4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
49 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
51 ARMCPU
*cpu
= ARM_CPU(cs
);
52 CPUARMState
*env
= &cpu
->env
;
58 env
->regs
[15] = value
& ~1;
59 env
->thumb
= value
& 1;
64 void arm_cpu_synchronize_from_tb(CPUState
*cs
,
65 const TranslationBlock
*tb
)
67 ARMCPU
*cpu
= ARM_CPU(cs
);
68 CPUARMState
*env
= &cpu
->env
;
71 * It's OK to look at env for the current mode here, because it's
72 * never possible for an AArch64 TB to chain to an AArch32 TB.
77 env
->regs
[15] = tb
->pc
;
80 #endif /* CONFIG_TCG */
82 static bool arm_cpu_has_work(CPUState
*cs
)
84 ARMCPU
*cpu
= ARM_CPU(cs
);
86 return (cpu
->power_state
!= PSCI_OFF
)
87 && cs
->interrupt_request
&
88 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
89 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
| CPU_INTERRUPT_VSERR
90 | CPU_INTERRUPT_EXITTB
);
93 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
96 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
99 entry
->opaque
= opaque
;
101 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
104 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
107 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
110 entry
->opaque
= opaque
;
112 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
115 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
117 /* Reset a single ARMCPRegInfo register */
118 ARMCPRegInfo
*ri
= value
;
119 ARMCPU
*cpu
= opaque
;
121 if (ri
->type
& (ARM_CP_SPECIAL_MASK
| ARM_CP_ALIAS
)) {
126 ri
->resetfn(&cpu
->env
, ri
);
130 /* A zero offset is never possible as it would be regs[0]
131 * so we use it to indicate that reset is being handled elsewhere.
132 * This is basically only used for fields in non-core coprocessors
133 * (like the pxa2xx ones).
135 if (!ri
->fieldoffset
) {
139 if (cpreg_field_is_64bit(ri
)) {
140 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
142 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
146 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
148 /* Purely an assertion check: we've already done reset once,
149 * so now check that running the reset for the cpreg doesn't
150 * change its value. This traps bugs where two different cpregs
151 * both try to reset the same state field but to different values.
153 ARMCPRegInfo
*ri
= value
;
154 ARMCPU
*cpu
= opaque
;
155 uint64_t oldvalue
, newvalue
;
157 if (ri
->type
& (ARM_CP_SPECIAL_MASK
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
161 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
162 cp_reg_reset(key
, value
, opaque
);
163 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
164 assert(oldvalue
== newvalue
);
167 static void arm_cpu_reset(DeviceState
*dev
)
169 CPUState
*s
= CPU(dev
);
170 ARMCPU
*cpu
= ARM_CPU(s
);
171 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
172 CPUARMState
*env
= &cpu
->env
;
174 acc
->parent_reset(dev
);
176 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
178 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
179 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
181 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
182 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
183 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
184 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
186 cpu
->power_state
= s
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
188 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
189 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
192 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
193 /* 64 bit CPUs always start in 64 bit mode */
195 #if defined(CONFIG_USER_ONLY)
196 env
->pstate
= PSTATE_MODE_EL0t
;
197 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
198 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
199 /* Enable all PAC keys. */
200 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
201 SCTLR_EnDA
| SCTLR_EnDB
);
202 /* Trap on btype=3 for PACIxSP. */
203 env
->cp15
.sctlr_el
[1] |= SCTLR_BT0
;
204 /* and to the FP/Neon instructions */
205 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
207 /* and to the SVE instructions, with default vector length */
208 if (cpu_isar_feature(aa64_sve
, cpu
)) {
209 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
211 env
->vfp
.zcr_el
[1] = cpu
->sve_default_vq
- 1;
213 /* and for SME instructions, with default vector length, and TPIDR2 */
214 if (cpu_isar_feature(aa64_sme
, cpu
)) {
215 env
->cp15
.sctlr_el
[1] |= SCTLR_EnTP2
;
216 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
218 env
->vfp
.smcr_el
[1] = cpu
->sme_default_vq
- 1;
219 if (cpu_isar_feature(aa64_sme_fa64
, cpu
)) {
220 env
->vfp
.smcr_el
[1] = FIELD_DP64(env
->vfp
.smcr_el
[1],
225 * Enable 48-bit address space (TODO: take reserved_va into account).
226 * Enable TBI0 but not TBI1.
227 * Note that this must match useronly_clean_ptr.
229 env
->cp15
.tcr_el
[1] = 5 | (1ULL << 37);
232 if (cpu_isar_feature(aa64_mte
, cpu
)) {
233 /* Enable tag access, but leave TCF0 as No Effect (0). */
234 env
->cp15
.sctlr_el
[1] |= SCTLR_ATA0
;
236 * Exclude all tags, so that tag 0 is always used.
237 * This corresponds to Linux current->thread.gcr_incl = 0.
239 * Set RRND, so that helper_irg() will generate a seed later.
240 * Here in cpu_reset(), the crypto subsystem has not yet been
243 env
->cp15
.gcr_el1
= 0x1ffff;
246 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
247 * This is not yet exposed from the Linux kernel in any way.
249 env
->cp15
.sctlr_el
[1] |= SCTLR_TSCXT
;
251 /* Reset into the highest available EL */
252 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
253 env
->pstate
= PSTATE_MODE_EL3h
;
254 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
255 env
->pstate
= PSTATE_MODE_EL2h
;
257 env
->pstate
= PSTATE_MODE_EL1h
;
260 /* Sample rvbar at reset. */
261 env
->cp15
.rvbar
= cpu
->rvbar_prop
;
262 env
->pc
= env
->cp15
.rvbar
;
265 #if defined(CONFIG_USER_ONLY)
266 /* Userspace expects access to cp10 and cp11 for FP/Neon */
267 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
269 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
274 #if defined(CONFIG_USER_ONLY)
275 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
276 /* For user mode we must enable access to coprocessors */
277 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
278 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
279 env
->cp15
.c15_cpar
= 3;
280 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
281 env
->cp15
.c15_cpar
= 1;
286 * If the highest available EL is EL2, AArch32 will start in Hyp
287 * mode; otherwise it starts in SVC. Note that if we start in
288 * AArch64 then these values in the uncached_cpsr will be ignored.
290 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
291 !arm_feature(env
, ARM_FEATURE_EL3
)) {
292 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
294 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
296 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
298 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
299 * executing as AArch32 then check if highvecs are enabled and
300 * adjust the PC accordingly.
302 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
303 env
->regs
[15] = 0xFFFF0000;
306 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
309 if (arm_feature(env
, ARM_FEATURE_M
)) {
310 #ifndef CONFIG_USER_ONLY
311 uint32_t initial_msp
; /* Loaded from 0x0 */
312 uint32_t initial_pc
; /* Loaded from 0x4 */
317 if (cpu_isar_feature(aa32_lob
, cpu
)) {
319 * LTPSIZE is constant 4 if MVE not implemented, and resets
320 * to an UNKNOWN value if MVE is implemented. We choose to
323 env
->v7m
.ltpsize
= 4;
324 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
325 env
->v7m
.fpdscr
[M_REG_NS
] = 4 << FPCR_LTPSIZE_SHIFT
;
326 env
->v7m
.fpdscr
[M_REG_S
] = 4 << FPCR_LTPSIZE_SHIFT
;
329 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
330 env
->v7m
.secure
= true;
332 /* This bit resets to 0 if security is supported, but 1 if
333 * it is not. The bit is not present in v7M, but we set it
334 * here so we can avoid having to make checks on it conditional
335 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
337 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
339 * Set NSACR to indicate "NS access permitted to everything";
340 * this avoids having to have all the tests of it being
341 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
342 * v8.1M the guest-visible value of NSACR in a CPU without the
343 * Security Extension is 0xcff.
345 env
->v7m
.nsacr
= 0xcff;
348 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
349 * that it resets to 1, so QEMU always does that rather than making
350 * it dependent on CPU model. In v8M it is RES1.
352 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
353 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
354 if (arm_feature(env
, ARM_FEATURE_V8
)) {
355 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
356 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
357 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
359 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
360 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
361 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
364 if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
365 env
->v7m
.fpccr
[M_REG_NS
] = R_V7M_FPCCR_ASPEN_MASK
;
366 env
->v7m
.fpccr
[M_REG_S
] = R_V7M_FPCCR_ASPEN_MASK
|
367 R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
;
370 #ifndef CONFIG_USER_ONLY
371 /* Unlike A/R profile, M profile defines the reset LR value */
372 env
->regs
[14] = 0xffffffff;
374 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
375 env
->v7m
.vecbase
[M_REG_NS
] = cpu
->init_nsvtor
& 0xffffff80;
377 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
378 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
379 rom
= rom_ptr_for_as(s
->as
, vecbase
, 8);
381 /* Address zero is covered by ROM which hasn't yet been
382 * copied into physical memory.
384 initial_msp
= ldl_p(rom
);
385 initial_pc
= ldl_p(rom
+ 4);
387 /* Address zero not covered by a ROM blob, or the ROM blob
388 * is in non-modifiable memory and this is a second reset after
389 * it got copied into memory. In the latter case, rom_ptr
390 * will return a NULL pointer and we should use ldl_phys instead.
392 initial_msp
= ldl_phys(s
->as
, vecbase
);
393 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
396 qemu_log_mask(CPU_LOG_INT
,
397 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
398 initial_msp
, initial_pc
);
400 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
401 env
->regs
[15] = initial_pc
& ~1;
402 env
->thumb
= initial_pc
& 1;
405 * For user mode we run non-secure and with access to the FPU.
406 * The FPU context is active (ie does not need further setup)
407 * and is owned by non-secure.
409 env
->v7m
.secure
= false;
410 env
->v7m
.nsacr
= 0xcff;
411 env
->v7m
.cpacr
[M_REG_NS
] = 0xf0ffff;
412 env
->v7m
.fpccr
[M_REG_S
] &=
413 ~(R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
);
414 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_FPCA_MASK
;
418 /* M profile requires that reset clears the exclusive monitor;
419 * A profile does not, but clearing it makes more sense than having it
420 * set with an exclusive access on address zero.
422 arm_clear_exclusive(env
);
424 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
425 if (cpu
->pmsav7_dregion
> 0) {
426 if (arm_feature(env
, ARM_FEATURE_V8
)) {
427 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
428 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
429 * cpu
->pmsav7_dregion
);
430 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
431 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
432 * cpu
->pmsav7_dregion
);
433 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
434 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
435 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
436 * cpu
->pmsav7_dregion
);
437 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
438 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
439 * cpu
->pmsav7_dregion
);
441 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
442 memset(env
->pmsav7
.drbar
, 0,
443 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
444 memset(env
->pmsav7
.drsr
, 0,
445 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
446 memset(env
->pmsav7
.dracr
, 0,
447 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
450 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
451 env
->pmsav7
.rnr
[M_REG_S
] = 0;
452 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
453 env
->pmsav8
.mair0
[M_REG_S
] = 0;
454 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
455 env
->pmsav8
.mair1
[M_REG_S
] = 0;
458 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
459 if (cpu
->sau_sregion
> 0) {
460 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
461 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
464 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
465 * the Cortex-M33 does.
470 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
471 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
472 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
473 set_default_nan_mode(1, &env
->vfp
.standard_fp_status_f16
);
474 set_float_detect_tininess(float_tininess_before_rounding
,
475 &env
->vfp
.fp_status
);
476 set_float_detect_tininess(float_tininess_before_rounding
,
477 &env
->vfp
.standard_fp_status
);
478 set_float_detect_tininess(float_tininess_before_rounding
,
479 &env
->vfp
.fp_status_f16
);
480 set_float_detect_tininess(float_tininess_before_rounding
,
481 &env
->vfp
.standard_fp_status_f16
);
482 #ifndef CONFIG_USER_ONLY
484 kvm_arm_reset_vcpu(cpu
);
488 hw_breakpoint_update_all(cpu
);
489 hw_watchpoint_update_all(cpu
);
490 arm_rebuild_hflags(env
);
493 #ifndef CONFIG_USER_ONLY
495 static inline bool arm_excp_unmasked(CPUState
*cs
, unsigned int excp_idx
,
496 unsigned int target_el
,
497 unsigned int cur_el
, bool secure
,
500 CPUARMState
*env
= cs
->env_ptr
;
501 bool pstate_unmasked
;
502 bool unmasked
= false;
505 * Don't take exceptions if they target a lower EL.
506 * This check should catch any exceptions that would not be taken
509 if (cur_el
> target_el
) {
515 pstate_unmasked
= !(env
->daif
& PSTATE_F
);
519 pstate_unmasked
= !(env
->daif
& PSTATE_I
);
523 if (!(hcr_el2
& HCR_FMO
) || (hcr_el2
& HCR_TGE
)) {
524 /* VFIQs are only taken when hypervized. */
527 return !(env
->daif
& PSTATE_F
);
529 if (!(hcr_el2
& HCR_IMO
) || (hcr_el2
& HCR_TGE
)) {
530 /* VIRQs are only taken when hypervized. */
533 return !(env
->daif
& PSTATE_I
);
535 if (!(hcr_el2
& HCR_AMO
) || (hcr_el2
& HCR_TGE
)) {
536 /* VIRQs are only taken when hypervized. */
539 return !(env
->daif
& PSTATE_A
);
541 g_assert_not_reached();
545 * Use the target EL, current execution state and SCR/HCR settings to
546 * determine whether the corresponding CPSR bit is used to mask the
549 if ((target_el
> cur_el
) && (target_el
!= 1)) {
550 /* Exceptions targeting a higher EL may not be maskable */
551 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
553 * 64-bit masking rules are simple: exceptions to EL3
554 * can't be masked, and exceptions to EL2 can only be
555 * masked from Secure state. The HCR and SCR settings
556 * don't affect the masking logic, only the interrupt routing.
558 if (target_el
== 3 || !secure
|| (env
->cp15
.scr_el3
& SCR_EEL2
)) {
563 * The old 32-bit-only environment has a more complicated
564 * masking setup. HCR and SCR bits not only affect interrupt
565 * routing but also change the behaviour of masking.
572 * If FIQs are routed to EL3 or EL2 then there are cases where
573 * we override the CPSR.F in determining if the exception is
574 * masked or not. If neither of these are set then we fall back
575 * to the CPSR.F setting otherwise we further assess the state
578 hcr
= hcr_el2
& HCR_FMO
;
579 scr
= (env
->cp15
.scr_el3
& SCR_FIQ
);
582 * When EL3 is 32-bit, the SCR.FW bit controls whether the
583 * CPSR.F bit masks FIQ interrupts when taken in non-secure
584 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
585 * when non-secure but only when FIQs are only routed to EL3.
587 scr
= scr
&& !((env
->cp15
.scr_el3
& SCR_FW
) && !hcr
);
591 * When EL3 execution state is 32-bit, if HCR.IMO is set then
592 * we may override the CPSR.I masking when in non-secure state.
593 * The SCR.IRQ setting has already been taken into consideration
594 * when setting the target EL, so it does not have a further
597 hcr
= hcr_el2
& HCR_IMO
;
601 g_assert_not_reached();
604 if ((scr
|| hcr
) && !secure
) {
611 * The PSTATE bits only mask the interrupt if we have not overriden the
614 return unmasked
|| pstate_unmasked
;
617 static bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
619 CPUClass
*cc
= CPU_GET_CLASS(cs
);
620 CPUARMState
*env
= cs
->env_ptr
;
621 uint32_t cur_el
= arm_current_el(env
);
622 bool secure
= arm_is_secure(env
);
623 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
627 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
629 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
631 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
632 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
633 cur_el
, secure
, hcr_el2
)) {
637 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
639 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
640 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
641 cur_el
, secure
, hcr_el2
)) {
645 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
646 excp_idx
= EXCP_VIRQ
;
648 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
649 cur_el
, secure
, hcr_el2
)) {
653 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
654 excp_idx
= EXCP_VFIQ
;
656 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
657 cur_el
, secure
, hcr_el2
)) {
661 if (interrupt_request
& CPU_INTERRUPT_VSERR
) {
662 excp_idx
= EXCP_VSERR
;
664 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
665 cur_el
, secure
, hcr_el2
)) {
666 /* Taking a virtual abort clears HCR_EL2.VSE */
667 env
->cp15
.hcr_el2
&= ~HCR_VSE
;
668 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VSERR
);
675 cs
->exception_index
= excp_idx
;
676 env
->exception
.target_el
= target_el
;
677 cc
->tcg_ops
->do_interrupt(cs
);
680 #endif /* !CONFIG_USER_ONLY */
682 void arm_cpu_update_virq(ARMCPU
*cpu
)
685 * Update the interrupt level for VIRQ, which is the logical OR of
686 * the HCR_EL2.VI bit and the input line level from the GIC.
688 CPUARMState
*env
= &cpu
->env
;
689 CPUState
*cs
= CPU(cpu
);
691 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
692 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
694 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
696 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
698 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
703 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
706 * Update the interrupt level for VFIQ, which is the logical OR of
707 * the HCR_EL2.VF bit and the input line level from the GIC.
709 CPUARMState
*env
= &cpu
->env
;
710 CPUState
*cs
= CPU(cpu
);
712 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
713 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
715 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
717 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
719 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
724 void arm_cpu_update_vserr(ARMCPU
*cpu
)
727 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
729 CPUARMState
*env
= &cpu
->env
;
730 CPUState
*cs
= CPU(cpu
);
732 bool new_state
= env
->cp15
.hcr_el2
& HCR_VSE
;
734 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VSERR
) != 0)) {
736 cpu_interrupt(cs
, CPU_INTERRUPT_VSERR
);
738 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VSERR
);
743 #ifndef CONFIG_USER_ONLY
744 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
746 ARMCPU
*cpu
= opaque
;
747 CPUARMState
*env
= &cpu
->env
;
748 CPUState
*cs
= CPU(cpu
);
749 static const int mask
[] = {
750 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
751 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
752 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
753 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
756 if (!arm_feature(env
, ARM_FEATURE_EL2
) &&
757 (irq
== ARM_CPU_VIRQ
|| irq
== ARM_CPU_VFIQ
)) {
759 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
760 * have EL2 support we don't care. (Unless the guest is doing something
761 * silly this will only be calls saying "level is still 0".)
767 env
->irq_line_state
|= mask
[irq
];
769 env
->irq_line_state
&= ~mask
[irq
];
774 arm_cpu_update_virq(cpu
);
777 arm_cpu_update_vfiq(cpu
);
782 cpu_interrupt(cs
, mask
[irq
]);
784 cpu_reset_interrupt(cs
, mask
[irq
]);
788 g_assert_not_reached();
792 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
795 ARMCPU
*cpu
= opaque
;
796 CPUARMState
*env
= &cpu
->env
;
797 CPUState
*cs
= CPU(cpu
);
798 uint32_t linestate_bit
;
803 irq_id
= KVM_ARM_IRQ_CPU_IRQ
;
804 linestate_bit
= CPU_INTERRUPT_HARD
;
807 irq_id
= KVM_ARM_IRQ_CPU_FIQ
;
808 linestate_bit
= CPU_INTERRUPT_FIQ
;
811 g_assert_not_reached();
815 env
->irq_line_state
|= linestate_bit
;
817 env
->irq_line_state
&= ~linestate_bit
;
819 kvm_arm_set_irq(cs
->cpu_index
, KVM_ARM_IRQ_TYPE_CPU
, irq_id
, !!level
);
823 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
825 ARMCPU
*cpu
= ARM_CPU(cs
);
826 CPUARMState
*env
= &cpu
->env
;
828 cpu_synchronize_state(cs
);
829 return arm_cpu_data_is_big_endian(env
);
834 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
836 ARMCPU
*ac
= ARM_CPU(cpu
);
837 CPUARMState
*env
= &ac
->env
;
841 info
->cap_arch
= CS_ARCH_ARM64
;
842 info
->cap_insn_unit
= 4;
843 info
->cap_insn_split
= 4;
847 info
->cap_insn_unit
= 2;
848 info
->cap_insn_split
= 4;
849 cap_mode
= CS_MODE_THUMB
;
851 info
->cap_insn_unit
= 4;
852 info
->cap_insn_split
= 4;
853 cap_mode
= CS_MODE_ARM
;
855 if (arm_feature(env
, ARM_FEATURE_V8
)) {
856 cap_mode
|= CS_MODE_V8
;
858 if (arm_feature(env
, ARM_FEATURE_M
)) {
859 cap_mode
|= CS_MODE_MCLASS
;
861 info
->cap_arch
= CS_ARCH_ARM
;
862 info
->cap_mode
= cap_mode
;
865 sctlr_b
= arm_sctlr_b(env
);
866 if (bswap_code(sctlr_b
)) {
867 #if TARGET_BIG_ENDIAN
868 info
->endian
= BFD_ENDIAN_LITTLE
;
870 info
->endian
= BFD_ENDIAN_BIG
;
873 info
->flags
&= ~INSN_ARM_BE32
;
874 #ifndef CONFIG_USER_ONLY
876 info
->flags
|= INSN_ARM_BE32
;
881 #ifdef TARGET_AARCH64
883 static void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
885 ARMCPU
*cpu
= ARM_CPU(cs
);
886 CPUARMState
*env
= &cpu
->env
;
887 uint32_t psr
= pstate_read(env
);
889 int el
= arm_current_el(env
);
890 const char *ns_status
;
893 qemu_fprintf(f
, " PC=%016" PRIx64
" ", env
->pc
);
894 for (i
= 0; i
< 32; i
++) {
896 qemu_fprintf(f
, " SP=%016" PRIx64
"\n", env
->xregs
[i
]);
898 qemu_fprintf(f
, "X%02d=%016" PRIx64
"%s", i
, env
->xregs
[i
],
899 (i
+ 2) % 3 ? " " : "\n");
903 if (arm_feature(env
, ARM_FEATURE_EL3
) && el
!= 3) {
904 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
908 qemu_fprintf(f
, "PSTATE=%08x %c%c%c%c %sEL%d%c",
910 psr
& PSTATE_N
? 'N' : '-',
911 psr
& PSTATE_Z
? 'Z' : '-',
912 psr
& PSTATE_C
? 'C' : '-',
913 psr
& PSTATE_V
? 'V' : '-',
916 psr
& PSTATE_SP
? 'h' : 't');
918 if (cpu_isar_feature(aa64_sme
, cpu
)) {
919 qemu_fprintf(f
, " SVCR=%08" PRIx64
" %c%c",
921 (FIELD_EX64(env
->svcr
, SVCR
, ZA
) ? 'Z' : '-'),
922 (FIELD_EX64(env
->svcr
, SVCR
, SM
) ? 'S' : '-'));
924 if (cpu_isar_feature(aa64_bti
, cpu
)) {
925 qemu_fprintf(f
, " BTYPE=%d", (psr
& PSTATE_BTYPE
) >> 10);
927 if (!(flags
& CPU_DUMP_FPU
)) {
928 qemu_fprintf(f
, "\n");
931 if (fp_exception_el(env
, el
) != 0) {
932 qemu_fprintf(f
, " FPU disabled\n");
935 qemu_fprintf(f
, " FPCR=%08x FPSR=%08x\n",
936 vfp_get_fpcr(env
), vfp_get_fpsr(env
));
938 if (cpu_isar_feature(aa64_sme
, cpu
) && FIELD_EX64(env
->svcr
, SVCR
, SM
)) {
939 sve
= sme_exception_el(env
, el
) == 0;
940 } else if (cpu_isar_feature(aa64_sve
, cpu
)) {
941 sve
= sve_exception_el(env
, el
) == 0;
947 int j
, zcr_len
= sve_vqm1_for_el(env
, el
);
949 for (i
= 0; i
<= FFR_PRED_NUM
; i
++) {
951 if (i
== FFR_PRED_NUM
) {
952 qemu_fprintf(f
, "FFR=");
953 /* It's last, so end the line. */
956 qemu_fprintf(f
, "P%02d=", i
);
969 /* More than one quadword per predicate. */
974 for (j
= zcr_len
/ 4; j
>= 0; j
--) {
976 if (j
* 4 + 4 <= zcr_len
+ 1) {
979 digits
= (zcr_len
% 4 + 1) * 4;
981 qemu_fprintf(f
, "%0*" PRIx64
"%s", digits
,
982 env
->vfp
.pregs
[i
].p
[j
],
983 j
? ":" : eol
? "\n" : " ");
987 for (i
= 0; i
< 32; i
++) {
989 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
"%s",
990 i
, env
->vfp
.zregs
[i
].d
[1],
991 env
->vfp
.zregs
[i
].d
[0], i
& 1 ? "\n" : " ");
992 } else if (zcr_len
== 1) {
993 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
994 ":%016" PRIx64
":%016" PRIx64
"\n",
995 i
, env
->vfp
.zregs
[i
].d
[3], env
->vfp
.zregs
[i
].d
[2],
996 env
->vfp
.zregs
[i
].d
[1], env
->vfp
.zregs
[i
].d
[0]);
998 for (j
= zcr_len
; j
>= 0; j
--) {
999 bool odd
= (zcr_len
- j
) % 2 != 0;
1001 qemu_fprintf(f
, "Z%02d[%x-%x]=", i
, j
, j
- 1);
1004 qemu_fprintf(f
, " [%x-%x]=", j
, j
- 1);
1006 qemu_fprintf(f
, " [%x]=", j
);
1009 qemu_fprintf(f
, "%016" PRIx64
":%016" PRIx64
"%s",
1010 env
->vfp
.zregs
[i
].d
[j
* 2 + 1],
1011 env
->vfp
.zregs
[i
].d
[j
* 2],
1012 odd
|| j
== 0 ? "\n" : ":");
1017 for (i
= 0; i
< 32; i
++) {
1018 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1019 qemu_fprintf(f
, "Q%02d=%016" PRIx64
":%016" PRIx64
"%s",
1020 i
, q
[1], q
[0], (i
& 1 ? "\n" : " "));
1027 static inline void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
1029 g_assert_not_reached();
1034 static void arm_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
1036 ARMCPU
*cpu
= ARM_CPU(cs
);
1037 CPUARMState
*env
= &cpu
->env
;
1041 aarch64_cpu_dump_state(cs
, f
, flags
);
1045 for (i
= 0; i
< 16; i
++) {
1046 qemu_fprintf(f
, "R%02d=%08x", i
, env
->regs
[i
]);
1048 qemu_fprintf(f
, "\n");
1050 qemu_fprintf(f
, " ");
1054 if (arm_feature(env
, ARM_FEATURE_M
)) {
1055 uint32_t xpsr
= xpsr_read(env
);
1057 const char *ns_status
= "";
1059 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1060 ns_status
= env
->v7m
.secure
? "S " : "NS ";
1063 if (xpsr
& XPSR_EXCP
) {
1066 if (env
->v7m
.control
[env
->v7m
.secure
] & R_V7M_CONTROL_NPRIV_MASK
) {
1067 mode
= "unpriv-thread";
1069 mode
= "priv-thread";
1073 qemu_fprintf(f
, "XPSR=%08x %c%c%c%c %c %s%s\n",
1075 xpsr
& XPSR_N
? 'N' : '-',
1076 xpsr
& XPSR_Z
? 'Z' : '-',
1077 xpsr
& XPSR_C
? 'C' : '-',
1078 xpsr
& XPSR_V
? 'V' : '-',
1079 xpsr
& XPSR_T
? 'T' : 'A',
1083 uint32_t psr
= cpsr_read(env
);
1084 const char *ns_status
= "";
1086 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1087 (psr
& CPSR_M
) != ARM_CPU_MODE_MON
) {
1088 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
1091 qemu_fprintf(f
, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1093 psr
& CPSR_N
? 'N' : '-',
1094 psr
& CPSR_Z
? 'Z' : '-',
1095 psr
& CPSR_C
? 'C' : '-',
1096 psr
& CPSR_V
? 'V' : '-',
1097 psr
& CPSR_T
? 'T' : 'A',
1099 aarch32_mode_name(psr
), (psr
& 0x10) ? 32 : 26);
1102 if (flags
& CPU_DUMP_FPU
) {
1104 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
1106 } else if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
1109 for (i
= 0; i
< numvfpregs
; i
++) {
1110 uint64_t v
= *aa32_vfp_dreg(env
, i
);
1111 qemu_fprintf(f
, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64
"\n",
1113 i
* 2 + 1, (uint32_t)(v
>> 32),
1116 qemu_fprintf(f
, "FPSCR: %08x\n", vfp_get_fpscr(env
));
1117 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1118 qemu_fprintf(f
, "VPR: %08x\n", env
->v7m
.vpr
);
1123 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
1125 uint32_t Aff1
= idx
/ clustersz
;
1126 uint32_t Aff0
= idx
% clustersz
;
1127 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
1130 static void arm_cpu_initfn(Object
*obj
)
1132 ARMCPU
*cpu
= ARM_CPU(obj
);
1134 cpu_set_cpustate_pointers(cpu
);
1135 cpu
->cp_regs
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
,
1138 QLIST_INIT(&cpu
->pre_el_change_hooks
);
1139 QLIST_INIT(&cpu
->el_change_hooks
);
1141 #ifdef CONFIG_USER_ONLY
1142 # ifdef TARGET_AARCH64
1144 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1145 * These values were chosen to fit within the default signal frame.
1146 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1147 * and our corresponding cpu property.
1149 cpu
->sve_default_vq
= 4;
1150 cpu
->sme_default_vq
= 2;
1153 /* Our inbound IRQ and FIQ lines */
1154 if (kvm_enabled()) {
1155 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1156 * the same interface as non-KVM CPUs.
1158 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
1160 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
1163 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
1164 ARRAY_SIZE(cpu
->gt_timer_outputs
));
1166 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
1167 "gicv3-maintenance-interrupt", 1);
1168 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
1169 "pmu-interrupt", 1);
1172 /* DTB consumers generally don't in fact care what the 'compatible'
1173 * string is, so always provide some string and trust that a hypothetical
1174 * picky DTB consumer will also provide a helpful error message.
1176 cpu
->dtb_compatible
= "qemu,unknown";
1177 cpu
->psci_version
= QEMU_PSCI_VERSION_0_1
; /* By default assume PSCI v0.1 */
1178 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
1180 if (tcg_enabled() || hvf_enabled()) {
1181 /* TCG and HVF implement PSCI 1.1 */
1182 cpu
->psci_version
= QEMU_PSCI_VERSION_1_1
;
1186 static Property arm_cpu_gt_cntfrq_property
=
1187 DEFINE_PROP_UINT64("cntfrq", ARMCPU
, gt_cntfrq_hz
,
1188 NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
);
1190 static Property arm_cpu_reset_cbar_property
=
1191 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
1193 static Property arm_cpu_reset_hivecs_property
=
1194 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
1196 #ifndef CONFIG_USER_ONLY
1197 static Property arm_cpu_has_el2_property
=
1198 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
1200 static Property arm_cpu_has_el3_property
=
1201 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
1204 static Property arm_cpu_cfgend_property
=
1205 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
1207 static Property arm_cpu_has_vfp_property
=
1208 DEFINE_PROP_BOOL("vfp", ARMCPU
, has_vfp
, true);
1210 static Property arm_cpu_has_neon_property
=
1211 DEFINE_PROP_BOOL("neon", ARMCPU
, has_neon
, true);
1213 static Property arm_cpu_has_dsp_property
=
1214 DEFINE_PROP_BOOL("dsp", ARMCPU
, has_dsp
, true);
1216 static Property arm_cpu_has_mpu_property
=
1217 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
1219 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1220 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1221 * the right value for that particular CPU type, and we don't want
1222 * to override that with an incorrect constant value.
1224 static Property arm_cpu_pmsav7_dregion_property
=
1225 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
1227 qdev_prop_uint32
, uint32_t);
1229 static bool arm_get_pmu(Object
*obj
, Error
**errp
)
1231 ARMCPU
*cpu
= ARM_CPU(obj
);
1233 return cpu
->has_pmu
;
1236 static void arm_set_pmu(Object
*obj
, bool value
, Error
**errp
)
1238 ARMCPU
*cpu
= ARM_CPU(obj
);
1241 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1242 error_setg(errp
, "'pmu' feature not supported by KVM on this host");
1245 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1247 unset_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1249 cpu
->has_pmu
= value
;
1252 unsigned int gt_cntfrq_period_ns(ARMCPU
*cpu
)
1255 * The exact approach to calculating guest ticks is:
1257 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1258 * NANOSECONDS_PER_SECOND);
1260 * We don't do that. Rather we intentionally use integer division
1261 * truncation below and in the caller for the conversion of host monotonic
1262 * time to guest ticks to provide the exact inverse for the semantics of
1263 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1264 * it loses precision when representing frequencies where
1265 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1266 * provide an exact inverse leads to scheduling timers with negative
1267 * periods, which in turn leads to sticky behaviour in the guest.
1269 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1270 * cannot become zero.
1272 return NANOSECONDS_PER_SECOND
> cpu
->gt_cntfrq_hz
?
1273 NANOSECONDS_PER_SECOND
/ cpu
->gt_cntfrq_hz
: 1;
1276 void arm_cpu_post_init(Object
*obj
)
1278 ARMCPU
*cpu
= ARM_CPU(obj
);
1280 /* M profile implies PMSA. We have to do this here rather than
1281 * in realize with the other feature-implication checks because
1282 * we look at the PMSA bit to see if we should add some properties.
1284 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1285 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1288 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
1289 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
1290 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
);
1293 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1294 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
);
1297 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1298 object_property_add_uint64_ptr(obj
, "rvbar",
1300 OBJ_PROP_FLAG_READWRITE
);
1303 #ifndef CONFIG_USER_ONLY
1304 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1305 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1306 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1308 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
);
1310 object_property_add_link(obj
, "secure-memory",
1312 (Object
**)&cpu
->secure_memory
,
1313 qdev_prop_allow_set_link_before_realize
,
1314 OBJ_PROP_LINK_STRONG
);
1317 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
1318 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
);
1322 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
1323 cpu
->has_pmu
= true;
1324 object_property_add_bool(obj
, "pmu", arm_get_pmu
, arm_set_pmu
);
1328 * Allow user to turn off VFP and Neon support, but only for TCG --
1329 * KVM does not currently allow us to lie to the guest about its
1330 * ID/feature registers, so the guest always sees what the host has.
1332 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)
1333 ? cpu_isar_feature(aa64_fp_simd
, cpu
)
1334 : cpu_isar_feature(aa32_vfp
, cpu
)) {
1335 cpu
->has_vfp
= true;
1336 if (!kvm_enabled()) {
1337 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_vfp_property
);
1341 if (arm_feature(&cpu
->env
, ARM_FEATURE_NEON
)) {
1342 cpu
->has_neon
= true;
1343 if (!kvm_enabled()) {
1344 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_neon_property
);
1348 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
) &&
1349 arm_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
)) {
1350 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_dsp_property
);
1353 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
1354 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
);
1355 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1356 qdev_property_add_static(DEVICE(obj
),
1357 &arm_cpu_pmsav7_dregion_property
);
1361 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
1362 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
1363 qdev_prop_allow_set_link_before_realize
,
1364 OBJ_PROP_LINK_STRONG
);
1366 * M profile: initial value of the Secure VTOR. We can't just use
1367 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1368 * the property to be set after realize.
1370 object_property_add_uint32_ptr(obj
, "init-svtor",
1372 OBJ_PROP_FLAG_READWRITE
);
1374 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1376 * Initial value of the NS VTOR (for cores without the Security
1377 * extension, this is the only VTOR)
1379 object_property_add_uint32_ptr(obj
, "init-nsvtor",
1381 OBJ_PROP_FLAG_READWRITE
);
1384 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1385 object_property_add_uint32_ptr(obj
, "psci-conduit",
1387 OBJ_PROP_FLAG_READWRITE
);
1389 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
);
1391 if (arm_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
)) {
1392 qdev_property_add_static(DEVICE(cpu
), &arm_cpu_gt_cntfrq_property
);
1395 if (kvm_enabled()) {
1396 kvm_arm_add_vcpu_properties(obj
);
1399 #ifndef CONFIG_USER_ONLY
1400 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) &&
1401 cpu_isar_feature(aa64_mte
, cpu
)) {
1402 object_property_add_link(obj
, "tag-memory",
1404 (Object
**)&cpu
->tag_memory
,
1405 qdev_prop_allow_set_link_before_realize
,
1406 OBJ_PROP_LINK_STRONG
);
1408 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1409 object_property_add_link(obj
, "secure-tag-memory",
1411 (Object
**)&cpu
->secure_tag_memory
,
1412 qdev_prop_allow_set_link_before_realize
,
1413 OBJ_PROP_LINK_STRONG
);
1419 static void arm_cpu_finalizefn(Object
*obj
)
1421 ARMCPU
*cpu
= ARM_CPU(obj
);
1422 ARMELChangeHook
*hook
, *next
;
1424 g_hash_table_destroy(cpu
->cp_regs
);
1426 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
1427 QLIST_REMOVE(hook
, node
);
1430 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
1431 QLIST_REMOVE(hook
, node
);
1434 #ifndef CONFIG_USER_ONLY
1435 if (cpu
->pmu_timer
) {
1436 timer_free(cpu
->pmu_timer
);
1441 void arm_cpu_finalize_features(ARMCPU
*cpu
, Error
**errp
)
1443 Error
*local_err
= NULL
;
1445 #ifdef TARGET_AARCH64
1446 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1447 arm_cpu_sve_finalize(cpu
, &local_err
);
1448 if (local_err
!= NULL
) {
1449 error_propagate(errp
, local_err
);
1453 arm_cpu_sme_finalize(cpu
, &local_err
);
1454 if (local_err
!= NULL
) {
1455 error_propagate(errp
, local_err
);
1459 arm_cpu_pauth_finalize(cpu
, &local_err
);
1460 if (local_err
!= NULL
) {
1461 error_propagate(errp
, local_err
);
1465 arm_cpu_lpa2_finalize(cpu
, &local_err
);
1466 if (local_err
!= NULL
) {
1467 error_propagate(errp
, local_err
);
1473 if (kvm_enabled()) {
1474 kvm_arm_steal_time_finalize(cpu
, &local_err
);
1475 if (local_err
!= NULL
) {
1476 error_propagate(errp
, local_err
);
1482 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
1484 CPUState
*cs
= CPU(dev
);
1485 ARMCPU
*cpu
= ARM_CPU(dev
);
1486 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
1487 CPUARMState
*env
= &cpu
->env
;
1489 Error
*local_err
= NULL
;
1490 bool no_aa32
= false;
1492 /* If we needed to query the host kernel for the CPU features
1493 * then it's possible that might have failed in the initfn, but
1494 * this is the first point where we can report it.
1496 if (cpu
->host_cpu_probe_failed
) {
1497 if (!kvm_enabled() && !hvf_enabled()) {
1498 error_setg(errp
, "The 'host' CPU type can only be used with KVM or HVF");
1500 error_setg(errp
, "Failed to retrieve host CPU features");
1505 #ifndef CONFIG_USER_ONLY
1506 /* The NVIC and M-profile CPU are two halves of a single piece of
1507 * hardware; trying to use one without the other is a command line
1508 * error and will result in segfaults if not caught here.
1510 if (arm_feature(env
, ARM_FEATURE_M
)) {
1512 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
1517 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
1522 if (!tcg_enabled() && !qtest_enabled()) {
1524 * We assume that no accelerator except TCG (and the "not really an
1525 * accelerator" qtest) can handle these features, because Arm hardware
1526 * virtualization can't virtualize them.
1528 * Catch all the cases which might cause us to create more than one
1529 * address space for the CPU (otherwise we will assert() later in
1530 * cpu_address_space_init()).
1532 if (arm_feature(env
, ARM_FEATURE_M
)) {
1534 "Cannot enable %s when using an M-profile guest CPU",
1535 current_accel_name());
1540 "Cannot enable %s when guest CPU has EL3 enabled",
1541 current_accel_name());
1544 if (cpu
->tag_memory
) {
1546 "Cannot enable %s when guest CPUs has MTE enabled",
1547 current_accel_name());
1555 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1556 if (!cpu
->gt_cntfrq_hz
) {
1557 error_setg(errp
, "Invalid CNTFRQ: %"PRId64
"Hz",
1561 scale
= gt_cntfrq_period_ns(cpu
);
1563 scale
= GTIMER_SCALE
;
1566 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1567 arm_gt_ptimer_cb
, cpu
);
1568 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1569 arm_gt_vtimer_cb
, cpu
);
1570 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1571 arm_gt_htimer_cb
, cpu
);
1572 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1573 arm_gt_stimer_cb
, cpu
);
1574 cpu
->gt_timer
[GTIMER_HYPVIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1575 arm_gt_hvtimer_cb
, cpu
);
1579 cpu_exec_realizefn(cs
, &local_err
);
1580 if (local_err
!= NULL
) {
1581 error_propagate(errp
, local_err
);
1585 arm_cpu_finalize_features(cpu
, &local_err
);
1586 if (local_err
!= NULL
) {
1587 error_propagate(errp
, local_err
);
1591 if (arm_feature(env
, ARM_FEATURE_AARCH64
) &&
1592 cpu
->has_vfp
!= cpu
->has_neon
) {
1594 * This is an architectural requirement for AArch64; AArch32 is
1595 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1598 "AArch64 CPUs must have both VFP and Neon or neither");
1602 if (!cpu
->has_vfp
) {
1606 t
= cpu
->isar
.id_aa64isar1
;
1607 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 0);
1608 cpu
->isar
.id_aa64isar1
= t
;
1610 t
= cpu
->isar
.id_aa64pfr0
;
1611 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 0xf);
1612 cpu
->isar
.id_aa64pfr0
= t
;
1614 u
= cpu
->isar
.id_isar6
;
1615 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 0);
1616 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 0);
1617 cpu
->isar
.id_isar6
= u
;
1619 u
= cpu
->isar
.mvfr0
;
1620 u
= FIELD_DP32(u
, MVFR0
, FPSP
, 0);
1621 u
= FIELD_DP32(u
, MVFR0
, FPDP
, 0);
1622 u
= FIELD_DP32(u
, MVFR0
, FPDIVIDE
, 0);
1623 u
= FIELD_DP32(u
, MVFR0
, FPSQRT
, 0);
1624 u
= FIELD_DP32(u
, MVFR0
, FPROUND
, 0);
1625 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1626 u
= FIELD_DP32(u
, MVFR0
, FPTRAP
, 0);
1627 u
= FIELD_DP32(u
, MVFR0
, FPSHVEC
, 0);
1629 cpu
->isar
.mvfr0
= u
;
1631 u
= cpu
->isar
.mvfr1
;
1632 u
= FIELD_DP32(u
, MVFR1
, FPFTZ
, 0);
1633 u
= FIELD_DP32(u
, MVFR1
, FPDNAN
, 0);
1634 u
= FIELD_DP32(u
, MVFR1
, FPHP
, 0);
1635 if (arm_feature(env
, ARM_FEATURE_M
)) {
1636 u
= FIELD_DP32(u
, MVFR1
, FP16
, 0);
1638 cpu
->isar
.mvfr1
= u
;
1640 u
= cpu
->isar
.mvfr2
;
1641 u
= FIELD_DP32(u
, MVFR2
, FPMISC
, 0);
1642 cpu
->isar
.mvfr2
= u
;
1645 if (!cpu
->has_neon
) {
1649 unset_feature(env
, ARM_FEATURE_NEON
);
1651 t
= cpu
->isar
.id_aa64isar0
;
1652 t
= FIELD_DP64(t
, ID_AA64ISAR0
, AES
, 0);
1653 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA1
, 0);
1654 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA2
, 0);
1655 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA3
, 0);
1656 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM3
, 0);
1657 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM4
, 0);
1658 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 0);
1659 cpu
->isar
.id_aa64isar0
= t
;
1661 t
= cpu
->isar
.id_aa64isar1
;
1662 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 0);
1663 t
= FIELD_DP64(t
, ID_AA64ISAR1
, BF16
, 0);
1664 t
= FIELD_DP64(t
, ID_AA64ISAR1
, I8MM
, 0);
1665 cpu
->isar
.id_aa64isar1
= t
;
1667 t
= cpu
->isar
.id_aa64pfr0
;
1668 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 0xf);
1669 cpu
->isar
.id_aa64pfr0
= t
;
1671 u
= cpu
->isar
.id_isar5
;
1672 u
= FIELD_DP32(u
, ID_ISAR5
, AES
, 0);
1673 u
= FIELD_DP32(u
, ID_ISAR5
, SHA1
, 0);
1674 u
= FIELD_DP32(u
, ID_ISAR5
, SHA2
, 0);
1675 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 0);
1676 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 0);
1677 cpu
->isar
.id_isar5
= u
;
1679 u
= cpu
->isar
.id_isar6
;
1680 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 0);
1681 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 0);
1682 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 0);
1683 u
= FIELD_DP32(u
, ID_ISAR6
, I8MM
, 0);
1684 cpu
->isar
.id_isar6
= u
;
1686 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1687 u
= cpu
->isar
.mvfr1
;
1688 u
= FIELD_DP32(u
, MVFR1
, SIMDLS
, 0);
1689 u
= FIELD_DP32(u
, MVFR1
, SIMDINT
, 0);
1690 u
= FIELD_DP32(u
, MVFR1
, SIMDSP
, 0);
1691 u
= FIELD_DP32(u
, MVFR1
, SIMDHP
, 0);
1692 cpu
->isar
.mvfr1
= u
;
1694 u
= cpu
->isar
.mvfr2
;
1695 u
= FIELD_DP32(u
, MVFR2
, SIMDMISC
, 0);
1696 cpu
->isar
.mvfr2
= u
;
1700 if (!cpu
->has_neon
&& !cpu
->has_vfp
) {
1704 t
= cpu
->isar
.id_aa64isar0
;
1705 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 0);
1706 cpu
->isar
.id_aa64isar0
= t
;
1708 t
= cpu
->isar
.id_aa64isar1
;
1709 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 0);
1710 cpu
->isar
.id_aa64isar1
= t
;
1712 u
= cpu
->isar
.mvfr0
;
1713 u
= FIELD_DP32(u
, MVFR0
, SIMDREG
, 0);
1714 cpu
->isar
.mvfr0
= u
;
1716 /* Despite the name, this field covers both VFP and Neon */
1717 u
= cpu
->isar
.mvfr1
;
1718 u
= FIELD_DP32(u
, MVFR1
, SIMDFMAC
, 0);
1719 cpu
->isar
.mvfr1
= u
;
1722 if (arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_dsp
) {
1725 unset_feature(env
, ARM_FEATURE_THUMB_DSP
);
1727 u
= cpu
->isar
.id_isar1
;
1728 u
= FIELD_DP32(u
, ID_ISAR1
, EXTEND
, 1);
1729 cpu
->isar
.id_isar1
= u
;
1731 u
= cpu
->isar
.id_isar2
;
1732 u
= FIELD_DP32(u
, ID_ISAR2
, MULTU
, 1);
1733 u
= FIELD_DP32(u
, ID_ISAR2
, MULTS
, 1);
1734 cpu
->isar
.id_isar2
= u
;
1736 u
= cpu
->isar
.id_isar3
;
1737 u
= FIELD_DP32(u
, ID_ISAR3
, SIMD
, 1);
1738 u
= FIELD_DP32(u
, ID_ISAR3
, SATURATE
, 0);
1739 cpu
->isar
.id_isar3
= u
;
1742 /* Some features automatically imply others: */
1743 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1744 if (arm_feature(env
, ARM_FEATURE_M
)) {
1745 set_feature(env
, ARM_FEATURE_V7
);
1747 set_feature(env
, ARM_FEATURE_V7VE
);
1752 * There exist AArch64 cpus without AArch32 support. When KVM
1753 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1754 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1755 * As a general principle, we also do not make ID register
1756 * consistency checks anywhere unless using TCG, because only
1757 * for TCG would a consistency-check failure be a QEMU bug.
1759 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1760 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
1763 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
1764 /* v7 Virtualization Extensions. In real hardware this implies
1765 * EL2 and also the presence of the Security Extensions.
1766 * For QEMU, for backwards-compatibility we implement some
1767 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1768 * include the various other features that V7VE implies.
1769 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1770 * Security Extensions is ARM_FEATURE_EL3.
1772 assert(!tcg_enabled() || no_aa32
||
1773 cpu_isar_feature(aa32_arm_div
, cpu
));
1774 set_feature(env
, ARM_FEATURE_LPAE
);
1775 set_feature(env
, ARM_FEATURE_V7
);
1777 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1778 set_feature(env
, ARM_FEATURE_VAPA
);
1779 set_feature(env
, ARM_FEATURE_THUMB2
);
1780 set_feature(env
, ARM_FEATURE_MPIDR
);
1781 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1782 set_feature(env
, ARM_FEATURE_V6K
);
1784 set_feature(env
, ARM_FEATURE_V6
);
1787 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1788 * non-EL3 configs. This is needed by some legacy boards.
1790 set_feature(env
, ARM_FEATURE_VBAR
);
1792 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1793 set_feature(env
, ARM_FEATURE_V6
);
1794 set_feature(env
, ARM_FEATURE_MVFR
);
1796 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1797 set_feature(env
, ARM_FEATURE_V5
);
1798 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1799 assert(!tcg_enabled() || no_aa32
||
1800 cpu_isar_feature(aa32_jazelle
, cpu
));
1801 set_feature(env
, ARM_FEATURE_AUXCR
);
1804 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1805 set_feature(env
, ARM_FEATURE_V4T
);
1807 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1808 set_feature(env
, ARM_FEATURE_V7MP
);
1810 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1811 set_feature(env
, ARM_FEATURE_CBAR
);
1813 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1814 !arm_feature(env
, ARM_FEATURE_M
)) {
1815 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1819 * We rely on no XScale CPU having VFP so we can use the same bits in the
1820 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1822 assert(arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) ||
1823 !cpu_isar_feature(aa32_vfp_simd
, cpu
) ||
1824 !arm_feature(env
, ARM_FEATURE_XSCALE
));
1826 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1827 !arm_feature(env
, ARM_FEATURE_M
) &&
1828 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
1829 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1834 /* For CPUs which might have tiny 1K pages, or which have an
1835 * MPU and might have small region sizes, stick with 1K pages.
1839 if (!set_preferred_target_page_bits(pagebits
)) {
1840 /* This can only ever happen for hotplugging a CPU, or if
1841 * the board code incorrectly creates a CPU which it has
1842 * promised via minimum_page_size that it will not.
1844 error_setg(errp
, "This CPU requires a smaller page size than the "
1849 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1850 * We don't support setting cluster ID ([16..23]) (known as Aff2
1851 * in later ARM ARM versions), or any of the higher affinity level fields,
1852 * so these bits always RAZ.
1854 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1855 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1856 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1859 if (cpu
->reset_hivecs
) {
1860 cpu
->reset_sctlr
|= (1 << 13);
1864 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1865 cpu
->reset_sctlr
|= SCTLR_EE
;
1867 cpu
->reset_sctlr
|= SCTLR_B
;
1871 if (!arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_el3
) {
1872 /* If the has_el3 CPU property is disabled then we need to disable the
1875 unset_feature(env
, ARM_FEATURE_EL3
);
1878 * Disable the security extension feature bits in the processor
1879 * feature registers as well.
1881 cpu
->isar
.id_pfr1
= FIELD_DP32(cpu
->isar
.id_pfr1
, ID_PFR1
, SECURITY
, 0);
1882 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, COPSDBG
, 0);
1883 cpu
->isar
.id_aa64pfr0
= FIELD_DP64(cpu
->isar
.id_aa64pfr0
,
1884 ID_AA64PFR0
, EL3
, 0);
1887 if (!cpu
->has_el2
) {
1888 unset_feature(env
, ARM_FEATURE_EL2
);
1891 if (!cpu
->has_pmu
) {
1892 unset_feature(env
, ARM_FEATURE_PMU
);
1894 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
1897 if (!kvm_enabled()) {
1898 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
1899 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
1902 #ifndef CONFIG_USER_ONLY
1903 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
1907 cpu
->isar
.id_aa64dfr0
=
1908 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMUVER
, 0);
1909 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, PERFMON
, 0);
1914 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1916 * Disable the hypervisor feature bits in the processor feature
1917 * registers if we don't have EL2.
1919 cpu
->isar
.id_aa64pfr0
= FIELD_DP64(cpu
->isar
.id_aa64pfr0
,
1920 ID_AA64PFR0
, EL2
, 0);
1921 cpu
->isar
.id_pfr1
= FIELD_DP32(cpu
->isar
.id_pfr1
,
1922 ID_PFR1
, VIRTUALIZATION
, 0);
1925 #ifndef CONFIG_USER_ONLY
1926 if (cpu
->tag_memory
== NULL
&& cpu_isar_feature(aa64_mte
, cpu
)) {
1928 * Disable the MTE feature bits if we do not have tag-memory
1929 * provided by the machine.
1931 cpu
->isar
.id_aa64pfr1
=
1932 FIELD_DP64(cpu
->isar
.id_aa64pfr1
, ID_AA64PFR1
, MTE
, 0);
1936 if (tcg_enabled()) {
1938 * Don't report the Statistical Profiling Extension in the ID
1939 * registers, because TCG doesn't implement it yet (not even a
1940 * minimal stub version) and guests will fall over when they
1941 * try to access the non-existent system registers for it.
1943 cpu
->isar
.id_aa64dfr0
=
1944 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMSVER
, 0);
1947 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1948 * to false or by setting pmsav7-dregion to 0.
1950 if (!cpu
->has_mpu
) {
1951 cpu
->pmsav7_dregion
= 0;
1953 if (cpu
->pmsav7_dregion
== 0) {
1954 cpu
->has_mpu
= false;
1957 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1958 arm_feature(env
, ARM_FEATURE_V7
)) {
1959 uint32_t nr
= cpu
->pmsav7_dregion
;
1962 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1967 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1969 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1970 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1971 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1972 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1973 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1976 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1977 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1978 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1983 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1984 uint32_t nr
= cpu
->sau_sregion
;
1987 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1992 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1993 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1997 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1998 set_feature(env
, ARM_FEATURE_VBAR
);
2001 register_cp_regs_for_features(cpu
);
2002 arm_cpu_register_gdb_regs_for_features(cpu
);
2004 init_cpreg_list(cpu
);
2006 #ifndef CONFIG_USER_ONLY
2007 MachineState
*ms
= MACHINE(qdev_get_machine());
2008 unsigned int smp_cpus
= ms
->smp
.cpus
;
2009 bool has_secure
= cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
);
2012 * We must set cs->num_ases to the final value before
2013 * the first call to cpu_address_space_init.
2015 if (cpu
->tag_memory
!= NULL
) {
2016 cs
->num_ases
= 3 + has_secure
;
2018 cs
->num_ases
= 1 + has_secure
;
2022 if (!cpu
->secure_memory
) {
2023 cpu
->secure_memory
= cs
->memory
;
2025 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
2026 cpu
->secure_memory
);
2029 if (cpu
->tag_memory
!= NULL
) {
2030 cpu_address_space_init(cs
, ARMASIdx_TagNS
, "cpu-tag-memory",
2033 cpu_address_space_init(cs
, ARMASIdx_TagS
, "cpu-tag-memory",
2034 cpu
->secure_tag_memory
);
2038 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
2040 /* No core_count specified, default to smp_cpus. */
2041 if (cpu
->core_count
== -1) {
2042 cpu
->core_count
= smp_cpus
;
2046 if (tcg_enabled()) {
2047 int dcz_blocklen
= 4 << cpu
->dcz_blocksize
;
2050 * We only support DCZ blocklen that fits on one page.
2052 * Architectually this is always true. However TARGET_PAGE_SIZE
2053 * is variable and, for compatibility with -machine virt-2.7,
2054 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2055 * But even then, while the largest architectural DCZ blocklen
2056 * is 2KiB, no cpu actually uses such a large blocklen.
2058 assert(dcz_blocklen
<= TARGET_PAGE_SIZE
);
2061 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2062 * both nibbles of each byte storing tag data may be written at once.
2063 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2065 if (cpu_isar_feature(aa64_mte
, cpu
)) {
2066 assert(dcz_blocklen
>= 2 * TAG_GRANULE
);
2073 acc
->parent_realize(dev
, errp
);
2076 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
2081 const char *cpunamestr
;
2083 cpuname
= g_strsplit(cpu_model
, ",", 1);
2084 cpunamestr
= cpuname
[0];
2085 #ifdef CONFIG_USER_ONLY
2086 /* For backwards compatibility usermode emulation allows "-cpu any",
2087 * which has the same semantics as "-cpu max".
2089 if (!strcmp(cpunamestr
, "any")) {
2093 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
2094 oc
= object_class_by_name(typename
);
2095 g_strfreev(cpuname
);
2097 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
2098 object_class_is_abstract(oc
)) {
2104 static Property arm_cpu_properties
[] = {
2105 DEFINE_PROP_UINT64("midr", ARMCPU
, midr
, 0),
2106 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2107 mp_affinity
, ARM64_AFFINITY_INVALID
),
2108 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2109 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2110 DEFINE_PROP_END_OF_LIST()
2113 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2115 ARMCPU
*cpu
= ARM_CPU(cs
);
2116 CPUARMState
*env
= &cpu
->env
;
2118 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2119 return g_strdup("iwmmxt");
2121 return g_strdup("arm");
2124 #ifndef CONFIG_USER_ONLY
2125 #include "hw/core/sysemu-cpu-ops.h"
2127 static const struct SysemuCPUOps arm_sysemu_ops
= {
2128 .get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
,
2129 .asidx_from_attrs
= arm_asidx_from_attrs
,
2130 .write_elf32_note
= arm_cpu_write_elf32_note
,
2131 .write_elf64_note
= arm_cpu_write_elf64_note
,
2132 .virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
,
2133 .legacy_vmsd
= &vmstate_arm_cpu
,
2138 static const struct TCGCPUOps arm_tcg_ops
= {
2139 .initialize
= arm_translate_init
,
2140 .synchronize_from_tb
= arm_cpu_synchronize_from_tb
,
2141 .debug_excp_handler
= arm_debug_excp_handler
,
2143 #ifdef CONFIG_USER_ONLY
2144 .record_sigsegv
= arm_cpu_record_sigsegv
,
2145 .record_sigbus
= arm_cpu_record_sigbus
,
2147 .tlb_fill
= arm_cpu_tlb_fill
,
2148 .cpu_exec_interrupt
= arm_cpu_exec_interrupt
,
2149 .do_interrupt
= arm_cpu_do_interrupt
,
2150 .do_transaction_failed
= arm_cpu_do_transaction_failed
,
2151 .do_unaligned_access
= arm_cpu_do_unaligned_access
,
2152 .adjust_watchpoint_address
= arm_adjust_watchpoint_address
,
2153 .debug_check_watchpoint
= arm_debug_check_watchpoint
,
2154 .debug_check_breakpoint
= arm_debug_check_breakpoint
,
2155 #endif /* !CONFIG_USER_ONLY */
2157 #endif /* CONFIG_TCG */
2159 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2161 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2162 CPUClass
*cc
= CPU_CLASS(acc
);
2163 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2165 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2166 &acc
->parent_realize
);
2168 device_class_set_props(dc
, arm_cpu_properties
);
2169 device_class_set_parent_reset(dc
, arm_cpu_reset
, &acc
->parent_reset
);
2171 cc
->class_by_name
= arm_cpu_class_by_name
;
2172 cc
->has_work
= arm_cpu_has_work
;
2173 cc
->dump_state
= arm_cpu_dump_state
;
2174 cc
->set_pc
= arm_cpu_set_pc
;
2175 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2176 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2177 #ifndef CONFIG_USER_ONLY
2178 cc
->sysemu_ops
= &arm_sysemu_ops
;
2180 cc
->gdb_num_core_regs
= 26;
2181 cc
->gdb_core_xml_file
= "arm-core.xml";
2182 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2183 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2184 cc
->gdb_stop_before_watchpoint
= true;
2185 cc
->disas_set_info
= arm_disas_set_info
;
2188 cc
->tcg_ops
= &arm_tcg_ops
;
2189 #endif /* CONFIG_TCG */
2192 static void arm_cpu_instance_init(Object
*obj
)
2194 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2196 acc
->info
->initfn(obj
);
2197 arm_cpu_post_init(obj
);
2200 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2202 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2207 void arm_cpu_register(const ARMCPUInfo
*info
)
2209 TypeInfo type_info
= {
2210 .parent
= TYPE_ARM_CPU
,
2211 .instance_size
= sizeof(ARMCPU
),
2212 .instance_align
= __alignof__(ARMCPU
),
2213 .instance_init
= arm_cpu_instance_init
,
2214 .class_size
= sizeof(ARMCPUClass
),
2215 .class_init
= info
->class_init
?: cpu_register_class_init
,
2216 .class_data
= (void *)info
,
2219 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2220 type_register(&type_info
);
2221 g_free((void *)type_info
.name
);
2224 static const TypeInfo arm_cpu_type_info
= {
2225 .name
= TYPE_ARM_CPU
,
2227 .instance_size
= sizeof(ARMCPU
),
2228 .instance_align
= __alignof__(ARMCPU
),
2229 .instance_init
= arm_cpu_initfn
,
2230 .instance_finalize
= arm_cpu_finalizefn
,
2232 .class_size
= sizeof(ARMCPUClass
),
2233 .class_init
= arm_cpu_class_init
,
2236 static void arm_cpu_register_types(void)
2238 type_register_static(&arm_cpu_type_info
);
2241 type_init(arm_cpu_register_types
)