2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
35 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
39 static bool cap_has_mp_state
;
40 static bool cap_has_inject_serror_esr
;
41 static bool cap_has_inject_ext_dabt
;
43 static ARMHostCPUFeatures arm_host_cpu_features
;
45 int kvm_arm_vcpu_init(CPUState
*cs
)
47 ARMCPU
*cpu
= ARM_CPU(cs
);
48 struct kvm_vcpu_init init
;
50 init
.target
= cpu
->kvm_target
;
51 memcpy(init
.features
, cpu
->kvm_init_features
, sizeof(init
.features
));
53 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
56 int kvm_arm_vcpu_finalize(CPUState
*cs
, int feature
)
58 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_FINALIZE
, &feature
);
61 void kvm_arm_init_serror_injection(CPUState
*cs
)
63 cap_has_inject_serror_esr
= kvm_check_extension(cs
->kvm_state
,
64 KVM_CAP_ARM_INJECT_SERROR_ESR
);
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
69 struct kvm_vcpu_init
*init
)
71 int ret
= 0, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
74 kvmfd
= qemu_open_old("/dev/kvm", O_RDWR
);
78 max_vm_pa_size
= ioctl(kvmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_ARM_VM_IPA_SIZE
);
79 if (max_vm_pa_size
< 0) {
82 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, max_vm_pa_size
);
86 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
92 /* Caller doesn't want the VCPU to be initialized, so skip it */
96 if (init
->target
== -1) {
97 struct kvm_vcpu_init preferred
;
99 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, &preferred
);
101 init
->target
= preferred
.target
;
105 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
109 } else if (cpus_to_try
) {
110 /* Old kernel which doesn't know about the
111 * PREFERRED_TARGET ioctl: we know it will only support
112 * creating one kind of guest CPU which is its preferred
115 struct kvm_vcpu_init
try;
117 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
118 try.target
= *cpus_to_try
++;
119 memcpy(try.features
, init
->features
, sizeof(init
->features
));
120 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, &try);
128 init
->target
= try.target
;
130 /* Treat a NULL cpus_to_try argument the same as an empty
131 * list, which means we will fail the call since this must
132 * be an old kernel which doesn't support PREFERRED_TARGET.
158 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
162 for (i
= 2; i
>= 0; i
--) {
167 void kvm_arm_set_cpu_features_from_host(ARMCPU
*cpu
)
169 CPUARMState
*env
= &cpu
->env
;
171 if (!arm_host_cpu_features
.dtb_compatible
) {
172 if (!kvm_enabled() ||
173 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features
)) {
174 /* We can't report this error yet, so flag that we need to
175 * in arm_cpu_realizefn().
177 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
178 cpu
->host_cpu_probe_failed
= true;
183 cpu
->kvm_target
= arm_host_cpu_features
.target
;
184 cpu
->dtb_compatible
= arm_host_cpu_features
.dtb_compatible
;
185 cpu
->isar
= arm_host_cpu_features
.isar
;
186 env
->features
= arm_host_cpu_features
.features
;
189 static bool kvm_no_adjvtime_get(Object
*obj
, Error
**errp
)
191 return !ARM_CPU(obj
)->kvm_adjvtime
;
194 static void kvm_no_adjvtime_set(Object
*obj
, bool value
, Error
**errp
)
196 ARM_CPU(obj
)->kvm_adjvtime
= !value
;
199 static bool kvm_steal_time_get(Object
*obj
, Error
**errp
)
201 return ARM_CPU(obj
)->kvm_steal_time
!= ON_OFF_AUTO_OFF
;
204 static void kvm_steal_time_set(Object
*obj
, bool value
, Error
**errp
)
206 ARM_CPU(obj
)->kvm_steal_time
= value
? ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
209 /* KVM VCPU properties should be prefixed with "kvm-". */
210 void kvm_arm_add_vcpu_properties(Object
*obj
)
212 ARMCPU
*cpu
= ARM_CPU(obj
);
213 CPUARMState
*env
= &cpu
->env
;
215 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
216 cpu
->kvm_adjvtime
= true;
217 object_property_add_bool(obj
, "kvm-no-adjvtime", kvm_no_adjvtime_get
,
218 kvm_no_adjvtime_set
);
219 object_property_set_description(obj
, "kvm-no-adjvtime",
220 "Set on to disable the adjustment of "
221 "the virtual counter. VM stopped time "
225 cpu
->kvm_steal_time
= ON_OFF_AUTO_AUTO
;
226 object_property_add_bool(obj
, "kvm-steal-time", kvm_steal_time_get
,
228 object_property_set_description(obj
, "kvm-steal-time",
229 "Set off to disable KVM steal time.");
232 bool kvm_arm_pmu_supported(void)
234 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_PMU_V3
);
237 int kvm_arm_get_max_vm_ipa_size(MachineState
*ms
, bool *fixed_ipa
)
239 KVMState
*s
= KVM_STATE(ms
->accelerator
);
242 ret
= kvm_check_extension(s
, KVM_CAP_ARM_VM_IPA_SIZE
);
243 *fixed_ipa
= ret
<= 0;
245 return ret
> 0 ? ret
: 40;
248 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
251 /* For ARM interrupt delivery is always asynchronous,
252 * whether we are using an in-kernel VGIC or not.
254 kvm_async_interrupts_allowed
= true;
257 * PSCI wakes up secondary cores, so we always need to
258 * have vCPUs waiting in kernel space
260 kvm_halt_in_kernel_allowed
= true;
262 cap_has_mp_state
= kvm_check_extension(s
, KVM_CAP_MP_STATE
);
264 if (ms
->smp
.cpus
> 256 &&
265 !kvm_check_extension(s
, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2
)) {
266 error_report("Using more than 256 vcpus requires a host kernel "
267 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
271 if (kvm_check_extension(s
, KVM_CAP_ARM_NISV_TO_USER
)) {
272 if (kvm_vm_enable_cap(s
, KVM_CAP_ARM_NISV_TO_USER
, 0)) {
273 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
275 /* Set status for supporting the external dabt injection */
276 cap_has_inject_ext_dabt
= kvm_check_extension(s
,
277 KVM_CAP_ARM_INJECT_EXT_DABT
);
284 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
286 return cpu
->cpu_index
;
289 /* We track all the KVM devices which need their memory addresses
290 * passing to the kernel in a list of these structures.
291 * When board init is complete we run through the list and
292 * tell the kernel the base addresses of the memory regions.
293 * We use a MemoryListener to track mapping and unmapping of
294 * the regions during board creation, so the board models don't
295 * need to do anything special for the KVM case.
297 * Sometimes the address must be OR'ed with some other fields
298 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
299 * @kda_addr_ormask aims at storing the value of those fields.
301 typedef struct KVMDevice
{
302 struct kvm_arm_device_addr kda
;
303 struct kvm_device_attr kdattr
;
304 uint64_t kda_addr_ormask
;
306 QSLIST_ENTRY(KVMDevice
) entries
;
310 static QSLIST_HEAD(, KVMDevice
) kvm_devices_head
;
312 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
313 MemoryRegionSection
*section
)
317 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
318 if (section
->mr
== kd
->mr
) {
319 kd
->kda
.addr
= section
->offset_within_address_space
;
324 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
325 MemoryRegionSection
*section
)
329 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
330 if (section
->mr
== kd
->mr
) {
336 static MemoryListener devlistener
= {
338 .region_add
= kvm_arm_devlistener_add
,
339 .region_del
= kvm_arm_devlistener_del
,
342 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
344 struct kvm_device_attr
*attr
= &kd
->kdattr
;
347 /* If the device control API is available and we have a device fd on the
348 * KVMDevice struct, let's use the newer API
350 if (kd
->dev_fd
>= 0) {
351 uint64_t addr
= kd
->kda
.addr
;
353 addr
|= kd
->kda_addr_ormask
;
354 attr
->addr
= (uintptr_t)&addr
;
355 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
357 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
361 fprintf(stderr
, "Failed to set device address: %s\n",
367 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
371 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
372 if (kd
->kda
.addr
!= -1) {
373 kvm_arm_set_device_addr(kd
);
375 memory_region_unref(kd
->mr
);
376 QSLIST_REMOVE_HEAD(&kvm_devices_head
, entries
);
379 memory_listener_unregister(&devlistener
);
382 static Notifier notify
= {
383 .notify
= kvm_arm_machine_init_done
,
386 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
387 uint64_t attr
, int dev_fd
, uint64_t addr_ormask
)
391 if (!kvm_irqchip_in_kernel()) {
395 if (QSLIST_EMPTY(&kvm_devices_head
)) {
396 memory_listener_register(&devlistener
, &address_space_memory
);
397 qemu_add_machine_init_done_notifier(¬ify
);
399 kd
= g_new0(KVMDevice
, 1);
403 kd
->kdattr
.flags
= 0;
404 kd
->kdattr
.group
= group
;
405 kd
->kdattr
.attr
= attr
;
407 kd
->kda_addr_ormask
= addr_ormask
;
408 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
409 memory_region_ref(kd
->mr
);
412 static int compare_u64(const void *a
, const void *b
)
414 if (*(uint64_t *)a
> *(uint64_t *)b
) {
417 if (*(uint64_t *)a
< *(uint64_t *)b
) {
424 * cpreg_values are sorted in ascending order by KVM register ID
425 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
426 * the storage for a KVM register by ID with a binary search.
428 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU
*cpu
, uint64_t regidx
)
432 res
= bsearch(®idx
, cpu
->cpreg_indexes
, cpu
->cpreg_array_len
,
433 sizeof(uint64_t), compare_u64
);
436 return &cpu
->cpreg_values
[res
- cpu
->cpreg_indexes
];
439 /* Initialize the ARMCPU cpreg list according to the kernel's
440 * definition of what CPU registers it knows about (and throw away
441 * the previous TCG-created cpreg list).
443 int kvm_arm_init_cpreg_list(ARMCPU
*cpu
)
445 struct kvm_reg_list rl
;
446 struct kvm_reg_list
*rlp
;
447 int i
, ret
, arraylen
;
448 CPUState
*cs
= CPU(cpu
);
451 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
455 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
457 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
461 /* Sort the list we get back from the kernel, since cpreg_tuples
462 * must be in strictly ascending order.
464 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
466 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
467 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp
->reg
[i
])) {
470 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
471 case KVM_REG_SIZE_U32
:
472 case KVM_REG_SIZE_U64
:
475 fprintf(stderr
, "Can't handle size of register in kernel list\n");
483 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
484 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
485 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
487 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
489 cpu
->cpreg_array_len
= arraylen
;
490 cpu
->cpreg_vmstate_array_len
= arraylen
;
492 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
493 uint64_t regidx
= rlp
->reg
[i
];
494 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx
)) {
497 cpu
->cpreg_indexes
[arraylen
] = regidx
;
500 assert(cpu
->cpreg_array_len
== arraylen
);
502 if (!write_kvmstate_to_list(cpu
)) {
503 /* Shouldn't happen unless kernel is inconsistent about
504 * what registers exist.
506 fprintf(stderr
, "Initial read of kernel register state failed\n");
516 bool write_kvmstate_to_list(ARMCPU
*cpu
)
518 CPUState
*cs
= CPU(cpu
);
522 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
523 struct kvm_one_reg r
;
524 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
530 switch (regidx
& KVM_REG_SIZE_MASK
) {
531 case KVM_REG_SIZE_U32
:
532 r
.addr
= (uintptr_t)&v32
;
533 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
535 cpu
->cpreg_values
[i
] = v32
;
538 case KVM_REG_SIZE_U64
:
539 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
540 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
543 g_assert_not_reached();
552 bool write_list_to_kvmstate(ARMCPU
*cpu
, int level
)
554 CPUState
*cs
= CPU(cpu
);
558 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
559 struct kvm_one_reg r
;
560 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
564 if (kvm_arm_cpreg_level(regidx
) > level
) {
569 switch (regidx
& KVM_REG_SIZE_MASK
) {
570 case KVM_REG_SIZE_U32
:
571 v32
= cpu
->cpreg_values
[i
];
572 r
.addr
= (uintptr_t)&v32
;
574 case KVM_REG_SIZE_U64
:
575 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
578 g_assert_not_reached();
580 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
582 /* We might fail for "unknown register" and also for
583 * "you tried to set a register which is constant with
584 * a different value from what it actually contains".
592 void kvm_arm_cpu_pre_save(ARMCPU
*cpu
)
594 /* KVM virtual time adjustment */
595 if (cpu
->kvm_vtime_dirty
) {
596 *kvm_arm_get_cpreg_ptr(cpu
, KVM_REG_ARM_TIMER_CNT
) = cpu
->kvm_vtime
;
600 void kvm_arm_cpu_post_load(ARMCPU
*cpu
)
602 /* KVM virtual time adjustment */
603 if (cpu
->kvm_adjvtime
) {
604 cpu
->kvm_vtime
= *kvm_arm_get_cpreg_ptr(cpu
, KVM_REG_ARM_TIMER_CNT
);
605 cpu
->kvm_vtime_dirty
= true;
609 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
613 /* Re-init VCPU so that all registers are set to
614 * their respective reset values.
616 ret
= kvm_arm_vcpu_init(CPU(cpu
));
618 fprintf(stderr
, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret
));
621 if (!write_kvmstate_to_list(cpu
)) {
622 fprintf(stderr
, "write_kvmstate_to_list failed\n");
626 * Sync the reset values also into the CPUState. This is necessary
627 * because the next thing we do will be a kvm_arch_put_registers()
628 * which will update the list values from the CPUState before copying
629 * the list values back to KVM. It's OK to ignore failure returns here
630 * for the same reason we do so in kvm_arch_get_registers().
632 write_list_to_cpustate(cpu
);
636 * Update KVM's MP_STATE based on what QEMU thinks it is
638 int kvm_arm_sync_mpstate_to_kvm(ARMCPU
*cpu
)
640 if (cap_has_mp_state
) {
641 struct kvm_mp_state mp_state
= {
642 .mp_state
= (cpu
->power_state
== PSCI_OFF
) ?
643 KVM_MP_STATE_STOPPED
: KVM_MP_STATE_RUNNABLE
645 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
647 fprintf(stderr
, "%s: failed to set MP_STATE %d/%s\n",
648 __func__
, ret
, strerror(-ret
));
657 * Sync the KVM MP_STATE into QEMU
659 int kvm_arm_sync_mpstate_to_qemu(ARMCPU
*cpu
)
661 if (cap_has_mp_state
) {
662 struct kvm_mp_state mp_state
;
663 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MP_STATE
, &mp_state
);
665 fprintf(stderr
, "%s: failed to get MP_STATE %d/%s\n",
666 __func__
, ret
, strerror(-ret
));
669 cpu
->power_state
= (mp_state
.mp_state
== KVM_MP_STATE_STOPPED
) ?
676 void kvm_arm_get_virtual_time(CPUState
*cs
)
678 ARMCPU
*cpu
= ARM_CPU(cs
);
679 struct kvm_one_reg reg
= {
680 .id
= KVM_REG_ARM_TIMER_CNT
,
681 .addr
= (uintptr_t)&cpu
->kvm_vtime
,
685 if (cpu
->kvm_vtime_dirty
) {
689 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
691 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
695 cpu
->kvm_vtime_dirty
= true;
698 void kvm_arm_put_virtual_time(CPUState
*cs
)
700 ARMCPU
*cpu
= ARM_CPU(cs
);
701 struct kvm_one_reg reg
= {
702 .id
= KVM_REG_ARM_TIMER_CNT
,
703 .addr
= (uintptr_t)&cpu
->kvm_vtime
,
707 if (!cpu
->kvm_vtime_dirty
) {
711 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
713 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
717 cpu
->kvm_vtime_dirty
= false;
720 int kvm_put_vcpu_events(ARMCPU
*cpu
)
722 CPUARMState
*env
= &cpu
->env
;
723 struct kvm_vcpu_events events
;
726 if (!kvm_has_vcpu_events()) {
730 memset(&events
, 0, sizeof(events
));
731 events
.exception
.serror_pending
= env
->serror
.pending
;
733 /* Inject SError to guest with specified syndrome if host kernel
734 * supports it, otherwise inject SError without syndrome.
736 if (cap_has_inject_serror_esr
) {
737 events
.exception
.serror_has_esr
= env
->serror
.has_esr
;
738 events
.exception
.serror_esr
= env
->serror
.esr
;
741 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
743 error_report("failed to put vcpu events");
749 int kvm_get_vcpu_events(ARMCPU
*cpu
)
751 CPUARMState
*env
= &cpu
->env
;
752 struct kvm_vcpu_events events
;
755 if (!kvm_has_vcpu_events()) {
759 memset(&events
, 0, sizeof(events
));
760 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
762 error_report("failed to get vcpu events");
766 env
->serror
.pending
= events
.exception
.serror_pending
;
767 env
->serror
.has_esr
= events
.exception
.serror_has_esr
;
768 env
->serror
.esr
= events
.exception
.serror_esr
;
773 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
775 ARMCPU
*cpu
= ARM_CPU(cs
);
776 CPUARMState
*env
= &cpu
->env
;
778 if (unlikely(env
->ext_dabt_raised
)) {
780 * Verifying that the ext DABT has been properly injected,
781 * otherwise risking indefinitely re-running the faulting instruction
782 * Covering a very narrow case for kernels 5.5..5.5.4
783 * when injected abort was misconfigured to be
784 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
786 if (!arm_feature(env
, ARM_FEATURE_AARCH64
) &&
787 unlikely(!kvm_arm_verify_ext_dabt_pending(cs
))) {
789 error_report("Data abort exception with no valid ISS generated by "
790 "guest memory access. KVM unable to emulate faulting "
791 "instruction. Failed to inject an external data abort "
795 /* Clear the status */
796 env
->ext_dabt_raised
= 0;
800 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
803 uint32_t switched_level
;
805 if (kvm_irqchip_in_kernel()) {
807 * We only need to sync timer states with user-space interrupt
808 * controllers, so return early and save cycles if we don't.
810 return MEMTXATTRS_UNSPECIFIED
;
815 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
816 if (run
->s
.regs
.device_irq_level
!= cpu
->device_irq_level
) {
817 switched_level
= cpu
->device_irq_level
^ run
->s
.regs
.device_irq_level
;
819 qemu_mutex_lock_iothread();
821 if (switched_level
& KVM_ARM_DEV_EL1_VTIMER
) {
822 qemu_set_irq(cpu
->gt_timer_outputs
[GTIMER_VIRT
],
823 !!(run
->s
.regs
.device_irq_level
&
824 KVM_ARM_DEV_EL1_VTIMER
));
825 switched_level
&= ~KVM_ARM_DEV_EL1_VTIMER
;
828 if (switched_level
& KVM_ARM_DEV_EL1_PTIMER
) {
829 qemu_set_irq(cpu
->gt_timer_outputs
[GTIMER_PHYS
],
830 !!(run
->s
.regs
.device_irq_level
&
831 KVM_ARM_DEV_EL1_PTIMER
));
832 switched_level
&= ~KVM_ARM_DEV_EL1_PTIMER
;
835 if (switched_level
& KVM_ARM_DEV_PMU
) {
836 qemu_set_irq(cpu
->pmu_interrupt
,
837 !!(run
->s
.regs
.device_irq_level
& KVM_ARM_DEV_PMU
));
838 switched_level
&= ~KVM_ARM_DEV_PMU
;
841 if (switched_level
) {
842 qemu_log_mask(LOG_UNIMP
, "%s: unhandled in-kernel device IRQ %x\n",
843 __func__
, switched_level
);
846 /* We also mark unknown levels as processed to not waste cycles */
847 cpu
->device_irq_level
= run
->s
.regs
.device_irq_level
;
848 qemu_mutex_unlock_iothread();
851 return MEMTXATTRS_UNSPECIFIED
;
854 void kvm_arm_vm_state_change(void *opaque
, bool running
, RunState state
)
856 CPUState
*cs
= opaque
;
857 ARMCPU
*cpu
= ARM_CPU(cs
);
860 if (cpu
->kvm_adjvtime
) {
861 kvm_arm_put_virtual_time(cs
);
864 if (cpu
->kvm_adjvtime
) {
865 kvm_arm_get_virtual_time(cs
);
871 * kvm_arm_handle_dabt_nisv:
873 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
874 * ISV bit set to '0b0' -> no valid instruction syndrome
875 * @fault_ipa: faulting address for the synchronous data abort
877 * Returns: 0 if the exception has been handled, < 0 otherwise
879 static int kvm_arm_handle_dabt_nisv(CPUState
*cs
, uint64_t esr_iss
,
882 ARMCPU
*cpu
= ARM_CPU(cs
);
883 CPUARMState
*env
= &cpu
->env
;
885 * Request KVM to inject the external data abort into the guest
887 if (cap_has_inject_ext_dabt
) {
888 struct kvm_vcpu_events events
= { };
890 * The external data abort event will be handled immediately by KVM
891 * using the address fault that triggered the exit on given VCPU.
892 * Requesting injection of the external data abort does not rely
893 * on any other VCPU state. Therefore, in this particular case, the VCPU
894 * synchronization can be exceptionally skipped.
896 events
.exception
.ext_dabt_pending
= 1;
897 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
898 if (!kvm_vcpu_ioctl(cs
, KVM_SET_VCPU_EVENTS
, &events
)) {
899 env
->ext_dabt_raised
= 1;
903 error_report("Data abort exception triggered by guest memory access "
904 "at physical address: 0x" TARGET_FMT_lx
,
905 (target_ulong
)fault_ipa
);
906 error_printf("KVM unable to emulate faulting instruction.\n");
911 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
915 switch (run
->exit_reason
) {
917 if (kvm_arm_handle_debug(cs
, &run
->debug
.arch
)) {
919 } /* otherwise return to guest */
921 case KVM_EXIT_ARM_NISV
:
922 /* External DABT with no valid iss to decode */
923 ret
= kvm_arm_handle_dabt_nisv(cs
, run
->arm_nisv
.esr_iss
,
924 run
->arm_nisv
.fault_ipa
);
927 qemu_log_mask(LOG_UNIMP
, "%s: un-handled exit reason %d\n",
928 __func__
, run
->exit_reason
);
934 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
939 int kvm_arch_process_async_events(CPUState
*cs
)
944 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
946 if (kvm_sw_breakpoints_active(cs
)) {
947 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
949 if (kvm_arm_hw_debug_active(cs
)) {
950 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW
;
951 kvm_arm_copy_hw_debug_data(&dbg
->arch
);
955 void kvm_arch_init_irq_routing(KVMState
*s
)
959 int kvm_arch_irqchip_create(KVMState
*s
)
961 if (kvm_kernel_irqchip_split()) {
962 error_report("-machine kernel_irqchip=split is not supported on ARM.");
966 /* If we can create the VGIC using the newer device control API, we
967 * let the device do this when it initializes itself, otherwise we
968 * fall back to the old API */
969 return kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
);
972 int kvm_arm_vgic_probe(void)
976 if (kvm_create_device(kvm_state
,
977 KVM_DEV_TYPE_ARM_VGIC_V3
, true) == 0) {
978 val
|= KVM_ARM_VGIC_V3
;
980 if (kvm_create_device(kvm_state
,
981 KVM_DEV_TYPE_ARM_VGIC_V2
, true) == 0) {
982 val
|= KVM_ARM_VGIC_V2
;
987 int kvm_arm_set_irq(int cpu
, int irqtype
, int irq
, int level
)
989 int kvm_irq
= (irqtype
<< KVM_ARM_IRQ_TYPE_SHIFT
) | irq
;
990 int cpu_idx1
= cpu
% 256;
991 int cpu_idx2
= cpu
/ 256;
993 kvm_irq
|= (cpu_idx1
<< KVM_ARM_IRQ_VCPU_SHIFT
) |
994 (cpu_idx2
<< KVM_ARM_IRQ_VCPU2_SHIFT
);
996 return kvm_set_irq(kvm_state
, kvm_irq
, !!level
);
999 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
1000 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
1002 AddressSpace
*as
= pci_device_iommu_address_space(dev
);
1003 hwaddr xlat
, len
, doorbell_gpa
;
1004 MemoryRegionSection mrs
;
1007 if (as
== &address_space_memory
) {
1011 /* MSI doorbell address is translated by an IOMMU */
1013 RCU_READ_LOCK_GUARD();
1015 mr
= address_space_translate(as
, address
, &xlat
, &len
, true,
1016 MEMTXATTRS_UNSPECIFIED
);
1022 mrs
= memory_region_find(mr
, xlat
, 1);
1028 doorbell_gpa
= mrs
.offset_within_address_space
;
1029 memory_region_unref(mrs
.mr
);
1031 route
->u
.msi
.address_lo
= doorbell_gpa
;
1032 route
->u
.msi
.address_hi
= doorbell_gpa
>> 32;
1034 trace_kvm_arm_fixup_msi_route(address
, doorbell_gpa
);
1039 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
1040 int vector
, PCIDevice
*dev
)
1045 int kvm_arch_release_virq_post(int virq
)
1050 int kvm_arch_msi_data_to_gsi(uint32_t data
)
1052 return (data
- 32) & 0xffff;
1055 bool kvm_arch_cpu_check_are_resettable(void)