2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "sysemu/kvm.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "sysemu/sysemu.h"
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #include "hw/i386/apic_internal.h"
32 static void cpu_x86_version(CPUX86State
*env
, int *family
, int *model
)
34 int cpuver
= env
->cpuid_version
;
36 if (family
== NULL
|| model
== NULL
) {
40 *family
= (cpuver
>> 8) & 0x0f;
41 *model
= ((cpuver
>> 12) & 0xf0) + ((cpuver
>> 4) & 0x0f);
44 /* Broadcast MCA signal for processor version 06H_EH and above */
45 int cpu_x86_support_mca_broadcast(CPUX86State
*env
)
50 cpu_x86_version(env
, &family
, &model
);
51 if ((family
== 6 && model
>= 14) || family
> 6) {
58 /***********************************************************/
61 static const char *cc_op_str
[CC_OP_NB
] = {
128 cpu_x86_dump_seg_cache(CPUX86State
*env
, FILE *f
, fprintf_function cpu_fprintf
,
129 const char *name
, struct SegmentCache
*sc
)
132 if (env
->hflags
& HF_CS64_MASK
) {
133 cpu_fprintf(f
, "%-3s=%04x %016" PRIx64
" %08x %08x", name
,
134 sc
->selector
, sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
138 cpu_fprintf(f
, "%-3s=%04x %08x %08x %08x", name
, sc
->selector
,
139 (uint32_t)sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
142 if (!(env
->hflags
& HF_PE_MASK
) || !(sc
->flags
& DESC_P_MASK
))
145 cpu_fprintf(f
, " DPL=%d ", (sc
->flags
& DESC_DPL_MASK
) >> DESC_DPL_SHIFT
);
146 if (sc
->flags
& DESC_S_MASK
) {
147 if (sc
->flags
& DESC_CS_MASK
) {
148 cpu_fprintf(f
, (sc
->flags
& DESC_L_MASK
) ? "CS64" :
149 ((sc
->flags
& DESC_B_MASK
) ? "CS32" : "CS16"));
150 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_C_MASK
) ? 'C' : '-',
151 (sc
->flags
& DESC_R_MASK
) ? 'R' : '-');
154 (sc
->flags
& DESC_B_MASK
|| env
->hflags
& HF_LMA_MASK
)
156 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_E_MASK
) ? 'E' : '-',
157 (sc
->flags
& DESC_W_MASK
) ? 'W' : '-');
159 cpu_fprintf(f
, "%c]", (sc
->flags
& DESC_A_MASK
) ? 'A' : '-');
161 static const char *sys_type_name
[2][16] = {
163 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
164 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
165 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
166 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
169 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
170 "Reserved", "Reserved", "Reserved", "Reserved",
171 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
172 "Reserved", "IntGate64", "TrapGate64"
176 sys_type_name
[(env
->hflags
& HF_LMA_MASK
) ? 1 : 0]
177 [(sc
->flags
& DESC_TYPE_MASK
)
178 >> DESC_TYPE_SHIFT
]);
181 cpu_fprintf(f
, "\n");
184 #ifndef CONFIG_USER_ONLY
186 /* ARRAY_SIZE check is not required because
187 * DeliveryMode(dm) has a size of 3 bit.
189 static inline const char *dm2str(uint32_t dm
)
191 static const char *str
[] = {
204 static void dump_apic_lvt(FILE *f
, fprintf_function cpu_fprintf
,
205 const char *name
, uint32_t lvt
, bool is_timer
)
207 uint32_t dm
= (lvt
& APIC_LVT_DELIV_MOD
) >> APIC_LVT_DELIV_MOD_SHIFT
;
209 "%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
211 lvt
& APIC_LVT_INT_POLARITY
? "active-lo" : "active-hi",
212 lvt
& APIC_LVT_LEVEL_TRIGGER
? "level" : "edge",
213 lvt
& APIC_LVT_MASKED
? "masked" : "",
214 lvt
& APIC_LVT_DELIV_STS
? "pending" : "",
216 "" : lvt
& APIC_LVT_TIMER_PERIODIC
?
217 "periodic" : lvt
& APIC_LVT_TIMER_TSCDEADLINE
?
218 "tsc-deadline" : "one-shot",
220 if (dm
!= APIC_DM_NMI
) {
221 cpu_fprintf(f
, " (vec %u)\n", lvt
& APIC_VECTOR_MASK
);
223 cpu_fprintf(f
, "\n");
227 /* ARRAY_SIZE check is not required because
228 * destination shorthand has a size of 2 bit.
230 static inline const char *shorthand2str(uint32_t shorthand
)
232 const char *str
[] = {
233 "no-shorthand", "self", "all-self", "all"
235 return str
[shorthand
];
238 static inline uint8_t divider_conf(uint32_t divide_conf
)
240 uint8_t divide_val
= ((divide_conf
& 0x8) >> 1) | (divide_conf
& 0x3);
242 return divide_val
== 7 ? 1 : 2 << divide_val
;
245 static inline void mask2str(char *str
, uint32_t val
, uint8_t size
)
248 *str
++ = (val
>> size
) & 1 ? '1' : '0';
253 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
255 static void dump_apic_icr(FILE *f
, fprintf_function cpu_fprintf
,
256 APICCommonState
*s
, CPUX86State
*env
)
258 uint32_t icr
= s
->icr
[0], icr2
= s
->icr
[1];
259 uint8_t dest_shorthand
= \
260 (icr
& APIC_ICR_DEST_SHORT
) >> APIC_ICR_DEST_SHORT_SHIFT
;
261 bool logical_mod
= icr
& APIC_ICR_DEST_MOD
;
262 char apic_id_str
[MAX_LOGICAL_APIC_ID_MASK_SIZE
+ 1];
266 cpu_fprintf(f
, "ICR\t 0x%08x %s %s %s %s\n",
268 logical_mod
? "logical" : "physical",
269 icr
& APIC_ICR_TRIGGER_MOD
? "level" : "edge",
270 icr
& APIC_ICR_LEVEL
? "assert" : "de-assert",
271 shorthand2str(dest_shorthand
));
273 cpu_fprintf(f
, "ICR2\t 0x%08x", icr2
);
274 if (dest_shorthand
!= 0) {
275 cpu_fprintf(f
, "\n");
278 x2apic
= env
->features
[FEAT_1_ECX
] & CPUID_EXT_X2APIC
;
279 dest_field
= x2apic
? icr2
: icr2
>> APIC_ICR_DEST_SHIFT
;
283 cpu_fprintf(f
, " cpu %u (X2APIC ID)\n", dest_field
);
285 cpu_fprintf(f
, " cpu %u (APIC ID)\n",
286 dest_field
& APIC_LOGDEST_XAPIC_ID
);
291 if (s
->dest_mode
== 0xf) { /* flat mode */
292 mask2str(apic_id_str
, icr2
>> APIC_ICR_DEST_SHIFT
, 8);
293 cpu_fprintf(f
, " mask %s (APIC ID)\n", apic_id_str
);
294 } else if (s
->dest_mode
== 0) { /* cluster mode */
296 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_X2APIC_ID
, 16);
297 cpu_fprintf(f
, " cluster %u mask %s (X2APIC ID)\n",
298 dest_field
>> APIC_LOGDEST_X2APIC_SHIFT
, apic_id_str
);
300 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_XAPIC_ID
, 4);
301 cpu_fprintf(f
, " cluster %u mask %s (APIC ID)\n",
302 dest_field
>> APIC_LOGDEST_XAPIC_SHIFT
, apic_id_str
);
307 static void dump_apic_interrupt(FILE *f
, fprintf_function cpu_fprintf
,
308 const char *name
, uint32_t *ireg_tab
,
313 cpu_fprintf(f
, "%s\t ", name
);
314 for (i
= 0; i
< 256; i
++) {
315 if (apic_get_bit(ireg_tab
, i
)) {
316 cpu_fprintf(f
, "%u%s ", i
,
317 apic_get_bit(tmr_tab
, i
) ? "(level)" : "");
321 cpu_fprintf(f
, "%s\n", empty
? "(none)" : "");
324 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
325 fprintf_function cpu_fprintf
, int flags
)
327 X86CPU
*cpu
= X86_CPU(cs
);
328 APICCommonState
*s
= APIC_COMMON(cpu
->apic_state
);
330 cpu_fprintf(f
, "local apic state not available\n");
333 uint32_t *lvt
= s
->lvt
;
335 cpu_fprintf(f
, "dumping local APIC state for CPU %-2u\n\n",
336 CPU(cpu
)->cpu_index
);
337 dump_apic_lvt(f
, cpu_fprintf
, "LVT0", lvt
[APIC_LVT_LINT0
], false);
338 dump_apic_lvt(f
, cpu_fprintf
, "LVT1", lvt
[APIC_LVT_LINT1
], false);
339 dump_apic_lvt(f
, cpu_fprintf
, "LVTPC", lvt
[APIC_LVT_PERFORM
], false);
340 dump_apic_lvt(f
, cpu_fprintf
, "LVTERR", lvt
[APIC_LVT_ERROR
], false);
341 dump_apic_lvt(f
, cpu_fprintf
, "LVTTHMR", lvt
[APIC_LVT_THERMAL
], false);
342 dump_apic_lvt(f
, cpu_fprintf
, "LVTT", lvt
[APIC_LVT_TIMER
], true);
344 cpu_fprintf(f
, "Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
345 s
->divide_conf
& APIC_DCR_MASK
,
346 divider_conf(s
->divide_conf
),
349 cpu_fprintf(f
, "SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
351 s
->spurious_vec
& APIC_SPURIO_ENABLED
? "enabled" : "disabled",
352 s
->spurious_vec
& APIC_SPURIO_FOCUS
? "on" : "off",
353 s
->spurious_vec
& APIC_VECTOR_MASK
);
355 dump_apic_icr(f
, cpu_fprintf
, s
, &cpu
->env
);
357 cpu_fprintf(f
, "ESR\t 0x%08x\n", s
->esr
);
359 dump_apic_interrupt(f
, cpu_fprintf
, "ISR", s
->isr
, s
->tmr
);
360 dump_apic_interrupt(f
, cpu_fprintf
, "IRR", s
->irr
, s
->tmr
);
362 cpu_fprintf(f
, "\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
363 s
->arb_id
, s
->tpr
, s
->dest_mode
, s
->log_dest
);
364 if (s
->dest_mode
== 0) {
365 cpu_fprintf(f
, "(cluster %u: id %u)",
366 s
->log_dest
>> APIC_LOGDEST_XAPIC_SHIFT
,
367 s
->log_dest
& APIC_LOGDEST_XAPIC_ID
);
369 cpu_fprintf(f
, " PPR 0x%02x\n", apic_get_ppr(s
));
372 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
373 fprintf_function cpu_fprintf
, int flags
)
376 #endif /* !CONFIG_USER_ONLY */
378 #define DUMP_CODE_BYTES_TOTAL 50
379 #define DUMP_CODE_BYTES_BACKWARD 20
381 void x86_cpu_dump_state(CPUState
*cs
, FILE *f
, fprintf_function cpu_fprintf
,
384 X86CPU
*cpu
= X86_CPU(cs
);
385 CPUX86State
*env
= &cpu
->env
;
388 static const char *seg_name
[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
390 eflags
= cpu_compute_eflags(env
);
392 if (env
->hflags
& HF_CS64_MASK
) {
394 "RAX=%016" PRIx64
" RBX=%016" PRIx64
" RCX=%016" PRIx64
" RDX=%016" PRIx64
"\n"
395 "RSI=%016" PRIx64
" RDI=%016" PRIx64
" RBP=%016" PRIx64
" RSP=%016" PRIx64
"\n"
396 "R8 =%016" PRIx64
" R9 =%016" PRIx64
" R10=%016" PRIx64
" R11=%016" PRIx64
"\n"
397 "R12=%016" PRIx64
" R13=%016" PRIx64
" R14=%016" PRIx64
" R15=%016" PRIx64
"\n"
398 "RIP=%016" PRIx64
" RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
416 eflags
& DF_MASK
? 'D' : '-',
417 eflags
& CC_O
? 'O' : '-',
418 eflags
& CC_S
? 'S' : '-',
419 eflags
& CC_Z
? 'Z' : '-',
420 eflags
& CC_A
? 'A' : '-',
421 eflags
& CC_P
? 'P' : '-',
422 eflags
& CC_C
? 'C' : '-',
423 env
->hflags
& HF_CPL_MASK
,
424 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
425 (env
->a20_mask
>> 20) & 1,
426 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
431 cpu_fprintf(f
, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
432 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
433 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
434 (uint32_t)env
->regs
[R_EAX
],
435 (uint32_t)env
->regs
[R_EBX
],
436 (uint32_t)env
->regs
[R_ECX
],
437 (uint32_t)env
->regs
[R_EDX
],
438 (uint32_t)env
->regs
[R_ESI
],
439 (uint32_t)env
->regs
[R_EDI
],
440 (uint32_t)env
->regs
[R_EBP
],
441 (uint32_t)env
->regs
[R_ESP
],
442 (uint32_t)env
->eip
, eflags
,
443 eflags
& DF_MASK
? 'D' : '-',
444 eflags
& CC_O
? 'O' : '-',
445 eflags
& CC_S
? 'S' : '-',
446 eflags
& CC_Z
? 'Z' : '-',
447 eflags
& CC_A
? 'A' : '-',
448 eflags
& CC_P
? 'P' : '-',
449 eflags
& CC_C
? 'C' : '-',
450 env
->hflags
& HF_CPL_MASK
,
451 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
452 (env
->a20_mask
>> 20) & 1,
453 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
457 for(i
= 0; i
< 6; i
++) {
458 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, seg_name
[i
],
461 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "LDT", &env
->ldt
);
462 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "TR", &env
->tr
);
465 if (env
->hflags
& HF_LMA_MASK
) {
466 cpu_fprintf(f
, "GDT= %016" PRIx64
" %08x\n",
467 env
->gdt
.base
, env
->gdt
.limit
);
468 cpu_fprintf(f
, "IDT= %016" PRIx64
" %08x\n",
469 env
->idt
.base
, env
->idt
.limit
);
470 cpu_fprintf(f
, "CR0=%08x CR2=%016" PRIx64
" CR3=%016" PRIx64
" CR4=%08x\n",
471 (uint32_t)env
->cr
[0],
474 (uint32_t)env
->cr
[4]);
475 for(i
= 0; i
< 4; i
++)
476 cpu_fprintf(f
, "DR%d=%016" PRIx64
" ", i
, env
->dr
[i
]);
477 cpu_fprintf(f
, "\nDR6=%016" PRIx64
" DR7=%016" PRIx64
"\n",
478 env
->dr
[6], env
->dr
[7]);
482 cpu_fprintf(f
, "GDT= %08x %08x\n",
483 (uint32_t)env
->gdt
.base
, env
->gdt
.limit
);
484 cpu_fprintf(f
, "IDT= %08x %08x\n",
485 (uint32_t)env
->idt
.base
, env
->idt
.limit
);
486 cpu_fprintf(f
, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
487 (uint32_t)env
->cr
[0],
488 (uint32_t)env
->cr
[2],
489 (uint32_t)env
->cr
[3],
490 (uint32_t)env
->cr
[4]);
491 for(i
= 0; i
< 4; i
++) {
492 cpu_fprintf(f
, "DR%d=" TARGET_FMT_lx
" ", i
, env
->dr
[i
]);
494 cpu_fprintf(f
, "\nDR6=" TARGET_FMT_lx
" DR7=" TARGET_FMT_lx
"\n",
495 env
->dr
[6], env
->dr
[7]);
497 if (flags
& CPU_DUMP_CCOP
) {
498 if ((unsigned)env
->cc_op
< CC_OP_NB
)
499 snprintf(cc_op_name
, sizeof(cc_op_name
), "%s", cc_op_str
[env
->cc_op
]);
501 snprintf(cc_op_name
, sizeof(cc_op_name
), "[%d]", env
->cc_op
);
503 if (env
->hflags
& HF_CS64_MASK
) {
504 cpu_fprintf(f
, "CCS=%016" PRIx64
" CCD=%016" PRIx64
" CCO=%-8s\n",
505 env
->cc_src
, env
->cc_dst
,
510 cpu_fprintf(f
, "CCS=%08x CCD=%08x CCO=%-8s\n",
511 (uint32_t)env
->cc_src
, (uint32_t)env
->cc_dst
,
515 cpu_fprintf(f
, "EFER=%016" PRIx64
"\n", env
->efer
);
516 if (flags
& CPU_DUMP_FPU
) {
519 for(i
= 0; i
< 8; i
++) {
520 fptag
|= ((!env
->fptags
[i
]) << i
);
522 cpu_fprintf(f
, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
524 (env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11,
530 u
.d
= env
->fpregs
[i
].d
;
531 cpu_fprintf(f
, "FPR%d=%016" PRIx64
" %04x",
532 i
, u
.l
.lower
, u
.l
.upper
);
534 cpu_fprintf(f
, "\n");
538 if (env
->hflags
& HF_CS64_MASK
)
543 cpu_fprintf(f
, "XMM%02d=%08x%08x%08x%08x",
545 env
->xmm_regs
[i
].ZMM_L(3),
546 env
->xmm_regs
[i
].ZMM_L(2),
547 env
->xmm_regs
[i
].ZMM_L(1),
548 env
->xmm_regs
[i
].ZMM_L(0));
550 cpu_fprintf(f
, "\n");
555 if (flags
& CPU_DUMP_CODE
) {
556 target_ulong base
= env
->segs
[R_CS
].base
+ env
->eip
;
557 target_ulong offs
= MIN(env
->eip
, DUMP_CODE_BYTES_BACKWARD
);
561 cpu_fprintf(f
, "Code=");
562 for (i
= 0; i
< DUMP_CODE_BYTES_TOTAL
; i
++) {
563 if (cpu_memory_rw_debug(cs
, base
- offs
+ i
, &code
, 1, 0) == 0) {
564 snprintf(codestr
, sizeof(codestr
), "%02x", code
);
566 snprintf(codestr
, sizeof(codestr
), "??");
568 cpu_fprintf(f
, "%s%s%s%s", i
> 0 ? " " : "",
569 i
== offs
? "<" : "", codestr
, i
== offs
? ">" : "");
571 cpu_fprintf(f
, "\n");
575 /***********************************************************/
577 /* XXX: add PGE support */
579 void x86_cpu_set_a20(X86CPU
*cpu
, int a20_state
)
581 CPUX86State
*env
= &cpu
->env
;
583 a20_state
= (a20_state
!= 0);
584 if (a20_state
!= ((env
->a20_mask
>> 20) & 1)) {
585 CPUState
*cs
= CPU(cpu
);
587 qemu_log_mask(CPU_LOG_MMU
, "A20 update: a20=%d\n", a20_state
);
588 /* if the cpu is currently executing code, we must unlink it and
589 all the potentially executing TB */
590 cpu_interrupt(cs
, CPU_INTERRUPT_EXITTB
);
592 /* when a20 is changed, all the MMU mappings are invalid, so
593 we must flush everything */
595 env
->a20_mask
= ~(1 << 20) | (a20_state
<< 20);
599 void cpu_x86_update_cr0(CPUX86State
*env
, uint32_t new_cr0
)
601 X86CPU
*cpu
= x86_env_get_cpu(env
);
604 qemu_log_mask(CPU_LOG_MMU
, "CR0 update: CR0=0x%08x\n", new_cr0
);
605 if ((new_cr0
& (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
)) !=
606 (env
->cr
[0] & (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
))) {
611 if (!(env
->cr
[0] & CR0_PG_MASK
) && (new_cr0
& CR0_PG_MASK
) &&
612 (env
->efer
& MSR_EFER_LME
)) {
613 /* enter in long mode */
614 /* XXX: generate an exception */
615 if (!(env
->cr
[4] & CR4_PAE_MASK
))
617 env
->efer
|= MSR_EFER_LMA
;
618 env
->hflags
|= HF_LMA_MASK
;
619 } else if ((env
->cr
[0] & CR0_PG_MASK
) && !(new_cr0
& CR0_PG_MASK
) &&
620 (env
->efer
& MSR_EFER_LMA
)) {
622 env
->efer
&= ~MSR_EFER_LMA
;
623 env
->hflags
&= ~(HF_LMA_MASK
| HF_CS64_MASK
);
624 env
->eip
&= 0xffffffff;
627 env
->cr
[0] = new_cr0
| CR0_ET_MASK
;
629 /* update PE flag in hidden flags */
630 pe_state
= (env
->cr
[0] & CR0_PE_MASK
);
631 env
->hflags
= (env
->hflags
& ~HF_PE_MASK
) | (pe_state
<< HF_PE_SHIFT
);
632 /* ensure that ADDSEG is always set in real mode */
633 env
->hflags
|= ((pe_state
^ 1) << HF_ADDSEG_SHIFT
);
634 /* update FPU flags */
635 env
->hflags
= (env
->hflags
& ~(HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
)) |
636 ((new_cr0
<< (HF_MP_SHIFT
- 1)) & (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
));
639 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
641 void cpu_x86_update_cr3(CPUX86State
*env
, target_ulong new_cr3
)
643 X86CPU
*cpu
= x86_env_get_cpu(env
);
645 env
->cr
[3] = new_cr3
;
646 if (env
->cr
[0] & CR0_PG_MASK
) {
647 qemu_log_mask(CPU_LOG_MMU
,
648 "CR3 update: CR3=" TARGET_FMT_lx
"\n", new_cr3
);
653 void cpu_x86_update_cr4(CPUX86State
*env
, uint32_t new_cr4
)
655 X86CPU
*cpu
= x86_env_get_cpu(env
);
658 #if defined(DEBUG_MMU)
659 printf("CR4 update: %08x -> %08x\n", (uint32_t)env
->cr
[4], new_cr4
);
661 if ((new_cr4
^ env
->cr
[4]) &
662 (CR4_PGE_MASK
| CR4_PAE_MASK
| CR4_PSE_MASK
|
663 CR4_SMEP_MASK
| CR4_SMAP_MASK
| CR4_LA57_MASK
)) {
667 /* Clear bits we're going to recompute. */
668 hflags
= env
->hflags
& ~(HF_OSFXSR_MASK
| HF_SMAP_MASK
);
671 if (!(env
->features
[FEAT_1_EDX
] & CPUID_SSE
)) {
672 new_cr4
&= ~CR4_OSFXSR_MASK
;
674 if (new_cr4
& CR4_OSFXSR_MASK
) {
675 hflags
|= HF_OSFXSR_MASK
;
678 if (!(env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_SMAP
)) {
679 new_cr4
&= ~CR4_SMAP_MASK
;
681 if (new_cr4
& CR4_SMAP_MASK
) {
682 hflags
|= HF_SMAP_MASK
;
685 if (!(env
->features
[FEAT_7_0_ECX
] & CPUID_7_0_ECX_PKU
)) {
686 new_cr4
&= ~CR4_PKE_MASK
;
689 env
->cr
[4] = new_cr4
;
690 env
->hflags
= hflags
;
692 cpu_sync_bndcs_hflags(env
);
695 #if defined(CONFIG_USER_ONLY)
697 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
,
698 int is_write
, int mmu_idx
)
700 X86CPU
*cpu
= X86_CPU(cs
);
701 CPUX86State
*env
= &cpu
->env
;
703 /* user mode only emulation */
706 env
->error_code
= (is_write
<< PG_ERROR_W_BIT
);
707 env
->error_code
|= PG_ERROR_U_MASK
;
708 cs
->exception_index
= EXCP0E_PAGE
;
709 env
->exception_is_int
= 0;
710 env
->exception_next_eip
= -1;
717 * -1 = cannot handle fault
718 * 0 = nothing more to do
719 * 1 = generate PF fault
721 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
,
722 int is_write1
, int mmu_idx
)
724 X86CPU
*cpu
= X86_CPU(cs
);
725 CPUX86State
*env
= &cpu
->env
;
727 target_ulong pde_addr
, pte_addr
;
729 int is_dirty
, prot
, page_size
, is_write
, is_user
;
731 uint64_t rsvd_mask
= PG_HI_RSVD_MASK
;
732 uint32_t page_offset
;
735 is_user
= mmu_idx
== MMU_USER_IDX
;
736 #if defined(DEBUG_MMU)
737 printf("MMU fault: addr=%" VADDR_PRIx
" w=%d u=%d eip=" TARGET_FMT_lx
"\n",
738 addr
, is_write1
, is_user
, env
->eip
);
740 is_write
= is_write1
& 1;
742 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
745 if (!(env
->hflags
& HF_LMA_MASK
)) {
746 /* Without long mode we can only address 32bits in real mode */
750 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
755 if (!(env
->efer
& MSR_EFER_NXE
)) {
756 rsvd_mask
|= PG_NX_MASK
;
759 if (env
->cr
[4] & CR4_PAE_MASK
) {
761 target_ulong pdpe_addr
;
764 if (env
->hflags
& HF_LMA_MASK
) {
765 bool la57
= env
->cr
[4] & CR4_LA57_MASK
;
766 uint64_t pml5e_addr
, pml5e
;
767 uint64_t pml4e_addr
, pml4e
;
770 /* test virtual address sign extension */
771 sext
= la57
? (int64_t)addr
>> 56 : (int64_t)addr
>> 47;
772 if (sext
!= 0 && sext
!= -1) {
774 cs
->exception_index
= EXCP0D_GPF
;
779 pml5e_addr
= ((env
->cr
[3] & ~0xfff) +
780 (((addr
>> 48) & 0x1ff) << 3)) & env
->a20_mask
;
781 pml5e
= x86_ldq_phys(cs
, pml5e_addr
);
782 if (!(pml5e
& PG_PRESENT_MASK
)) {
785 if (pml5e
& (rsvd_mask
| PG_PSE_MASK
)) {
788 if (!(pml5e
& PG_ACCESSED_MASK
)) {
789 pml5e
|= PG_ACCESSED_MASK
;
790 x86_stl_phys_notdirty(cs
, pml5e_addr
, pml5e
);
792 ptep
= pml5e
^ PG_NX_MASK
;
795 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
798 pml4e_addr
= ((pml5e
& PG_ADDRESS_MASK
) +
799 (((addr
>> 39) & 0x1ff) << 3)) & env
->a20_mask
;
800 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
801 if (!(pml4e
& PG_PRESENT_MASK
)) {
804 if (pml4e
& (rsvd_mask
| PG_PSE_MASK
)) {
807 if (!(pml4e
& PG_ACCESSED_MASK
)) {
808 pml4e
|= PG_ACCESSED_MASK
;
809 x86_stl_phys_notdirty(cs
, pml4e_addr
, pml4e
);
811 ptep
&= pml4e
^ PG_NX_MASK
;
812 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) + (((addr
>> 30) & 0x1ff) << 3)) &
814 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
815 if (!(pdpe
& PG_PRESENT_MASK
)) {
818 if (pdpe
& rsvd_mask
) {
821 ptep
&= pdpe
^ PG_NX_MASK
;
822 if (!(pdpe
& PG_ACCESSED_MASK
)) {
823 pdpe
|= PG_ACCESSED_MASK
;
824 x86_stl_phys_notdirty(cs
, pdpe_addr
, pdpe
);
826 if (pdpe
& PG_PSE_MASK
) {
828 page_size
= 1024 * 1024 * 1024;
829 pte_addr
= pdpe_addr
;
831 goto do_check_protect
;
836 /* XXX: load them when cr3 is loaded ? */
837 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
839 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
840 if (!(pdpe
& PG_PRESENT_MASK
)) {
843 rsvd_mask
|= PG_HI_USER_MASK
;
844 if (pdpe
& (rsvd_mask
| PG_NX_MASK
)) {
847 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
850 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) + (((addr
>> 21) & 0x1ff) << 3)) &
852 pde
= x86_ldq_phys(cs
, pde_addr
);
853 if (!(pde
& PG_PRESENT_MASK
)) {
856 if (pde
& rsvd_mask
) {
859 ptep
&= pde
^ PG_NX_MASK
;
860 if (pde
& PG_PSE_MASK
) {
862 page_size
= 2048 * 1024;
865 goto do_check_protect
;
868 if (!(pde
& PG_ACCESSED_MASK
)) {
869 pde
|= PG_ACCESSED_MASK
;
870 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
872 pte_addr
= ((pde
& PG_ADDRESS_MASK
) + (((addr
>> 12) & 0x1ff) << 3)) &
874 pte
= x86_ldq_phys(cs
, pte_addr
);
875 if (!(pte
& PG_PRESENT_MASK
)) {
878 if (pte
& rsvd_mask
) {
881 /* combine pde and pte nx, user and rw protections */
882 ptep
&= pte
^ PG_NX_MASK
;
887 /* page directory entry */
888 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) &
890 pde
= x86_ldl_phys(cs
, pde_addr
);
891 if (!(pde
& PG_PRESENT_MASK
)) {
894 ptep
= pde
| PG_NX_MASK
;
896 /* if PSE bit is set, then we use a 4MB page */
897 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
898 page_size
= 4096 * 1024;
901 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
902 * Leave bits 20-13 in place for setting accessed/dirty bits below.
904 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
905 rsvd_mask
= 0x200000;
906 goto do_check_protect_pse36
;
909 if (!(pde
& PG_ACCESSED_MASK
)) {
910 pde
|= PG_ACCESSED_MASK
;
911 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
914 /* page directory entry */
915 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) &
917 pte
= x86_ldl_phys(cs
, pte_addr
);
918 if (!(pte
& PG_PRESENT_MASK
)) {
921 /* combine pde and pte user and rw protections */
922 ptep
&= pte
| PG_NX_MASK
;
928 rsvd_mask
|= (page_size
- 1) & PG_ADDRESS_MASK
& ~PG_PSE_PAT_MASK
;
929 do_check_protect_pse36
:
930 if (pte
& rsvd_mask
) {
935 /* can the page can be put in the TLB? prot will tell us */
936 if (is_user
&& !(ptep
& PG_USER_MASK
)) {
937 goto do_fault_protect
;
941 if (mmu_idx
!= MMU_KSMAP_IDX
|| !(ptep
& PG_USER_MASK
)) {
943 if ((ptep
& PG_RW_MASK
) || (!is_user
&& !(env
->cr
[0] & CR0_WP_MASK
))) {
947 if (!(ptep
& PG_NX_MASK
) &&
948 (mmu_idx
== MMU_USER_IDX
||
949 !((env
->cr
[4] & CR4_SMEP_MASK
) && (ptep
& PG_USER_MASK
)))) {
952 if ((env
->cr
[4] & CR4_PKE_MASK
) && (env
->hflags
& HF_LMA_MASK
) &&
953 (ptep
& PG_USER_MASK
) && env
->pkru
) {
954 uint32_t pk
= (pte
& PG_PKRU_MASK
) >> PG_PKRU_BIT
;
955 uint32_t pkru_ad
= (env
->pkru
>> pk
* 2) & 1;
956 uint32_t pkru_wd
= (env
->pkru
>> pk
* 2) & 2;
957 uint32_t pkru_prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
960 pkru_prot
&= ~(PAGE_READ
| PAGE_WRITE
);
961 } else if (pkru_wd
&& (is_user
|| env
->cr
[0] & CR0_WP_MASK
)) {
962 pkru_prot
&= ~PAGE_WRITE
;
966 if ((pkru_prot
& (1 << is_write1
)) == 0) {
967 assert(is_write1
!= 2);
968 error_code
|= PG_ERROR_PK_MASK
;
969 goto do_fault_protect
;
973 if ((prot
& (1 << is_write1
)) == 0) {
974 goto do_fault_protect
;
978 is_dirty
= is_write
&& !(pte
& PG_DIRTY_MASK
);
979 if (!(pte
& PG_ACCESSED_MASK
) || is_dirty
) {
980 pte
|= PG_ACCESSED_MASK
;
982 pte
|= PG_DIRTY_MASK
;
984 x86_stl_phys_notdirty(cs
, pte_addr
, pte
);
987 if (!(pte
& PG_DIRTY_MASK
)) {
988 /* only set write access if already dirty... otherwise wait
995 pte
= pte
& env
->a20_mask
;
997 /* align to page_size */
998 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
1000 /* Even if 4MB pages, we map only one 4KB page in the cache to
1001 avoid filling it too fast */
1002 vaddr
= addr
& TARGET_PAGE_MASK
;
1003 page_offset
= vaddr
& (page_size
- 1);
1004 paddr
= pte
+ page_offset
;
1006 assert(prot
& (1 << is_write1
));
1007 tlb_set_page_with_attrs(cs
, vaddr
, paddr
, cpu_get_mem_attrs(env
),
1008 prot
, mmu_idx
, page_size
);
1011 error_code
|= PG_ERROR_RSVD_MASK
;
1013 error_code
|= PG_ERROR_P_MASK
;
1015 error_code
|= (is_write
<< PG_ERROR_W_BIT
);
1017 error_code
|= PG_ERROR_U_MASK
;
1018 if (is_write1
== 2 &&
1019 (((env
->efer
& MSR_EFER_NXE
) &&
1020 (env
->cr
[4] & CR4_PAE_MASK
)) ||
1021 (env
->cr
[4] & CR4_SMEP_MASK
)))
1022 error_code
|= PG_ERROR_I_D_MASK
;
1023 if (env
->intercept_exceptions
& (1 << EXCP0E_PAGE
)) {
1024 /* cr2 is not modified in case of exceptions */
1026 env
->vm_vmcb
+ offsetof(struct vmcb
, control
.exit_info_2
),
1031 env
->error_code
= error_code
;
1032 cs
->exception_index
= EXCP0E_PAGE
;
1036 hwaddr
x86_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
1038 X86CPU
*cpu
= X86_CPU(cs
);
1039 CPUX86State
*env
= &cpu
->env
;
1040 target_ulong pde_addr
, pte_addr
;
1042 uint32_t page_offset
;
1045 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
1046 pte
= addr
& env
->a20_mask
;
1048 } else if (env
->cr
[4] & CR4_PAE_MASK
) {
1049 target_ulong pdpe_addr
;
1052 #ifdef TARGET_X86_64
1053 if (env
->hflags
& HF_LMA_MASK
) {
1054 bool la57
= env
->cr
[4] & CR4_LA57_MASK
;
1055 uint64_t pml5e_addr
, pml5e
;
1056 uint64_t pml4e_addr
, pml4e
;
1059 /* test virtual address sign extension */
1060 sext
= la57
? (int64_t)addr
>> 56 : (int64_t)addr
>> 47;
1061 if (sext
!= 0 && sext
!= -1) {
1066 pml5e_addr
= ((env
->cr
[3] & ~0xfff) +
1067 (((addr
>> 48) & 0x1ff) << 3)) & env
->a20_mask
;
1068 pml5e
= x86_ldq_phys(cs
, pml5e_addr
);
1069 if (!(pml5e
& PG_PRESENT_MASK
)) {
1076 pml4e_addr
= ((pml5e
& PG_ADDRESS_MASK
) +
1077 (((addr
>> 39) & 0x1ff) << 3)) & env
->a20_mask
;
1078 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
1079 if (!(pml4e
& PG_PRESENT_MASK
)) {
1082 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) +
1083 (((addr
>> 30) & 0x1ff) << 3)) & env
->a20_mask
;
1084 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
1085 if (!(pdpe
& PG_PRESENT_MASK
)) {
1088 if (pdpe
& PG_PSE_MASK
) {
1089 page_size
= 1024 * 1024 * 1024;
1097 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
1099 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
1100 if (!(pdpe
& PG_PRESENT_MASK
))
1104 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) +
1105 (((addr
>> 21) & 0x1ff) << 3)) & env
->a20_mask
;
1106 pde
= x86_ldq_phys(cs
, pde_addr
);
1107 if (!(pde
& PG_PRESENT_MASK
)) {
1110 if (pde
& PG_PSE_MASK
) {
1112 page_size
= 2048 * 1024;
1116 pte_addr
= ((pde
& PG_ADDRESS_MASK
) +
1117 (((addr
>> 12) & 0x1ff) << 3)) & env
->a20_mask
;
1119 pte
= x86_ldq_phys(cs
, pte_addr
);
1121 if (!(pte
& PG_PRESENT_MASK
)) {
1127 /* page directory entry */
1128 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) & env
->a20_mask
;
1129 pde
= x86_ldl_phys(cs
, pde_addr
);
1130 if (!(pde
& PG_PRESENT_MASK
))
1132 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
1133 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
1134 page_size
= 4096 * 1024;
1136 /* page directory entry */
1137 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) & env
->a20_mask
;
1138 pte
= x86_ldl_phys(cs
, pte_addr
);
1139 if (!(pte
& PG_PRESENT_MASK
)) {
1144 pte
= pte
& env
->a20_mask
;
1147 #ifdef TARGET_X86_64
1150 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
1151 page_offset
= (addr
& TARGET_PAGE_MASK
) & (page_size
- 1);
1152 return pte
| page_offset
;
1155 typedef struct MCEInjectionParams
{
1159 uint64_t mcg_status
;
1163 } MCEInjectionParams
;
1165 static void do_inject_x86_mce(CPUState
*cs
, run_on_cpu_data data
)
1167 MCEInjectionParams
*params
= data
.host_ptr
;
1168 X86CPU
*cpu
= X86_CPU(cs
);
1169 CPUX86State
*cenv
= &cpu
->env
;
1170 uint64_t *banks
= cenv
->mce_banks
+ 4 * params
->bank
;
1172 cpu_synchronize_state(cs
);
1175 * If there is an MCE exception being processed, ignore this SRAO MCE
1176 * unless unconditional injection was requested.
1178 if (!(params
->flags
& MCE_INJECT_UNCOND_AO
)
1179 && !(params
->status
& MCI_STATUS_AR
)
1180 && (cenv
->mcg_status
& MCG_STATUS_MCIP
)) {
1184 if (params
->status
& MCI_STATUS_UC
) {
1186 * if MSR_MCG_CTL is not all 1s, the uncorrected error
1187 * reporting is disabled
1189 if ((cenv
->mcg_cap
& MCG_CTL_P
) && cenv
->mcg_ctl
!= ~(uint64_t)0) {
1190 monitor_printf(params
->mon
,
1191 "CPU %d: Uncorrected error reporting disabled\n",
1197 * if MSR_MCi_CTL is not all 1s, the uncorrected error
1198 * reporting is disabled for the bank
1200 if (banks
[0] != ~(uint64_t)0) {
1201 monitor_printf(params
->mon
,
1202 "CPU %d: Uncorrected error reporting disabled for"
1204 cs
->cpu_index
, params
->bank
);
1208 if ((cenv
->mcg_status
& MCG_STATUS_MCIP
) ||
1209 !(cenv
->cr
[4] & CR4_MCE_MASK
)) {
1210 monitor_printf(params
->mon
,
1211 "CPU %d: Previous MCE still in progress, raising"
1214 qemu_log_mask(CPU_LOG_RESET
, "Triple fault\n");
1215 qemu_system_reset_request();
1218 if (banks
[1] & MCI_STATUS_VAL
) {
1219 params
->status
|= MCI_STATUS_OVER
;
1221 banks
[2] = params
->addr
;
1222 banks
[3] = params
->misc
;
1223 cenv
->mcg_status
= params
->mcg_status
;
1224 banks
[1] = params
->status
;
1225 cpu_interrupt(cs
, CPU_INTERRUPT_MCE
);
1226 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1227 || !(banks
[1] & MCI_STATUS_UC
)) {
1228 if (banks
[1] & MCI_STATUS_VAL
) {
1229 params
->status
|= MCI_STATUS_OVER
;
1231 banks
[2] = params
->addr
;
1232 banks
[3] = params
->misc
;
1233 banks
[1] = params
->status
;
1235 banks
[1] |= MCI_STATUS_OVER
;
1239 void cpu_x86_inject_mce(Monitor
*mon
, X86CPU
*cpu
, int bank
,
1240 uint64_t status
, uint64_t mcg_status
, uint64_t addr
,
1241 uint64_t misc
, int flags
)
1243 CPUState
*cs
= CPU(cpu
);
1244 CPUX86State
*cenv
= &cpu
->env
;
1245 MCEInjectionParams params
= {
1249 .mcg_status
= mcg_status
,
1254 unsigned bank_num
= cenv
->mcg_cap
& 0xff;
1256 if (!cenv
->mcg_cap
) {
1257 monitor_printf(mon
, "MCE injection not supported\n");
1260 if (bank
>= bank_num
) {
1261 monitor_printf(mon
, "Invalid MCE bank number\n");
1264 if (!(status
& MCI_STATUS_VAL
)) {
1265 monitor_printf(mon
, "Invalid MCE status code\n");
1268 if ((flags
& MCE_INJECT_BROADCAST
)
1269 && !cpu_x86_support_mca_broadcast(cenv
)) {
1270 monitor_printf(mon
, "Guest CPU does not support MCA broadcast\n");
1274 run_on_cpu(cs
, do_inject_x86_mce
, RUN_ON_CPU_HOST_PTR(¶ms
));
1275 if (flags
& MCE_INJECT_BROADCAST
) {
1279 params
.status
= MCI_STATUS_VAL
| MCI_STATUS_UC
;
1280 params
.mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
;
1283 CPU_FOREACH(other_cs
) {
1284 if (other_cs
== cs
) {
1287 run_on_cpu(other_cs
, do_inject_x86_mce
, RUN_ON_CPU_HOST_PTR(¶ms
));
1292 void cpu_report_tpr_access(CPUX86State
*env
, TPRAccess access
)
1294 X86CPU
*cpu
= x86_env_get_cpu(env
);
1295 CPUState
*cs
= CPU(cpu
);
1297 if (kvm_enabled()) {
1298 env
->tpr_access_type
= access
;
1300 cpu_interrupt(cs
, CPU_INTERRUPT_TPR
);
1302 cpu_restore_state(cs
, cs
->mem_io_pc
);
1304 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
, access
);
1307 #endif /* !CONFIG_USER_ONLY */
1309 int cpu_x86_get_descr_debug(CPUX86State
*env
, unsigned int selector
,
1310 target_ulong
*base
, unsigned int *limit
,
1311 unsigned int *flags
)
1313 X86CPU
*cpu
= x86_env_get_cpu(env
);
1314 CPUState
*cs
= CPU(cpu
);
1324 index
= selector
& ~7;
1325 ptr
= dt
->base
+ index
;
1326 if ((index
+ 7) > dt
->limit
1327 || cpu_memory_rw_debug(cs
, ptr
, (uint8_t *)&e1
, sizeof(e1
), 0) != 0
1328 || cpu_memory_rw_debug(cs
, ptr
+4, (uint8_t *)&e2
, sizeof(e2
), 0) != 0)
1331 *base
= ((e1
>> 16) | ((e2
& 0xff) << 16) | (e2
& 0xff000000));
1332 *limit
= (e1
& 0xffff) | (e2
& 0x000f0000);
1333 if (e2
& DESC_G_MASK
)
1334 *limit
= (*limit
<< 12) | 0xfff;
1340 #if !defined(CONFIG_USER_ONLY)
1341 void do_cpu_init(X86CPU
*cpu
)
1343 CPUState
*cs
= CPU(cpu
);
1344 CPUX86State
*env
= &cpu
->env
;
1345 CPUX86State
*save
= g_new(CPUX86State
, 1);
1346 int sipi
= cs
->interrupt_request
& CPU_INTERRUPT_SIPI
;
1351 cs
->interrupt_request
= sipi
;
1352 memcpy(&env
->start_init_save
, &save
->start_init_save
,
1353 offsetof(CPUX86State
, end_init_save
) -
1354 offsetof(CPUX86State
, start_init_save
));
1357 if (kvm_enabled()) {
1358 kvm_arch_do_init_vcpu(cpu
);
1360 apic_init_reset(cpu
->apic_state
);
1363 void do_cpu_sipi(X86CPU
*cpu
)
1365 apic_sipi(cpu
->apic_state
);
1368 void do_cpu_init(X86CPU
*cpu
)
1371 void do_cpu_sipi(X86CPU
*cpu
)
1376 /* Frob eflags into and out of the CPU temporary format. */
1378 void x86_cpu_exec_enter(CPUState
*cs
)
1380 X86CPU
*cpu
= X86_CPU(cs
);
1381 CPUX86State
*env
= &cpu
->env
;
1383 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1384 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
1385 CC_OP
= CC_OP_EFLAGS
;
1386 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1389 void x86_cpu_exec_exit(CPUState
*cs
)
1391 X86CPU
*cpu
= X86_CPU(cs
);
1392 CPUX86State
*env
= &cpu
->env
;
1394 env
->eflags
= cpu_compute_eflags(env
);
1397 #ifndef CONFIG_USER_ONLY
1398 uint8_t x86_ldub_phys(CPUState
*cs
, hwaddr addr
)
1400 X86CPU
*cpu
= X86_CPU(cs
);
1401 CPUX86State
*env
= &cpu
->env
;
1403 return address_space_ldub(cs
->as
, addr
,
1404 cpu_get_mem_attrs(env
),
1408 uint32_t x86_lduw_phys(CPUState
*cs
, hwaddr addr
)
1410 X86CPU
*cpu
= X86_CPU(cs
);
1411 CPUX86State
*env
= &cpu
->env
;
1413 return address_space_lduw(cs
->as
, addr
,
1414 cpu_get_mem_attrs(env
),
1418 uint32_t x86_ldl_phys(CPUState
*cs
, hwaddr addr
)
1420 X86CPU
*cpu
= X86_CPU(cs
);
1421 CPUX86State
*env
= &cpu
->env
;
1423 return address_space_ldl(cs
->as
, addr
,
1424 cpu_get_mem_attrs(env
),
1428 uint64_t x86_ldq_phys(CPUState
*cs
, hwaddr addr
)
1430 X86CPU
*cpu
= X86_CPU(cs
);
1431 CPUX86State
*env
= &cpu
->env
;
1433 return address_space_ldq(cs
->as
, addr
,
1434 cpu_get_mem_attrs(env
),
1438 void x86_stb_phys(CPUState
*cs
, hwaddr addr
, uint8_t val
)
1440 X86CPU
*cpu
= X86_CPU(cs
);
1441 CPUX86State
*env
= &cpu
->env
;
1443 address_space_stb(cs
->as
, addr
, val
,
1444 cpu_get_mem_attrs(env
),
1448 void x86_stl_phys_notdirty(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1450 X86CPU
*cpu
= X86_CPU(cs
);
1451 CPUX86State
*env
= &cpu
->env
;
1453 address_space_stl_notdirty(cs
->as
, addr
, val
,
1454 cpu_get_mem_attrs(env
),
1458 void x86_stw_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1460 X86CPU
*cpu
= X86_CPU(cs
);
1461 CPUX86State
*env
= &cpu
->env
;
1463 address_space_stw(cs
->as
, addr
, val
,
1464 cpu_get_mem_attrs(env
),
1468 void x86_stl_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1470 X86CPU
*cpu
= X86_CPU(cs
);
1471 CPUX86State
*env
= &cpu
->env
;
1473 address_space_stl(cs
->as
, addr
, val
,
1474 cpu_get_mem_attrs(env
),
1478 void x86_stq_phys(CPUState
*cs
, hwaddr addr
, uint64_t val
)
1480 X86CPU
*cpu
= X86_CPU(cs
);
1481 CPUX86State
*env
= &cpu
->env
;
1483 address_space_stq(cs
->as
, addr
, val
,
1484 cpu_get_mem_attrs(env
),