Merge tag 'pull-hmp-20220915a' of https://gitlab.com/dagrh/qemu into staging
[qemu/ar7.git] / target / arm / cpu64.c
blobe6314e86d2001bbc10b423b8465079e07d7f3599
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
37 #include "internals.h"
39 static void aarch64_a35_initfn(Object *obj)
41 ARMCPU *cpu = ARM_CPU(obj);
43 cpu->dtb_compatible = "arm,cortex-a35";
44 set_feature(&cpu->env, ARM_FEATURE_V8);
45 set_feature(&cpu->env, ARM_FEATURE_NEON);
46 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
47 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
48 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
49 set_feature(&cpu->env, ARM_FEATURE_EL2);
50 set_feature(&cpu->env, ARM_FEATURE_EL3);
51 set_feature(&cpu->env, ARM_FEATURE_PMU);
53 /* From B2.2 AArch64 identification registers. */
54 cpu->midr = 0x411fd040;
55 cpu->revidr = 0;
56 cpu->ctr = 0x84448004;
57 cpu->isar.id_pfr0 = 0x00000131;
58 cpu->isar.id_pfr1 = 0x00011011;
59 cpu->isar.id_dfr0 = 0x03010066;
60 cpu->id_afr0 = 0;
61 cpu->isar.id_mmfr0 = 0x10201105;
62 cpu->isar.id_mmfr1 = 0x40000000;
63 cpu->isar.id_mmfr2 = 0x01260000;
64 cpu->isar.id_mmfr3 = 0x02102211;
65 cpu->isar.id_isar0 = 0x02101110;
66 cpu->isar.id_isar1 = 0x13112111;
67 cpu->isar.id_isar2 = 0x21232042;
68 cpu->isar.id_isar3 = 0x01112131;
69 cpu->isar.id_isar4 = 0x00011142;
70 cpu->isar.id_isar5 = 0x00011121;
71 cpu->isar.id_aa64pfr0 = 0x00002222;
72 cpu->isar.id_aa64pfr1 = 0;
73 cpu->isar.id_aa64dfr0 = 0x10305106;
74 cpu->isar.id_aa64dfr1 = 0;
75 cpu->isar.id_aa64isar0 = 0x00011120;
76 cpu->isar.id_aa64isar1 = 0;
77 cpu->isar.id_aa64mmfr0 = 0x00101122;
78 cpu->isar.id_aa64mmfr1 = 0;
79 cpu->clidr = 0x0a200023;
80 cpu->dcz_blocksize = 4;
82 /* From B2.4 AArch64 Virtual Memory control registers */
83 cpu->reset_sctlr = 0x00c50838;
85 /* From B2.10 AArch64 performance monitor registers */
86 cpu->isar.reset_pmcr_el0 = 0x410a3000;
88 /* From B2.29 Cache ID registers */
89 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
90 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
91 cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */
93 /* From B3.5 VGIC Type register */
94 cpu->gic_num_lrs = 4;
95 cpu->gic_vpribits = 5;
96 cpu->gic_vprebits = 5;
97 cpu->gic_pribits = 5;
99 /* From C6.4 Debug ID Register */
100 cpu->isar.dbgdidr = 0x3516d000;
101 /* From C6.5 Debug Device ID Register */
102 cpu->isar.dbgdevid = 0x00110f13;
103 /* From C6.6 Debug Device ID Register 1 */
104 cpu->isar.dbgdevid1 = 0x2;
106 /* From Cortex-A35 SIMD and Floating-point Support r1p0 */
107 /* From 3.2 AArch32 register summary */
108 cpu->reset_fpsid = 0x41034043;
110 /* From 2.2 AArch64 register summary */
111 cpu->isar.mvfr0 = 0x10110222;
112 cpu->isar.mvfr1 = 0x12111111;
113 cpu->isar.mvfr2 = 0x00000043;
115 /* These values are the same with A53/A57/A72. */
116 define_cortex_a72_a57_a53_cp_reginfo(cpu);
119 static void aarch64_a57_initfn(Object *obj)
121 ARMCPU *cpu = ARM_CPU(obj);
123 cpu->dtb_compatible = "arm,cortex-a57";
124 set_feature(&cpu->env, ARM_FEATURE_V8);
125 set_feature(&cpu->env, ARM_FEATURE_NEON);
126 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
127 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
128 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
129 set_feature(&cpu->env, ARM_FEATURE_EL2);
130 set_feature(&cpu->env, ARM_FEATURE_EL3);
131 set_feature(&cpu->env, ARM_FEATURE_PMU);
132 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
133 cpu->midr = 0x411fd070;
134 cpu->revidr = 0x00000000;
135 cpu->reset_fpsid = 0x41034070;
136 cpu->isar.mvfr0 = 0x10110222;
137 cpu->isar.mvfr1 = 0x12111111;
138 cpu->isar.mvfr2 = 0x00000043;
139 cpu->ctr = 0x8444c004;
140 cpu->reset_sctlr = 0x00c50838;
141 cpu->isar.id_pfr0 = 0x00000131;
142 cpu->isar.id_pfr1 = 0x00011011;
143 cpu->isar.id_dfr0 = 0x03010066;
144 cpu->id_afr0 = 0x00000000;
145 cpu->isar.id_mmfr0 = 0x10101105;
146 cpu->isar.id_mmfr1 = 0x40000000;
147 cpu->isar.id_mmfr2 = 0x01260000;
148 cpu->isar.id_mmfr3 = 0x02102211;
149 cpu->isar.id_isar0 = 0x02101110;
150 cpu->isar.id_isar1 = 0x13112111;
151 cpu->isar.id_isar2 = 0x21232042;
152 cpu->isar.id_isar3 = 0x01112131;
153 cpu->isar.id_isar4 = 0x00011142;
154 cpu->isar.id_isar5 = 0x00011121;
155 cpu->isar.id_isar6 = 0;
156 cpu->isar.id_aa64pfr0 = 0x00002222;
157 cpu->isar.id_aa64dfr0 = 0x10305106;
158 cpu->isar.id_aa64isar0 = 0x00011120;
159 cpu->isar.id_aa64mmfr0 = 0x00001124;
160 cpu->isar.dbgdidr = 0x3516d000;
161 cpu->isar.dbgdevid = 0x01110f13;
162 cpu->isar.dbgdevid1 = 0x2;
163 cpu->isar.reset_pmcr_el0 = 0x41013000;
164 cpu->clidr = 0x0a200023;
165 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
166 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
167 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
168 cpu->dcz_blocksize = 4; /* 64 bytes */
169 cpu->gic_num_lrs = 4;
170 cpu->gic_vpribits = 5;
171 cpu->gic_vprebits = 5;
172 cpu->gic_pribits = 5;
173 define_cortex_a72_a57_a53_cp_reginfo(cpu);
176 static void aarch64_a53_initfn(Object *obj)
178 ARMCPU *cpu = ARM_CPU(obj);
180 cpu->dtb_compatible = "arm,cortex-a53";
181 set_feature(&cpu->env, ARM_FEATURE_V8);
182 set_feature(&cpu->env, ARM_FEATURE_NEON);
183 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
184 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
185 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
186 set_feature(&cpu->env, ARM_FEATURE_EL2);
187 set_feature(&cpu->env, ARM_FEATURE_EL3);
188 set_feature(&cpu->env, ARM_FEATURE_PMU);
189 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
190 cpu->midr = 0x410fd034;
191 cpu->revidr = 0x00000000;
192 cpu->reset_fpsid = 0x41034070;
193 cpu->isar.mvfr0 = 0x10110222;
194 cpu->isar.mvfr1 = 0x12111111;
195 cpu->isar.mvfr2 = 0x00000043;
196 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
197 cpu->reset_sctlr = 0x00c50838;
198 cpu->isar.id_pfr0 = 0x00000131;
199 cpu->isar.id_pfr1 = 0x00011011;
200 cpu->isar.id_dfr0 = 0x03010066;
201 cpu->id_afr0 = 0x00000000;
202 cpu->isar.id_mmfr0 = 0x10101105;
203 cpu->isar.id_mmfr1 = 0x40000000;
204 cpu->isar.id_mmfr2 = 0x01260000;
205 cpu->isar.id_mmfr3 = 0x02102211;
206 cpu->isar.id_isar0 = 0x02101110;
207 cpu->isar.id_isar1 = 0x13112111;
208 cpu->isar.id_isar2 = 0x21232042;
209 cpu->isar.id_isar3 = 0x01112131;
210 cpu->isar.id_isar4 = 0x00011142;
211 cpu->isar.id_isar5 = 0x00011121;
212 cpu->isar.id_isar6 = 0;
213 cpu->isar.id_aa64pfr0 = 0x00002222;
214 cpu->isar.id_aa64dfr0 = 0x10305106;
215 cpu->isar.id_aa64isar0 = 0x00011120;
216 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
217 cpu->isar.dbgdidr = 0x3516d000;
218 cpu->isar.dbgdevid = 0x00110f13;
219 cpu->isar.dbgdevid1 = 0x1;
220 cpu->isar.reset_pmcr_el0 = 0x41033000;
221 cpu->clidr = 0x0a200023;
222 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
223 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
224 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
225 cpu->dcz_blocksize = 4; /* 64 bytes */
226 cpu->gic_num_lrs = 4;
227 cpu->gic_vpribits = 5;
228 cpu->gic_vprebits = 5;
229 cpu->gic_pribits = 5;
230 define_cortex_a72_a57_a53_cp_reginfo(cpu);
233 static void aarch64_a72_initfn(Object *obj)
235 ARMCPU *cpu = ARM_CPU(obj);
237 cpu->dtb_compatible = "arm,cortex-a72";
238 set_feature(&cpu->env, ARM_FEATURE_V8);
239 set_feature(&cpu->env, ARM_FEATURE_NEON);
240 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
241 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
242 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
243 set_feature(&cpu->env, ARM_FEATURE_EL2);
244 set_feature(&cpu->env, ARM_FEATURE_EL3);
245 set_feature(&cpu->env, ARM_FEATURE_PMU);
246 cpu->midr = 0x410fd083;
247 cpu->revidr = 0x00000000;
248 cpu->reset_fpsid = 0x41034080;
249 cpu->isar.mvfr0 = 0x10110222;
250 cpu->isar.mvfr1 = 0x12111111;
251 cpu->isar.mvfr2 = 0x00000043;
252 cpu->ctr = 0x8444c004;
253 cpu->reset_sctlr = 0x00c50838;
254 cpu->isar.id_pfr0 = 0x00000131;
255 cpu->isar.id_pfr1 = 0x00011011;
256 cpu->isar.id_dfr0 = 0x03010066;
257 cpu->id_afr0 = 0x00000000;
258 cpu->isar.id_mmfr0 = 0x10201105;
259 cpu->isar.id_mmfr1 = 0x40000000;
260 cpu->isar.id_mmfr2 = 0x01260000;
261 cpu->isar.id_mmfr3 = 0x02102211;
262 cpu->isar.id_isar0 = 0x02101110;
263 cpu->isar.id_isar1 = 0x13112111;
264 cpu->isar.id_isar2 = 0x21232042;
265 cpu->isar.id_isar3 = 0x01112131;
266 cpu->isar.id_isar4 = 0x00011142;
267 cpu->isar.id_isar5 = 0x00011121;
268 cpu->isar.id_aa64pfr0 = 0x00002222;
269 cpu->isar.id_aa64dfr0 = 0x10305106;
270 cpu->isar.id_aa64isar0 = 0x00011120;
271 cpu->isar.id_aa64mmfr0 = 0x00001124;
272 cpu->isar.dbgdidr = 0x3516d000;
273 cpu->isar.dbgdevid = 0x01110f13;
274 cpu->isar.dbgdevid1 = 0x2;
275 cpu->isar.reset_pmcr_el0 = 0x41023000;
276 cpu->clidr = 0x0a200023;
277 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
278 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
279 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
280 cpu->dcz_blocksize = 4; /* 64 bytes */
281 cpu->gic_num_lrs = 4;
282 cpu->gic_vpribits = 5;
283 cpu->gic_vprebits = 5;
284 cpu->gic_pribits = 5;
285 define_cortex_a72_a57_a53_cp_reginfo(cpu);
288 static void aarch64_a76_initfn(Object *obj)
290 ARMCPU *cpu = ARM_CPU(obj);
292 cpu->dtb_compatible = "arm,cortex-a76";
293 set_feature(&cpu->env, ARM_FEATURE_V8);
294 set_feature(&cpu->env, ARM_FEATURE_NEON);
295 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
296 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
297 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
298 set_feature(&cpu->env, ARM_FEATURE_EL2);
299 set_feature(&cpu->env, ARM_FEATURE_EL3);
300 set_feature(&cpu->env, ARM_FEATURE_PMU);
302 /* Ordered by B2.4 AArch64 registers by functional group */
303 cpu->clidr = 0x82000023;
304 cpu->ctr = 0x8444C004;
305 cpu->dcz_blocksize = 4;
306 cpu->isar.id_aa64dfr0 = 0x0000000010305408ull;
307 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
308 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
309 cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
310 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
311 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
312 cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
313 cpu->isar.id_aa64pfr1 = 0x0000000000000010ull;
314 cpu->id_afr0 = 0x00000000;
315 cpu->isar.id_dfr0 = 0x04010088;
316 cpu->isar.id_isar0 = 0x02101110;
317 cpu->isar.id_isar1 = 0x13112111;
318 cpu->isar.id_isar2 = 0x21232042;
319 cpu->isar.id_isar3 = 0x01112131;
320 cpu->isar.id_isar4 = 0x00010142;
321 cpu->isar.id_isar5 = 0x01011121;
322 cpu->isar.id_isar6 = 0x00000010;
323 cpu->isar.id_mmfr0 = 0x10201105;
324 cpu->isar.id_mmfr1 = 0x40000000;
325 cpu->isar.id_mmfr2 = 0x01260000;
326 cpu->isar.id_mmfr3 = 0x02122211;
327 cpu->isar.id_mmfr4 = 0x00021110;
328 cpu->isar.id_pfr0 = 0x10010131;
329 cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
330 cpu->isar.id_pfr2 = 0x00000011;
331 cpu->midr = 0x414fd0b1; /* r4p1 */
332 cpu->revidr = 0;
334 /* From B2.18 CCSIDR_EL1 */
335 cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
336 cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
337 cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
339 /* From B2.93 SCTLR_EL3 */
340 cpu->reset_sctlr = 0x30c50838;
342 /* From B4.23 ICH_VTR_EL2 */
343 cpu->gic_num_lrs = 4;
344 cpu->gic_vpribits = 5;
345 cpu->gic_vprebits = 5;
346 cpu->gic_pribits = 5;
348 /* From B5.1 AdvSIMD AArch64 register summary */
349 cpu->isar.mvfr0 = 0x10110222;
350 cpu->isar.mvfr1 = 0x13211111;
351 cpu->isar.mvfr2 = 0x00000043;
353 /* From D5.1 AArch64 PMU register summary */
354 cpu->isar.reset_pmcr_el0 = 0x410b3000;
357 static void aarch64_neoverse_n1_initfn(Object *obj)
359 ARMCPU *cpu = ARM_CPU(obj);
361 cpu->dtb_compatible = "arm,neoverse-n1";
362 set_feature(&cpu->env, ARM_FEATURE_V8);
363 set_feature(&cpu->env, ARM_FEATURE_NEON);
364 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
365 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
366 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
367 set_feature(&cpu->env, ARM_FEATURE_EL2);
368 set_feature(&cpu->env, ARM_FEATURE_EL3);
369 set_feature(&cpu->env, ARM_FEATURE_PMU);
371 /* Ordered by B2.4 AArch64 registers by functional group */
372 cpu->clidr = 0x82000023;
373 cpu->ctr = 0x8444c004;
374 cpu->dcz_blocksize = 4;
375 cpu->isar.id_aa64dfr0 = 0x0000000110305408ull;
376 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
377 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
378 cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
379 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
380 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
381 cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
382 cpu->isar.id_aa64pfr1 = 0x0000000000000020ull;
383 cpu->id_afr0 = 0x00000000;
384 cpu->isar.id_dfr0 = 0x04010088;
385 cpu->isar.id_isar0 = 0x02101110;
386 cpu->isar.id_isar1 = 0x13112111;
387 cpu->isar.id_isar2 = 0x21232042;
388 cpu->isar.id_isar3 = 0x01112131;
389 cpu->isar.id_isar4 = 0x00010142;
390 cpu->isar.id_isar5 = 0x01011121;
391 cpu->isar.id_isar6 = 0x00000010;
392 cpu->isar.id_mmfr0 = 0x10201105;
393 cpu->isar.id_mmfr1 = 0x40000000;
394 cpu->isar.id_mmfr2 = 0x01260000;
395 cpu->isar.id_mmfr3 = 0x02122211;
396 cpu->isar.id_mmfr4 = 0x00021110;
397 cpu->isar.id_pfr0 = 0x10010131;
398 cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
399 cpu->isar.id_pfr2 = 0x00000011;
400 cpu->midr = 0x414fd0c1; /* r4p1 */
401 cpu->revidr = 0;
403 /* From B2.23 CCSIDR_EL1 */
404 cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
405 cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
406 cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
408 /* From B2.98 SCTLR_EL3 */
409 cpu->reset_sctlr = 0x30c50838;
411 /* From B4.23 ICH_VTR_EL2 */
412 cpu->gic_num_lrs = 4;
413 cpu->gic_vpribits = 5;
414 cpu->gic_vprebits = 5;
415 cpu->gic_pribits = 5;
417 /* From B5.1 AdvSIMD AArch64 register summary */
418 cpu->isar.mvfr0 = 0x10110222;
419 cpu->isar.mvfr1 = 0x13211111;
420 cpu->isar.mvfr2 = 0x00000043;
422 /* From D5.1 AArch64 PMU register summary */
423 cpu->isar.reset_pmcr_el0 = 0x410c3000;
426 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
429 * If any vector lengths are explicitly enabled with sve<N> properties,
430 * then all other lengths are implicitly disabled. If sve-max-vq is
431 * specified then it is the same as explicitly enabling all lengths
432 * up to and including the specified maximum, which means all larger
433 * lengths will be implicitly disabled. If no sve<N> properties
434 * are enabled and sve-max-vq is not specified, then all lengths not
435 * explicitly disabled will be enabled. Additionally, all power-of-two
436 * vector lengths less than the maximum enabled length will be
437 * automatically enabled and all vector lengths larger than the largest
438 * disabled power-of-two vector length will be automatically disabled.
439 * Errors are generated if the user provided input that interferes with
440 * any of the above. Finally, if SVE is not disabled, then at least one
441 * vector length must be enabled.
443 uint32_t vq_map = cpu->sve_vq.map;
444 uint32_t vq_init = cpu->sve_vq.init;
445 uint32_t vq_supported;
446 uint32_t vq_mask = 0;
447 uint32_t tmp, vq, max_vq = 0;
450 * CPU models specify a set of supported vector lengths which are
451 * enabled by default. Attempting to enable any vector length not set
452 * in the supported bitmap results in an error. When KVM is enabled we
453 * fetch the supported bitmap from the host.
455 if (kvm_enabled()) {
456 if (kvm_arm_sve_supported()) {
457 cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
458 vq_supported = cpu->sve_vq.supported;
459 } else {
460 assert(!cpu_isar_feature(aa64_sve, cpu));
461 vq_supported = 0;
463 } else {
464 vq_supported = cpu->sve_vq.supported;
468 * Process explicit sve<N> properties.
469 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
470 * Check first for any sve<N> enabled.
472 if (vq_map != 0) {
473 max_vq = 32 - clz32(vq_map);
474 vq_mask = MAKE_64BIT_MASK(0, max_vq);
476 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
477 error_setg(errp, "cannot enable sve%d", max_vq * 128);
478 error_append_hint(errp, "sve%d is larger than the maximum vector "
479 "length, sve-max-vq=%d (%d bits)\n",
480 max_vq * 128, cpu->sve_max_vq,
481 cpu->sve_max_vq * 128);
482 return;
485 if (kvm_enabled()) {
487 * For KVM we have to automatically enable all supported unitialized
488 * lengths, even when the smaller lengths are not all powers-of-two.
490 vq_map |= vq_supported & ~vq_init & vq_mask;
491 } else {
492 /* Propagate enabled bits down through required powers-of-two. */
493 vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
495 } else if (cpu->sve_max_vq == 0) {
497 * No explicit bits enabled, and no implicit bits from sve-max-vq.
499 if (!cpu_isar_feature(aa64_sve, cpu)) {
500 /* SVE is disabled and so are all vector lengths. Good. */
501 return;
504 if (kvm_enabled()) {
505 /* Disabling a supported length disables all larger lengths. */
506 tmp = vq_init & vq_supported;
507 } else {
508 /* Disabling a power-of-two disables all larger lengths. */
509 tmp = vq_init & SVE_VQ_POW2_MAP;
511 vq = ctz32(tmp) + 1;
513 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
514 vq_mask = MAKE_64BIT_MASK(0, max_vq);
515 vq_map = vq_supported & ~vq_init & vq_mask;
517 if (max_vq == 0 || vq_map == 0) {
518 error_setg(errp, "cannot disable sve%d", vq * 128);
519 error_append_hint(errp, "Disabling sve%d results in all "
520 "vector lengths being disabled.\n",
521 vq * 128);
522 error_append_hint(errp, "With SVE enabled, at least one "
523 "vector length must be enabled.\n");
524 return;
527 max_vq = 32 - clz32(vq_map);
528 vq_mask = MAKE_64BIT_MASK(0, max_vq);
532 * Process the sve-max-vq property.
533 * Note that we know from the above that no bit above
534 * sve-max-vq is currently set.
536 if (cpu->sve_max_vq != 0) {
537 max_vq = cpu->sve_max_vq;
538 vq_mask = MAKE_64BIT_MASK(0, max_vq);
540 if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
541 error_setg(errp, "cannot disable sve%d", max_vq * 128);
542 error_append_hint(errp, "The maximum vector length must be "
543 "enabled, sve-max-vq=%d (%d bits)\n",
544 max_vq, max_vq * 128);
545 return;
548 /* Set all bits not explicitly set within sve-max-vq. */
549 vq_map |= ~vq_init & vq_mask;
553 * We should know what max-vq is now. Also, as we're done
554 * manipulating sve-vq-map, we ensure any bits above max-vq
555 * are clear, just in case anybody looks.
557 assert(max_vq != 0);
558 assert(vq_mask != 0);
559 vq_map &= vq_mask;
561 /* Ensure the set of lengths matches what is supported. */
562 tmp = vq_map ^ (vq_supported & vq_mask);
563 if (tmp) {
564 vq = 32 - clz32(tmp);
565 if (vq_map & (1 << (vq - 1))) {
566 if (cpu->sve_max_vq) {
567 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
568 error_append_hint(errp, "This CPU does not support "
569 "the vector length %d-bits.\n", vq * 128);
570 error_append_hint(errp, "It may not be possible to use "
571 "sve-max-vq with this CPU. Try "
572 "using only sve<N> properties.\n");
573 } else {
574 error_setg(errp, "cannot enable sve%d", vq * 128);
575 if (vq_supported) {
576 error_append_hint(errp, "This CPU does not support "
577 "the vector length %d-bits.\n", vq * 128);
578 } else {
579 error_append_hint(errp, "SVE not supported by KVM "
580 "on this host\n");
583 return;
584 } else {
585 if (kvm_enabled()) {
586 error_setg(errp, "cannot disable sve%d", vq * 128);
587 error_append_hint(errp, "The KVM host requires all "
588 "supported vector lengths smaller "
589 "than %d bits to also be enabled.\n",
590 max_vq * 128);
591 return;
592 } else {
593 /* Ensure all required powers-of-two are enabled. */
594 tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
595 if (tmp) {
596 vq = 32 - clz32(tmp);
597 error_setg(errp, "cannot disable sve%d", vq * 128);
598 error_append_hint(errp, "sve%d is required as it "
599 "is a power-of-two length smaller "
600 "than the maximum, sve%d\n",
601 vq * 128, max_vq * 128);
602 return;
609 * Now that we validated all our vector lengths, the only question
610 * left to answer is if we even want SVE at all.
612 if (!cpu_isar_feature(aa64_sve, cpu)) {
613 error_setg(errp, "cannot enable sve%d", max_vq * 128);
614 error_append_hint(errp, "SVE must be enabled to enable vector "
615 "lengths.\n");
616 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
617 return;
620 /* From now on sve_max_vq is the actual maximum supported length. */
621 cpu->sve_max_vq = max_vq;
622 cpu->sve_vq.map = vq_map;
625 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
626 void *opaque, Error **errp)
628 ARMCPU *cpu = ARM_CPU(obj);
629 uint32_t value;
631 /* All vector lengths are disabled when SVE is off. */
632 if (!cpu_isar_feature(aa64_sve, cpu)) {
633 value = 0;
634 } else {
635 value = cpu->sve_max_vq;
637 visit_type_uint32(v, name, &value, errp);
640 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
641 void *opaque, Error **errp)
643 ARMCPU *cpu = ARM_CPU(obj);
644 uint32_t max_vq;
646 if (!visit_type_uint32(v, name, &max_vq, errp)) {
647 return;
650 if (kvm_enabled() && !kvm_arm_sve_supported()) {
651 error_setg(errp, "cannot set sve-max-vq");
652 error_append_hint(errp, "SVE not supported by KVM on this host\n");
653 return;
656 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
657 error_setg(errp, "unsupported SVE vector length");
658 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
659 ARM_MAX_VQ);
660 return;
663 cpu->sve_max_vq = max_vq;
667 * Note that cpu_arm_{get,set}_vq cannot use the simpler
668 * object_property_add_bool interface because they make use of the
669 * contents of "name" to determine which bit on which to operate.
671 static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name,
672 void *opaque, Error **errp)
674 ARMCPU *cpu = ARM_CPU(obj);
675 ARMVQMap *vq_map = opaque;
676 uint32_t vq = atoi(&name[3]) / 128;
677 bool sve = vq_map == &cpu->sve_vq;
678 bool value;
680 /* All vector lengths are disabled when feature is off. */
681 if (sve
682 ? !cpu_isar_feature(aa64_sve, cpu)
683 : !cpu_isar_feature(aa64_sme, cpu)) {
684 value = false;
685 } else {
686 value = extract32(vq_map->map, vq - 1, 1);
688 visit_type_bool(v, name, &value, errp);
691 static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name,
692 void *opaque, Error **errp)
694 ARMVQMap *vq_map = opaque;
695 uint32_t vq = atoi(&name[3]) / 128;
696 bool value;
698 if (!visit_type_bool(v, name, &value, errp)) {
699 return;
702 vq_map->map = deposit32(vq_map->map, vq - 1, 1, value);
703 vq_map->init |= 1 << (vq - 1);
706 static bool cpu_arm_get_sve(Object *obj, Error **errp)
708 ARMCPU *cpu = ARM_CPU(obj);
709 return cpu_isar_feature(aa64_sve, cpu);
712 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
714 ARMCPU *cpu = ARM_CPU(obj);
715 uint64_t t;
717 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
718 error_setg(errp, "'sve' feature not supported by KVM on this host");
719 return;
722 t = cpu->isar.id_aa64pfr0;
723 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
724 cpu->isar.id_aa64pfr0 = t;
727 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp)
729 uint32_t vq_map = cpu->sme_vq.map;
730 uint32_t vq_init = cpu->sme_vq.init;
731 uint32_t vq_supported = cpu->sme_vq.supported;
732 uint32_t vq;
734 if (vq_map == 0) {
735 if (!cpu_isar_feature(aa64_sme, cpu)) {
736 cpu->isar.id_aa64smfr0 = 0;
737 return;
740 /* TODO: KVM will require limitations via SMCR_EL2. */
741 vq_map = vq_supported & ~vq_init;
743 if (vq_map == 0) {
744 vq = ctz32(vq_supported) + 1;
745 error_setg(errp, "cannot disable sme%d", vq * 128);
746 error_append_hint(errp, "All SME vector lengths are disabled.\n");
747 error_append_hint(errp, "With SME enabled, at least one "
748 "vector length must be enabled.\n");
749 return;
751 } else {
752 if (!cpu_isar_feature(aa64_sme, cpu)) {
753 vq = 32 - clz32(vq_map);
754 error_setg(errp, "cannot enable sme%d", vq * 128);
755 error_append_hint(errp, "SME must be enabled to enable "
756 "vector lengths.\n");
757 error_append_hint(errp, "Add sme=on to the CPU property list.\n");
758 return;
760 /* TODO: KVM will require limitations via SMCR_EL2. */
763 cpu->sme_vq.map = vq_map;
766 static bool cpu_arm_get_sme(Object *obj, Error **errp)
768 ARMCPU *cpu = ARM_CPU(obj);
769 return cpu_isar_feature(aa64_sme, cpu);
772 static void cpu_arm_set_sme(Object *obj, bool value, Error **errp)
774 ARMCPU *cpu = ARM_CPU(obj);
775 uint64_t t;
777 t = cpu->isar.id_aa64pfr1;
778 t = FIELD_DP64(t, ID_AA64PFR1, SME, value);
779 cpu->isar.id_aa64pfr1 = t;
782 static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp)
784 ARMCPU *cpu = ARM_CPU(obj);
785 return cpu_isar_feature(aa64_sme, cpu) &&
786 cpu_isar_feature(aa64_sme_fa64, cpu);
789 static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp)
791 ARMCPU *cpu = ARM_CPU(obj);
792 uint64_t t;
794 t = cpu->isar.id_aa64smfr0;
795 t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value);
796 cpu->isar.id_aa64smfr0 = t;
799 #ifdef CONFIG_USER_ONLY
800 /* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */
801 static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v,
802 const char *name, void *opaque,
803 Error **errp)
805 uint32_t *ptr_default_vq = opaque;
806 int32_t default_len, default_vq, remainder;
808 if (!visit_type_int32(v, name, &default_len, errp)) {
809 return;
812 /* Undocumented, but the kernel allows -1 to indicate "maximum". */
813 if (default_len == -1) {
814 *ptr_default_vq = ARM_MAX_VQ;
815 return;
818 default_vq = default_len / 16;
819 remainder = default_len % 16;
822 * Note that the 512 max comes from include/uapi/asm/sve_context.h
823 * and is the maximum architectural width of ZCR_ELx.LEN.
825 if (remainder || default_vq < 1 || default_vq > 512) {
826 ARMCPU *cpu = ARM_CPU(obj);
827 const char *which =
828 (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme");
830 error_setg(errp, "cannot set %s-default-vector-length", which);
831 if (remainder) {
832 error_append_hint(errp, "Vector length not a multiple of 16\n");
833 } else if (default_vq < 1) {
834 error_append_hint(errp, "Vector length smaller than 16\n");
835 } else {
836 error_append_hint(errp, "Vector length larger than %d\n",
837 512 * 16);
839 return;
842 *ptr_default_vq = default_vq;
845 static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v,
846 const char *name, void *opaque,
847 Error **errp)
849 uint32_t *ptr_default_vq = opaque;
850 int32_t value = *ptr_default_vq * 16;
852 visit_type_int32(v, name, &value, errp);
854 #endif
856 static void aarch64_add_sve_properties(Object *obj)
858 ARMCPU *cpu = ARM_CPU(obj);
859 uint32_t vq;
861 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
863 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
864 char name[8];
865 sprintf(name, "sve%d", vq * 128);
866 object_property_add(obj, name, "bool", cpu_arm_get_vq,
867 cpu_arm_set_vq, NULL, &cpu->sve_vq);
870 #ifdef CONFIG_USER_ONLY
871 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
872 object_property_add(obj, "sve-default-vector-length", "int32",
873 cpu_arm_get_default_vec_len,
874 cpu_arm_set_default_vec_len, NULL,
875 &cpu->sve_default_vq);
876 #endif
879 static void aarch64_add_sme_properties(Object *obj)
881 ARMCPU *cpu = ARM_CPU(obj);
882 uint32_t vq;
884 object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme);
885 object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64,
886 cpu_arm_set_sme_fa64);
888 for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
889 char name[8];
890 sprintf(name, "sme%d", vq * 128);
891 object_property_add(obj, name, "bool", cpu_arm_get_vq,
892 cpu_arm_set_vq, NULL, &cpu->sme_vq);
895 #ifdef CONFIG_USER_ONLY
896 /* Mirror linux /proc/sys/abi/sme_default_vector_length. */
897 object_property_add(obj, "sme-default-vector-length", "int32",
898 cpu_arm_get_default_vec_len,
899 cpu_arm_set_default_vec_len, NULL,
900 &cpu->sme_default_vq);
901 #endif
904 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
906 int arch_val = 0, impdef_val = 0;
907 uint64_t t;
909 /* Exit early if PAuth is enabled, and fall through to disable it */
910 if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
911 if (!cpu_isar_feature(aa64_pauth, cpu)) {
912 error_setg(errp, "'pauth' feature not supported by %s on this host",
913 kvm_enabled() ? "KVM" : "hvf");
916 return;
919 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
920 if (cpu->prop_pauth) {
921 if (cpu->prop_pauth_impdef) {
922 impdef_val = 1;
923 } else {
924 arch_val = 1;
926 } else if (cpu->prop_pauth_impdef) {
927 error_setg(errp, "cannot enable pauth-impdef without pauth");
928 error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
931 t = cpu->isar.id_aa64isar1;
932 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
933 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
934 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
935 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
936 cpu->isar.id_aa64isar1 = t;
939 static Property arm_cpu_pauth_property =
940 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
941 static Property arm_cpu_pauth_impdef_property =
942 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
944 static void aarch64_add_pauth_properties(Object *obj)
946 ARMCPU *cpu = ARM_CPU(obj);
948 /* Default to PAUTH on, with the architected algorithm on TCG. */
949 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
950 if (kvm_enabled() || hvf_enabled()) {
952 * Mirror PAuth support from the probed sysregs back into the
953 * property for KVM or hvf. Is it just a bit backward? Yes it is!
954 * Note that prop_pauth is true whether the host CPU supports the
955 * architected QARMA5 algorithm or the IMPDEF one. We don't
956 * provide the separate pauth-impdef property for KVM or hvf,
957 * only for TCG.
959 cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
960 } else {
961 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
965 static Property arm_cpu_lpa2_property =
966 DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
968 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
970 uint64_t t;
973 * We only install the property for tcg -cpu max; this is the
974 * only situation in which the cpu field can be true.
976 if (!cpu->prop_lpa2) {
977 return;
980 t = cpu->isar.id_aa64mmfr0;
981 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2); /* 16k pages w/ LPA2 */
982 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1); /* 4k pages w/ LPA2 */
983 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
984 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3); /* 4k stage2 w/ LPA2 */
985 cpu->isar.id_aa64mmfr0 = t;
988 static void aarch64_host_initfn(Object *obj)
990 #if defined(CONFIG_KVM)
991 ARMCPU *cpu = ARM_CPU(obj);
992 kvm_arm_set_cpu_features_from_host(cpu);
993 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
994 aarch64_add_sve_properties(obj);
995 aarch64_add_pauth_properties(obj);
997 #elif defined(CONFIG_HVF)
998 ARMCPU *cpu = ARM_CPU(obj);
999 hvf_arm_set_cpu_features_from_host(cpu);
1000 aarch64_add_pauth_properties(obj);
1001 #else
1002 g_assert_not_reached();
1003 #endif
1006 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1007 * otherwise, a CPU with as many features enabled as our emulation supports.
1008 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
1009 * this only needs to handle 64 bits.
1011 static void aarch64_max_initfn(Object *obj)
1013 ARMCPU *cpu = ARM_CPU(obj);
1014 uint64_t t;
1015 uint32_t u;
1017 if (kvm_enabled() || hvf_enabled()) {
1018 /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
1019 aarch64_host_initfn(obj);
1020 return;
1023 /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
1025 aarch64_a57_initfn(obj);
1028 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
1029 * one and try to apply errata workarounds or use impdef features we
1030 * don't provide.
1031 * An IMPLEMENTER field of 0 means "reserved for software use";
1032 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
1033 * to see which features are present";
1034 * the VARIANT, PARTNUM and REVISION fields are all implementation
1035 * defined and we choose to define PARTNUM just in case guest
1036 * code needs to distinguish this QEMU CPU from other software
1037 * implementations, though this shouldn't be needed.
1039 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
1040 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
1041 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
1042 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
1043 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
1044 cpu->midr = t;
1047 * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
1048 * are zero.
1050 u = cpu->clidr;
1051 u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
1052 u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
1053 cpu->clidr = u;
1055 t = cpu->isar.id_aa64isar0;
1056 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* FEAT_PMULL */
1057 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); /* FEAT_SHA1 */
1058 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* FEAT_SHA512 */
1059 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
1060 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); /* FEAT_LSE */
1061 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); /* FEAT_RDM */
1062 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); /* FEAT_SHA3 */
1063 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); /* FEAT_SM3 */
1064 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); /* FEAT_SM4 */
1065 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); /* FEAT_DotProd */
1066 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); /* FEAT_FHM */
1067 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* FEAT_FlagM2 */
1068 t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
1069 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); /* FEAT_RNG */
1070 cpu->isar.id_aa64isar0 = t;
1072 t = cpu->isar.id_aa64isar1;
1073 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); /* FEAT_DPB2 */
1074 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); /* FEAT_JSCVT */
1075 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); /* FEAT_FCMA */
1076 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* FEAT_LRCPC2 */
1077 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); /* FEAT_FRINTTS */
1078 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); /* FEAT_SB */
1079 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); /* FEAT_SPECRES */
1080 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); /* FEAT_BF16 */
1081 t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1); /* FEAT_DGH */
1082 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); /* FEAT_I8MM */
1083 cpu->isar.id_aa64isar1 = t;
1085 t = cpu->isar.id_aa64pfr0;
1086 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); /* FEAT_FP16 */
1087 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); /* FEAT_FP16 */
1088 t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2); /* FEAT_RASv1p1 + FEAT_DoubleFault */
1089 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
1090 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); /* FEAT_SEL2 */
1091 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); /* FEAT_DIT */
1092 t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2); /* FEAT_CSV2_2 */
1093 t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1); /* FEAT_CSV3 */
1094 cpu->isar.id_aa64pfr0 = t;
1096 t = cpu->isar.id_aa64pfr1;
1097 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* FEAT_BTI */
1098 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* FEAT_SSBS2 */
1100 * Begin with full support for MTE. This will be downgraded to MTE=0
1101 * during realize if the board provides no tag memory, much like
1102 * we do for EL2 with the virtualization=on property.
1104 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); /* FEAT_MTE3 */
1105 t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0); /* FEAT_RASv1p1 + FEAT_DoubleFault */
1106 t = FIELD_DP64(t, ID_AA64PFR1, SME, 1); /* FEAT_SME */
1107 t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
1108 cpu->isar.id_aa64pfr1 = t;
1110 t = cpu->isar.id_aa64mmfr0;
1111 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
1112 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1); /* 16k pages supported */
1113 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
1114 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
1115 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2); /* 4k stage2 supported */
1116 cpu->isar.id_aa64mmfr0 = t;
1118 t = cpu->isar.id_aa64mmfr1;
1119 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
1120 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); /* FEAT_VHE */
1121 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* FEAT_HPDS */
1122 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); /* FEAT_LOR */
1123 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* FEAT_PAN2 */
1124 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* FEAT_XNX */
1125 t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1); /* FEAT_ETS */
1126 t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1); /* FEAT_HCX */
1127 cpu->isar.id_aa64mmfr1 = t;
1129 t = cpu->isar.id_aa64mmfr2;
1130 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* FEAT_TTCNP */
1131 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); /* FEAT_UAO */
1132 t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1); /* FEAT_IESB */
1133 t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */
1134 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* FEAT_TTST */
1135 t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1); /* FEAT_IDST */
1136 t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1); /* FEAT_S2FWB */
1137 t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1); /* FEAT_TTL */
1138 t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2); /* FEAT_BBM at level 2 */
1139 cpu->isar.id_aa64mmfr2 = t;
1141 t = cpu->isar.id_aa64zfr0;
1142 t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
1143 t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* FEAT_SVE_PMULL128 */
1144 t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); /* FEAT_SVE_BitPerm */
1145 t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); /* FEAT_BF16 */
1146 t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); /* FEAT_SVE_SHA3 */
1147 t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); /* FEAT_SVE_SM4 */
1148 t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); /* FEAT_I8MM */
1149 t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); /* FEAT_F32MM */
1150 t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); /* FEAT_F64MM */
1151 cpu->isar.id_aa64zfr0 = t;
1153 t = cpu->isar.id_aa64dfr0;
1154 t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9); /* FEAT_Debugv8p4 */
1155 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6); /* FEAT_PMUv3p5 */
1156 cpu->isar.id_aa64dfr0 = t;
1158 t = cpu->isar.id_aa64smfr0;
1159 t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1); /* FEAT_SME */
1160 t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1); /* FEAT_SME */
1161 t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1); /* FEAT_SME */
1162 t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf); /* FEAT_SME */
1163 t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1); /* FEAT_SME_F64F64 */
1164 t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
1165 t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1); /* FEAT_SME_FA64 */
1166 cpu->isar.id_aa64smfr0 = t;
1168 /* Replicate the same data to the 32-bit id registers. */
1169 aa32_max_features(cpu);
1171 #ifdef CONFIG_USER_ONLY
1173 * For usermode -cpu max we can use a larger and more efficient DCZ
1174 * blocksize since we don't have to follow what the hardware does.
1176 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
1177 cpu->dcz_blocksize = 7; /* 512 bytes */
1178 #endif
1180 cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1181 cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
1183 aarch64_add_pauth_properties(obj);
1184 aarch64_add_sve_properties(obj);
1185 aarch64_add_sme_properties(obj);
1186 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
1187 cpu_max_set_sve_max_vq, NULL, NULL);
1188 qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
1191 static void aarch64_a64fx_initfn(Object *obj)
1193 ARMCPU *cpu = ARM_CPU(obj);
1195 cpu->dtb_compatible = "arm,a64fx";
1196 set_feature(&cpu->env, ARM_FEATURE_V8);
1197 set_feature(&cpu->env, ARM_FEATURE_NEON);
1198 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1199 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1200 set_feature(&cpu->env, ARM_FEATURE_EL2);
1201 set_feature(&cpu->env, ARM_FEATURE_EL3);
1202 set_feature(&cpu->env, ARM_FEATURE_PMU);
1203 cpu->midr = 0x461f0010;
1204 cpu->revidr = 0x00000000;
1205 cpu->ctr = 0x86668006;
1206 cpu->reset_sctlr = 0x30000180;
1207 cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
1208 cpu->isar.id_aa64pfr1 = 0x0000000000000000;
1209 cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1210 cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1211 cpu->id_aa64afr0 = 0x0000000000000000;
1212 cpu->id_aa64afr1 = 0x0000000000000000;
1213 cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1214 cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1215 cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1216 cpu->isar.id_aa64isar0 = 0x0000000010211120;
1217 cpu->isar.id_aa64isar1 = 0x0000000000010001;
1218 cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1219 cpu->clidr = 0x0000000080000023;
1220 cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1221 cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1222 cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1223 cpu->dcz_blocksize = 6; /* 256 bytes */
1224 cpu->gic_num_lrs = 4;
1225 cpu->gic_vpribits = 5;
1226 cpu->gic_vprebits = 5;
1227 cpu->gic_pribits = 5;
1229 /* The A64FX supports only 128, 256 and 512 bit vector lengths */
1230 aarch64_add_sve_properties(obj);
1231 cpu->sve_vq.supported = (1 << 0) /* 128bit */
1232 | (1 << 1) /* 256bit */
1233 | (1 << 3); /* 512bit */
1235 cpu->isar.reset_pmcr_el0 = 0x46014040;
1237 /* TODO: Add A64FX specific HPC extension registers */
1240 static const ARMCPUInfo aarch64_cpus[] = {
1241 { .name = "cortex-a35", .initfn = aarch64_a35_initfn },
1242 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
1243 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
1244 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
1245 { .name = "cortex-a76", .initfn = aarch64_a76_initfn },
1246 { .name = "a64fx", .initfn = aarch64_a64fx_initfn },
1247 { .name = "neoverse-n1", .initfn = aarch64_neoverse_n1_initfn },
1248 { .name = "max", .initfn = aarch64_max_initfn },
1249 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1250 { .name = "host", .initfn = aarch64_host_initfn },
1251 #endif
1254 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1256 ARMCPU *cpu = ARM_CPU(obj);
1258 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1261 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1263 ARMCPU *cpu = ARM_CPU(obj);
1265 /* At this time, this property is only allowed if KVM is enabled. This
1266 * restriction allows us to avoid fixing up functionality that assumes a
1267 * uniform execution state like do_interrupt.
1269 if (value == false) {
1270 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1271 error_setg(errp, "'aarch64' feature cannot be disabled "
1272 "unless KVM is enabled and 32-bit EL1 "
1273 "is supported");
1274 return;
1276 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1277 } else {
1278 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1282 static void aarch64_cpu_finalizefn(Object *obj)
1286 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1288 return g_strdup("aarch64");
1291 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1293 CPUClass *cc = CPU_CLASS(oc);
1295 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1296 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1297 cc->gdb_num_core_regs = 34;
1298 cc->gdb_core_xml_file = "aarch64-core.xml";
1299 cc->gdb_arch_name = aarch64_gdb_arch_name;
1301 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1302 aarch64_cpu_set_aarch64);
1303 object_class_property_set_description(oc, "aarch64",
1304 "Set on/off to enable/disable aarch64 "
1305 "execution state ");
1308 static void aarch64_cpu_instance_init(Object *obj)
1310 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1312 acc->info->initfn(obj);
1313 arm_cpu_post_init(obj);
1316 static void cpu_register_class_init(ObjectClass *oc, void *data)
1318 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1320 acc->info = data;
1323 void aarch64_cpu_register(const ARMCPUInfo *info)
1325 TypeInfo type_info = {
1326 .parent = TYPE_AARCH64_CPU,
1327 .instance_size = sizeof(ARMCPU),
1328 .instance_init = aarch64_cpu_instance_init,
1329 .class_size = sizeof(ARMCPUClass),
1330 .class_init = info->class_init ?: cpu_register_class_init,
1331 .class_data = (void *)info,
1334 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1335 type_register(&type_info);
1336 g_free((void *)type_info.name);
1339 static const TypeInfo aarch64_cpu_type_info = {
1340 .name = TYPE_AARCH64_CPU,
1341 .parent = TYPE_ARM_CPU,
1342 .instance_size = sizeof(ARMCPU),
1343 .instance_finalize = aarch64_cpu_finalizefn,
1344 .abstract = true,
1345 .class_size = sizeof(AArch64CPUClass),
1346 .class_init = aarch64_cpu_class_init,
1349 static void aarch64_cpu_register_types(void)
1351 size_t i;
1353 type_register_static(&aarch64_cpu_type_info);
1355 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1356 aarch64_cpu_register(&aarch64_cpus[i]);
1360 type_init(aarch64_cpu_register_types)