bytes = offset & (align - 1);
1201 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1204 assert(flags & BDRV_REQ_ZERO_WRITE);
1205 if (head_padding_bytes || tail_padding_bytes) {
1206 buf = qemu_blockalign(bs, align);
1207 iov = (struct iovec) {
1208 .iov_base = buf,
1209 .iov_len = align,
1211 qemu_iovec_init_external(&local_qiov, &iov, 1);
1213 if (head_padding_bytes) {
1214 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1216 /* RMW the unaligned part before head. */
1217 mark_request_serialising(req, align);
1218 wait_serialising_requests(req);
1219 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1220 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1221 align, &local_qiov, 0);
1222 if (ret < 0) {
1223 goto fail;
1225 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1227 memset(buf + head_padding_bytes, 0, zero_bytes);
1228 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1229 &local_qiov,
1230 flags & ~BDRV_REQ_ZERO_WRITE);
1231 if (ret < 0) {
1232 goto fail;
1234 offset += zero_bytes;
1235 bytes -= zero_bytes;
1238 assert(!bytes || (offset & (align - 1)) == 0);
1239 if (bytes >= align) {
1240 /* Write the aligned part in the middle. */
1241 uint64_t aligned_bytes = bytes & ~(align - 1);
1242 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1243 NULL, flags);
1244 if (ret < 0) {
1245 goto fail;
1247 bytes -= aligned_bytes;
1248 offset += aligned_bytes;
1251 assert(!bytes || (offset & (align - 1)) == 0);
1252 if (bytes) {
1253 assert(align == tail_padding_bytes + bytes);
1254 /* RMW the unaligned part after tail. */
1255 mark_request_serialising(req, align);
1256 wait_serialising_requests(req);
1257 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1258 ret = bdrv_aligned_preadv(bs, req, offset, align,
1259 align, &local_qiov, 0);
1260 if (ret < 0) {
1261 goto fail;
1263 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1265 memset(buf, 0, bytes);
1266 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1267 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1269 fail:
1270 qemu_vfree(buf);
1271 return ret;
1276 * Handle a write request in coroutine context
1278 int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1279 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1280 BdrvRequestFlags flags)
1282 BdrvTrackedRequest req;
1283 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1284 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1285 uint8_t *head_buf = NULL;
1286 uint8_t *tail_buf = NULL;
1287 QEMUIOVector local_qiov;
1288 bool use_local_qiov = false;
1289 int ret;
1291 if (!bs->drv) {
1292 return -ENOMEDIUM;
1294 if (bs->read_only) {
1295 return -EPERM;
1297 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1299 ret = bdrv_check_byte_request(bs, offset, bytes);
1300 if (ret < 0) {
1301 return ret;
1304 /* throttling disk I/O */
1305 if (bs->io_limits_enabled) {
1306 throttle_group_co_io_limits_intercept(bs, bytes, true);
1310 * Align write if necessary by performing a read-modify-write cycle.
1311 * Pad qiov with the read parts and be sure to have a tracked request not
1312 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1314 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1316 if (!qiov) {
1317 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1318 goto out;
1321 if (offset & (align - 1)) {
1322 QEMUIOVector head_qiov;
1323 struct iovec head_iov;
1325 mark_request_serialising(&req, align);
1326 wait_serialising_requests(&req);
1328 head_buf = qemu_blockalign(bs, align);
1329 head_iov = (struct iovec) {
1330 .iov_base = head_buf,
1331 .iov_len = align,
1333 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1335 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1336 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1337 align, &head_qiov, 0);
1338 if (ret < 0) {
1339 goto fail;
1341 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1343 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1344 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1345 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1346 use_local_qiov = true;
1348 bytes += offset & (align - 1);
1349 offset = offset & ~(align - 1);
1352 if ((offset + bytes) & (align - 1)) {
1353 QEMUIOVector tail_qiov;
1354 struct iovec tail_iov;
1355 size_t tail_bytes;
1356 bool waited;
1358 mark_request_serialising(&req, align);
1359 waited = wait_serialising_requests(&req);
1360 assert(!waited || !use_local_qiov);
1362 tail_buf = qemu_blockalign(bs, align);
1363 tail_iov = (struct iovec) {
1364 .iov_base = tail_buf,
1365 .iov_len = align,
1367 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1369 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1370 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1371 align, &tail_qiov, 0);
1372 if (ret < 0) {
1373 goto fail;
1375 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1377 if (!use_local_qiov) {
1378 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1379 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1380 use_local_qiov = true;
1383 tail_bytes = (offset + bytes) & (align - 1);
1384 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1386 bytes = ROUND_UP(bytes, align);
1389 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1390 use_local_qiov ? &local_qiov : qiov,
1391 flags);
1393 fail:
1395 if (use_local_qiov) {
1396 qemu_iovec_destroy(&local_qiov);
1398 qemu_vfree(head_buf);
1399 qemu_vfree(tail_buf);
1400 out:
1401 tracked_request_end(&req);
1402 return ret;
1405 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1406 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1407 BdrvRequestFlags flags)
1409 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1410 return -EINVAL;
1413 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1414 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1417 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1418 int nb_sectors, QEMUIOVector *qiov)
1420 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1422 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1425 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1426 int64_t sector_num, int nb_sectors,
1427 BdrvRequestFlags flags)
1429 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1431 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1432 flags &= ~BDRV_REQ_MAY_UNMAP;
1435 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1436 BDRV_REQ_ZERO_WRITE | flags);
1439 typedef struct BdrvCoGetBlockStatusData {
1440 BlockDriverState *bs;
1441 BlockDriverState *base;
1442 BlockDriverState **file;
1443 int64_t sector_num;
1444 int nb_sectors;
1445 int *pnum;
1446 int64_t ret;
1447 bool done;
1448 } BdrvCoGetBlockStatusData;
1451 * Returns the allocation status of the specified sectors.
1452 * Drivers not implementing the functionality are assumed to not support
1453 * backing files, hence all their sectors are reported as allocated.
1455 * If 'sector_num' is beyond the end of the disk image the return value is 0
1456 * and 'pnum' is set to 0.
1458 * 'pnum' is set to the number of sectors (including and immediately following
1459 * the specified sector) that are known to be in the same
1460 * allocated/unallocated state.
1462 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1463 * beyond the end of the disk image it will be clamped.
1465 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1466 * points to the BDS which the sector range is allocated in.
1468 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1469 int64_t sector_num,
1470 int nb_sectors, int *pnum,
1471 BlockDriverState **file)
1473 int64_t total_sectors;
1474 int64_t n;
1475 int64_t ret, ret2;
1477 total_sectors = bdrv_nb_sectors(bs);
1478 if (total_sectors < 0) {
1479 return total_sectors;
1482 if (sector_num >= total_sectors) {
1483 *pnum = 0;
1484 return 0;
1487 n = total_sectors - sector_num;
1488 if (n < nb_sectors) {
1489 nb_sectors = n;
1492 if (!bs->drv->bdrv_co_get_block_status) {
1493 *pnum = nb_sectors;
1494 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1495 if (bs->drv->protocol_name) {
1496 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1498 return ret;
1501 *file = NULL;
1502 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1503 file);
1504 if (ret < 0) {
1505 *pnum = 0;
1506 return ret;
1509 if (ret & BDRV_BLOCK_RAW) {
1510 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1511 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1512 *pnum, pnum, file);
1515 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1516 ret |= BDRV_BLOCK_ALLOCATED;
1517 } else {
1518 if (bdrv_unallocated_blocks_are_zero(bs)) {
1519 ret |= BDRV_BLOCK_ZERO;
1520 } else if (bs->backing) {
1521 BlockDriverState *bs2 = bs->backing->bs;
1522 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1523 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1524 ret |= BDRV_BLOCK_ZERO;
1529 if (*file && *file != bs &&
1530 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1531 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1532 BlockDriverState *file2;
1533 int file_pnum;
1535 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1536 *pnum, &file_pnum, &file2);
1537 if (ret2 >= 0) {
1538 /* Ignore errors. This is just providing extra information, it
1539 * is useful but not necessary.
1541 if (!file_pnum) {
1542 /* !file_pnum indicates an offset at or beyond the EOF; it is
1543 * perfectly valid for the format block driver to point to such
1544 * offsets, so catch it and mark everything as zero */
1545 ret |= BDRV_BLOCK_ZERO;
1546 } else {
1547 /* Limit request to the range reported by the protocol driver */
1548 *pnum = file_pnum;
1549 ret |= (ret2 & BDRV_BLOCK_ZERO);
1554 return ret;
1557 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1558 BlockDriverState *base,
1559 int64_t sector_num,
1560 int nb_sectors,
1561 int *pnum,
1562 BlockDriverState **file)
1564 BlockDriverState *p;
1565 int64_t ret = 0;
1567 assert(bs != base);
1568 for (p = bs; p != base; p = backing_bs(p)) {
1569 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1570 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1571 break;
1573 /* [sector_num, pnum] unallocated on this layer, which could be only
1574 * the first part of [sector_num, nb_sectors]. */
1575 nb_sectors = MIN(nb_sectors, *pnum);
1577 return ret;
1580 /* Coroutine wrapper for bdrv_get_block_status_above() */
1581 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1583 BdrvCoGetBlockStatusData *data = opaque;
1585 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1586 data->sector_num,
1587 data->nb_sectors,
1588 data->pnum,
1589 data->file);
1590 data->done = true;
1594 * Synchronous wrapper around bdrv_co_get_block_status_above().
1596 * See bdrv_co_get_block_status_above() for details.
1598 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1599 BlockDriverState *base,
1600 int64_t sector_num,
1601 int nb_sectors, int *pnum,
1602 BlockDriverState **file)
1604 Coroutine *co;
1605 BdrvCoGetBlockStatusData data = {
1606 .bs = bs,
1607 .base = base,
1608 .file = file,
1609 .sector_num = sector_num,
1610 .nb_sectors = nb_sectors,
1611 .pnum = pnum,
1612 .done = false,
1615 if (qemu_in_coroutine()) {
1616 /* Fast-path if already in coroutine context */
1617 bdrv_get_block_status_above_co_entry(&data);
1618 } else {
1619 AioContext *aio_context = bdrv_get_aio_context(bs);
1621 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1622 qemu_coroutine_enter(co, &data);
1623 while (!data.done) {
1624 aio_poll(aio_context, true);
1627 return data.ret;
1630 int64_t bdrv_get_block_status(BlockDriverState *bs,
1631 int64_t sector_num,
1632 int nb_sectors, int *pnum,
1633 BlockDriverState **file)
1635 return bdrv_get_block_status_above(bs, backing_bs(bs),
1636 sector_num, nb_sectors, pnum, file);
1639 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1640 int nb_sectors, int *pnum)
1642 BlockDriverState *file;
1643 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1644 &file);
1645 if (ret < 0) {
1646 return ret;
1648 return !!(ret & BDRV_BLOCK_ALLOCATED);
1652 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1654 * Return true if the given sector is allocated in any image between
1655 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1656 * sector is allocated in any image of the chain. Return false otherwise.
1658 * 'pnum' is set to the number of sectors (including and immediately following
1659 * the specified sector) that are known to be in the same
1660 * allocated/unallocated state.
1663 int bdrv_is_allocated_above(BlockDriverState *top,
1664 BlockDriverState *base,
1665 int64_t sector_num,
1666 int nb_sectors, int *pnum)
1668 BlockDriverState *intermediate;
1669 int ret, n = nb_sectors;
1671 intermediate = top;
1672 while (intermediate && intermediate != base) {
1673 int pnum_inter;
1674 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1675 &pnum_inter);
1676 if (ret < 0) {
1677 return ret;
1678 } else if (ret) {
1679 *pnum = pnum_inter;
1680 return 1;
1684 * [sector_num, nb_sectors] is unallocated on top but intermediate
1685 * might have
1687 * [sector_num+x, nr_sectors] allocated.
1689 if (n > pnum_inter &&
1690 (intermediate == top ||
1691 sector_num + pnum_inter < intermediate->total_sectors)) {
1692 n = pnum_inter;
1695 intermediate = backing_bs(intermediate);
1698 *pnum = n;
1699 return 0;
1702 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1703 const uint8_t *buf, int nb_sectors)
1705 BlockDriver *drv = bs->drv;
1706 int ret;
1708 if (!drv) {
1709 return -ENOMEDIUM;
1711 if (!drv->bdrv_write_compressed) {
1712 return -ENOTSUP;
1714 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1715 if (ret < 0) {
1716 return ret;
1719 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1721 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1724 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1725 int64_t pos, int size)
1727 QEMUIOVector qiov;
1728 struct iovec iov = {
1729 .iov_base = (void *) buf,
1730 .iov_len = size,
1733 qemu_iovec_init_external(&qiov, &iov, 1);
1734 return bdrv_writev_vmstate(bs, &qiov, pos);
1737 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1739 BlockDriver *drv = bs->drv;
1741 if (!drv) {
1742 return -ENOMEDIUM;
1743 } else if (drv->bdrv_save_vmstate) {
1744 return drv->bdrv_save_vmstate(bs, qiov, pos);
1745 } else if (bs->file) {
1746 return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1749 return -ENOTSUP;
1752 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1753 int64_t pos, int size)
1755 BlockDriver *drv = bs->drv;
1756 if (!drv)
1757 return -ENOMEDIUM;
1758 if (drv->bdrv_load_vmstate)
1759 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1760 if (bs->file)
1761 return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1762 return -ENOTSUP;
1765 /**************************************************************/
1766 /* async I/Os */
1768 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1769 QEMUIOVector *qiov, int nb_sectors,
1770 BlockCompletionFunc *cb, void *opaque)
1772 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1774 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1775 cb, opaque, false);
1778 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1779 QEMUIOVector *qiov, int nb_sectors,
1780 BlockCompletionFunc *cb, void *opaque)
1782 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1784 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1785 cb, opaque, true);
1788 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1789 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1790 BlockCompletionFunc *cb, void *opaque)
1792 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1794 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1795 BDRV_REQ_ZERO_WRITE | flags,
1796 cb, opaque, true);
1800 typedef struct MultiwriteCB {
1801 int error;
1802 int num_requests;
1803 int num_callbacks;
1804 struct {
1805 BlockCompletionFunc *cb;
1806 void *opaque;
1807 QEMUIOVector *free_qiov;
1808 } callbacks[];
1809 } MultiwriteCB;
1811 static void multiwrite_user_cb(MultiwriteCB *mcb)
1813 int i;
1815 for (i = 0; i < mcb->num_callbacks; i++) {
1816 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1817 if (mcb->callbacks[i].free_qiov) {
1818 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1820 g_free(mcb->callbacks[i].free_qiov);
1824 static void multiwrite_cb(void *opaque, int ret)
1826 MultiwriteCB *mcb = opaque;
1828 trace_multiwrite_cb(mcb, ret);
1830 if (ret < 0 && !mcb->error) {
1831 mcb->error = ret;
1834 mcb->num_requests--;
1835 if (mcb->num_requests == 0) {
1836 multiwrite_user_cb(mcb);
1837 g_free(mcb);
1841 static int multiwrite_req_compare(const void *a, const void *b)
1843 const BlockRequest *req1 = a, *req2 = b;
1846 * Note that we can't simply subtract req2->sector from req1->sector
1847 * here as that could overflow the return value.
1849 if (req1->sector > req2->sector) {
1850 return 1;
1851 } else if (req1->sector < req2->sector) {
1852 return -1;
1853 } else {
1854 return 0;
1859 * Takes a bunch of requests and tries to merge them. Returns the number of
1860 * requests that remain after merging.
1862 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1863 int num_reqs, MultiwriteCB *mcb)
1865 int i, outidx;
1867 // Sort requests by start sector
1868 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1870 // Check if adjacent requests touch the same clusters. If so, combine them,
1871 // filling up gaps with zero sectors.
1872 outidx = 0;
1873 for (i = 1; i < num_reqs; i++) {
1874 int merge = 0;
1875 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1877 // Handle exactly sequential writes and overlapping writes.
1878 if (reqs[i].sector <= oldreq_last) {
1879 merge = 1;
1882 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 >
1883 bs->bl.max_iov) {
1884 merge = 0;
1887 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1888 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1889 merge = 0;
1892 if (merge) {
1893 size_t size;
1894 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1895 qemu_iovec_init(qiov,
1896 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1898 // Add the first request to the merged one. If the requests are
1899 // overlapping, drop the last sectors of the first request.
1900 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1901 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1903 // We should need to add any zeros between the two requests
1904 assert (reqs[i].sector <= oldreq_last);
1906 // Add the second request
1907 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1909 // Add tail of first request, if necessary
1910 if (qiov->size < reqs[outidx].qiov->size) {
1911 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1912 reqs[outidx].qiov->size - qiov->size);
1915 reqs[outidx].nb_sectors = qiov->size >> 9;
1916 reqs[outidx].qiov = qiov;
1918 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1919 } else {
1920 outidx++;
1921 reqs[outidx].sector = reqs[i].sector;
1922 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1923 reqs[outidx].qiov = reqs[i].qiov;
1927 if (bs->blk) {
1928 block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1929 num_reqs - outidx - 1);
1932 return outidx + 1;
1936 * Submit multiple AIO write requests at once.
1938 * On success, the function returns 0 and all requests in the reqs array have
1939 * been submitted. In error case this function returns -1, and any of the
1940 * requests may or may not be submitted yet. In particular, this means that the
1941 * callback will be called for some of the requests, for others it won't. The
1942 * caller must check the error field of the BlockRequest to wait for the right
1943 * callbacks (if error != 0, no callback will be called).
1945 * The implementation may modify the contents of the reqs array, e.g. to merge
1946 * requests. However, the fields opaque and error are left unmodified as they
1947 * are used to signal failure for a single request to the caller.
1949 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1951 MultiwriteCB *mcb;
1952 int i;
1954 /* don't submit writes if we don't have a medium */
1955 if (bs->drv == NULL) {
1956 for (i = 0; i < num_reqs; i++) {
1957 reqs[i].error = -ENOMEDIUM;
1959 return -1;
1962 if (num_reqs == 0) {
1963 return 0;
1966 // Create MultiwriteCB structure
1967 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1968 mcb->num_requests = 0;
1969 mcb->num_callbacks = num_reqs;
1971 for (i = 0; i < num_reqs; i++) {
1972 mcb->callbacks[i].cb = reqs[i].cb;
1973 mcb->callbacks[i].opaque = reqs[i].opaque;
1976 // Check for mergable requests
1977 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1979 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1981 /* Run the aio requests. */
1982 mcb->num_requests = num_reqs;
1983 for (i = 0; i < num_reqs; i++) {
1984 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1985 reqs[i].nb_sectors, reqs[i].flags,
1986 multiwrite_cb, mcb,
1987 true);
1990 return 0;
1993 void bdrv_aio_cancel(BlockAIOCB *acb)
1995 qemu_aio_ref(acb);
1996 bdrv_aio_cancel_async(acb);
1997 while (acb->refcnt > 1) {
1998 if (acb->aiocb_info->get_aio_context) {
1999 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2000 } else if (acb->bs) {
2001 aio_poll(bdrv_get_aio_context(acb->bs), true);
2002 } else {
2003 abort();
2006 qemu_aio_unref(acb);
2009 /* Async version of aio cancel. The caller is not blocked if the acb implements
2010 * cancel_async, otherwise we do nothing and let the request normally complete.
2011 * In either case the completion callback must be called. */
2012 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2014 if (acb->aiocb_info->cancel_async) {
2015 acb->aiocb_info->cancel_async(acb);
2019 /**************************************************************/
2020 /* async block device emulation */
2022 typedef struct BlockAIOCBSync {
2023 BlockAIOCB common;
2024 QEMUBH *bh;
2025 int ret;
2026 /* vector translation state */
2027 QEMUIOVector *qiov;
2028 uint8_t *bounce;
2029 int is_write;
2030 } BlockAIOCBSync;
2032 static const AIOCBInfo bdrv_em_aiocb_info = {
2033 .aiocb_size = sizeof(BlockAIOCBSync),
2036 static void bdrv_aio_bh_cb(void *opaque)
2038 BlockAIOCBSync *acb = opaque;
2040 if (!acb->is_write && acb->ret >= 0) {
2041 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2043 qemu_vfree(acb->bounce);
2044 acb->common.cb(acb->common.opaque, acb->ret);
2045 qemu_bh_delete(acb->bh);
2046 acb->bh = NULL;
2047 qemu_aio_unref(acb);
2050 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2051 int64_t sector_num,
2052 QEMUIOVector *qiov,
2053 int nb_sectors,
2054 BlockCompletionFunc *cb,
2055 void *opaque,
2056 int is_write)
2059 BlockAIOCBSync *acb;
2061 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2062 acb->is_write = is_write;
2063 acb->qiov = qiov;
2064 acb->bounce = qemu_try_blockalign(bs, qiov->size);
2065 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2067 if (acb->bounce == NULL) {
2068 acb->ret = -ENOMEM;
2069 } else if (is_write) {
2070 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2071 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2072 } else {
2073 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2076 qemu_bh_schedule(acb->bh);
2078 return &acb->common;
2081 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2082 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2083 BlockCompletionFunc *cb, void *opaque)
2085 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2088 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2089 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2090 BlockCompletionFunc *cb, void *opaque)
2092 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2096 typedef struct BlockAIOCBCoroutine {
2097 BlockAIOCB common;
2098 BlockRequest req;
2099 bool is_write;
2100 bool need_bh;
2101 bool *done;
2102 QEMUBH* bh;
2103 } BlockAIOCBCoroutine;
2105 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2106 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2109 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2111 if (!acb->need_bh) {
2112 acb->common.cb(acb->common.opaque, acb->req.error);
2113 qemu_aio_unref(acb);
2117 static void bdrv_co_em_bh(void *opaque)
2119 BlockAIOCBCoroutine *acb = opaque;
2121 assert(!acb->need_bh);
2122 qemu_bh_delete(acb->bh);
2123 bdrv_co_complete(acb);
2126 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2128 acb->need_bh = false;
2129 if (acb->req.error != -EINPROGRESS) {
2130 BlockDriverState *bs = acb->common.bs;
2132 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2133 qemu_bh_schedule(acb->bh);
2137 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2138 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2140 BlockAIOCBCoroutine *acb = opaque;
2141 BlockDriverState *bs = acb->common.bs;
2143 if (!acb->is_write) {
2144 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2145 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2146 } else {
2147 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2148 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2151 bdrv_co_complete(acb);
2154 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2155 int64_t sector_num,
2156 QEMUIOVector *qiov,
2157 int nb_sectors,
2158 BdrvRequestFlags flags,
2159 BlockCompletionFunc *cb,
2160 void *opaque,
2161 bool is_write)
2163 Coroutine *co;
2164 BlockAIOCBCoroutine *acb;
2166 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2167 acb->need_bh = true;
2168 acb->req.error = -EINPROGRESS;
2169 acb->req.sector = sector_num;
2170 acb->req.nb_sectors = nb_sectors;
2171 acb->req.qiov = qiov;
2172 acb->req.flags = flags;
2173 acb->is_write = is_write;
2175 co = qemu_coroutine_create(bdrv_co_do_rw);
2176 qemu_coroutine_enter(co, acb);
2178 bdrv_co_maybe_schedule_bh(acb);
2179 return &acb->common;
2182 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2184 BlockAIOCBCoroutine *acb = opaque;
2185 BlockDriverState *bs = acb->common.bs;
2187 acb->req.error = bdrv_co_flush(bs);
2188 bdrv_co_complete(acb);
2191 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2192 BlockCompletionFunc *cb, void *opaque)
2194 trace_bdrv_aio_flush(bs, opaque);
2196 Coroutine *co;
2197 BlockAIOCBCoroutine *acb;
2199 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2200 acb->need_bh = true;
2201 acb->req.error = -EINPROGRESS;
2203 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2204 qemu_coroutine_enter(co, acb);
2206 bdrv_co_maybe_schedule_bh(acb);
2207 return &acb->common;
2210 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2212 BlockAIOCBCoroutine *acb = opaque;
2213 BlockDriverState *bs = acb->common.bs;
2215 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2216 bdrv_co_complete(acb);
2219 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2220 int64_t sector_num, int nb_sectors,
2221 BlockCompletionFunc *cb, void *opaque)
2223 Coroutine *co;
2224 BlockAIOCBCoroutine *acb;
2226 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2228 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2229 acb->need_bh = true;
2230 acb->req.error = -EINPROGRESS;
2231 acb->req.sector = sector_num;
2232 acb->req.nb_sectors = nb_sectors;
2233 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2234 qemu_coroutine_enter(co, acb);
2236 bdrv_co_maybe_schedule_bh(acb);
2237 return &acb->common;
2240 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2241 BlockCompletionFunc *cb, void *opaque)
2243 BlockAIOCB *acb;
2245 acb = g_malloc(aiocb_info->aiocb_size);
2246 acb->aiocb_info = aiocb_info;
2247 acb->bs = bs;
2248 acb->cb = cb;
2249 acb->opaque = opaque;
2250 acb->refcnt = 1;
2251 return acb;
2254 void qemu_aio_ref(void *p)
2256 BlockAIOCB *acb = p;
2257 acb->refcnt++;
2260 void qemu_aio_unref(void *p)
2262 BlockAIOCB *acb = p;
2263 assert(acb->refcnt > 0);
2264 if (--acb->refcnt == 0) {
2265 g_free(acb);
2269 /**************************************************************/
2270 /* Coroutine block device emulation */
2272 typedef struct CoroutineIOCompletion {
2273 Coroutine *coroutine;
2274 int ret;
2275 } CoroutineIOCompletion;
2277 static void bdrv_co_io_em_complete(void *opaque, int ret)
2279 CoroutineIOCompletion *co = opaque;
2281 co->ret = ret;
2282 qemu_coroutine_enter(co->coroutine, NULL);
2285 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2286 int nb_sectors, QEMUIOVector *iov,
2287 bool is_write)
2289 CoroutineIOCompletion co = {
2290 .coroutine = qemu_coroutine_self(),
2292 BlockAIOCB *acb;
2294 if (is_write) {
2295 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2296 bdrv_co_io_em_complete, &co);
2297 } else {
2298 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2299 bdrv_co_io_em_complete, &co);
2302 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2303 if (!acb) {
2304 return -EIO;
2306 qemu_coroutine_yield();
2308 return co.ret;
2311 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2312 int64_t sector_num, int nb_sectors,
2313 QEMUIOVector *iov)
2315 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2318 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2319 int64_t sector_num, int nb_sectors,
2320 QEMUIOVector *iov)
2322 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2325 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2327 RwCo *rwco = opaque;
2329 rwco->ret = bdrv_co_flush(rwco->bs);
2332 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2334 int ret;
2335 BdrvTrackedRequest req;
2337 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2338 bdrv_is_sg(bs)) {
2339 return 0;
2342 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2344 /* Write back all layers by calling one driver function */
2345 if (bs->drv->bdrv_co_flush) {
2346 ret = bs->drv->bdrv_co_flush(bs);
2347 goto out;
2350 /* Write back cached data to the OS even with cache=unsafe */
2351 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2352 if (bs->drv->bdrv_co_flush_to_os) {
2353 ret = bs->drv->bdrv_co_flush_to_os(bs);
2354 if (ret < 0) {
2355 goto out;
2359 /* But don't actually force it to the disk with cache=unsafe */
2360 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2361 goto flush_parent;
2364 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2365 if (bs->drv->bdrv_co_flush_to_disk) {
2366 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2367 } else if (bs->drv->bdrv_aio_flush) {
2368 BlockAIOCB *acb;
2369 CoroutineIOCompletion co = {
2370 .coroutine = qemu_coroutine_self(),
2373 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2374 if (acb == NULL) {
2375 ret = -EIO;
2376 } else {
2377 qemu_coroutine_yield();
2378 ret = co.ret;
2380 } else {
2382 * Some block drivers always operate in either writethrough or unsafe
2383 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2384 * know how the server works (because the behaviour is hardcoded or
2385 * depends on server-side configuration), so we can't ensure that
2386 * everything is safe on disk. Returning an error doesn't work because
2387 * that would break guests even if the server operates in writethrough
2388 * mode.
2390 * Let's hope the user knows what he's doing.
2392 ret = 0;
2394 if (ret < 0) {
2395 goto out;
2398 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2399 * in the case of cache=unsafe, so there are no useless flushes.
2401 flush_parent:
2402 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2403 out:
2404 tracked_request_end(&req);
2405 return ret;
2408 int bdrv_flush(BlockDriverState *bs)
2410 Coroutine *co;
2411 RwCo rwco = {
2412 .bs = bs,
2413 .ret = NOT_DONE,
2416 if (qemu_in_coroutine()) {
2417 /* Fast-path if already in coroutine context */
2418 bdrv_flush_co_entry(&rwco);
2419 } else {
2420 AioContext *aio_context = bdrv_get_aio_context(bs);
2422 co = qemu_coroutine_create(bdrv_flush_co_entry);
2423 qemu_coroutine_enter(co, &rwco);
2424 while (rwco.ret == NOT_DONE) {
2425 aio_poll(aio_context, true);
2429 return rwco.ret;
2432 typedef struct DiscardCo {
2433 BlockDriverState *bs;
2434 int64_t sector_num;
2435 int nb_sectors;
2436 int ret;
2437 } DiscardCo;
2438 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2440 DiscardCo *rwco = opaque;
2442 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2445 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2446 int nb_sectors)
2448 BdrvTrackedRequest req;
2449 int max_discard, ret;
2451 if (!bs->drv) {
2452 return -ENOMEDIUM;
2455 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2456 if (ret < 0) {
2457 return ret;
2458 } else if (bs->read_only) {
2459 return -EPERM;
2461 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2463 /* Do nothing if disabled. */
2464 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2465 return 0;
2468 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2469 return 0;
2472 tracked_request_begin(&req, bs, sector_num, nb_sectors,
2473 BDRV_TRACKED_DISCARD);
2474 bdrv_set_dirty(bs, sector_num, nb_sectors);
2476 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2477 while (nb_sectors > 0) {
2478 int ret;
2479 int num = nb_sectors;
2481 /* align request */
2482 if (bs->bl.discard_alignment &&
2483 num >= bs->bl.discard_alignment &&
2484 sector_num % bs->bl.discard_alignment) {
2485 if (num > bs->bl.discard_alignment) {
2486 num = bs->bl.discard_alignment;
2488 num -= sector_num % bs->bl.discard_alignment;
2491 /* limit request size */
2492 if (num > max_discard) {
2493 num = max_discard;
2496 if (bs->drv->bdrv_co_discard) {
2497 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2498 } else {
2499 BlockAIOCB *acb;
2500 CoroutineIOCompletion co = {
2501 .coroutine = qemu_coroutine_self(),
2504 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2505 bdrv_co_io_em_complete, &co);
2506 if (acb == NULL) {
2507 ret = -EIO;
2508 goto out;
2509 } else {
2510 qemu_coroutine_yield();
2511 ret = co.ret;
2514 if (ret && ret != -ENOTSUP) {
2515 goto out;
2518 sector_num += num;
2519 nb_sectors -= num;
2521 ret = 0;
2522 out:
2523 tracked_request_end(&req);
2524 return ret;
2527 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2529 Coroutine *co;
2530 DiscardCo rwco = {
2531 .bs = bs,
2532 .sector_num = sector_num,
2533 .nb_sectors = nb_sectors,
2534 .ret = NOT_DONE,
2537 if (qemu_in_coroutine()) {
2538 /* Fast-path if already in coroutine context */
2539 bdrv_discard_co_entry(&rwco);
2540 } else {
2541 AioContext *aio_context = bdrv_get_aio_context(bs);
2543 co = qemu_coroutine_create(bdrv_discard_co_entry);
2544 qemu_coroutine_enter(co, &rwco);
2545 while (rwco.ret == NOT_DONE) {
2546 aio_poll(aio_context, true);
2550 return rwco.ret;
2553 typedef struct {
2554 CoroutineIOCompletion *co;
2555 QEMUBH *bh;
2556 } BdrvIoctlCompletionData;
2558 static void bdrv_ioctl_bh_cb(void *opaque)
2560 BdrvIoctlCompletionData *data = opaque;
2562 bdrv_co_io_em_complete(data->co, -ENOTSUP);
2563 qemu_bh_delete(data->bh);
2566 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2568 BlockDriver *drv = bs->drv;
2569 BdrvTrackedRequest tracked_req;
2570 CoroutineIOCompletion co = {
2571 .coroutine = qemu_coroutine_self(),
2573 BlockAIOCB *acb;
2575 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2576 if (!drv || !drv->bdrv_aio_ioctl) {
2577 co.ret = -ENOTSUP;
2578 goto out;
2581 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2582 if (!acb) {
2583 BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1);
2584 data->bh = aio_bh_new(bdrv_get_aio_context(bs),
2585 bdrv_ioctl_bh_cb, data);
2586 data->co = &co;
2587 qemu_bh_schedule(data->bh);
2589 qemu_coroutine_yield();
2590 out:
2591 tracked_request_end(&tracked_req);
2592 return co.ret;
2595 typedef struct {
2596 BlockDriverState *bs;
2597 int req;
2598 void *buf;
2599 int ret;
2600 } BdrvIoctlCoData;
2602 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2604 BdrvIoctlCoData *data = opaque;
2605 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2608 /* needed for generic scsi interface */
2609 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2611 BdrvIoctlCoData data = {
2612 .bs = bs,
2613 .req = req,
2614 .buf = buf,
2615 .ret = -EINPROGRESS,
2618 if (qemu_in_coroutine()) {
2619 /* Fast-path if already in coroutine context */
2620 bdrv_co_ioctl_entry(&data);
2621 } else {
2622 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2624 qemu_coroutine_enter(co, &data);
2625 while (data.ret == -EINPROGRESS) {
2626 aio_poll(bdrv_get_aio_context(bs), true);
2629 return data.ret;
2632 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2634 BlockAIOCBCoroutine *acb = opaque;
2635 acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2636 acb->req.req, acb->req.buf);
2637 bdrv_co_complete(acb);
2640 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2641 unsigned long int req, void *buf,
2642 BlockCompletionFunc *cb, void *opaque)
2644 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2645 bs, cb, opaque);
2646 Coroutine *co;
2648 acb->need_bh = true;
2649 acb->req.error = -EINPROGRESS;
2650 acb->req.req = req;
2651 acb->req.buf = buf;
2652 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2653 qemu_coroutine_enter(co, acb);
2655 bdrv_co_maybe_schedule_bh(acb);
2656 return &acb->common;
2659 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2661 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2664 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2666 return memset(qemu_blockalign(bs, size), 0, size);
2669 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2671 size_t align = bdrv_opt_mem_align(bs);
2673 /* Ensure that NULL is never returned on success */
2674 assert(align > 0);
2675 if (size == 0) {
2676 size = align;
2679 return qemu_try_memalign(align, size);
2682 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2684 void *mem = qemu_try_blockalign(bs, size);
2686 if (mem) {
2687 memset(mem, 0, size);
2690 return mem;
2694 * Check if all memory in this vector is sector aligned.
2696 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2698 int i;
2699 size_t alignment = bdrv_min_mem_align(bs);
2701 for (i = 0; i < qiov->niov; i++) {
2702 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2703 return false;
2705 if (qiov->iov[i].iov_len % alignment) {
2706 return false;
2710 return true;
2713 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2714 NotifierWithReturn *notifier)
2716 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2719 void bdrv_io_plug(BlockDriverState *bs)
2721 BlockDriver *drv = bs->drv;
2722 if (drv && drv->bdrv_io_plug) {
2723 drv->bdrv_io_plug(bs);
2724 } else if (bs->file) {
2725 bdrv_io_plug(bs->file->bs);
2729 void bdrv_io_unplug(BlockDriverState *bs)
2731 BlockDriver *drv = bs->drv;
2732 if (drv && drv->bdrv_io_unplug) {
2733 drv->bdrv_io_unplug(bs);
2734 } else if (bs->file) {
2735 bdrv_io_unplug(bs->file->bs);
2739 void bdrv_flush_io_queue(BlockDriverState *bs)
2741 BlockDriver *drv = bs->drv;
2742 if (drv && drv->bdrv_flush_io_queue) {
2743 drv->bdrv_flush_io_queue(bs);
2744 } else if (bs->file) {
2745 bdrv_flush_io_queue(bs->file->bs);
2747 bdrv_start_throttled_reqs(bs);
2750 void bdrv_drained_begin(BlockDriverState *bs)
2752 if (!bs->quiesce_counter++) {
2753 aio_disable_external(bdrv_get_aio_context(bs));
2755 bdrv_drain(bs);
2758 void bdrv_drained_end(BlockDriverState *bs)
2760 assert(bs->quiesce_counter > 0);
2761 if (--bs->quiesce_counter > 0) {
2762 return;
2764 aio_enable_external(bdrv_get_aio_context(bs));