2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
21 #include "qemu/osdep.h"
23 #include "hw/qdev-properties.h"
24 #include "hw/block/flash.h"
25 #include "sysemu/block-backend.h"
26 #include "migration/vmstate.h"
27 #include "qapi/error.h"
28 #include "qemu/error-report.h"
29 #include "qemu/module.h"
31 # define NAND_CMD_READ0 0x00
32 # define NAND_CMD_READ1 0x01
33 # define NAND_CMD_READ2 0x50
34 # define NAND_CMD_LPREAD2 0x30
35 # define NAND_CMD_NOSERIALREAD2 0x35
36 # define NAND_CMD_RANDOMREAD1 0x05
37 # define NAND_CMD_RANDOMREAD2 0xe0
38 # define NAND_CMD_READID 0x90
39 # define NAND_CMD_RESET 0xff
40 # define NAND_CMD_PAGEPROGRAM1 0x80
41 # define NAND_CMD_PAGEPROGRAM2 0x10
42 # define NAND_CMD_CACHEPROGRAM2 0x15
43 # define NAND_CMD_BLOCKERASE1 0x60
44 # define NAND_CMD_BLOCKERASE2 0xd0
45 # define NAND_CMD_READSTATUS 0x70
46 # define NAND_CMD_COPYBACKPRG1 0x85
48 # define NAND_IOSTATUS_ERROR (1 << 0)
49 # define NAND_IOSTATUS_PLANE0 (1 << 1)
50 # define NAND_IOSTATUS_PLANE1 (1 << 2)
51 # define NAND_IOSTATUS_PLANE2 (1 << 3)
52 # define NAND_IOSTATUS_PLANE3 (1 << 4)
53 # define NAND_IOSTATUS_READY (1 << 6)
54 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
56 # define MAX_PAGE 0x800
59 typedef struct NANDFlashState NANDFlashState
;
60 struct NANDFlashState
{
61 DeviceState parent_obj
;
63 uint8_t manf_id
, chip_id
;
64 uint8_t buswidth
; /* in BYTES */
66 int page_shift
, oob_shift
, erase_shift
, addr_shift
;
71 uint8_t cle
, ale
, ce
, wp
, gnd
;
73 uint8_t io
[MAX_PAGE
+ MAX_OOB
+ 0x400];
83 void (*blk_write
)(NANDFlashState
*s
);
84 void (*blk_erase
)(NANDFlashState
*s
);
85 void (*blk_load
)(NANDFlashState
*s
, uint64_t addr
, int offset
);
87 uint32_t ioaddr_vmstate
;
90 #define TYPE_NAND "nand"
93 OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
95 static void mem_and(uint8_t *dest
, const uint8_t *src
, size_t n
)
97 /* Like memcpy() but we logical-AND the data into the destination */
99 for (i
= 0; i
< n
; i
++) {
104 # define NAND_NO_AUTOINCR 0x00000001
105 # define NAND_BUSWIDTH_16 0x00000002
106 # define NAND_NO_PADDING 0x00000004
107 # define NAND_CACHEPRG 0x00000008
108 # define NAND_COPYBACK 0x00000010
109 # define NAND_IS_AND 0x00000020
110 # define NAND_4PAGE_ARRAY 0x00000040
111 # define NAND_NO_READRDY 0x00000100
112 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
116 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
117 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
118 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
119 # define OOB_SHIFT (PAGE_SHIFT - 5)
120 # define OOB_SIZE (1 << OOB_SHIFT)
121 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
122 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
124 # define PAGE_SIZE 256
125 # define PAGE_SHIFT 8
126 # define PAGE_SECTORS 1
127 # define ADDR_SHIFT 8
129 # define PAGE_SIZE 512
130 # define PAGE_SHIFT 9
131 # define PAGE_SECTORS 1
132 # define ADDR_SHIFT 8
134 # define PAGE_SIZE 2048
135 # define PAGE_SHIFT 11
136 # define PAGE_SECTORS 4
137 # define ADDR_SHIFT 16
140 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
141 static const struct {
147 } nand_flash_ids
[0x100] = {
148 [0 ... 0xff] = { 0 },
150 [0x6e] = { 1, 8, 8, 4, 0 },
151 [0x64] = { 2, 8, 8, 4, 0 },
152 [0x6b] = { 4, 8, 9, 4, 0 },
153 [0xe8] = { 1, 8, 8, 4, 0 },
154 [0xec] = { 1, 8, 8, 4, 0 },
155 [0xea] = { 2, 8, 8, 4, 0 },
156 [0xd5] = { 4, 8, 9, 4, 0 },
157 [0xe3] = { 4, 8, 9, 4, 0 },
158 [0xe5] = { 4, 8, 9, 4, 0 },
159 [0xd6] = { 8, 8, 9, 4, 0 },
161 [0x39] = { 8, 8, 9, 4, 0 },
162 [0xe6] = { 8, 8, 9, 4, 0 },
163 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16
},
164 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16
},
166 [0x33] = { 16, 8, 9, 5, 0 },
167 [0x73] = { 16, 8, 9, 5, 0 },
168 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16
},
169 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16
},
171 [0x35] = { 32, 8, 9, 5, 0 },
172 [0x75] = { 32, 8, 9, 5, 0 },
173 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16
},
174 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16
},
176 [0x36] = { 64, 8, 9, 5, 0 },
177 [0x76] = { 64, 8, 9, 5, 0 },
178 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16
},
179 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16
},
181 [0x78] = { 128, 8, 9, 5, 0 },
182 [0x39] = { 128, 8, 9, 5, 0 },
183 [0x79] = { 128, 8, 9, 5, 0 },
184 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
185 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
186 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
187 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
189 [0x71] = { 256, 8, 9, 5, 0 },
192 * These are the new chips with large page size. The pagesize and the
193 * erasesize is determined from the extended id bytes
195 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
196 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
199 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS
},
200 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS
},
201 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16
},
202 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16
},
205 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS
},
206 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS
},
207 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16
},
208 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16
},
211 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS
},
212 [0xda] = { 256, 8, 0, 0, LP_OPTIONS
},
213 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16
},
214 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16
},
217 [0xac] = { 512, 8, 0, 0, LP_OPTIONS
},
218 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS
},
219 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16
},
220 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16
},
223 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS
},
224 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS
},
225 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16
},
226 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16
},
229 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS
},
230 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS
},
231 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16
},
232 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16
},
235 static void nand_reset(DeviceState
*dev
)
237 NANDFlashState
*s
= NAND(dev
);
238 s
->cmd
= NAND_CMD_READ0
;
243 s
->status
&= NAND_IOSTATUS_UNPROTCT
;
244 s
->status
|= NAND_IOSTATUS_READY
;
247 static inline void nand_pushio_byte(NANDFlashState
*s
, uint8_t value
)
249 s
->ioaddr
[s
->iolen
++] = value
;
250 for (value
= s
->buswidth
; --value
;) {
251 s
->ioaddr
[s
->iolen
++] = 0;
255 static void nand_command(NANDFlashState
*s
)
263 case NAND_CMD_READID
:
266 nand_pushio_byte(s
, s
->manf_id
);
267 nand_pushio_byte(s
, s
->chip_id
);
268 nand_pushio_byte(s
, 'Q'); /* Don't-care byte (often 0xa5) */
269 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) {
270 /* Page Size, Block Size, Spare Size; bit 6 indicates
271 * 8 vs 16 bit width NAND.
273 nand_pushio_byte(s
, (s
->buswidth
== 2) ? 0x55 : 0x15);
275 nand_pushio_byte(s
, 0xc0); /* Multi-plane */
279 case NAND_CMD_RANDOMREAD2
:
280 case NAND_CMD_NOSERIALREAD2
:
281 if (!(nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
))
283 offset
= s
->addr
& ((1 << s
->addr_shift
) - 1);
284 s
->blk_load(s
, s
->addr
, offset
);
286 s
->iolen
= (1 << s
->page_shift
) - offset
;
288 s
->iolen
= (1 << s
->page_shift
) + (1 << s
->oob_shift
) - offset
;
292 nand_reset(DEVICE(s
));
295 case NAND_CMD_PAGEPROGRAM1
:
300 case NAND_CMD_PAGEPROGRAM2
:
306 case NAND_CMD_BLOCKERASE1
:
309 case NAND_CMD_BLOCKERASE2
:
310 s
->addr
&= (1ull << s
->addrlen
* 8) - 1;
311 s
->addr
<<= nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
?
319 case NAND_CMD_READSTATUS
:
322 nand_pushio_byte(s
, s
->status
);
326 printf("%s: Unknown NAND command 0x%02x\n", __func__
, s
->cmd
);
330 static int nand_pre_save(void *opaque
)
332 NANDFlashState
*s
= NAND(opaque
);
334 s
->ioaddr_vmstate
= s
->ioaddr
- s
->io
;
339 static int nand_post_load(void *opaque
, int version_id
)
341 NANDFlashState
*s
= NAND(opaque
);
343 if (s
->ioaddr_vmstate
> sizeof(s
->io
)) {
346 s
->ioaddr
= s
->io
+ s
->ioaddr_vmstate
;
351 static const VMStateDescription vmstate_nand
= {
354 .minimum_version_id
= 1,
355 .pre_save
= nand_pre_save
,
356 .post_load
= nand_post_load
,
357 .fields
= (VMStateField
[]) {
358 VMSTATE_UINT8(cle
, NANDFlashState
),
359 VMSTATE_UINT8(ale
, NANDFlashState
),
360 VMSTATE_UINT8(ce
, NANDFlashState
),
361 VMSTATE_UINT8(wp
, NANDFlashState
),
362 VMSTATE_UINT8(gnd
, NANDFlashState
),
363 VMSTATE_BUFFER(io
, NANDFlashState
),
364 VMSTATE_UINT32(ioaddr_vmstate
, NANDFlashState
),
365 VMSTATE_INT32(iolen
, NANDFlashState
),
366 VMSTATE_UINT32(cmd
, NANDFlashState
),
367 VMSTATE_UINT64(addr
, NANDFlashState
),
368 VMSTATE_INT32(addrlen
, NANDFlashState
),
369 VMSTATE_INT32(status
, NANDFlashState
),
370 VMSTATE_INT32(offset
, NANDFlashState
),
371 /* XXX: do we want to save s->storage too? */
372 VMSTATE_END_OF_LIST()
376 static void nand_realize(DeviceState
*dev
, Error
**errp
)
379 NANDFlashState
*s
= NAND(dev
);
383 s
->buswidth
= nand_flash_ids
[s
->chip_id
].width
>> 3;
384 s
->size
= nand_flash_ids
[s
->chip_id
].size
<< 20;
385 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) {
389 s
->page_shift
= nand_flash_ids
[s
->chip_id
].page_shift
;
390 s
->erase_shift
= nand_flash_ids
[s
->chip_id
].erase_shift
;
393 switch (1 << s
->page_shift
) {
404 error_setg(errp
, "Unsupported NAND block size %#x",
409 pagesize
= 1 << s
->oob_shift
;
412 if (blk_is_read_only(s
->blk
)) {
413 error_setg(errp
, "Can't use a read-only drive");
416 ret
= blk_set_perm(s
->blk
, BLK_PERM_CONSISTENT_READ
| BLK_PERM_WRITE
,
421 if (blk_getlength(s
->blk
) >=
422 (s
->pages
<< s
->page_shift
) + (s
->pages
<< s
->oob_shift
)) {
427 pagesize
+= 1 << s
->page_shift
;
430 s
->storage
= (uint8_t *) memset(g_malloc(s
->pages
* pagesize
),
431 0xff, s
->pages
* pagesize
);
433 /* Give s->ioaddr a sane value in case we save state before it is used. */
437 static Property nand_properties
[] = {
438 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState
, manf_id
, 0),
439 DEFINE_PROP_UINT8("chip_id", NANDFlashState
, chip_id
, 0),
440 DEFINE_PROP_DRIVE("drive", NANDFlashState
, blk
),
441 DEFINE_PROP_END_OF_LIST(),
444 static void nand_class_init(ObjectClass
*klass
, void *data
)
446 DeviceClass
*dc
= DEVICE_CLASS(klass
);
448 dc
->realize
= nand_realize
;
449 dc
->reset
= nand_reset
;
450 dc
->vmsd
= &vmstate_nand
;
451 dc
->props
= nand_properties
;
454 static const TypeInfo nand_info
= {
456 .parent
= TYPE_DEVICE
,
457 .instance_size
= sizeof(NANDFlashState
),
458 .class_init
= nand_class_init
,
461 static void nand_register_types(void)
463 type_register_static(&nand_info
);
467 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
468 * outputs are R/B and eight I/O pins.
470 * CE, WP and R/B are active low.
472 void nand_setpins(DeviceState
*dev
, uint8_t cle
, uint8_t ale
,
473 uint8_t ce
, uint8_t wp
, uint8_t gnd
)
475 NANDFlashState
*s
= NAND(dev
);
483 s
->status
|= NAND_IOSTATUS_UNPROTCT
;
485 s
->status
&= ~NAND_IOSTATUS_UNPROTCT
;
489 void nand_getpins(DeviceState
*dev
, int *rb
)
494 void nand_setio(DeviceState
*dev
, uint32_t value
)
497 NANDFlashState
*s
= NAND(dev
);
499 if (!s
->ce
&& s
->cle
) {
500 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) {
501 if (s
->cmd
== NAND_CMD_READ0
&& value
== NAND_CMD_LPREAD2
)
503 if (value
== NAND_CMD_RANDOMREAD1
) {
504 s
->addr
&= ~((1 << s
->addr_shift
) - 1);
509 if (value
== NAND_CMD_READ0
) {
511 } else if (value
== NAND_CMD_READ1
) {
513 value
= NAND_CMD_READ0
;
514 } else if (value
== NAND_CMD_READ2
) {
515 s
->offset
= 1 << s
->page_shift
;
516 value
= NAND_CMD_READ0
;
521 if (s
->cmd
== NAND_CMD_READSTATUS
||
522 s
->cmd
== NAND_CMD_PAGEPROGRAM2
||
523 s
->cmd
== NAND_CMD_BLOCKERASE1
||
524 s
->cmd
== NAND_CMD_BLOCKERASE2
||
525 s
->cmd
== NAND_CMD_NOSERIALREAD2
||
526 s
->cmd
== NAND_CMD_RANDOMREAD2
||
527 s
->cmd
== NAND_CMD_RESET
) {
531 if (s
->cmd
!= NAND_CMD_RANDOMREAD2
) {
537 unsigned int shift
= s
->addrlen
* 8;
538 uint64_t mask
= ~(0xffull
<< shift
);
539 uint64_t v
= (uint64_t)value
<< shift
;
541 s
->addr
= (s
->addr
& mask
) | v
;
544 switch (s
->addrlen
) {
546 if (s
->cmd
== NAND_CMD_READID
) {
550 case 2: /* fix cache address as a byte address */
551 s
->addr
<<= (s
->buswidth
- 1);
554 if (!(nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) &&
555 (s
->cmd
== NAND_CMD_READ0
||
556 s
->cmd
== NAND_CMD_PAGEPROGRAM1
)) {
561 if ((nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) &&
562 nand_flash_ids
[s
->chip_id
].size
< 256 && /* 1Gb or less */
563 (s
->cmd
== NAND_CMD_READ0
||
564 s
->cmd
== NAND_CMD_PAGEPROGRAM1
)) {
569 if ((nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) &&
570 nand_flash_ids
[s
->chip_id
].size
>= 256 && /* 2Gb or more */
571 (s
->cmd
== NAND_CMD_READ0
||
572 s
->cmd
== NAND_CMD_PAGEPROGRAM1
)) {
581 if (!s
->cle
&& !s
->ale
&& s
->cmd
== NAND_CMD_PAGEPROGRAM1
) {
582 if (s
->iolen
< (1 << s
->page_shift
) + (1 << s
->oob_shift
)) {
583 for (i
= s
->buswidth
; i
--; value
>>= 8) {
584 s
->io
[s
->iolen
++] = (uint8_t) (value
& 0xff);
587 } else if (!s
->cle
&& !s
->ale
&& s
->cmd
== NAND_CMD_COPYBACKPRG1
) {
588 if ((s
->addr
& ((1 << s
->addr_shift
) - 1)) <
589 (1 << s
->page_shift
) + (1 << s
->oob_shift
)) {
590 for (i
= s
->buswidth
; i
--; s
->addr
++, value
>>= 8) {
591 s
->io
[s
->iolen
+ (s
->addr
& ((1 << s
->addr_shift
) - 1))] =
592 (uint8_t) (value
& 0xff);
598 uint32_t nand_getio(DeviceState
*dev
)
602 NANDFlashState
*s
= NAND(dev
);
604 /* Allow sequential reading */
605 if (!s
->iolen
&& s
->cmd
== NAND_CMD_READ0
) {
606 offset
= (int) (s
->addr
& ((1 << s
->addr_shift
) - 1)) + s
->offset
;
609 s
->blk_load(s
, s
->addr
, offset
);
611 s
->iolen
= (1 << s
->page_shift
) - offset
;
613 s
->iolen
= (1 << s
->page_shift
) + (1 << s
->oob_shift
) - offset
;
616 if (s
->ce
|| s
->iolen
<= 0) {
620 for (offset
= s
->buswidth
; offset
--;) {
621 x
|= s
->ioaddr
[offset
] << (offset
<< 3);
623 /* after receiving READ STATUS command all subsequent reads will
624 * return the status register value until another command is issued
626 if (s
->cmd
!= NAND_CMD_READSTATUS
) {
627 s
->addr
+= s
->buswidth
;
628 s
->ioaddr
+= s
->buswidth
;
629 s
->iolen
-= s
->buswidth
;
634 uint32_t nand_getbuswidth(DeviceState
*dev
)
636 NANDFlashState
*s
= (NANDFlashState
*) dev
;
637 return s
->buswidth
<< 3;
640 DeviceState
*nand_init(BlockBackend
*blk
, int manf_id
, int chip_id
)
644 if (nand_flash_ids
[chip_id
].size
== 0) {
645 hw_error("%s: Unsupported NAND chip ID.\n", __func__
);
647 dev
= DEVICE(object_new(TYPE_NAND
));
648 qdev_prop_set_uint8(dev
, "manufacturer_id", manf_id
);
649 qdev_prop_set_uint8(dev
, "chip_id", chip_id
);
651 qdev_prop_set_drive(dev
, "drive", blk
, &error_fatal
);
654 qdev_init_nofail(dev
);
658 type_init(nand_register_types
)
662 /* Program a single page */
663 static void glue(nand_blk_write_
, PAGE_SIZE
)(NANDFlashState
*s
)
665 uint64_t off
, page
, sector
, soff
;
666 uint8_t iobuf
[(PAGE_SECTORS
+ 2) * 0x200];
667 if (PAGE(s
->addr
) >= s
->pages
)
671 mem_and(s
->storage
+ PAGE_START(s
->addr
) + (s
->addr
& PAGE_MASK
) +
672 s
->offset
, s
->io
, s
->iolen
);
673 } else if (s
->mem_oob
) {
674 sector
= SECTOR(s
->addr
);
675 off
= (s
->addr
& PAGE_MASK
) + s
->offset
;
676 soff
= SECTOR_OFFSET(s
->addr
);
677 if (blk_pread(s
->blk
, sector
<< BDRV_SECTOR_BITS
, iobuf
,
678 PAGE_SECTORS
<< BDRV_SECTOR_BITS
) < 0) {
679 printf("%s: read error in sector %" PRIu64
"\n", __func__
, sector
);
683 mem_and(iobuf
+ (soff
| off
), s
->io
, MIN(s
->iolen
, PAGE_SIZE
- off
));
684 if (off
+ s
->iolen
> PAGE_SIZE
) {
685 page
= PAGE(s
->addr
);
686 mem_and(s
->storage
+ (page
<< OOB_SHIFT
), s
->io
+ PAGE_SIZE
- off
,
687 MIN(OOB_SIZE
, off
+ s
->iolen
- PAGE_SIZE
));
690 if (blk_pwrite(s
->blk
, sector
<< BDRV_SECTOR_BITS
, iobuf
,
691 PAGE_SECTORS
<< BDRV_SECTOR_BITS
, 0) < 0) {
692 printf("%s: write error in sector %" PRIu64
"\n", __func__
, sector
);
695 off
= PAGE_START(s
->addr
) + (s
->addr
& PAGE_MASK
) + s
->offset
;
698 if (blk_pread(s
->blk
, sector
<< BDRV_SECTOR_BITS
, iobuf
,
699 (PAGE_SECTORS
+ 2) << BDRV_SECTOR_BITS
) < 0) {
700 printf("%s: read error in sector %" PRIu64
"\n", __func__
, sector
);
704 mem_and(iobuf
+ soff
, s
->io
, s
->iolen
);
706 if (blk_pwrite(s
->blk
, sector
<< BDRV_SECTOR_BITS
, iobuf
,
707 (PAGE_SECTORS
+ 2) << BDRV_SECTOR_BITS
, 0) < 0) {
708 printf("%s: write error in sector %" PRIu64
"\n", __func__
, sector
);
714 /* Erase a single block */
715 static void glue(nand_blk_erase_
, PAGE_SIZE
)(NANDFlashState
*s
)
717 uint64_t i
, page
, addr
;
718 uint8_t iobuf
[0x200] = { [0 ... 0x1ff] = 0xff, };
719 addr
= s
->addr
& ~((1 << (ADDR_SHIFT
+ s
->erase_shift
)) - 1);
721 if (PAGE(addr
) >= s
->pages
) {
726 memset(s
->storage
+ PAGE_START(addr
),
727 0xff, (PAGE_SIZE
+ OOB_SIZE
) << s
->erase_shift
);
728 } else if (s
->mem_oob
) {
729 memset(s
->storage
+ (PAGE(addr
) << OOB_SHIFT
),
730 0xff, OOB_SIZE
<< s
->erase_shift
);
732 page
= SECTOR(addr
+ (1 << (ADDR_SHIFT
+ s
->erase_shift
)));
733 for (; i
< page
; i
++)
734 if (blk_pwrite(s
->blk
, i
<< BDRV_SECTOR_BITS
, iobuf
,
735 BDRV_SECTOR_SIZE
, 0) < 0) {
736 printf("%s: write error in sector %" PRIu64
"\n", __func__
, i
);
739 addr
= PAGE_START(addr
);
741 if (blk_pread(s
->blk
, page
<< BDRV_SECTOR_BITS
, iobuf
,
742 BDRV_SECTOR_SIZE
) < 0) {
743 printf("%s: read error in sector %" PRIu64
"\n", __func__
, page
);
745 memset(iobuf
+ (addr
& 0x1ff), 0xff, (~addr
& 0x1ff) + 1);
746 if (blk_pwrite(s
->blk
, page
<< BDRV_SECTOR_BITS
, iobuf
,
747 BDRV_SECTOR_SIZE
, 0) < 0) {
748 printf("%s: write error in sector %" PRIu64
"\n", __func__
, page
);
751 memset(iobuf
, 0xff, 0x200);
752 i
= (addr
& ~0x1ff) + 0x200;
753 for (addr
+= ((PAGE_SIZE
+ OOB_SIZE
) << s
->erase_shift
) - 0x200;
754 i
< addr
; i
+= 0x200) {
755 if (blk_pwrite(s
->blk
, i
, iobuf
, BDRV_SECTOR_SIZE
, 0) < 0) {
756 printf("%s: write error in sector %" PRIu64
"\n",
762 if (blk_pread(s
->blk
, page
<< BDRV_SECTOR_BITS
, iobuf
,
763 BDRV_SECTOR_SIZE
) < 0) {
764 printf("%s: read error in sector %" PRIu64
"\n", __func__
, page
);
766 memset(iobuf
, 0xff, ((addr
- 1) & 0x1ff) + 1);
767 if (blk_pwrite(s
->blk
, page
<< BDRV_SECTOR_BITS
, iobuf
,
768 BDRV_SECTOR_SIZE
, 0) < 0) {
769 printf("%s: write error in sector %" PRIu64
"\n", __func__
, page
);
774 static void glue(nand_blk_load_
, PAGE_SIZE
)(NANDFlashState
*s
,
775 uint64_t addr
, int offset
)
777 if (PAGE(addr
) >= s
->pages
) {
783 if (blk_pread(s
->blk
, SECTOR(addr
) << BDRV_SECTOR_BITS
, s
->io
,
784 PAGE_SECTORS
<< BDRV_SECTOR_BITS
) < 0) {
785 printf("%s: read error in sector %" PRIu64
"\n",
786 __func__
, SECTOR(addr
));
788 memcpy(s
->io
+ SECTOR_OFFSET(s
->addr
) + PAGE_SIZE
,
789 s
->storage
+ (PAGE(s
->addr
) << OOB_SHIFT
),
791 s
->ioaddr
= s
->io
+ SECTOR_OFFSET(s
->addr
) + offset
;
793 if (blk_pread(s
->blk
, PAGE_START(addr
), s
->io
,
794 (PAGE_SECTORS
+ 2) << BDRV_SECTOR_BITS
) < 0) {
795 printf("%s: read error in sector %" PRIu64
"\n",
796 __func__
, PAGE_START(addr
) >> 9);
798 s
->ioaddr
= s
->io
+ (PAGE_START(addr
) & 0x1ff) + offset
;
801 memcpy(s
->io
, s
->storage
+ PAGE_START(s
->addr
) +
802 offset
, PAGE_SIZE
+ OOB_SIZE
- offset
);
807 static void glue(nand_init_
, PAGE_SIZE
)(NANDFlashState
*s
)
809 s
->oob_shift
= PAGE_SHIFT
- 5;
810 s
->pages
= s
->size
>> PAGE_SHIFT
;
811 s
->addr_shift
= ADDR_SHIFT
;
813 s
->blk_erase
= glue(nand_blk_erase_
, PAGE_SIZE
);
814 s
->blk_write
= glue(nand_blk_write_
, PAGE_SIZE
);
815 s
->blk_load
= glue(nand_blk_load_
, PAGE_SIZE
);