target/arm: Fix decode of LDRA[AB] instructions
[qemu/ar7.git] / target / arm / translate-a64.c
blob534c3ff5f37906626876a6ec6d646d2867c01c22
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "hw/semihosting/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
73 /* initialize TCG globals. */
74 void a64_translate_init(void)
76 int i;
78 cpu_pc = tcg_global_mem_new_i64(cpu_env,
79 offsetof(CPUARMState, pc),
80 "pc");
81 for (i = 0; i < 32; i++) {
82 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
83 offsetof(CPUARMState, xregs[i]),
84 regnames[i]);
87 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
88 offsetof(CPUARMState, exclusive_high), "exclusive_high");
92 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
94 static int get_a64_user_mem_index(DisasContext *s)
97 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
98 * which is the usual mmu_idx for this cpu state.
100 ARMMMUIdx useridx = s->mmu_idx;
102 if (s->unpriv) {
104 * We have pre-computed the condition for AccType_UNPRIV.
105 * Therefore we should never get here with a mmu_idx for
106 * which we do not know the corresponding user mmu_idx.
108 switch (useridx) {
109 case ARMMMUIdx_E10_1:
110 case ARMMMUIdx_E10_1_PAN:
111 useridx = ARMMMUIdx_E10_0;
112 break;
113 case ARMMMUIdx_E20_2:
114 case ARMMMUIdx_E20_2_PAN:
115 useridx = ARMMMUIdx_E20_0;
116 break;
117 case ARMMMUIdx_SE10_1:
118 case ARMMMUIdx_SE10_1_PAN:
119 useridx = ARMMMUIdx_SE10_0;
120 break;
121 default:
122 g_assert_not_reached();
125 return arm_to_core_mmu_idx(useridx);
128 static void reset_btype(DisasContext *s)
130 if (s->btype != 0) {
131 TCGv_i32 zero = tcg_const_i32(0);
132 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
133 tcg_temp_free_i32(zero);
134 s->btype = 0;
138 static void set_btype(DisasContext *s, int val)
140 TCGv_i32 tcg_val;
142 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
143 tcg_debug_assert(val >= 1 && val <= 3);
145 tcg_val = tcg_const_i32(val);
146 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
147 tcg_temp_free_i32(tcg_val);
148 s->btype = -1;
151 void gen_a64_set_pc_im(uint64_t val)
153 tcg_gen_movi_i64(cpu_pc, val);
157 * Handle Top Byte Ignore (TBI) bits.
159 * If address tagging is enabled via the TCR TBI bits:
160 * + for EL2 and EL3 there is only one TBI bit, and if it is set
161 * then the address is zero-extended, clearing bits [63:56]
162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163 * and TBI1 controls addressses with bit 55 == 1.
164 * If the appropriate TBI bit is set for the address then
165 * the address is sign-extended from bit 55 into bits [63:56]
167 * Here We have concatenated TBI{1,0} into tbi.
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170 TCGv_i64 src, int tbi)
172 if (tbi == 0) {
173 /* Load unmodified address */
174 tcg_gen_mov_i64(dst, src);
175 } else if (!regime_has_2_ranges(s->mmu_idx)) {
176 /* Force tag byte to all zero */
177 tcg_gen_extract_i64(dst, src, 0, 56);
178 } else {
179 /* Sign-extend from bit 55. */
180 tcg_gen_sextract_i64(dst, src, 0, 56);
182 if (tbi != 3) {
183 TCGv_i64 tcg_zero = tcg_const_i64(0);
186 * The two TBI bits differ.
187 * If tbi0, then !tbi1: only use the extension if positive.
188 * if !tbi0, then tbi1: only use the extension if negative.
190 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
191 dst, dst, tcg_zero, dst, src);
192 tcg_temp_free_i64(tcg_zero);
197 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
200 * If address tagging is enabled for instructions via the TCR TBI bits,
201 * then loading an address into the PC will clear out any tag.
203 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
207 * Handle MTE and/or TBI.
209 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
210 * for the tag to be present in the FAR_ELx register. But for user-only
211 * mode we do not have a TLB with which to implement this, so we must
212 * remove the top byte now.
214 * Always return a fresh temporary that we can increment independently
215 * of the write-back address.
218 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
220 TCGv_i64 clean = new_tmp_a64(s);
221 #ifdef CONFIG_USER_ONLY
222 gen_top_byte_ignore(s, clean, addr, s->tbid);
223 #else
224 tcg_gen_mov_i64(clean, addr);
225 #endif
226 return clean;
229 /* Insert a zero tag into src, with the result at dst. */
230 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
232 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
235 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
236 MMUAccessType acc, int log2_size)
238 TCGv_i32 t_acc = tcg_const_i32(acc);
239 TCGv_i32 t_idx = tcg_const_i32(get_mem_index(s));
240 TCGv_i32 t_size = tcg_const_i32(1 << log2_size);
242 gen_helper_probe_access(cpu_env, ptr, t_acc, t_idx, t_size);
243 tcg_temp_free_i32(t_acc);
244 tcg_temp_free_i32(t_idx);
245 tcg_temp_free_i32(t_size);
249 * For MTE, check a single logical or atomic access. This probes a single
250 * address, the exact one specified. The size and alignment of the access
251 * is not relevant to MTE, per se, but watchpoints do require the size,
252 * and we want to recognize those before making any other changes to state.
254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
255 bool is_write, bool tag_checked,
256 int log2_size, bool is_unpriv,
257 int core_idx)
259 if (tag_checked && s->mte_active[is_unpriv]) {
260 TCGv_i32 tcg_desc;
261 TCGv_i64 ret;
262 int desc = 0;
264 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
265 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
266 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
267 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
268 desc = FIELD_DP32(desc, MTEDESC, ESIZE, 1 << log2_size);
269 tcg_desc = tcg_const_i32(desc);
271 ret = new_tmp_a64(s);
272 gen_helper_mte_check1(ret, cpu_env, tcg_desc, addr);
273 tcg_temp_free_i32(tcg_desc);
275 return ret;
277 return clean_data_tbi(s, addr);
280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
281 bool tag_checked, int log2_size)
283 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
284 false, get_mem_index(s));
288 * For MTE, check multiple logical sequential accesses.
290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
291 bool tag_checked, int log2_esize, int total_size)
293 if (tag_checked && s->mte_active[0] && total_size != (1 << log2_esize)) {
294 TCGv_i32 tcg_desc;
295 TCGv_i64 ret;
296 int desc = 0;
298 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
299 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
300 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
301 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
302 desc = FIELD_DP32(desc, MTEDESC, ESIZE, 1 << log2_esize);
303 desc = FIELD_DP32(desc, MTEDESC, TSIZE, total_size);
304 tcg_desc = tcg_const_i32(desc);
306 ret = new_tmp_a64(s);
307 gen_helper_mte_checkN(ret, cpu_env, tcg_desc, addr);
308 tcg_temp_free_i32(tcg_desc);
310 return ret;
312 return gen_mte_check1(s, addr, is_write, tag_checked, log2_esize);
315 typedef struct DisasCompare64 {
316 TCGCond cond;
317 TCGv_i64 value;
318 } DisasCompare64;
320 static void a64_test_cc(DisasCompare64 *c64, int cc)
322 DisasCompare c32;
324 arm_test_cc(&c32, cc);
326 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
327 * properly. The NE/EQ comparisons are also fine with this choice. */
328 c64->cond = c32.cond;
329 c64->value = tcg_temp_new_i64();
330 tcg_gen_ext_i32_i64(c64->value, c32.value);
332 arm_free_cc(&c32);
335 static void a64_free_cc(DisasCompare64 *c64)
337 tcg_temp_free_i64(c64->value);
340 static void gen_exception_internal(int excp)
342 TCGv_i32 tcg_excp = tcg_const_i32(excp);
344 assert(excp_is_internal(excp));
345 gen_helper_exception_internal(cpu_env, tcg_excp);
346 tcg_temp_free_i32(tcg_excp);
349 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
351 gen_a64_set_pc_im(pc);
352 gen_exception_internal(excp);
353 s->base.is_jmp = DISAS_NORETURN;
356 static void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
357 uint32_t syndrome, uint32_t target_el)
359 gen_a64_set_pc_im(pc);
360 gen_exception(excp, syndrome, target_el);
361 s->base.is_jmp = DISAS_NORETURN;
364 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
366 TCGv_i32 tcg_syn;
368 gen_a64_set_pc_im(s->pc_curr);
369 tcg_syn = tcg_const_i32(syndrome);
370 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
371 tcg_temp_free_i32(tcg_syn);
372 s->base.is_jmp = DISAS_NORETURN;
375 static void gen_step_complete_exception(DisasContext *s)
377 /* We just completed step of an insn. Move from Active-not-pending
378 * to Active-pending, and then also take the swstep exception.
379 * This corresponds to making the (IMPDEF) choice to prioritize
380 * swstep exceptions over asynchronous exceptions taken to an exception
381 * level where debug is disabled. This choice has the advantage that
382 * we do not need to maintain internal state corresponding to the
383 * ISV/EX syndrome bits between completion of the step and generation
384 * of the exception, and our syndrome information is always correct.
386 gen_ss_advance(s);
387 gen_swstep_exception(s, 1, s->is_ldex);
388 s->base.is_jmp = DISAS_NORETURN;
391 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
393 /* No direct tb linking with singlestep (either QEMU's or the ARM
394 * debug architecture kind) or deterministic io
396 if (s->base.singlestep_enabled || s->ss_active ||
397 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
398 return false;
401 #ifndef CONFIG_USER_ONLY
402 /* Only link tbs from inside the same guest page */
403 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
404 return false;
406 #endif
408 return true;
411 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
413 TranslationBlock *tb;
415 tb = s->base.tb;
416 if (use_goto_tb(s, n, dest)) {
417 tcg_gen_goto_tb(n);
418 gen_a64_set_pc_im(dest);
419 tcg_gen_exit_tb(tb, n);
420 s->base.is_jmp = DISAS_NORETURN;
421 } else {
422 gen_a64_set_pc_im(dest);
423 if (s->ss_active) {
424 gen_step_complete_exception(s);
425 } else if (s->base.singlestep_enabled) {
426 gen_exception_internal(EXCP_DEBUG);
427 } else {
428 tcg_gen_lookup_and_goto_ptr();
429 s->base.is_jmp = DISAS_NORETURN;
434 void unallocated_encoding(DisasContext *s)
436 /* Unallocated and reserved encodings are uncategorized */
437 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(),
438 default_exception_el(s));
441 static void init_tmp_a64_array(DisasContext *s)
443 #ifdef CONFIG_DEBUG_TCG
444 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
445 #endif
446 s->tmp_a64_count = 0;
449 static void free_tmp_a64(DisasContext *s)
451 int i;
452 for (i = 0; i < s->tmp_a64_count; i++) {
453 tcg_temp_free_i64(s->tmp_a64[i]);
455 init_tmp_a64_array(s);
458 TCGv_i64 new_tmp_a64(DisasContext *s)
460 assert(s->tmp_a64_count < TMP_A64_MAX);
461 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
464 TCGv_i64 new_tmp_a64_local(DisasContext *s)
466 assert(s->tmp_a64_count < TMP_A64_MAX);
467 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_local_new_i64();
470 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
472 TCGv_i64 t = new_tmp_a64(s);
473 tcg_gen_movi_i64(t, 0);
474 return t;
478 * Register access functions
480 * These functions are used for directly accessing a register in where
481 * changes to the final register value are likely to be made. If you
482 * need to use a register for temporary calculation (e.g. index type
483 * operations) use the read_* form.
485 * B1.2.1 Register mappings
487 * In instruction register encoding 31 can refer to ZR (zero register) or
488 * the SP (stack pointer) depending on context. In QEMU's case we map SP
489 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
490 * This is the point of the _sp forms.
492 TCGv_i64 cpu_reg(DisasContext *s, int reg)
494 if (reg == 31) {
495 return new_tmp_a64_zero(s);
496 } else {
497 return cpu_X[reg];
501 /* register access for when 31 == SP */
502 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
504 return cpu_X[reg];
507 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
508 * representing the register contents. This TCGv is an auto-freed
509 * temporary so it need not be explicitly freed, and may be modified.
511 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
513 TCGv_i64 v = new_tmp_a64(s);
514 if (reg != 31) {
515 if (sf) {
516 tcg_gen_mov_i64(v, cpu_X[reg]);
517 } else {
518 tcg_gen_ext32u_i64(v, cpu_X[reg]);
520 } else {
521 tcg_gen_movi_i64(v, 0);
523 return v;
526 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
528 TCGv_i64 v = new_tmp_a64(s);
529 if (sf) {
530 tcg_gen_mov_i64(v, cpu_X[reg]);
531 } else {
532 tcg_gen_ext32u_i64(v, cpu_X[reg]);
534 return v;
537 /* Return the offset into CPUARMState of a slice (from
538 * the least significant end) of FP register Qn (ie
539 * Dn, Sn, Hn or Bn).
540 * (Note that this is not the same mapping as for A32; see cpu.h)
542 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
544 return vec_reg_offset(s, regno, 0, size);
547 /* Offset of the high half of the 128 bit vector Qn */
548 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
550 return vec_reg_offset(s, regno, 1, MO_64);
553 /* Convenience accessors for reading and writing single and double
554 * FP registers. Writing clears the upper parts of the associated
555 * 128 bit vector register, as required by the architecture.
556 * Note that unlike the GP register accessors, the values returned
557 * by the read functions must be manually freed.
559 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
561 TCGv_i64 v = tcg_temp_new_i64();
563 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
564 return v;
567 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
569 TCGv_i32 v = tcg_temp_new_i32();
571 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
572 return v;
575 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
577 TCGv_i32 v = tcg_temp_new_i32();
579 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
580 return v;
583 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
584 * If SVE is not enabled, then there are only 128 bits in the vector.
586 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
588 unsigned ofs = fp_reg_offset(s, rd, MO_64);
589 unsigned vsz = vec_full_reg_size(s);
591 /* Nop move, with side effect of clearing the tail. */
592 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
595 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
597 unsigned ofs = fp_reg_offset(s, reg, MO_64);
599 tcg_gen_st_i64(v, cpu_env, ofs);
600 clear_vec_high(s, false, reg);
603 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
605 TCGv_i64 tmp = tcg_temp_new_i64();
607 tcg_gen_extu_i32_i64(tmp, v);
608 write_fp_dreg(s, reg, tmp);
609 tcg_temp_free_i64(tmp);
612 TCGv_ptr get_fpstatus_ptr(bool is_f16)
614 TCGv_ptr statusptr = tcg_temp_new_ptr();
615 int offset;
617 /* In A64 all instructions (both FP and Neon) use the FPCR; there
618 * is no equivalent of the A32 Neon "standard FPSCR value".
619 * However half-precision operations operate under a different
620 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
622 if (is_f16) {
623 offset = offsetof(CPUARMState, vfp.fp_status_f16);
624 } else {
625 offset = offsetof(CPUARMState, vfp.fp_status);
627 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
628 return statusptr;
631 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
632 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
633 GVecGen2Fn *gvec_fn, int vece)
635 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
636 is_q ? 16 : 8, vec_full_reg_size(s));
639 /* Expand a 2-operand + immediate AdvSIMD vector operation using
640 * an expander function.
642 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
643 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
645 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
646 imm, is_q ? 16 : 8, vec_full_reg_size(s));
649 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
650 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
651 GVecGen3Fn *gvec_fn, int vece)
653 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
654 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
657 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
658 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
659 int rx, GVecGen4Fn *gvec_fn, int vece)
661 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
662 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
663 is_q ? 16 : 8, vec_full_reg_size(s));
666 /* Expand a 2-operand operation using an out-of-line helper. */
667 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
668 int rn, int data, gen_helper_gvec_2 *fn)
670 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
671 vec_full_reg_offset(s, rn),
672 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
675 /* Expand a 3-operand operation using an out-of-line helper. */
676 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
677 int rn, int rm, int data, gen_helper_gvec_3 *fn)
679 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
680 vec_full_reg_offset(s, rn),
681 vec_full_reg_offset(s, rm),
682 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
685 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
686 * an out-of-line helper.
688 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
689 int rm, bool is_fp16, int data,
690 gen_helper_gvec_3_ptr *fn)
692 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
693 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
694 vec_full_reg_offset(s, rn),
695 vec_full_reg_offset(s, rm), fpst,
696 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
697 tcg_temp_free_ptr(fpst);
700 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
701 * than the 32 bit equivalent.
703 static inline void gen_set_NZ64(TCGv_i64 result)
705 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
706 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
709 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
710 static inline void gen_logic_CC(int sf, TCGv_i64 result)
712 if (sf) {
713 gen_set_NZ64(result);
714 } else {
715 tcg_gen_extrl_i64_i32(cpu_ZF, result);
716 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
718 tcg_gen_movi_i32(cpu_CF, 0);
719 tcg_gen_movi_i32(cpu_VF, 0);
722 /* dest = T0 + T1; compute C, N, V and Z flags */
723 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
725 if (sf) {
726 TCGv_i64 result, flag, tmp;
727 result = tcg_temp_new_i64();
728 flag = tcg_temp_new_i64();
729 tmp = tcg_temp_new_i64();
731 tcg_gen_movi_i64(tmp, 0);
732 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
734 tcg_gen_extrl_i64_i32(cpu_CF, flag);
736 gen_set_NZ64(result);
738 tcg_gen_xor_i64(flag, result, t0);
739 tcg_gen_xor_i64(tmp, t0, t1);
740 tcg_gen_andc_i64(flag, flag, tmp);
741 tcg_temp_free_i64(tmp);
742 tcg_gen_extrh_i64_i32(cpu_VF, flag);
744 tcg_gen_mov_i64(dest, result);
745 tcg_temp_free_i64(result);
746 tcg_temp_free_i64(flag);
747 } else {
748 /* 32 bit arithmetic */
749 TCGv_i32 t0_32 = tcg_temp_new_i32();
750 TCGv_i32 t1_32 = tcg_temp_new_i32();
751 TCGv_i32 tmp = tcg_temp_new_i32();
753 tcg_gen_movi_i32(tmp, 0);
754 tcg_gen_extrl_i64_i32(t0_32, t0);
755 tcg_gen_extrl_i64_i32(t1_32, t1);
756 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
757 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
759 tcg_gen_xor_i32(tmp, t0_32, t1_32);
760 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
761 tcg_gen_extu_i32_i64(dest, cpu_NF);
763 tcg_temp_free_i32(tmp);
764 tcg_temp_free_i32(t0_32);
765 tcg_temp_free_i32(t1_32);
769 /* dest = T0 - T1; compute C, N, V and Z flags */
770 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
772 if (sf) {
773 /* 64 bit arithmetic */
774 TCGv_i64 result, flag, tmp;
776 result = tcg_temp_new_i64();
777 flag = tcg_temp_new_i64();
778 tcg_gen_sub_i64(result, t0, t1);
780 gen_set_NZ64(result);
782 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
783 tcg_gen_extrl_i64_i32(cpu_CF, flag);
785 tcg_gen_xor_i64(flag, result, t0);
786 tmp = tcg_temp_new_i64();
787 tcg_gen_xor_i64(tmp, t0, t1);
788 tcg_gen_and_i64(flag, flag, tmp);
789 tcg_temp_free_i64(tmp);
790 tcg_gen_extrh_i64_i32(cpu_VF, flag);
791 tcg_gen_mov_i64(dest, result);
792 tcg_temp_free_i64(flag);
793 tcg_temp_free_i64(result);
794 } else {
795 /* 32 bit arithmetic */
796 TCGv_i32 t0_32 = tcg_temp_new_i32();
797 TCGv_i32 t1_32 = tcg_temp_new_i32();
798 TCGv_i32 tmp;
800 tcg_gen_extrl_i64_i32(t0_32, t0);
801 tcg_gen_extrl_i64_i32(t1_32, t1);
802 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
803 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
804 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
805 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
806 tmp = tcg_temp_new_i32();
807 tcg_gen_xor_i32(tmp, t0_32, t1_32);
808 tcg_temp_free_i32(t0_32);
809 tcg_temp_free_i32(t1_32);
810 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
811 tcg_temp_free_i32(tmp);
812 tcg_gen_extu_i32_i64(dest, cpu_NF);
816 /* dest = T0 + T1 + CF; do not compute flags. */
817 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
819 TCGv_i64 flag = tcg_temp_new_i64();
820 tcg_gen_extu_i32_i64(flag, cpu_CF);
821 tcg_gen_add_i64(dest, t0, t1);
822 tcg_gen_add_i64(dest, dest, flag);
823 tcg_temp_free_i64(flag);
825 if (!sf) {
826 tcg_gen_ext32u_i64(dest, dest);
830 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
831 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
833 if (sf) {
834 TCGv_i64 result, cf_64, vf_64, tmp;
835 result = tcg_temp_new_i64();
836 cf_64 = tcg_temp_new_i64();
837 vf_64 = tcg_temp_new_i64();
838 tmp = tcg_const_i64(0);
840 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
841 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
842 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
843 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
844 gen_set_NZ64(result);
846 tcg_gen_xor_i64(vf_64, result, t0);
847 tcg_gen_xor_i64(tmp, t0, t1);
848 tcg_gen_andc_i64(vf_64, vf_64, tmp);
849 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
851 tcg_gen_mov_i64(dest, result);
853 tcg_temp_free_i64(tmp);
854 tcg_temp_free_i64(vf_64);
855 tcg_temp_free_i64(cf_64);
856 tcg_temp_free_i64(result);
857 } else {
858 TCGv_i32 t0_32, t1_32, tmp;
859 t0_32 = tcg_temp_new_i32();
860 t1_32 = tcg_temp_new_i32();
861 tmp = tcg_const_i32(0);
863 tcg_gen_extrl_i64_i32(t0_32, t0);
864 tcg_gen_extrl_i64_i32(t1_32, t1);
865 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
866 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
868 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
869 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
870 tcg_gen_xor_i32(tmp, t0_32, t1_32);
871 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
872 tcg_gen_extu_i32_i64(dest, cpu_NF);
874 tcg_temp_free_i32(tmp);
875 tcg_temp_free_i32(t1_32);
876 tcg_temp_free_i32(t0_32);
881 * Load/Store generators
885 * Store from GPR register to memory.
887 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
888 TCGv_i64 tcg_addr, int size, int memidx,
889 bool iss_valid,
890 unsigned int iss_srt,
891 bool iss_sf, bool iss_ar)
893 g_assert(size <= 3);
894 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
896 if (iss_valid) {
897 uint32_t syn;
899 syn = syn_data_abort_with_iss(0,
900 size,
901 false,
902 iss_srt,
903 iss_sf,
904 iss_ar,
905 0, 0, 0, 0, 0, false);
906 disas_set_insn_syndrome(s, syn);
910 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
911 TCGv_i64 tcg_addr, int size,
912 bool iss_valid,
913 unsigned int iss_srt,
914 bool iss_sf, bool iss_ar)
916 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
917 iss_valid, iss_srt, iss_sf, iss_ar);
921 * Load from memory to GPR register
923 static void do_gpr_ld_memidx(DisasContext *s,
924 TCGv_i64 dest, TCGv_i64 tcg_addr,
925 int size, bool is_signed,
926 bool extend, int memidx,
927 bool iss_valid, unsigned int iss_srt,
928 bool iss_sf, bool iss_ar)
930 MemOp memop = s->be_data + size;
932 g_assert(size <= 3);
934 if (is_signed) {
935 memop += MO_SIGN;
938 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
940 if (extend && is_signed) {
941 g_assert(size < 3);
942 tcg_gen_ext32u_i64(dest, dest);
945 if (iss_valid) {
946 uint32_t syn;
948 syn = syn_data_abort_with_iss(0,
949 size,
950 is_signed,
951 iss_srt,
952 iss_sf,
953 iss_ar,
954 0, 0, 0, 0, 0, false);
955 disas_set_insn_syndrome(s, syn);
959 static void do_gpr_ld(DisasContext *s,
960 TCGv_i64 dest, TCGv_i64 tcg_addr,
961 int size, bool is_signed, bool extend,
962 bool iss_valid, unsigned int iss_srt,
963 bool iss_sf, bool iss_ar)
965 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
966 get_mem_index(s),
967 iss_valid, iss_srt, iss_sf, iss_ar);
971 * Store from FP register to memory
973 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
975 /* This writes the bottom N bits of a 128 bit wide vector to memory */
976 TCGv_i64 tmp = tcg_temp_new_i64();
977 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
978 if (size < 4) {
979 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
980 s->be_data + size);
981 } else {
982 bool be = s->be_data == MO_BE;
983 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
985 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
986 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
987 s->be_data | MO_Q);
988 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
989 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
990 s->be_data | MO_Q);
991 tcg_temp_free_i64(tcg_hiaddr);
994 tcg_temp_free_i64(tmp);
998 * Load from memory to FP register
1000 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1002 /* This always zero-extends and writes to a full 128 bit wide vector */
1003 TCGv_i64 tmplo = tcg_temp_new_i64();
1004 TCGv_i64 tmphi = NULL;
1006 if (size < 4) {
1007 MemOp memop = s->be_data + size;
1008 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1009 } else {
1010 bool be = s->be_data == MO_BE;
1011 TCGv_i64 tcg_hiaddr;
1013 tmphi = tcg_temp_new_i64();
1014 tcg_hiaddr = tcg_temp_new_i64();
1016 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1017 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1018 s->be_data | MO_Q);
1019 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1020 s->be_data | MO_Q);
1021 tcg_temp_free_i64(tcg_hiaddr);
1024 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1025 tcg_temp_free_i64(tmplo);
1027 if (tmphi) {
1028 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1029 tcg_temp_free_i64(tmphi);
1031 clear_vec_high(s, tmphi != NULL, destidx);
1035 * Vector load/store helpers.
1037 * The principal difference between this and a FP load is that we don't
1038 * zero extend as we are filling a partial chunk of the vector register.
1039 * These functions don't support 128 bit loads/stores, which would be
1040 * normal load/store operations.
1042 * The _i32 versions are useful when operating on 32 bit quantities
1043 * (eg for floating point single or using Neon helper functions).
1046 /* Get value of an element within a vector register */
1047 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1048 int element, MemOp memop)
1050 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1051 switch (memop) {
1052 case MO_8:
1053 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1054 break;
1055 case MO_16:
1056 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1057 break;
1058 case MO_32:
1059 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1060 break;
1061 case MO_8|MO_SIGN:
1062 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1063 break;
1064 case MO_16|MO_SIGN:
1065 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1066 break;
1067 case MO_32|MO_SIGN:
1068 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1069 break;
1070 case MO_64:
1071 case MO_64|MO_SIGN:
1072 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1073 break;
1074 default:
1075 g_assert_not_reached();
1079 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1080 int element, MemOp memop)
1082 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1083 switch (memop) {
1084 case MO_8:
1085 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1086 break;
1087 case MO_16:
1088 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1089 break;
1090 case MO_8|MO_SIGN:
1091 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1092 break;
1093 case MO_16|MO_SIGN:
1094 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1095 break;
1096 case MO_32:
1097 case MO_32|MO_SIGN:
1098 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1099 break;
1100 default:
1101 g_assert_not_reached();
1105 /* Set value of an element within a vector register */
1106 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1107 int element, MemOp memop)
1109 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1110 switch (memop) {
1111 case MO_8:
1112 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1113 break;
1114 case MO_16:
1115 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1116 break;
1117 case MO_32:
1118 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1119 break;
1120 case MO_64:
1121 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1122 break;
1123 default:
1124 g_assert_not_reached();
1128 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1129 int destidx, int element, MemOp memop)
1131 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1132 switch (memop) {
1133 case MO_8:
1134 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1135 break;
1136 case MO_16:
1137 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1138 break;
1139 case MO_32:
1140 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1141 break;
1142 default:
1143 g_assert_not_reached();
1147 /* Store from vector register to memory */
1148 static void do_vec_st(DisasContext *s, int srcidx, int element,
1149 TCGv_i64 tcg_addr, int size, MemOp endian)
1151 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1153 read_vec_element(s, tcg_tmp, srcidx, element, size);
1154 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1156 tcg_temp_free_i64(tcg_tmp);
1159 /* Load from memory to vector register */
1160 static void do_vec_ld(DisasContext *s, int destidx, int element,
1161 TCGv_i64 tcg_addr, int size, MemOp endian)
1163 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1165 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1166 write_vec_element(s, tcg_tmp, destidx, element, size);
1168 tcg_temp_free_i64(tcg_tmp);
1171 /* Check that FP/Neon access is enabled. If it is, return
1172 * true. If not, emit code to generate an appropriate exception,
1173 * and return false; the caller should not emit any code for
1174 * the instruction. Note that this check must happen after all
1175 * unallocated-encoding checks (otherwise the syndrome information
1176 * for the resulting exception will be incorrect).
1178 static inline bool fp_access_check(DisasContext *s)
1180 assert(!s->fp_access_checked);
1181 s->fp_access_checked = true;
1183 if (!s->fp_excp_el) {
1184 return true;
1187 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1188 syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
1189 return false;
1192 /* Check that SVE access is enabled. If it is, return true.
1193 * If not, emit code to generate an appropriate exception and return false.
1195 bool sve_access_check(DisasContext *s)
1197 if (s->sve_excp_el) {
1198 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_sve_access_trap(),
1199 s->sve_excp_el);
1200 return false;
1202 return fp_access_check(s);
1206 * This utility function is for doing register extension with an
1207 * optional shift. You will likely want to pass a temporary for the
1208 * destination register. See DecodeRegExtend() in the ARM ARM.
1210 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1211 int option, unsigned int shift)
1213 int extsize = extract32(option, 0, 2);
1214 bool is_signed = extract32(option, 2, 1);
1216 if (is_signed) {
1217 switch (extsize) {
1218 case 0:
1219 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1220 break;
1221 case 1:
1222 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1223 break;
1224 case 2:
1225 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1226 break;
1227 case 3:
1228 tcg_gen_mov_i64(tcg_out, tcg_in);
1229 break;
1231 } else {
1232 switch (extsize) {
1233 case 0:
1234 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1235 break;
1236 case 1:
1237 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1238 break;
1239 case 2:
1240 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1241 break;
1242 case 3:
1243 tcg_gen_mov_i64(tcg_out, tcg_in);
1244 break;
1248 if (shift) {
1249 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1253 static inline void gen_check_sp_alignment(DisasContext *s)
1255 /* The AArch64 architecture mandates that (if enabled via PSTATE
1256 * or SCTLR bits) there is a check that SP is 16-aligned on every
1257 * SP-relative load or store (with an exception generated if it is not).
1258 * In line with general QEMU practice regarding misaligned accesses,
1259 * we omit these checks for the sake of guest program performance.
1260 * This function is provided as a hook so we can more easily add these
1261 * checks in future (possibly as a "favour catching guest program bugs
1262 * over speed" user selectable option).
1267 * This provides a simple table based table lookup decoder. It is
1268 * intended to be used when the relevant bits for decode are too
1269 * awkwardly placed and switch/if based logic would be confusing and
1270 * deeply nested. Since it's a linear search through the table, tables
1271 * should be kept small.
1273 * It returns the first handler where insn & mask == pattern, or
1274 * NULL if there is no match.
1275 * The table is terminated by an empty mask (i.e. 0)
1277 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1278 uint32_t insn)
1280 const AArch64DecodeTable *tptr = table;
1282 while (tptr->mask) {
1283 if ((insn & tptr->mask) == tptr->pattern) {
1284 return tptr->disas_fn;
1286 tptr++;
1288 return NULL;
1292 * The instruction disassembly implemented here matches
1293 * the instruction encoding classifications in chapter C4
1294 * of the ARM Architecture Reference Manual (DDI0487B_a);
1295 * classification names and decode diagrams here should generally
1296 * match up with those in the manual.
1299 /* Unconditional branch (immediate)
1300 * 31 30 26 25 0
1301 * +----+-----------+-------------------------------------+
1302 * | op | 0 0 1 0 1 | imm26 |
1303 * +----+-----------+-------------------------------------+
1305 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1307 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1309 if (insn & (1U << 31)) {
1310 /* BL Branch with link */
1311 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1314 /* B Branch / BL Branch with link */
1315 reset_btype(s);
1316 gen_goto_tb(s, 0, addr);
1319 /* Compare and branch (immediate)
1320 * 31 30 25 24 23 5 4 0
1321 * +----+-------------+----+---------------------+--------+
1322 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1323 * +----+-------------+----+---------------------+--------+
1325 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1327 unsigned int sf, op, rt;
1328 uint64_t addr;
1329 TCGLabel *label_match;
1330 TCGv_i64 tcg_cmp;
1332 sf = extract32(insn, 31, 1);
1333 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1334 rt = extract32(insn, 0, 5);
1335 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1337 tcg_cmp = read_cpu_reg(s, rt, sf);
1338 label_match = gen_new_label();
1340 reset_btype(s);
1341 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1342 tcg_cmp, 0, label_match);
1344 gen_goto_tb(s, 0, s->base.pc_next);
1345 gen_set_label(label_match);
1346 gen_goto_tb(s, 1, addr);
1349 /* Test and branch (immediate)
1350 * 31 30 25 24 23 19 18 5 4 0
1351 * +----+-------------+----+-------+-------------+------+
1352 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1353 * +----+-------------+----+-------+-------------+------+
1355 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1357 unsigned int bit_pos, op, rt;
1358 uint64_t addr;
1359 TCGLabel *label_match;
1360 TCGv_i64 tcg_cmp;
1362 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1363 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1364 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1365 rt = extract32(insn, 0, 5);
1367 tcg_cmp = tcg_temp_new_i64();
1368 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1369 label_match = gen_new_label();
1371 reset_btype(s);
1372 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1373 tcg_cmp, 0, label_match);
1374 tcg_temp_free_i64(tcg_cmp);
1375 gen_goto_tb(s, 0, s->base.pc_next);
1376 gen_set_label(label_match);
1377 gen_goto_tb(s, 1, addr);
1380 /* Conditional branch (immediate)
1381 * 31 25 24 23 5 4 3 0
1382 * +---------------+----+---------------------+----+------+
1383 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1384 * +---------------+----+---------------------+----+------+
1386 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1388 unsigned int cond;
1389 uint64_t addr;
1391 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1392 unallocated_encoding(s);
1393 return;
1395 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1396 cond = extract32(insn, 0, 4);
1398 reset_btype(s);
1399 if (cond < 0x0e) {
1400 /* genuinely conditional branches */
1401 TCGLabel *label_match = gen_new_label();
1402 arm_gen_test_cc(cond, label_match);
1403 gen_goto_tb(s, 0, s->base.pc_next);
1404 gen_set_label(label_match);
1405 gen_goto_tb(s, 1, addr);
1406 } else {
1407 /* 0xe and 0xf are both "always" conditions */
1408 gen_goto_tb(s, 0, addr);
1412 /* HINT instruction group, including various allocated HINTs */
1413 static void handle_hint(DisasContext *s, uint32_t insn,
1414 unsigned int op1, unsigned int op2, unsigned int crm)
1416 unsigned int selector = crm << 3 | op2;
1418 if (op1 != 3) {
1419 unallocated_encoding(s);
1420 return;
1423 switch (selector) {
1424 case 0b00000: /* NOP */
1425 break;
1426 case 0b00011: /* WFI */
1427 s->base.is_jmp = DISAS_WFI;
1428 break;
1429 case 0b00001: /* YIELD */
1430 /* When running in MTTCG we don't generate jumps to the yield and
1431 * WFE helpers as it won't affect the scheduling of other vCPUs.
1432 * If we wanted to more completely model WFE/SEV so we don't busy
1433 * spin unnecessarily we would need to do something more involved.
1435 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1436 s->base.is_jmp = DISAS_YIELD;
1438 break;
1439 case 0b00010: /* WFE */
1440 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1441 s->base.is_jmp = DISAS_WFE;
1443 break;
1444 case 0b00100: /* SEV */
1445 case 0b00101: /* SEVL */
1446 /* we treat all as NOP at least for now */
1447 break;
1448 case 0b00111: /* XPACLRI */
1449 if (s->pauth_active) {
1450 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1452 break;
1453 case 0b01000: /* PACIA1716 */
1454 if (s->pauth_active) {
1455 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1457 break;
1458 case 0b01010: /* PACIB1716 */
1459 if (s->pauth_active) {
1460 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1462 break;
1463 case 0b01100: /* AUTIA1716 */
1464 if (s->pauth_active) {
1465 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1467 break;
1468 case 0b01110: /* AUTIB1716 */
1469 if (s->pauth_active) {
1470 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1472 break;
1473 case 0b11000: /* PACIAZ */
1474 if (s->pauth_active) {
1475 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1476 new_tmp_a64_zero(s));
1478 break;
1479 case 0b11001: /* PACIASP */
1480 if (s->pauth_active) {
1481 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1483 break;
1484 case 0b11010: /* PACIBZ */
1485 if (s->pauth_active) {
1486 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1487 new_tmp_a64_zero(s));
1489 break;
1490 case 0b11011: /* PACIBSP */
1491 if (s->pauth_active) {
1492 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1494 break;
1495 case 0b11100: /* AUTIAZ */
1496 if (s->pauth_active) {
1497 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1498 new_tmp_a64_zero(s));
1500 break;
1501 case 0b11101: /* AUTIASP */
1502 if (s->pauth_active) {
1503 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1505 break;
1506 case 0b11110: /* AUTIBZ */
1507 if (s->pauth_active) {
1508 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1509 new_tmp_a64_zero(s));
1511 break;
1512 case 0b11111: /* AUTIBSP */
1513 if (s->pauth_active) {
1514 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1516 break;
1517 default:
1518 /* default specified as NOP equivalent */
1519 break;
1523 static void gen_clrex(DisasContext *s, uint32_t insn)
1525 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1528 /* CLREX, DSB, DMB, ISB */
1529 static void handle_sync(DisasContext *s, uint32_t insn,
1530 unsigned int op1, unsigned int op2, unsigned int crm)
1532 TCGBar bar;
1534 if (op1 != 3) {
1535 unallocated_encoding(s);
1536 return;
1539 switch (op2) {
1540 case 2: /* CLREX */
1541 gen_clrex(s, insn);
1542 return;
1543 case 4: /* DSB */
1544 case 5: /* DMB */
1545 switch (crm & 3) {
1546 case 1: /* MBReqTypes_Reads */
1547 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1548 break;
1549 case 2: /* MBReqTypes_Writes */
1550 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1551 break;
1552 default: /* MBReqTypes_All */
1553 bar = TCG_BAR_SC | TCG_MO_ALL;
1554 break;
1556 tcg_gen_mb(bar);
1557 return;
1558 case 6: /* ISB */
1559 /* We need to break the TB after this insn to execute
1560 * a self-modified code correctly and also to take
1561 * any pending interrupts immediately.
1563 reset_btype(s);
1564 gen_goto_tb(s, 0, s->base.pc_next);
1565 return;
1567 case 7: /* SB */
1568 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1569 goto do_unallocated;
1572 * TODO: There is no speculation barrier opcode for TCG;
1573 * MB and end the TB instead.
1575 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1576 gen_goto_tb(s, 0, s->base.pc_next);
1577 return;
1579 default:
1580 do_unallocated:
1581 unallocated_encoding(s);
1582 return;
1586 static void gen_xaflag(void)
1588 TCGv_i32 z = tcg_temp_new_i32();
1590 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1593 * (!C & !Z) << 31
1594 * (!(C | Z)) << 31
1595 * ~((C | Z) << 31)
1596 * ~-(C | Z)
1597 * (C | Z) - 1
1599 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1600 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1602 /* !(Z & C) */
1603 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1604 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1606 /* (!C & Z) << 31 -> -(Z & ~C) */
1607 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1608 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1610 /* C | Z */
1611 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1613 tcg_temp_free_i32(z);
1616 static void gen_axflag(void)
1618 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1619 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1621 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1622 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1624 tcg_gen_movi_i32(cpu_NF, 0);
1625 tcg_gen_movi_i32(cpu_VF, 0);
1628 /* MSR (immediate) - move immediate to processor state field */
1629 static void handle_msr_i(DisasContext *s, uint32_t insn,
1630 unsigned int op1, unsigned int op2, unsigned int crm)
1632 TCGv_i32 t1;
1633 int op = op1 << 3 | op2;
1635 /* End the TB by default, chaining is ok. */
1636 s->base.is_jmp = DISAS_TOO_MANY;
1638 switch (op) {
1639 case 0x00: /* CFINV */
1640 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1641 goto do_unallocated;
1643 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1644 s->base.is_jmp = DISAS_NEXT;
1645 break;
1647 case 0x01: /* XAFlag */
1648 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1649 goto do_unallocated;
1651 gen_xaflag();
1652 s->base.is_jmp = DISAS_NEXT;
1653 break;
1655 case 0x02: /* AXFlag */
1656 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1657 goto do_unallocated;
1659 gen_axflag();
1660 s->base.is_jmp = DISAS_NEXT;
1661 break;
1663 case 0x03: /* UAO */
1664 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1665 goto do_unallocated;
1667 if (crm & 1) {
1668 set_pstate_bits(PSTATE_UAO);
1669 } else {
1670 clear_pstate_bits(PSTATE_UAO);
1672 t1 = tcg_const_i32(s->current_el);
1673 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1674 tcg_temp_free_i32(t1);
1675 break;
1677 case 0x04: /* PAN */
1678 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1679 goto do_unallocated;
1681 if (crm & 1) {
1682 set_pstate_bits(PSTATE_PAN);
1683 } else {
1684 clear_pstate_bits(PSTATE_PAN);
1686 t1 = tcg_const_i32(s->current_el);
1687 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1688 tcg_temp_free_i32(t1);
1689 break;
1691 case 0x05: /* SPSel */
1692 if (s->current_el == 0) {
1693 goto do_unallocated;
1695 t1 = tcg_const_i32(crm & PSTATE_SP);
1696 gen_helper_msr_i_spsel(cpu_env, t1);
1697 tcg_temp_free_i32(t1);
1698 break;
1700 case 0x1e: /* DAIFSet */
1701 t1 = tcg_const_i32(crm);
1702 gen_helper_msr_i_daifset(cpu_env, t1);
1703 tcg_temp_free_i32(t1);
1704 break;
1706 case 0x1f: /* DAIFClear */
1707 t1 = tcg_const_i32(crm);
1708 gen_helper_msr_i_daifclear(cpu_env, t1);
1709 tcg_temp_free_i32(t1);
1710 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1711 s->base.is_jmp = DISAS_UPDATE_EXIT;
1712 break;
1714 case 0x1c: /* TCO */
1715 if (dc_isar_feature(aa64_mte, s)) {
1716 /* Full MTE is enabled -- set the TCO bit as directed. */
1717 if (crm & 1) {
1718 set_pstate_bits(PSTATE_TCO);
1719 } else {
1720 clear_pstate_bits(PSTATE_TCO);
1722 t1 = tcg_const_i32(s->current_el);
1723 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1724 tcg_temp_free_i32(t1);
1725 /* Many factors, including TCO, go into MTE_ACTIVE. */
1726 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1727 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1728 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1729 s->base.is_jmp = DISAS_NEXT;
1730 } else {
1731 goto do_unallocated;
1733 break;
1735 default:
1736 do_unallocated:
1737 unallocated_encoding(s);
1738 return;
1742 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1744 TCGv_i32 tmp = tcg_temp_new_i32();
1745 TCGv_i32 nzcv = tcg_temp_new_i32();
1747 /* build bit 31, N */
1748 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1749 /* build bit 30, Z */
1750 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1751 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1752 /* build bit 29, C */
1753 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1754 /* build bit 28, V */
1755 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1756 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1757 /* generate result */
1758 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1760 tcg_temp_free_i32(nzcv);
1761 tcg_temp_free_i32(tmp);
1764 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1766 TCGv_i32 nzcv = tcg_temp_new_i32();
1768 /* take NZCV from R[t] */
1769 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1771 /* bit 31, N */
1772 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1773 /* bit 30, Z */
1774 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1775 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1776 /* bit 29, C */
1777 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1778 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1779 /* bit 28, V */
1780 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1781 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1782 tcg_temp_free_i32(nzcv);
1785 /* MRS - move from system register
1786 * MSR (register) - move to system register
1787 * SYS
1788 * SYSL
1789 * These are all essentially the same insn in 'read' and 'write'
1790 * versions, with varying op0 fields.
1792 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1793 unsigned int op0, unsigned int op1, unsigned int op2,
1794 unsigned int crn, unsigned int crm, unsigned int rt)
1796 const ARMCPRegInfo *ri;
1797 TCGv_i64 tcg_rt;
1799 ri = get_arm_cp_reginfo(s->cp_regs,
1800 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1801 crn, crm, op0, op1, op2));
1803 if (!ri) {
1804 /* Unknown register; this might be a guest error or a QEMU
1805 * unimplemented feature.
1807 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1808 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1809 isread ? "read" : "write", op0, op1, crn, crm, op2);
1810 unallocated_encoding(s);
1811 return;
1814 /* Check access permissions */
1815 if (!cp_access_ok(s->current_el, ri, isread)) {
1816 unallocated_encoding(s);
1817 return;
1820 if (ri->accessfn) {
1821 /* Emit code to perform further access permissions checks at
1822 * runtime; this may result in an exception.
1824 TCGv_ptr tmpptr;
1825 TCGv_i32 tcg_syn, tcg_isread;
1826 uint32_t syndrome;
1828 gen_a64_set_pc_im(s->pc_curr);
1829 tmpptr = tcg_const_ptr(ri);
1830 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1831 tcg_syn = tcg_const_i32(syndrome);
1832 tcg_isread = tcg_const_i32(isread);
1833 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1834 tcg_temp_free_ptr(tmpptr);
1835 tcg_temp_free_i32(tcg_syn);
1836 tcg_temp_free_i32(tcg_isread);
1837 } else if (ri->type & ARM_CP_RAISES_EXC) {
1839 * The readfn or writefn might raise an exception;
1840 * synchronize the CPU state in case it does.
1842 gen_a64_set_pc_im(s->pc_curr);
1845 /* Handle special cases first */
1846 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1847 case ARM_CP_NOP:
1848 return;
1849 case ARM_CP_NZCV:
1850 tcg_rt = cpu_reg(s, rt);
1851 if (isread) {
1852 gen_get_nzcv(tcg_rt);
1853 } else {
1854 gen_set_nzcv(tcg_rt);
1856 return;
1857 case ARM_CP_CURRENTEL:
1858 /* Reads as current EL value from pstate, which is
1859 * guaranteed to be constant by the tb flags.
1861 tcg_rt = cpu_reg(s, rt);
1862 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1863 return;
1864 case ARM_CP_DC_ZVA:
1865 /* Writes clear the aligned block of memory which rt points into. */
1866 if (s->mte_active[0]) {
1867 TCGv_i32 t_desc;
1868 int desc = 0;
1870 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1871 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1872 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1873 t_desc = tcg_const_i32(desc);
1875 tcg_rt = new_tmp_a64(s);
1876 gen_helper_mte_check_zva(tcg_rt, cpu_env, t_desc, cpu_reg(s, rt));
1877 tcg_temp_free_i32(t_desc);
1878 } else {
1879 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1881 gen_helper_dc_zva(cpu_env, tcg_rt);
1882 return;
1883 case ARM_CP_DC_GVA:
1885 TCGv_i64 clean_addr, tag;
1888 * DC_GVA, like DC_ZVA, requires that we supply the original
1889 * pointer for an invalid page. Probe that address first.
1891 tcg_rt = cpu_reg(s, rt);
1892 clean_addr = clean_data_tbi(s, tcg_rt);
1893 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
1895 if (s->ata) {
1896 /* Extract the tag from the register to match STZGM. */
1897 tag = tcg_temp_new_i64();
1898 tcg_gen_shri_i64(tag, tcg_rt, 56);
1899 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1900 tcg_temp_free_i64(tag);
1903 return;
1904 case ARM_CP_DC_GZVA:
1906 TCGv_i64 clean_addr, tag;
1908 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
1909 tcg_rt = cpu_reg(s, rt);
1910 clean_addr = clean_data_tbi(s, tcg_rt);
1911 gen_helper_dc_zva(cpu_env, clean_addr);
1913 if (s->ata) {
1914 /* Extract the tag from the register to match STZGM. */
1915 tag = tcg_temp_new_i64();
1916 tcg_gen_shri_i64(tag, tcg_rt, 56);
1917 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1918 tcg_temp_free_i64(tag);
1921 return;
1922 default:
1923 break;
1925 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1926 return;
1927 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1928 return;
1931 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1932 gen_io_start();
1935 tcg_rt = cpu_reg(s, rt);
1937 if (isread) {
1938 if (ri->type & ARM_CP_CONST) {
1939 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1940 } else if (ri->readfn) {
1941 TCGv_ptr tmpptr;
1942 tmpptr = tcg_const_ptr(ri);
1943 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1944 tcg_temp_free_ptr(tmpptr);
1945 } else {
1946 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1948 } else {
1949 if (ri->type & ARM_CP_CONST) {
1950 /* If not forbidden by access permissions, treat as WI */
1951 return;
1952 } else if (ri->writefn) {
1953 TCGv_ptr tmpptr;
1954 tmpptr = tcg_const_ptr(ri);
1955 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1956 tcg_temp_free_ptr(tmpptr);
1957 } else {
1958 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1962 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1963 /* I/O operations must end the TB here (whether read or write) */
1964 s->base.is_jmp = DISAS_UPDATE_EXIT;
1966 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1968 * A write to any coprocessor regiser that ends a TB
1969 * must rebuild the hflags for the next TB.
1971 TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
1972 gen_helper_rebuild_hflags_a64(cpu_env, tcg_el);
1973 tcg_temp_free_i32(tcg_el);
1975 * We default to ending the TB on a coprocessor register write,
1976 * but allow this to be suppressed by the register definition
1977 * (usually only necessary to work around guest bugs).
1979 s->base.is_jmp = DISAS_UPDATE_EXIT;
1983 /* System
1984 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1985 * +---------------------+---+-----+-----+-------+-------+-----+------+
1986 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1987 * +---------------------+---+-----+-----+-------+-------+-----+------+
1989 static void disas_system(DisasContext *s, uint32_t insn)
1991 unsigned int l, op0, op1, crn, crm, op2, rt;
1992 l = extract32(insn, 21, 1);
1993 op0 = extract32(insn, 19, 2);
1994 op1 = extract32(insn, 16, 3);
1995 crn = extract32(insn, 12, 4);
1996 crm = extract32(insn, 8, 4);
1997 op2 = extract32(insn, 5, 3);
1998 rt = extract32(insn, 0, 5);
2000 if (op0 == 0) {
2001 if (l || rt != 31) {
2002 unallocated_encoding(s);
2003 return;
2005 switch (crn) {
2006 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2007 handle_hint(s, insn, op1, op2, crm);
2008 break;
2009 case 3: /* CLREX, DSB, DMB, ISB */
2010 handle_sync(s, insn, op1, op2, crm);
2011 break;
2012 case 4: /* MSR (immediate) */
2013 handle_msr_i(s, insn, op1, op2, crm);
2014 break;
2015 default:
2016 unallocated_encoding(s);
2017 break;
2019 return;
2021 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2024 /* Exception generation
2026 * 31 24 23 21 20 5 4 2 1 0
2027 * +-----------------+-----+------------------------+-----+----+
2028 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2029 * +-----------------------+------------------------+----------+
2031 static void disas_exc(DisasContext *s, uint32_t insn)
2033 int opc = extract32(insn, 21, 3);
2034 int op2_ll = extract32(insn, 0, 5);
2035 int imm16 = extract32(insn, 5, 16);
2036 TCGv_i32 tmp;
2038 switch (opc) {
2039 case 0:
2040 /* For SVC, HVC and SMC we advance the single-step state
2041 * machine before taking the exception. This is architecturally
2042 * mandated, to ensure that single-stepping a system call
2043 * instruction works properly.
2045 switch (op2_ll) {
2046 case 1: /* SVC */
2047 gen_ss_advance(s);
2048 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
2049 syn_aa64_svc(imm16), default_exception_el(s));
2050 break;
2051 case 2: /* HVC */
2052 if (s->current_el == 0) {
2053 unallocated_encoding(s);
2054 break;
2056 /* The pre HVC helper handles cases when HVC gets trapped
2057 * as an undefined insn by runtime configuration.
2059 gen_a64_set_pc_im(s->pc_curr);
2060 gen_helper_pre_hvc(cpu_env);
2061 gen_ss_advance(s);
2062 gen_exception_insn(s, s->base.pc_next, EXCP_HVC,
2063 syn_aa64_hvc(imm16), 2);
2064 break;
2065 case 3: /* SMC */
2066 if (s->current_el == 0) {
2067 unallocated_encoding(s);
2068 break;
2070 gen_a64_set_pc_im(s->pc_curr);
2071 tmp = tcg_const_i32(syn_aa64_smc(imm16));
2072 gen_helper_pre_smc(cpu_env, tmp);
2073 tcg_temp_free_i32(tmp);
2074 gen_ss_advance(s);
2075 gen_exception_insn(s, s->base.pc_next, EXCP_SMC,
2076 syn_aa64_smc(imm16), 3);
2077 break;
2078 default:
2079 unallocated_encoding(s);
2080 break;
2082 break;
2083 case 1:
2084 if (op2_ll != 0) {
2085 unallocated_encoding(s);
2086 break;
2088 /* BRK */
2089 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2090 break;
2091 case 2:
2092 if (op2_ll != 0) {
2093 unallocated_encoding(s);
2094 break;
2096 /* HLT. This has two purposes.
2097 * Architecturally, it is an external halting debug instruction.
2098 * Since QEMU doesn't implement external debug, we treat this as
2099 * it is required for halting debug disabled: it will UNDEF.
2100 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2102 if (semihosting_enabled() && imm16 == 0xf000) {
2103 #ifndef CONFIG_USER_ONLY
2104 /* In system mode, don't allow userspace access to semihosting,
2105 * to provide some semblance of security (and for consistency
2106 * with our 32-bit semihosting).
2108 if (s->current_el == 0) {
2109 unsupported_encoding(s, insn);
2110 break;
2112 #endif
2113 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
2114 } else {
2115 unsupported_encoding(s, insn);
2117 break;
2118 case 5:
2119 if (op2_ll < 1 || op2_ll > 3) {
2120 unallocated_encoding(s);
2121 break;
2123 /* DCPS1, DCPS2, DCPS3 */
2124 unsupported_encoding(s, insn);
2125 break;
2126 default:
2127 unallocated_encoding(s);
2128 break;
2132 /* Unconditional branch (register)
2133 * 31 25 24 21 20 16 15 10 9 5 4 0
2134 * +---------------+-------+-------+-------+------+-------+
2135 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2136 * +---------------+-------+-------+-------+------+-------+
2138 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2140 unsigned int opc, op2, op3, rn, op4;
2141 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2142 TCGv_i64 dst;
2143 TCGv_i64 modifier;
2145 opc = extract32(insn, 21, 4);
2146 op2 = extract32(insn, 16, 5);
2147 op3 = extract32(insn, 10, 6);
2148 rn = extract32(insn, 5, 5);
2149 op4 = extract32(insn, 0, 5);
2151 if (op2 != 0x1f) {
2152 goto do_unallocated;
2155 switch (opc) {
2156 case 0: /* BR */
2157 case 1: /* BLR */
2158 case 2: /* RET */
2159 btype_mod = opc;
2160 switch (op3) {
2161 case 0:
2162 /* BR, BLR, RET */
2163 if (op4 != 0) {
2164 goto do_unallocated;
2166 dst = cpu_reg(s, rn);
2167 break;
2169 case 2:
2170 case 3:
2171 if (!dc_isar_feature(aa64_pauth, s)) {
2172 goto do_unallocated;
2174 if (opc == 2) {
2175 /* RETAA, RETAB */
2176 if (rn != 0x1f || op4 != 0x1f) {
2177 goto do_unallocated;
2179 rn = 30;
2180 modifier = cpu_X[31];
2181 } else {
2182 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2183 if (op4 != 0x1f) {
2184 goto do_unallocated;
2186 modifier = new_tmp_a64_zero(s);
2188 if (s->pauth_active) {
2189 dst = new_tmp_a64(s);
2190 if (op3 == 2) {
2191 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2192 } else {
2193 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2195 } else {
2196 dst = cpu_reg(s, rn);
2198 break;
2200 default:
2201 goto do_unallocated;
2203 gen_a64_set_pc(s, dst);
2204 /* BLR also needs to load return address */
2205 if (opc == 1) {
2206 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2208 break;
2210 case 8: /* BRAA */
2211 case 9: /* BLRAA */
2212 if (!dc_isar_feature(aa64_pauth, s)) {
2213 goto do_unallocated;
2215 if ((op3 & ~1) != 2) {
2216 goto do_unallocated;
2218 btype_mod = opc & 1;
2219 if (s->pauth_active) {
2220 dst = new_tmp_a64(s);
2221 modifier = cpu_reg_sp(s, op4);
2222 if (op3 == 2) {
2223 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2224 } else {
2225 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2227 } else {
2228 dst = cpu_reg(s, rn);
2230 gen_a64_set_pc(s, dst);
2231 /* BLRAA also needs to load return address */
2232 if (opc == 9) {
2233 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2235 break;
2237 case 4: /* ERET */
2238 if (s->current_el == 0) {
2239 goto do_unallocated;
2241 switch (op3) {
2242 case 0: /* ERET */
2243 if (op4 != 0) {
2244 goto do_unallocated;
2246 dst = tcg_temp_new_i64();
2247 tcg_gen_ld_i64(dst, cpu_env,
2248 offsetof(CPUARMState, elr_el[s->current_el]));
2249 break;
2251 case 2: /* ERETAA */
2252 case 3: /* ERETAB */
2253 if (!dc_isar_feature(aa64_pauth, s)) {
2254 goto do_unallocated;
2256 if (rn != 0x1f || op4 != 0x1f) {
2257 goto do_unallocated;
2259 dst = tcg_temp_new_i64();
2260 tcg_gen_ld_i64(dst, cpu_env,
2261 offsetof(CPUARMState, elr_el[s->current_el]));
2262 if (s->pauth_active) {
2263 modifier = cpu_X[31];
2264 if (op3 == 2) {
2265 gen_helper_autia(dst, cpu_env, dst, modifier);
2266 } else {
2267 gen_helper_autib(dst, cpu_env, dst, modifier);
2270 break;
2272 default:
2273 goto do_unallocated;
2275 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2276 gen_io_start();
2279 gen_helper_exception_return(cpu_env, dst);
2280 tcg_temp_free_i64(dst);
2281 /* Must exit loop to check un-masked IRQs */
2282 s->base.is_jmp = DISAS_EXIT;
2283 return;
2285 case 5: /* DRPS */
2286 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2287 goto do_unallocated;
2288 } else {
2289 unsupported_encoding(s, insn);
2291 return;
2293 default:
2294 do_unallocated:
2295 unallocated_encoding(s);
2296 return;
2299 switch (btype_mod) {
2300 case 0: /* BR */
2301 if (dc_isar_feature(aa64_bti, s)) {
2302 /* BR to {x16,x17} or !guard -> 1, else 3. */
2303 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2305 break;
2307 case 1: /* BLR */
2308 if (dc_isar_feature(aa64_bti, s)) {
2309 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2310 set_btype(s, 2);
2312 break;
2314 default: /* RET or none of the above. */
2315 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2316 break;
2319 s->base.is_jmp = DISAS_JUMP;
2322 /* Branches, exception generating and system instructions */
2323 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2325 switch (extract32(insn, 25, 7)) {
2326 case 0x0a: case 0x0b:
2327 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2328 disas_uncond_b_imm(s, insn);
2329 break;
2330 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2331 disas_comp_b_imm(s, insn);
2332 break;
2333 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2334 disas_test_b_imm(s, insn);
2335 break;
2336 case 0x2a: /* Conditional branch (immediate) */
2337 disas_cond_b_imm(s, insn);
2338 break;
2339 case 0x6a: /* Exception generation / System */
2340 if (insn & (1 << 24)) {
2341 if (extract32(insn, 22, 2) == 0) {
2342 disas_system(s, insn);
2343 } else {
2344 unallocated_encoding(s);
2346 } else {
2347 disas_exc(s, insn);
2349 break;
2350 case 0x6b: /* Unconditional branch (register) */
2351 disas_uncond_b_reg(s, insn);
2352 break;
2353 default:
2354 unallocated_encoding(s);
2355 break;
2360 * Load/Store exclusive instructions are implemented by remembering
2361 * the value/address loaded, and seeing if these are the same
2362 * when the store is performed. This is not actually the architecturally
2363 * mandated semantics, but it works for typical guest code sequences
2364 * and avoids having to monitor regular stores.
2366 * The store exclusive uses the atomic cmpxchg primitives to avoid
2367 * races in multi-threaded linux-user and when MTTCG softmmu is
2368 * enabled.
2370 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2371 TCGv_i64 addr, int size, bool is_pair)
2373 int idx = get_mem_index(s);
2374 MemOp memop = s->be_data;
2376 g_assert(size <= 3);
2377 if (is_pair) {
2378 g_assert(size >= 2);
2379 if (size == 2) {
2380 /* The pair must be single-copy atomic for the doubleword. */
2381 memop |= MO_64 | MO_ALIGN;
2382 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2383 if (s->be_data == MO_LE) {
2384 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2385 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2386 } else {
2387 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2388 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2390 } else {
2391 /* The pair must be single-copy atomic for *each* doubleword, not
2392 the entire quadword, however it must be quadword aligned. */
2393 memop |= MO_64;
2394 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2395 memop | MO_ALIGN_16);
2397 TCGv_i64 addr2 = tcg_temp_new_i64();
2398 tcg_gen_addi_i64(addr2, addr, 8);
2399 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2400 tcg_temp_free_i64(addr2);
2402 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2403 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2405 } else {
2406 memop |= size | MO_ALIGN;
2407 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2408 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2410 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2413 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2414 TCGv_i64 addr, int size, int is_pair)
2416 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2417 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2418 * [addr] = {Rt};
2419 * if (is_pair) {
2420 * [addr + datasize] = {Rt2};
2422 * {Rd} = 0;
2423 * } else {
2424 * {Rd} = 1;
2426 * env->exclusive_addr = -1;
2428 TCGLabel *fail_label = gen_new_label();
2429 TCGLabel *done_label = gen_new_label();
2430 TCGv_i64 tmp;
2432 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2434 tmp = tcg_temp_new_i64();
2435 if (is_pair) {
2436 if (size == 2) {
2437 if (s->be_data == MO_LE) {
2438 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2439 } else {
2440 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2442 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2443 cpu_exclusive_val, tmp,
2444 get_mem_index(s),
2445 MO_64 | MO_ALIGN | s->be_data);
2446 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2447 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2448 if (!HAVE_CMPXCHG128) {
2449 gen_helper_exit_atomic(cpu_env);
2450 s->base.is_jmp = DISAS_NORETURN;
2451 } else if (s->be_data == MO_LE) {
2452 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2453 cpu_exclusive_addr,
2454 cpu_reg(s, rt),
2455 cpu_reg(s, rt2));
2456 } else {
2457 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2458 cpu_exclusive_addr,
2459 cpu_reg(s, rt),
2460 cpu_reg(s, rt2));
2462 } else if (s->be_data == MO_LE) {
2463 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2464 cpu_reg(s, rt), cpu_reg(s, rt2));
2465 } else {
2466 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2467 cpu_reg(s, rt), cpu_reg(s, rt2));
2469 } else {
2470 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2471 cpu_reg(s, rt), get_mem_index(s),
2472 size | MO_ALIGN | s->be_data);
2473 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2475 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2476 tcg_temp_free_i64(tmp);
2477 tcg_gen_br(done_label);
2479 gen_set_label(fail_label);
2480 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2481 gen_set_label(done_label);
2482 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2485 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2486 int rn, int size)
2488 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2489 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2490 int memidx = get_mem_index(s);
2491 TCGv_i64 clean_addr;
2493 if (rn == 31) {
2494 gen_check_sp_alignment(s);
2496 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2497 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2498 size | MO_ALIGN | s->be_data);
2501 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2502 int rn, int size)
2504 TCGv_i64 s1 = cpu_reg(s, rs);
2505 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2506 TCGv_i64 t1 = cpu_reg(s, rt);
2507 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2508 TCGv_i64 clean_addr;
2509 int memidx = get_mem_index(s);
2511 if (rn == 31) {
2512 gen_check_sp_alignment(s);
2515 /* This is a single atomic access, despite the "pair". */
2516 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2518 if (size == 2) {
2519 TCGv_i64 cmp = tcg_temp_new_i64();
2520 TCGv_i64 val = tcg_temp_new_i64();
2522 if (s->be_data == MO_LE) {
2523 tcg_gen_concat32_i64(val, t1, t2);
2524 tcg_gen_concat32_i64(cmp, s1, s2);
2525 } else {
2526 tcg_gen_concat32_i64(val, t2, t1);
2527 tcg_gen_concat32_i64(cmp, s2, s1);
2530 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2531 MO_64 | MO_ALIGN | s->be_data);
2532 tcg_temp_free_i64(val);
2534 if (s->be_data == MO_LE) {
2535 tcg_gen_extr32_i64(s1, s2, cmp);
2536 } else {
2537 tcg_gen_extr32_i64(s2, s1, cmp);
2539 tcg_temp_free_i64(cmp);
2540 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2541 if (HAVE_CMPXCHG128) {
2542 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2543 if (s->be_data == MO_LE) {
2544 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2545 clean_addr, t1, t2);
2546 } else {
2547 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2548 clean_addr, t1, t2);
2550 tcg_temp_free_i32(tcg_rs);
2551 } else {
2552 gen_helper_exit_atomic(cpu_env);
2553 s->base.is_jmp = DISAS_NORETURN;
2555 } else {
2556 TCGv_i64 d1 = tcg_temp_new_i64();
2557 TCGv_i64 d2 = tcg_temp_new_i64();
2558 TCGv_i64 a2 = tcg_temp_new_i64();
2559 TCGv_i64 c1 = tcg_temp_new_i64();
2560 TCGv_i64 c2 = tcg_temp_new_i64();
2561 TCGv_i64 zero = tcg_const_i64(0);
2563 /* Load the two words, in memory order. */
2564 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2565 MO_64 | MO_ALIGN_16 | s->be_data);
2566 tcg_gen_addi_i64(a2, clean_addr, 8);
2567 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2569 /* Compare the two words, also in memory order. */
2570 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2571 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2572 tcg_gen_and_i64(c2, c2, c1);
2574 /* If compare equal, write back new data, else write back old data. */
2575 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2576 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2577 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2578 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2579 tcg_temp_free_i64(a2);
2580 tcg_temp_free_i64(c1);
2581 tcg_temp_free_i64(c2);
2582 tcg_temp_free_i64(zero);
2584 /* Write back the data from memory to Rs. */
2585 tcg_gen_mov_i64(s1, d1);
2586 tcg_gen_mov_i64(s2, d2);
2587 tcg_temp_free_i64(d1);
2588 tcg_temp_free_i64(d2);
2592 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2593 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2595 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2597 int opc0 = extract32(opc, 0, 1);
2598 int regsize;
2600 if (is_signed) {
2601 regsize = opc0 ? 32 : 64;
2602 } else {
2603 regsize = size == 3 ? 64 : 32;
2605 return regsize == 64;
2608 /* Load/store exclusive
2610 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2611 * +-----+-------------+----+---+----+------+----+-------+------+------+
2612 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2613 * +-----+-------------+----+---+----+------+----+-------+------+------+
2615 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2616 * L: 0 -> store, 1 -> load
2617 * o2: 0 -> exclusive, 1 -> not
2618 * o1: 0 -> single register, 1 -> register pair
2619 * o0: 1 -> load-acquire/store-release, 0 -> not
2621 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2623 int rt = extract32(insn, 0, 5);
2624 int rn = extract32(insn, 5, 5);
2625 int rt2 = extract32(insn, 10, 5);
2626 int rs = extract32(insn, 16, 5);
2627 int is_lasr = extract32(insn, 15, 1);
2628 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2629 int size = extract32(insn, 30, 2);
2630 TCGv_i64 clean_addr;
2632 switch (o2_L_o1_o0) {
2633 case 0x0: /* STXR */
2634 case 0x1: /* STLXR */
2635 if (rn == 31) {
2636 gen_check_sp_alignment(s);
2638 if (is_lasr) {
2639 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2641 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2642 true, rn != 31, size);
2643 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2644 return;
2646 case 0x4: /* LDXR */
2647 case 0x5: /* LDAXR */
2648 if (rn == 31) {
2649 gen_check_sp_alignment(s);
2651 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2652 false, rn != 31, size);
2653 s->is_ldex = true;
2654 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2655 if (is_lasr) {
2656 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2658 return;
2660 case 0x8: /* STLLR */
2661 if (!dc_isar_feature(aa64_lor, s)) {
2662 break;
2664 /* StoreLORelease is the same as Store-Release for QEMU. */
2665 /* fall through */
2666 case 0x9: /* STLR */
2667 /* Generate ISS for non-exclusive accesses including LASR. */
2668 if (rn == 31) {
2669 gen_check_sp_alignment(s);
2671 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2672 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2673 true, rn != 31, size);
2674 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2675 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2676 return;
2678 case 0xc: /* LDLAR */
2679 if (!dc_isar_feature(aa64_lor, s)) {
2680 break;
2682 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2683 /* fall through */
2684 case 0xd: /* LDAR */
2685 /* Generate ISS for non-exclusive accesses including LASR. */
2686 if (rn == 31) {
2687 gen_check_sp_alignment(s);
2689 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2690 false, rn != 31, size);
2691 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2692 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2693 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2694 return;
2696 case 0x2: case 0x3: /* CASP / STXP */
2697 if (size & 2) { /* STXP / STLXP */
2698 if (rn == 31) {
2699 gen_check_sp_alignment(s);
2701 if (is_lasr) {
2702 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2704 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2705 true, rn != 31, size);
2706 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2707 return;
2709 if (rt2 == 31
2710 && ((rt | rs) & 1) == 0
2711 && dc_isar_feature(aa64_atomics, s)) {
2712 /* CASP / CASPL */
2713 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2714 return;
2716 break;
2718 case 0x6: case 0x7: /* CASPA / LDXP */
2719 if (size & 2) { /* LDXP / LDAXP */
2720 if (rn == 31) {
2721 gen_check_sp_alignment(s);
2723 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2724 false, rn != 31, size);
2725 s->is_ldex = true;
2726 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2727 if (is_lasr) {
2728 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2730 return;
2732 if (rt2 == 31
2733 && ((rt | rs) & 1) == 0
2734 && dc_isar_feature(aa64_atomics, s)) {
2735 /* CASPA / CASPAL */
2736 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2737 return;
2739 break;
2741 case 0xa: /* CAS */
2742 case 0xb: /* CASL */
2743 case 0xe: /* CASA */
2744 case 0xf: /* CASAL */
2745 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2746 gen_compare_and_swap(s, rs, rt, rn, size);
2747 return;
2749 break;
2751 unallocated_encoding(s);
2755 * Load register (literal)
2757 * 31 30 29 27 26 25 24 23 5 4 0
2758 * +-----+-------+---+-----+-------------------+-------+
2759 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2760 * +-----+-------+---+-----+-------------------+-------+
2762 * V: 1 -> vector (simd/fp)
2763 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2764 * 10-> 32 bit signed, 11 -> prefetch
2765 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2767 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2769 int rt = extract32(insn, 0, 5);
2770 int64_t imm = sextract32(insn, 5, 19) << 2;
2771 bool is_vector = extract32(insn, 26, 1);
2772 int opc = extract32(insn, 30, 2);
2773 bool is_signed = false;
2774 int size = 2;
2775 TCGv_i64 tcg_rt, clean_addr;
2777 if (is_vector) {
2778 if (opc == 3) {
2779 unallocated_encoding(s);
2780 return;
2782 size = 2 + opc;
2783 if (!fp_access_check(s)) {
2784 return;
2786 } else {
2787 if (opc == 3) {
2788 /* PRFM (literal) : prefetch */
2789 return;
2791 size = 2 + extract32(opc, 0, 1);
2792 is_signed = extract32(opc, 1, 1);
2795 tcg_rt = cpu_reg(s, rt);
2797 clean_addr = tcg_const_i64(s->pc_curr + imm);
2798 if (is_vector) {
2799 do_fp_ld(s, rt, clean_addr, size);
2800 } else {
2801 /* Only unsigned 32bit loads target 32bit registers. */
2802 bool iss_sf = opc != 0;
2804 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2805 true, rt, iss_sf, false);
2807 tcg_temp_free_i64(clean_addr);
2811 * LDNP (Load Pair - non-temporal hint)
2812 * LDP (Load Pair - non vector)
2813 * LDPSW (Load Pair Signed Word - non vector)
2814 * STNP (Store Pair - non-temporal hint)
2815 * STP (Store Pair - non vector)
2816 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2817 * LDP (Load Pair of SIMD&FP)
2818 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2819 * STP (Store Pair of SIMD&FP)
2821 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2822 * +-----+-------+---+---+-------+---+-----------------------------+
2823 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2824 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2826 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2827 * LDPSW/STGP 01
2828 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2829 * V: 0 -> GPR, 1 -> Vector
2830 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2831 * 10 -> signed offset, 11 -> pre-index
2832 * L: 0 -> Store 1 -> Load
2834 * Rt, Rt2 = GPR or SIMD registers to be stored
2835 * Rn = general purpose register containing address
2836 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2838 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2840 int rt = extract32(insn, 0, 5);
2841 int rn = extract32(insn, 5, 5);
2842 int rt2 = extract32(insn, 10, 5);
2843 uint64_t offset = sextract64(insn, 15, 7);
2844 int index = extract32(insn, 23, 2);
2845 bool is_vector = extract32(insn, 26, 1);
2846 bool is_load = extract32(insn, 22, 1);
2847 int opc = extract32(insn, 30, 2);
2849 bool is_signed = false;
2850 bool postindex = false;
2851 bool wback = false;
2852 bool set_tag = false;
2854 TCGv_i64 clean_addr, dirty_addr;
2856 int size;
2858 if (opc == 3) {
2859 unallocated_encoding(s);
2860 return;
2863 if (is_vector) {
2864 size = 2 + opc;
2865 } else if (opc == 1 && !is_load) {
2866 /* STGP */
2867 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2868 unallocated_encoding(s);
2869 return;
2871 size = 3;
2872 set_tag = true;
2873 } else {
2874 size = 2 + extract32(opc, 1, 1);
2875 is_signed = extract32(opc, 0, 1);
2876 if (!is_load && is_signed) {
2877 unallocated_encoding(s);
2878 return;
2882 switch (index) {
2883 case 1: /* post-index */
2884 postindex = true;
2885 wback = true;
2886 break;
2887 case 0:
2888 /* signed offset with "non-temporal" hint. Since we don't emulate
2889 * caches we don't care about hints to the cache system about
2890 * data access patterns, and handle this identically to plain
2891 * signed offset.
2893 if (is_signed) {
2894 /* There is no non-temporal-hint version of LDPSW */
2895 unallocated_encoding(s);
2896 return;
2898 postindex = false;
2899 break;
2900 case 2: /* signed offset, rn not updated */
2901 postindex = false;
2902 break;
2903 case 3: /* pre-index */
2904 postindex = false;
2905 wback = true;
2906 break;
2909 if (is_vector && !fp_access_check(s)) {
2910 return;
2913 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2915 if (rn == 31) {
2916 gen_check_sp_alignment(s);
2919 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2920 if (!postindex) {
2921 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2924 if (set_tag) {
2925 if (!s->ata) {
2927 * TODO: We could rely on the stores below, at least for
2928 * system mode, if we arrange to add MO_ALIGN_16.
2930 gen_helper_stg_stub(cpu_env, dirty_addr);
2931 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2932 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2933 } else {
2934 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2938 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2939 (wback || rn != 31) && !set_tag,
2940 size, 2 << size);
2942 if (is_vector) {
2943 if (is_load) {
2944 do_fp_ld(s, rt, clean_addr, size);
2945 } else {
2946 do_fp_st(s, rt, clean_addr, size);
2948 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2949 if (is_load) {
2950 do_fp_ld(s, rt2, clean_addr, size);
2951 } else {
2952 do_fp_st(s, rt2, clean_addr, size);
2954 } else {
2955 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2956 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2958 if (is_load) {
2959 TCGv_i64 tmp = tcg_temp_new_i64();
2961 /* Do not modify tcg_rt before recognizing any exception
2962 * from the second load.
2964 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2965 false, 0, false, false);
2966 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2967 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2968 false, 0, false, false);
2970 tcg_gen_mov_i64(tcg_rt, tmp);
2971 tcg_temp_free_i64(tmp);
2972 } else {
2973 do_gpr_st(s, tcg_rt, clean_addr, size,
2974 false, 0, false, false);
2975 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2976 do_gpr_st(s, tcg_rt2, clean_addr, size,
2977 false, 0, false, false);
2981 if (wback) {
2982 if (postindex) {
2983 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2985 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2990 * Load/store (immediate post-indexed)
2991 * Load/store (immediate pre-indexed)
2992 * Load/store (unscaled immediate)
2994 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2995 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2996 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2997 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2999 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3000 10 -> unprivileged
3001 * V = 0 -> non-vector
3002 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3003 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3005 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3006 int opc,
3007 int size,
3008 int rt,
3009 bool is_vector)
3011 int rn = extract32(insn, 5, 5);
3012 int imm9 = sextract32(insn, 12, 9);
3013 int idx = extract32(insn, 10, 2);
3014 bool is_signed = false;
3015 bool is_store = false;
3016 bool is_extended = false;
3017 bool is_unpriv = (idx == 2);
3018 bool iss_valid = !is_vector;
3019 bool post_index;
3020 bool writeback;
3021 int memidx;
3023 TCGv_i64 clean_addr, dirty_addr;
3025 if (is_vector) {
3026 size |= (opc & 2) << 1;
3027 if (size > 4 || is_unpriv) {
3028 unallocated_encoding(s);
3029 return;
3031 is_store = ((opc & 1) == 0);
3032 if (!fp_access_check(s)) {
3033 return;
3035 } else {
3036 if (size == 3 && opc == 2) {
3037 /* PRFM - prefetch */
3038 if (idx != 0) {
3039 unallocated_encoding(s);
3040 return;
3042 return;
3044 if (opc == 3 && size > 1) {
3045 unallocated_encoding(s);
3046 return;
3048 is_store = (opc == 0);
3049 is_signed = extract32(opc, 1, 1);
3050 is_extended = (size < 3) && extract32(opc, 0, 1);
3053 switch (idx) {
3054 case 0:
3055 case 2:
3056 post_index = false;
3057 writeback = false;
3058 break;
3059 case 1:
3060 post_index = true;
3061 writeback = true;
3062 break;
3063 case 3:
3064 post_index = false;
3065 writeback = true;
3066 break;
3067 default:
3068 g_assert_not_reached();
3071 if (rn == 31) {
3072 gen_check_sp_alignment(s);
3075 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3076 if (!post_index) {
3077 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3080 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3081 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3082 writeback || rn != 31,
3083 size, is_unpriv, memidx);
3085 if (is_vector) {
3086 if (is_store) {
3087 do_fp_st(s, rt, clean_addr, size);
3088 } else {
3089 do_fp_ld(s, rt, clean_addr, size);
3091 } else {
3092 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3093 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3095 if (is_store) {
3096 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3097 iss_valid, rt, iss_sf, false);
3098 } else {
3099 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
3100 is_signed, is_extended, memidx,
3101 iss_valid, rt, iss_sf, false);
3105 if (writeback) {
3106 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3107 if (post_index) {
3108 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3110 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3115 * Load/store (register offset)
3117 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3118 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3119 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3120 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3122 * For non-vector:
3123 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3124 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3125 * For vector:
3126 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3127 * opc<0>: 0 -> store, 1 -> load
3128 * V: 1 -> vector/simd
3129 * opt: extend encoding (see DecodeRegExtend)
3130 * S: if S=1 then scale (essentially index by sizeof(size))
3131 * Rt: register to transfer into/out of
3132 * Rn: address register or SP for base
3133 * Rm: offset register or ZR for offset
3135 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3136 int opc,
3137 int size,
3138 int rt,
3139 bool is_vector)
3141 int rn = extract32(insn, 5, 5);
3142 int shift = extract32(insn, 12, 1);
3143 int rm = extract32(insn, 16, 5);
3144 int opt = extract32(insn, 13, 3);
3145 bool is_signed = false;
3146 bool is_store = false;
3147 bool is_extended = false;
3149 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3151 if (extract32(opt, 1, 1) == 0) {
3152 unallocated_encoding(s);
3153 return;
3156 if (is_vector) {
3157 size |= (opc & 2) << 1;
3158 if (size > 4) {
3159 unallocated_encoding(s);
3160 return;
3162 is_store = !extract32(opc, 0, 1);
3163 if (!fp_access_check(s)) {
3164 return;
3166 } else {
3167 if (size == 3 && opc == 2) {
3168 /* PRFM - prefetch */
3169 return;
3171 if (opc == 3 && size > 1) {
3172 unallocated_encoding(s);
3173 return;
3175 is_store = (opc == 0);
3176 is_signed = extract32(opc, 1, 1);
3177 is_extended = (size < 3) && extract32(opc, 0, 1);
3180 if (rn == 31) {
3181 gen_check_sp_alignment(s);
3183 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3185 tcg_rm = read_cpu_reg(s, rm, 1);
3186 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3188 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3189 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3191 if (is_vector) {
3192 if (is_store) {
3193 do_fp_st(s, rt, clean_addr, size);
3194 } else {
3195 do_fp_ld(s, rt, clean_addr, size);
3197 } else {
3198 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3199 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3200 if (is_store) {
3201 do_gpr_st(s, tcg_rt, clean_addr, size,
3202 true, rt, iss_sf, false);
3203 } else {
3204 do_gpr_ld(s, tcg_rt, clean_addr, size,
3205 is_signed, is_extended,
3206 true, rt, iss_sf, false);
3212 * Load/store (unsigned immediate)
3214 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3215 * +----+-------+---+-----+-----+------------+-------+------+
3216 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3217 * +----+-------+---+-----+-----+------------+-------+------+
3219 * For non-vector:
3220 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3221 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3222 * For vector:
3223 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3224 * opc<0>: 0 -> store, 1 -> load
3225 * Rn: base address register (inc SP)
3226 * Rt: target register
3228 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3229 int opc,
3230 int size,
3231 int rt,
3232 bool is_vector)
3234 int rn = extract32(insn, 5, 5);
3235 unsigned int imm12 = extract32(insn, 10, 12);
3236 unsigned int offset;
3238 TCGv_i64 clean_addr, dirty_addr;
3240 bool is_store;
3241 bool is_signed = false;
3242 bool is_extended = false;
3244 if (is_vector) {
3245 size |= (opc & 2) << 1;
3246 if (size > 4) {
3247 unallocated_encoding(s);
3248 return;
3250 is_store = !extract32(opc, 0, 1);
3251 if (!fp_access_check(s)) {
3252 return;
3254 } else {
3255 if (size == 3 && opc == 2) {
3256 /* PRFM - prefetch */
3257 return;
3259 if (opc == 3 && size > 1) {
3260 unallocated_encoding(s);
3261 return;
3263 is_store = (opc == 0);
3264 is_signed = extract32(opc, 1, 1);
3265 is_extended = (size < 3) && extract32(opc, 0, 1);
3268 if (rn == 31) {
3269 gen_check_sp_alignment(s);
3271 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3272 offset = imm12 << size;
3273 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3274 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3276 if (is_vector) {
3277 if (is_store) {
3278 do_fp_st(s, rt, clean_addr, size);
3279 } else {
3280 do_fp_ld(s, rt, clean_addr, size);
3282 } else {
3283 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3284 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3285 if (is_store) {
3286 do_gpr_st(s, tcg_rt, clean_addr, size,
3287 true, rt, iss_sf, false);
3288 } else {
3289 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3290 true, rt, iss_sf, false);
3295 /* Atomic memory operations
3297 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3298 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3299 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3300 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3302 * Rt: the result register
3303 * Rn: base address or SP
3304 * Rs: the source register for the operation
3305 * V: vector flag (always 0 as of v8.3)
3306 * A: acquire flag
3307 * R: release flag
3309 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3310 int size, int rt, bool is_vector)
3312 int rs = extract32(insn, 16, 5);
3313 int rn = extract32(insn, 5, 5);
3314 int o3_opc = extract32(insn, 12, 4);
3315 bool r = extract32(insn, 22, 1);
3316 bool a = extract32(insn, 23, 1);
3317 TCGv_i64 tcg_rs, clean_addr;
3318 AtomicThreeOpFn *fn = NULL;
3320 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3321 unallocated_encoding(s);
3322 return;
3324 switch (o3_opc) {
3325 case 000: /* LDADD */
3326 fn = tcg_gen_atomic_fetch_add_i64;
3327 break;
3328 case 001: /* LDCLR */
3329 fn = tcg_gen_atomic_fetch_and_i64;
3330 break;
3331 case 002: /* LDEOR */
3332 fn = tcg_gen_atomic_fetch_xor_i64;
3333 break;
3334 case 003: /* LDSET */
3335 fn = tcg_gen_atomic_fetch_or_i64;
3336 break;
3337 case 004: /* LDSMAX */
3338 fn = tcg_gen_atomic_fetch_smax_i64;
3339 break;
3340 case 005: /* LDSMIN */
3341 fn = tcg_gen_atomic_fetch_smin_i64;
3342 break;
3343 case 006: /* LDUMAX */
3344 fn = tcg_gen_atomic_fetch_umax_i64;
3345 break;
3346 case 007: /* LDUMIN */
3347 fn = tcg_gen_atomic_fetch_umin_i64;
3348 break;
3349 case 010: /* SWP */
3350 fn = tcg_gen_atomic_xchg_i64;
3351 break;
3352 case 014: /* LDAPR, LDAPRH, LDAPRB */
3353 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3354 rs != 31 || a != 1 || r != 0) {
3355 unallocated_encoding(s);
3356 return;
3358 break;
3359 default:
3360 unallocated_encoding(s);
3361 return;
3364 if (rn == 31) {
3365 gen_check_sp_alignment(s);
3367 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3369 if (o3_opc == 014) {
3371 * LDAPR* are a special case because they are a simple load, not a
3372 * fetch-and-do-something op.
3373 * The architectural consistency requirements here are weaker than
3374 * full load-acquire (we only need "load-acquire processor consistent"),
3375 * but we choose to implement them as full LDAQ.
3377 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false,
3378 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3379 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3380 return;
3383 tcg_rs = read_cpu_reg(s, rs, true);
3385 if (o3_opc == 1) { /* LDCLR */
3386 tcg_gen_not_i64(tcg_rs, tcg_rs);
3389 /* The tcg atomic primitives are all full barriers. Therefore we
3390 * can ignore the Acquire and Release bits of this instruction.
3392 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3393 s->be_data | size | MO_ALIGN);
3397 * PAC memory operations
3399 * 31 30 27 26 24 22 21 12 11 10 5 0
3400 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3401 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3402 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3404 * Rt: the result register
3405 * Rn: base address or SP
3406 * V: vector flag (always 0 as of v8.3)
3407 * M: clear for key DA, set for key DB
3408 * W: pre-indexing flag
3409 * S: sign for imm9.
3411 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3412 int size, int rt, bool is_vector)
3414 int rn = extract32(insn, 5, 5);
3415 bool is_wback = extract32(insn, 11, 1);
3416 bool use_key_a = !extract32(insn, 23, 1);
3417 int offset;
3418 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3420 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3421 unallocated_encoding(s);
3422 return;
3425 if (rn == 31) {
3426 gen_check_sp_alignment(s);
3428 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3430 if (s->pauth_active) {
3431 if (use_key_a) {
3432 gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3433 new_tmp_a64_zero(s));
3434 } else {
3435 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3436 new_tmp_a64_zero(s));
3440 /* Form the 10-bit signed, scaled offset. */
3441 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3442 offset = sextract32(offset << size, 0, 10 + size);
3443 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3445 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3446 clean_addr = gen_mte_check1(s, dirty_addr, false,
3447 is_wback || rn != 31, size);
3449 tcg_rt = cpu_reg(s, rt);
3450 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3451 /* extend */ false, /* iss_valid */ !is_wback,
3452 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3454 if (is_wback) {
3455 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3460 * LDAPR/STLR (unscaled immediate)
3462 * 31 30 24 22 21 12 10 5 0
3463 * +------+-------------+-----+---+--------+-----+----+-----+
3464 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3465 * +------+-------------+-----+---+--------+-----+----+-----+
3467 * Rt: source or destination register
3468 * Rn: base register
3469 * imm9: unscaled immediate offset
3470 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3471 * size: size of load/store
3473 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3475 int rt = extract32(insn, 0, 5);
3476 int rn = extract32(insn, 5, 5);
3477 int offset = sextract32(insn, 12, 9);
3478 int opc = extract32(insn, 22, 2);
3479 int size = extract32(insn, 30, 2);
3480 TCGv_i64 clean_addr, dirty_addr;
3481 bool is_store = false;
3482 bool is_signed = false;
3483 bool extend = false;
3484 bool iss_sf;
3486 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3487 unallocated_encoding(s);
3488 return;
3491 switch (opc) {
3492 case 0: /* STLURB */
3493 is_store = true;
3494 break;
3495 case 1: /* LDAPUR* */
3496 break;
3497 case 2: /* LDAPURS* 64-bit variant */
3498 if (size == 3) {
3499 unallocated_encoding(s);
3500 return;
3502 is_signed = true;
3503 break;
3504 case 3: /* LDAPURS* 32-bit variant */
3505 if (size > 1) {
3506 unallocated_encoding(s);
3507 return;
3509 is_signed = true;
3510 extend = true; /* zero-extend 32->64 after signed load */
3511 break;
3512 default:
3513 g_assert_not_reached();
3516 iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3518 if (rn == 31) {
3519 gen_check_sp_alignment(s);
3522 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3523 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3524 clean_addr = clean_data_tbi(s, dirty_addr);
3526 if (is_store) {
3527 /* Store-Release semantics */
3528 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3529 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt, iss_sf, true);
3530 } else {
3532 * Load-AcquirePC semantics; we implement as the slightly more
3533 * restrictive Load-Acquire.
3535 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, is_signed, extend,
3536 true, rt, iss_sf, true);
3537 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3541 /* Load/store register (all forms) */
3542 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3544 int rt = extract32(insn, 0, 5);
3545 int opc = extract32(insn, 22, 2);
3546 bool is_vector = extract32(insn, 26, 1);
3547 int size = extract32(insn, 30, 2);
3549 switch (extract32(insn, 24, 2)) {
3550 case 0:
3551 if (extract32(insn, 21, 1) == 0) {
3552 /* Load/store register (unscaled immediate)
3553 * Load/store immediate pre/post-indexed
3554 * Load/store register unprivileged
3556 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3557 return;
3559 switch (extract32(insn, 10, 2)) {
3560 case 0:
3561 disas_ldst_atomic(s, insn, size, rt, is_vector);
3562 return;
3563 case 2:
3564 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3565 return;
3566 default:
3567 disas_ldst_pac(s, insn, size, rt, is_vector);
3568 return;
3570 break;
3571 case 1:
3572 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3573 return;
3575 unallocated_encoding(s);
3578 /* AdvSIMD load/store multiple structures
3580 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3581 * +---+---+---------------+---+-------------+--------+------+------+------+
3582 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3583 * +---+---+---------------+---+-------------+--------+------+------+------+
3585 * AdvSIMD load/store multiple structures (post-indexed)
3587 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3588 * +---+---+---------------+---+---+---------+--------+------+------+------+
3589 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3590 * +---+---+---------------+---+---+---------+--------+------+------+------+
3592 * Rt: first (or only) SIMD&FP register to be transferred
3593 * Rn: base address or SP
3594 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3596 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3598 int rt = extract32(insn, 0, 5);
3599 int rn = extract32(insn, 5, 5);
3600 int rm = extract32(insn, 16, 5);
3601 int size = extract32(insn, 10, 2);
3602 int opcode = extract32(insn, 12, 4);
3603 bool is_store = !extract32(insn, 22, 1);
3604 bool is_postidx = extract32(insn, 23, 1);
3605 bool is_q = extract32(insn, 30, 1);
3606 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3607 MemOp endian = s->be_data;
3609 int total; /* total bytes */
3610 int elements; /* elements per vector */
3611 int rpt; /* num iterations */
3612 int selem; /* structure elements */
3613 int r;
3615 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3616 unallocated_encoding(s);
3617 return;
3620 if (!is_postidx && rm != 0) {
3621 unallocated_encoding(s);
3622 return;
3625 /* From the shared decode logic */
3626 switch (opcode) {
3627 case 0x0:
3628 rpt = 1;
3629 selem = 4;
3630 break;
3631 case 0x2:
3632 rpt = 4;
3633 selem = 1;
3634 break;
3635 case 0x4:
3636 rpt = 1;
3637 selem = 3;
3638 break;
3639 case 0x6:
3640 rpt = 3;
3641 selem = 1;
3642 break;
3643 case 0x7:
3644 rpt = 1;
3645 selem = 1;
3646 break;
3647 case 0x8:
3648 rpt = 1;
3649 selem = 2;
3650 break;
3651 case 0xa:
3652 rpt = 2;
3653 selem = 1;
3654 break;
3655 default:
3656 unallocated_encoding(s);
3657 return;
3660 if (size == 3 && !is_q && selem != 1) {
3661 /* reserved */
3662 unallocated_encoding(s);
3663 return;
3666 if (!fp_access_check(s)) {
3667 return;
3670 if (rn == 31) {
3671 gen_check_sp_alignment(s);
3674 /* For our purposes, bytes are always little-endian. */
3675 if (size == 0) {
3676 endian = MO_LE;
3679 total = rpt * selem * (is_q ? 16 : 8);
3680 tcg_rn = cpu_reg_sp(s, rn);
3683 * Issue the MTE check vs the logical repeat count, before we
3684 * promote consecutive little-endian elements below.
3686 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3687 size, total);
3690 * Consecutive little-endian elements from a single register
3691 * can be promoted to a larger little-endian operation.
3693 if (selem == 1 && endian == MO_LE) {
3694 size = 3;
3696 elements = (is_q ? 16 : 8) >> size;
3698 tcg_ebytes = tcg_const_i64(1 << size);
3699 for (r = 0; r < rpt; r++) {
3700 int e;
3701 for (e = 0; e < elements; e++) {
3702 int xs;
3703 for (xs = 0; xs < selem; xs++) {
3704 int tt = (rt + r + xs) % 32;
3705 if (is_store) {
3706 do_vec_st(s, tt, e, clean_addr, size, endian);
3707 } else {
3708 do_vec_ld(s, tt, e, clean_addr, size, endian);
3710 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3714 tcg_temp_free_i64(tcg_ebytes);
3716 if (!is_store) {
3717 /* For non-quad operations, setting a slice of the low
3718 * 64 bits of the register clears the high 64 bits (in
3719 * the ARM ARM pseudocode this is implicit in the fact
3720 * that 'rval' is a 64 bit wide variable).
3721 * For quad operations, we might still need to zero the
3722 * high bits of SVE.
3724 for (r = 0; r < rpt * selem; r++) {
3725 int tt = (rt + r) % 32;
3726 clear_vec_high(s, is_q, tt);
3730 if (is_postidx) {
3731 if (rm == 31) {
3732 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3733 } else {
3734 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3739 /* AdvSIMD load/store single structure
3741 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3742 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3743 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3744 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3746 * AdvSIMD load/store single structure (post-indexed)
3748 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3749 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3750 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3751 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3753 * Rt: first (or only) SIMD&FP register to be transferred
3754 * Rn: base address or SP
3755 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3756 * index = encoded in Q:S:size dependent on size
3758 * lane_size = encoded in R, opc
3759 * transfer width = encoded in opc, S, size
3761 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3763 int rt = extract32(insn, 0, 5);
3764 int rn = extract32(insn, 5, 5);
3765 int rm = extract32(insn, 16, 5);
3766 int size = extract32(insn, 10, 2);
3767 int S = extract32(insn, 12, 1);
3768 int opc = extract32(insn, 13, 3);
3769 int R = extract32(insn, 21, 1);
3770 int is_load = extract32(insn, 22, 1);
3771 int is_postidx = extract32(insn, 23, 1);
3772 int is_q = extract32(insn, 30, 1);
3774 int scale = extract32(opc, 1, 2);
3775 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3776 bool replicate = false;
3777 int index = is_q << 3 | S << 2 | size;
3778 int xs, total;
3779 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3781 if (extract32(insn, 31, 1)) {
3782 unallocated_encoding(s);
3783 return;
3785 if (!is_postidx && rm != 0) {
3786 unallocated_encoding(s);
3787 return;
3790 switch (scale) {
3791 case 3:
3792 if (!is_load || S) {
3793 unallocated_encoding(s);
3794 return;
3796 scale = size;
3797 replicate = true;
3798 break;
3799 case 0:
3800 break;
3801 case 1:
3802 if (extract32(size, 0, 1)) {
3803 unallocated_encoding(s);
3804 return;
3806 index >>= 1;
3807 break;
3808 case 2:
3809 if (extract32(size, 1, 1)) {
3810 unallocated_encoding(s);
3811 return;
3813 if (!extract32(size, 0, 1)) {
3814 index >>= 2;
3815 } else {
3816 if (S) {
3817 unallocated_encoding(s);
3818 return;
3820 index >>= 3;
3821 scale = 3;
3823 break;
3824 default:
3825 g_assert_not_reached();
3828 if (!fp_access_check(s)) {
3829 return;
3832 if (rn == 31) {
3833 gen_check_sp_alignment(s);
3836 total = selem << scale;
3837 tcg_rn = cpu_reg_sp(s, rn);
3839 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3840 scale, total);
3842 tcg_ebytes = tcg_const_i64(1 << scale);
3843 for (xs = 0; xs < selem; xs++) {
3844 if (replicate) {
3845 /* Load and replicate to all elements */
3846 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3848 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3849 get_mem_index(s), s->be_data + scale);
3850 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3851 (is_q + 1) * 8, vec_full_reg_size(s),
3852 tcg_tmp);
3853 tcg_temp_free_i64(tcg_tmp);
3854 } else {
3855 /* Load/store one element per register */
3856 if (is_load) {
3857 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3858 } else {
3859 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3862 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3863 rt = (rt + 1) % 32;
3865 tcg_temp_free_i64(tcg_ebytes);
3867 if (is_postidx) {
3868 if (rm == 31) {
3869 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3870 } else {
3871 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3877 * Load/Store memory tags
3879 * 31 30 29 24 22 21 12 10 5 0
3880 * +-----+-------------+-----+---+------+-----+------+------+
3881 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
3882 * +-----+-------------+-----+---+------+-----+------+------+
3884 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3886 int rt = extract32(insn, 0, 5);
3887 int rn = extract32(insn, 5, 5);
3888 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3889 int op2 = extract32(insn, 10, 2);
3890 int op1 = extract32(insn, 22, 2);
3891 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3892 int index = 0;
3893 TCGv_i64 addr, clean_addr, tcg_rt;
3895 /* We checked insn bits [29:24,21] in the caller. */
3896 if (extract32(insn, 30, 2) != 3) {
3897 goto do_unallocated;
3901 * @index is a tri-state variable which has 3 states:
3902 * < 0 : post-index, writeback
3903 * = 0 : signed offset
3904 * > 0 : pre-index, writeback
3906 switch (op1) {
3907 case 0:
3908 if (op2 != 0) {
3909 /* STG */
3910 index = op2 - 2;
3911 } else {
3912 /* STZGM */
3913 if (s->current_el == 0 || offset != 0) {
3914 goto do_unallocated;
3916 is_mult = is_zero = true;
3918 break;
3919 case 1:
3920 if (op2 != 0) {
3921 /* STZG */
3922 is_zero = true;
3923 index = op2 - 2;
3924 } else {
3925 /* LDG */
3926 is_load = true;
3928 break;
3929 case 2:
3930 if (op2 != 0) {
3931 /* ST2G */
3932 is_pair = true;
3933 index = op2 - 2;
3934 } else {
3935 /* STGM */
3936 if (s->current_el == 0 || offset != 0) {
3937 goto do_unallocated;
3939 is_mult = true;
3941 break;
3942 case 3:
3943 if (op2 != 0) {
3944 /* STZ2G */
3945 is_pair = is_zero = true;
3946 index = op2 - 2;
3947 } else {
3948 /* LDGM */
3949 if (s->current_el == 0 || offset != 0) {
3950 goto do_unallocated;
3952 is_mult = is_load = true;
3954 break;
3956 default:
3957 do_unallocated:
3958 unallocated_encoding(s);
3959 return;
3962 if (is_mult
3963 ? !dc_isar_feature(aa64_mte, s)
3964 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
3965 goto do_unallocated;
3968 if (rn == 31) {
3969 gen_check_sp_alignment(s);
3972 addr = read_cpu_reg_sp(s, rn, true);
3973 if (index >= 0) {
3974 /* pre-index or signed offset */
3975 tcg_gen_addi_i64(addr, addr, offset);
3978 if (is_mult) {
3979 tcg_rt = cpu_reg(s, rt);
3981 if (is_zero) {
3982 int size = 4 << s->dcz_blocksize;
3984 if (s->ata) {
3985 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
3988 * The non-tags portion of STZGM is mostly like DC_ZVA,
3989 * except the alignment happens before the access.
3991 clean_addr = clean_data_tbi(s, addr);
3992 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3993 gen_helper_dc_zva(cpu_env, clean_addr);
3994 } else if (s->ata) {
3995 if (is_load) {
3996 gen_helper_ldgm(tcg_rt, cpu_env, addr);
3997 } else {
3998 gen_helper_stgm(cpu_env, addr, tcg_rt);
4000 } else {
4001 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4002 int size = 4 << GMID_EL1_BS;
4004 clean_addr = clean_data_tbi(s, addr);
4005 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4006 gen_probe_access(s, clean_addr, acc, size);
4008 if (is_load) {
4009 /* The result tags are zeros. */
4010 tcg_gen_movi_i64(tcg_rt, 0);
4013 return;
4016 if (is_load) {
4017 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4018 tcg_rt = cpu_reg(s, rt);
4019 if (s->ata) {
4020 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4021 } else {
4022 clean_addr = clean_data_tbi(s, addr);
4023 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4024 gen_address_with_allocation_tag0(tcg_rt, addr);
4026 } else {
4027 tcg_rt = cpu_reg_sp(s, rt);
4028 if (!s->ata) {
4030 * For STG and ST2G, we need to check alignment and probe memory.
4031 * TODO: For STZG and STZ2G, we could rely on the stores below,
4032 * at least for system mode; user-only won't enforce alignment.
4034 if (is_pair) {
4035 gen_helper_st2g_stub(cpu_env, addr);
4036 } else {
4037 gen_helper_stg_stub(cpu_env, addr);
4039 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4040 if (is_pair) {
4041 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4042 } else {
4043 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4045 } else {
4046 if (is_pair) {
4047 gen_helper_st2g(cpu_env, addr, tcg_rt);
4048 } else {
4049 gen_helper_stg(cpu_env, addr, tcg_rt);
4054 if (is_zero) {
4055 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4056 TCGv_i64 tcg_zero = tcg_const_i64(0);
4057 int mem_index = get_mem_index(s);
4058 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4060 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4061 MO_Q | MO_ALIGN_16);
4062 for (i = 8; i < n; i += 8) {
4063 tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4064 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_Q);
4066 tcg_temp_free_i64(tcg_zero);
4069 if (index != 0) {
4070 /* pre-index or post-index */
4071 if (index < 0) {
4072 /* post-index */
4073 tcg_gen_addi_i64(addr, addr, offset);
4075 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4079 /* Loads and stores */
4080 static void disas_ldst(DisasContext *s, uint32_t insn)
4082 switch (extract32(insn, 24, 6)) {
4083 case 0x08: /* Load/store exclusive */
4084 disas_ldst_excl(s, insn);
4085 break;
4086 case 0x18: case 0x1c: /* Load register (literal) */
4087 disas_ld_lit(s, insn);
4088 break;
4089 case 0x28: case 0x29:
4090 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4091 disas_ldst_pair(s, insn);
4092 break;
4093 case 0x38: case 0x39:
4094 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4095 disas_ldst_reg(s, insn);
4096 break;
4097 case 0x0c: /* AdvSIMD load/store multiple structures */
4098 disas_ldst_multiple_struct(s, insn);
4099 break;
4100 case 0x0d: /* AdvSIMD load/store single structure */
4101 disas_ldst_single_struct(s, insn);
4102 break;
4103 case 0x19:
4104 if (extract32(insn, 21, 1) != 0) {
4105 disas_ldst_tag(s, insn);
4106 } else if (extract32(insn, 10, 2) == 0) {
4107 disas_ldst_ldapr_stlr(s, insn);
4108 } else {
4109 unallocated_encoding(s);
4111 break;
4112 default:
4113 unallocated_encoding(s);
4114 break;
4118 /* PC-rel. addressing
4119 * 31 30 29 28 24 23 5 4 0
4120 * +----+-------+-----------+-------------------+------+
4121 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4122 * +----+-------+-----------+-------------------+------+
4124 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4126 unsigned int page, rd;
4127 uint64_t base;
4128 uint64_t offset;
4130 page = extract32(insn, 31, 1);
4131 /* SignExtend(immhi:immlo) -> offset */
4132 offset = sextract64(insn, 5, 19);
4133 offset = offset << 2 | extract32(insn, 29, 2);
4134 rd = extract32(insn, 0, 5);
4135 base = s->pc_curr;
4137 if (page) {
4138 /* ADRP (page based) */
4139 base &= ~0xfff;
4140 offset <<= 12;
4143 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
4147 * Add/subtract (immediate)
4149 * 31 30 29 28 23 22 21 10 9 5 4 0
4150 * +--+--+--+-------------+--+-------------+-----+-----+
4151 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4152 * +--+--+--+-------------+--+-------------+-----+-----+
4154 * sf: 0 -> 32bit, 1 -> 64bit
4155 * op: 0 -> add , 1 -> sub
4156 * S: 1 -> set flags
4157 * sh: 1 -> LSL imm by 12
4159 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4161 int rd = extract32(insn, 0, 5);
4162 int rn = extract32(insn, 5, 5);
4163 uint64_t imm = extract32(insn, 10, 12);
4164 bool shift = extract32(insn, 22, 1);
4165 bool setflags = extract32(insn, 29, 1);
4166 bool sub_op = extract32(insn, 30, 1);
4167 bool is_64bit = extract32(insn, 31, 1);
4169 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4170 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4171 TCGv_i64 tcg_result;
4173 if (shift) {
4174 imm <<= 12;
4177 tcg_result = tcg_temp_new_i64();
4178 if (!setflags) {
4179 if (sub_op) {
4180 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4181 } else {
4182 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4184 } else {
4185 TCGv_i64 tcg_imm = tcg_const_i64(imm);
4186 if (sub_op) {
4187 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4188 } else {
4189 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4191 tcg_temp_free_i64(tcg_imm);
4194 if (is_64bit) {
4195 tcg_gen_mov_i64(tcg_rd, tcg_result);
4196 } else {
4197 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4200 tcg_temp_free_i64(tcg_result);
4204 * Add/subtract (immediate, with tags)
4206 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4207 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4208 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4209 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4211 * op: 0 -> add, 1 -> sub
4213 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4215 int rd = extract32(insn, 0, 5);
4216 int rn = extract32(insn, 5, 5);
4217 int uimm4 = extract32(insn, 10, 4);
4218 int uimm6 = extract32(insn, 16, 6);
4219 bool sub_op = extract32(insn, 30, 1);
4220 TCGv_i64 tcg_rn, tcg_rd;
4221 int imm;
4223 /* Test all of sf=1, S=0, o2=0, o3=0. */
4224 if ((insn & 0xa040c000u) != 0x80000000u ||
4225 !dc_isar_feature(aa64_mte_insn_reg, s)) {
4226 unallocated_encoding(s);
4227 return;
4230 imm = uimm6 << LOG2_TAG_GRANULE;
4231 if (sub_op) {
4232 imm = -imm;
4235 tcg_rn = cpu_reg_sp(s, rn);
4236 tcg_rd = cpu_reg_sp(s, rd);
4238 if (s->ata) {
4239 TCGv_i32 offset = tcg_const_i32(imm);
4240 TCGv_i32 tag_offset = tcg_const_i32(uimm4);
4242 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, offset, tag_offset);
4243 tcg_temp_free_i32(tag_offset);
4244 tcg_temp_free_i32(offset);
4245 } else {
4246 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4247 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4251 /* The input should be a value in the bottom e bits (with higher
4252 * bits zero); returns that value replicated into every element
4253 * of size e in a 64 bit integer.
4255 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4257 assert(e != 0);
4258 while (e < 64) {
4259 mask |= mask << e;
4260 e *= 2;
4262 return mask;
4265 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4266 static inline uint64_t bitmask64(unsigned int length)
4268 assert(length > 0 && length <= 64);
4269 return ~0ULL >> (64 - length);
4272 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4273 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4274 * value (ie should cause a guest UNDEF exception), and true if they are
4275 * valid, in which case the decoded bit pattern is written to result.
4277 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4278 unsigned int imms, unsigned int immr)
4280 uint64_t mask;
4281 unsigned e, levels, s, r;
4282 int len;
4284 assert(immn < 2 && imms < 64 && immr < 64);
4286 /* The bit patterns we create here are 64 bit patterns which
4287 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4288 * 64 bits each. Each element contains the same value: a run
4289 * of between 1 and e-1 non-zero bits, rotated within the
4290 * element by between 0 and e-1 bits.
4292 * The element size and run length are encoded into immn (1 bit)
4293 * and imms (6 bits) as follows:
4294 * 64 bit elements: immn = 1, imms = <length of run - 1>
4295 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4296 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4297 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4298 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4299 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4300 * Notice that immn = 0, imms = 11111x is the only combination
4301 * not covered by one of the above options; this is reserved.
4302 * Further, <length of run - 1> all-ones is a reserved pattern.
4304 * In all cases the rotation is by immr % e (and immr is 6 bits).
4307 /* First determine the element size */
4308 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4309 if (len < 1) {
4310 /* This is the immn == 0, imms == 0x11111x case */
4311 return false;
4313 e = 1 << len;
4315 levels = e - 1;
4316 s = imms & levels;
4317 r = immr & levels;
4319 if (s == levels) {
4320 /* <length of run - 1> mustn't be all-ones. */
4321 return false;
4324 /* Create the value of one element: s+1 set bits rotated
4325 * by r within the element (which is e bits wide)...
4327 mask = bitmask64(s + 1);
4328 if (r) {
4329 mask = (mask >> r) | (mask << (e - r));
4330 mask &= bitmask64(e);
4332 /* ...then replicate the element over the whole 64 bit value */
4333 mask = bitfield_replicate(mask, e);
4334 *result = mask;
4335 return true;
4338 /* Logical (immediate)
4339 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4340 * +----+-----+-------------+---+------+------+------+------+
4341 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4342 * +----+-----+-------------+---+------+------+------+------+
4344 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4346 unsigned int sf, opc, is_n, immr, imms, rn, rd;
4347 TCGv_i64 tcg_rd, tcg_rn;
4348 uint64_t wmask;
4349 bool is_and = false;
4351 sf = extract32(insn, 31, 1);
4352 opc = extract32(insn, 29, 2);
4353 is_n = extract32(insn, 22, 1);
4354 immr = extract32(insn, 16, 6);
4355 imms = extract32(insn, 10, 6);
4356 rn = extract32(insn, 5, 5);
4357 rd = extract32(insn, 0, 5);
4359 if (!sf && is_n) {
4360 unallocated_encoding(s);
4361 return;
4364 if (opc == 0x3) { /* ANDS */
4365 tcg_rd = cpu_reg(s, rd);
4366 } else {
4367 tcg_rd = cpu_reg_sp(s, rd);
4369 tcg_rn = cpu_reg(s, rn);
4371 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4372 /* some immediate field values are reserved */
4373 unallocated_encoding(s);
4374 return;
4377 if (!sf) {
4378 wmask &= 0xffffffff;
4381 switch (opc) {
4382 case 0x3: /* ANDS */
4383 case 0x0: /* AND */
4384 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4385 is_and = true;
4386 break;
4387 case 0x1: /* ORR */
4388 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4389 break;
4390 case 0x2: /* EOR */
4391 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4392 break;
4393 default:
4394 assert(FALSE); /* must handle all above */
4395 break;
4398 if (!sf && !is_and) {
4399 /* zero extend final result; we know we can skip this for AND
4400 * since the immediate had the high 32 bits clear.
4402 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4405 if (opc == 3) { /* ANDS */
4406 gen_logic_CC(sf, tcg_rd);
4411 * Move wide (immediate)
4413 * 31 30 29 28 23 22 21 20 5 4 0
4414 * +--+-----+-------------+-----+----------------+------+
4415 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4416 * +--+-----+-------------+-----+----------------+------+
4418 * sf: 0 -> 32 bit, 1 -> 64 bit
4419 * opc: 00 -> N, 10 -> Z, 11 -> K
4420 * hw: shift/16 (0,16, and sf only 32, 48)
4422 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4424 int rd = extract32(insn, 0, 5);
4425 uint64_t imm = extract32(insn, 5, 16);
4426 int sf = extract32(insn, 31, 1);
4427 int opc = extract32(insn, 29, 2);
4428 int pos = extract32(insn, 21, 2) << 4;
4429 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4430 TCGv_i64 tcg_imm;
4432 if (!sf && (pos >= 32)) {
4433 unallocated_encoding(s);
4434 return;
4437 switch (opc) {
4438 case 0: /* MOVN */
4439 case 2: /* MOVZ */
4440 imm <<= pos;
4441 if (opc == 0) {
4442 imm = ~imm;
4444 if (!sf) {
4445 imm &= 0xffffffffu;
4447 tcg_gen_movi_i64(tcg_rd, imm);
4448 break;
4449 case 3: /* MOVK */
4450 tcg_imm = tcg_const_i64(imm);
4451 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
4452 tcg_temp_free_i64(tcg_imm);
4453 if (!sf) {
4454 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4456 break;
4457 default:
4458 unallocated_encoding(s);
4459 break;
4463 /* Bitfield
4464 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4465 * +----+-----+-------------+---+------+------+------+------+
4466 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4467 * +----+-----+-------------+---+------+------+------+------+
4469 static void disas_bitfield(DisasContext *s, uint32_t insn)
4471 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4472 TCGv_i64 tcg_rd, tcg_tmp;
4474 sf = extract32(insn, 31, 1);
4475 opc = extract32(insn, 29, 2);
4476 n = extract32(insn, 22, 1);
4477 ri = extract32(insn, 16, 6);
4478 si = extract32(insn, 10, 6);
4479 rn = extract32(insn, 5, 5);
4480 rd = extract32(insn, 0, 5);
4481 bitsize = sf ? 64 : 32;
4483 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4484 unallocated_encoding(s);
4485 return;
4488 tcg_rd = cpu_reg(s, rd);
4490 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4491 to be smaller than bitsize, we'll never reference data outside the
4492 low 32-bits anyway. */
4493 tcg_tmp = read_cpu_reg(s, rn, 1);
4495 /* Recognize simple(r) extractions. */
4496 if (si >= ri) {
4497 /* Wd<s-r:0> = Wn<s:r> */
4498 len = (si - ri) + 1;
4499 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4500 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4501 goto done;
4502 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4503 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4504 return;
4506 /* opc == 1, BFXIL fall through to deposit */
4507 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4508 pos = 0;
4509 } else {
4510 /* Handle the ri > si case with a deposit
4511 * Wd<32+s-r,32-r> = Wn<s:0>
4513 len = si + 1;
4514 pos = (bitsize - ri) & (bitsize - 1);
4517 if (opc == 0 && len < ri) {
4518 /* SBFM: sign extend the destination field from len to fill
4519 the balance of the word. Let the deposit below insert all
4520 of those sign bits. */
4521 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4522 len = ri;
4525 if (opc == 1) { /* BFM, BFXIL */
4526 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4527 } else {
4528 /* SBFM or UBFM: We start with zero, and we haven't modified
4529 any bits outside bitsize, therefore the zero-extension
4530 below is unneeded. */
4531 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4532 return;
4535 done:
4536 if (!sf) { /* zero extend final result */
4537 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4541 /* Extract
4542 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4543 * +----+------+-------------+---+----+------+--------+------+------+
4544 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4545 * +----+------+-------------+---+----+------+--------+------+------+
4547 static void disas_extract(DisasContext *s, uint32_t insn)
4549 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4551 sf = extract32(insn, 31, 1);
4552 n = extract32(insn, 22, 1);
4553 rm = extract32(insn, 16, 5);
4554 imm = extract32(insn, 10, 6);
4555 rn = extract32(insn, 5, 5);
4556 rd = extract32(insn, 0, 5);
4557 op21 = extract32(insn, 29, 2);
4558 op0 = extract32(insn, 21, 1);
4559 bitsize = sf ? 64 : 32;
4561 if (sf != n || op21 || op0 || imm >= bitsize) {
4562 unallocated_encoding(s);
4563 } else {
4564 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4566 tcg_rd = cpu_reg(s, rd);
4568 if (unlikely(imm == 0)) {
4569 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4570 * so an extract from bit 0 is a special case.
4572 if (sf) {
4573 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4574 } else {
4575 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4577 } else {
4578 tcg_rm = cpu_reg(s, rm);
4579 tcg_rn = cpu_reg(s, rn);
4581 if (sf) {
4582 /* Specialization to ROR happens in EXTRACT2. */
4583 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4584 } else {
4585 TCGv_i32 t0 = tcg_temp_new_i32();
4587 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4588 if (rm == rn) {
4589 tcg_gen_rotri_i32(t0, t0, imm);
4590 } else {
4591 TCGv_i32 t1 = tcg_temp_new_i32();
4592 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4593 tcg_gen_extract2_i32(t0, t0, t1, imm);
4594 tcg_temp_free_i32(t1);
4596 tcg_gen_extu_i32_i64(tcg_rd, t0);
4597 tcg_temp_free_i32(t0);
4603 /* Data processing - immediate */
4604 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4606 switch (extract32(insn, 23, 6)) {
4607 case 0x20: case 0x21: /* PC-rel. addressing */
4608 disas_pc_rel_adr(s, insn);
4609 break;
4610 case 0x22: /* Add/subtract (immediate) */
4611 disas_add_sub_imm(s, insn);
4612 break;
4613 case 0x23: /* Add/subtract (immediate, with tags) */
4614 disas_add_sub_imm_with_tags(s, insn);
4615 break;
4616 case 0x24: /* Logical (immediate) */
4617 disas_logic_imm(s, insn);
4618 break;
4619 case 0x25: /* Move wide (immediate) */
4620 disas_movw_imm(s, insn);
4621 break;
4622 case 0x26: /* Bitfield */
4623 disas_bitfield(s, insn);
4624 break;
4625 case 0x27: /* Extract */
4626 disas_extract(s, insn);
4627 break;
4628 default:
4629 unallocated_encoding(s);
4630 break;
4634 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4635 * Note that it is the caller's responsibility to ensure that the
4636 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4637 * mandated semantics for out of range shifts.
4639 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4640 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4642 switch (shift_type) {
4643 case A64_SHIFT_TYPE_LSL:
4644 tcg_gen_shl_i64(dst, src, shift_amount);
4645 break;
4646 case A64_SHIFT_TYPE_LSR:
4647 tcg_gen_shr_i64(dst, src, shift_amount);
4648 break;
4649 case A64_SHIFT_TYPE_ASR:
4650 if (!sf) {
4651 tcg_gen_ext32s_i64(dst, src);
4653 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4654 break;
4655 case A64_SHIFT_TYPE_ROR:
4656 if (sf) {
4657 tcg_gen_rotr_i64(dst, src, shift_amount);
4658 } else {
4659 TCGv_i32 t0, t1;
4660 t0 = tcg_temp_new_i32();
4661 t1 = tcg_temp_new_i32();
4662 tcg_gen_extrl_i64_i32(t0, src);
4663 tcg_gen_extrl_i64_i32(t1, shift_amount);
4664 tcg_gen_rotr_i32(t0, t0, t1);
4665 tcg_gen_extu_i32_i64(dst, t0);
4666 tcg_temp_free_i32(t0);
4667 tcg_temp_free_i32(t1);
4669 break;
4670 default:
4671 assert(FALSE); /* all shift types should be handled */
4672 break;
4675 if (!sf) { /* zero extend final result */
4676 tcg_gen_ext32u_i64(dst, dst);
4680 /* Shift a TCGv src by immediate, put result in dst.
4681 * The shift amount must be in range (this should always be true as the
4682 * relevant instructions will UNDEF on bad shift immediates).
4684 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4685 enum a64_shift_type shift_type, unsigned int shift_i)
4687 assert(shift_i < (sf ? 64 : 32));
4689 if (shift_i == 0) {
4690 tcg_gen_mov_i64(dst, src);
4691 } else {
4692 TCGv_i64 shift_const;
4694 shift_const = tcg_const_i64(shift_i);
4695 shift_reg(dst, src, sf, shift_type, shift_const);
4696 tcg_temp_free_i64(shift_const);
4700 /* Logical (shifted register)
4701 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4702 * +----+-----+-----------+-------+---+------+--------+------+------+
4703 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4704 * +----+-----+-----------+-------+---+------+--------+------+------+
4706 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4708 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4709 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4711 sf = extract32(insn, 31, 1);
4712 opc = extract32(insn, 29, 2);
4713 shift_type = extract32(insn, 22, 2);
4714 invert = extract32(insn, 21, 1);
4715 rm = extract32(insn, 16, 5);
4716 shift_amount = extract32(insn, 10, 6);
4717 rn = extract32(insn, 5, 5);
4718 rd = extract32(insn, 0, 5);
4720 if (!sf && (shift_amount & (1 << 5))) {
4721 unallocated_encoding(s);
4722 return;
4725 tcg_rd = cpu_reg(s, rd);
4727 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4728 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4729 * register-register MOV and MVN, so it is worth special casing.
4731 tcg_rm = cpu_reg(s, rm);
4732 if (invert) {
4733 tcg_gen_not_i64(tcg_rd, tcg_rm);
4734 if (!sf) {
4735 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4737 } else {
4738 if (sf) {
4739 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4740 } else {
4741 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4744 return;
4747 tcg_rm = read_cpu_reg(s, rm, sf);
4749 if (shift_amount) {
4750 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4753 tcg_rn = cpu_reg(s, rn);
4755 switch (opc | (invert << 2)) {
4756 case 0: /* AND */
4757 case 3: /* ANDS */
4758 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4759 break;
4760 case 1: /* ORR */
4761 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4762 break;
4763 case 2: /* EOR */
4764 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4765 break;
4766 case 4: /* BIC */
4767 case 7: /* BICS */
4768 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4769 break;
4770 case 5: /* ORN */
4771 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4772 break;
4773 case 6: /* EON */
4774 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4775 break;
4776 default:
4777 assert(FALSE);
4778 break;
4781 if (!sf) {
4782 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4785 if (opc == 3) {
4786 gen_logic_CC(sf, tcg_rd);
4791 * Add/subtract (extended register)
4793 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4794 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4795 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4796 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4798 * sf: 0 -> 32bit, 1 -> 64bit
4799 * op: 0 -> add , 1 -> sub
4800 * S: 1 -> set flags
4801 * opt: 00
4802 * option: extension type (see DecodeRegExtend)
4803 * imm3: optional shift to Rm
4805 * Rd = Rn + LSL(extend(Rm), amount)
4807 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4809 int rd = extract32(insn, 0, 5);
4810 int rn = extract32(insn, 5, 5);
4811 int imm3 = extract32(insn, 10, 3);
4812 int option = extract32(insn, 13, 3);
4813 int rm = extract32(insn, 16, 5);
4814 int opt = extract32(insn, 22, 2);
4815 bool setflags = extract32(insn, 29, 1);
4816 bool sub_op = extract32(insn, 30, 1);
4817 bool sf = extract32(insn, 31, 1);
4819 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4820 TCGv_i64 tcg_rd;
4821 TCGv_i64 tcg_result;
4823 if (imm3 > 4 || opt != 0) {
4824 unallocated_encoding(s);
4825 return;
4828 /* non-flag setting ops may use SP */
4829 if (!setflags) {
4830 tcg_rd = cpu_reg_sp(s, rd);
4831 } else {
4832 tcg_rd = cpu_reg(s, rd);
4834 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4836 tcg_rm = read_cpu_reg(s, rm, sf);
4837 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4839 tcg_result = tcg_temp_new_i64();
4841 if (!setflags) {
4842 if (sub_op) {
4843 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4844 } else {
4845 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4847 } else {
4848 if (sub_op) {
4849 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4850 } else {
4851 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4855 if (sf) {
4856 tcg_gen_mov_i64(tcg_rd, tcg_result);
4857 } else {
4858 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4861 tcg_temp_free_i64(tcg_result);
4865 * Add/subtract (shifted register)
4867 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4868 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4869 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4870 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4872 * sf: 0 -> 32bit, 1 -> 64bit
4873 * op: 0 -> add , 1 -> sub
4874 * S: 1 -> set flags
4875 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4876 * imm6: Shift amount to apply to Rm before the add/sub
4878 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4880 int rd = extract32(insn, 0, 5);
4881 int rn = extract32(insn, 5, 5);
4882 int imm6 = extract32(insn, 10, 6);
4883 int rm = extract32(insn, 16, 5);
4884 int shift_type = extract32(insn, 22, 2);
4885 bool setflags = extract32(insn, 29, 1);
4886 bool sub_op = extract32(insn, 30, 1);
4887 bool sf = extract32(insn, 31, 1);
4889 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4890 TCGv_i64 tcg_rn, tcg_rm;
4891 TCGv_i64 tcg_result;
4893 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4894 unallocated_encoding(s);
4895 return;
4898 tcg_rn = read_cpu_reg(s, rn, sf);
4899 tcg_rm = read_cpu_reg(s, rm, sf);
4901 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4903 tcg_result = tcg_temp_new_i64();
4905 if (!setflags) {
4906 if (sub_op) {
4907 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4908 } else {
4909 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4911 } else {
4912 if (sub_op) {
4913 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4914 } else {
4915 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4919 if (sf) {
4920 tcg_gen_mov_i64(tcg_rd, tcg_result);
4921 } else {
4922 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4925 tcg_temp_free_i64(tcg_result);
4928 /* Data-processing (3 source)
4930 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4931 * +--+------+-----------+------+------+----+------+------+------+
4932 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4933 * +--+------+-----------+------+------+----+------+------+------+
4935 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4937 int rd = extract32(insn, 0, 5);
4938 int rn = extract32(insn, 5, 5);
4939 int ra = extract32(insn, 10, 5);
4940 int rm = extract32(insn, 16, 5);
4941 int op_id = (extract32(insn, 29, 3) << 4) |
4942 (extract32(insn, 21, 3) << 1) |
4943 extract32(insn, 15, 1);
4944 bool sf = extract32(insn, 31, 1);
4945 bool is_sub = extract32(op_id, 0, 1);
4946 bool is_high = extract32(op_id, 2, 1);
4947 bool is_signed = false;
4948 TCGv_i64 tcg_op1;
4949 TCGv_i64 tcg_op2;
4950 TCGv_i64 tcg_tmp;
4952 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4953 switch (op_id) {
4954 case 0x42: /* SMADDL */
4955 case 0x43: /* SMSUBL */
4956 case 0x44: /* SMULH */
4957 is_signed = true;
4958 break;
4959 case 0x0: /* MADD (32bit) */
4960 case 0x1: /* MSUB (32bit) */
4961 case 0x40: /* MADD (64bit) */
4962 case 0x41: /* MSUB (64bit) */
4963 case 0x4a: /* UMADDL */
4964 case 0x4b: /* UMSUBL */
4965 case 0x4c: /* UMULH */
4966 break;
4967 default:
4968 unallocated_encoding(s);
4969 return;
4972 if (is_high) {
4973 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4974 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4975 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4976 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4978 if (is_signed) {
4979 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4980 } else {
4981 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4984 tcg_temp_free_i64(low_bits);
4985 return;
4988 tcg_op1 = tcg_temp_new_i64();
4989 tcg_op2 = tcg_temp_new_i64();
4990 tcg_tmp = tcg_temp_new_i64();
4992 if (op_id < 0x42) {
4993 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4994 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4995 } else {
4996 if (is_signed) {
4997 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4998 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4999 } else {
5000 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5001 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5005 if (ra == 31 && !is_sub) {
5006 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5007 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5008 } else {
5009 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5010 if (is_sub) {
5011 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5012 } else {
5013 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5017 if (!sf) {
5018 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5021 tcg_temp_free_i64(tcg_op1);
5022 tcg_temp_free_i64(tcg_op2);
5023 tcg_temp_free_i64(tcg_tmp);
5026 /* Add/subtract (with carry)
5027 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
5028 * +--+--+--+------------------------+------+-------------+------+-----+
5029 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
5030 * +--+--+--+------------------------+------+-------------+------+-----+
5033 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5035 unsigned int sf, op, setflags, rm, rn, rd;
5036 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5038 sf = extract32(insn, 31, 1);
5039 op = extract32(insn, 30, 1);
5040 setflags = extract32(insn, 29, 1);
5041 rm = extract32(insn, 16, 5);
5042 rn = extract32(insn, 5, 5);
5043 rd = extract32(insn, 0, 5);
5045 tcg_rd = cpu_reg(s, rd);
5046 tcg_rn = cpu_reg(s, rn);
5048 if (op) {
5049 tcg_y = new_tmp_a64(s);
5050 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5051 } else {
5052 tcg_y = cpu_reg(s, rm);
5055 if (setflags) {
5056 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5057 } else {
5058 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5063 * Rotate right into flags
5064 * 31 30 29 21 15 10 5 4 0
5065 * +--+--+--+-----------------+--------+-----------+------+--+------+
5066 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5067 * +--+--+--+-----------------+--------+-----------+------+--+------+
5069 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5071 int mask = extract32(insn, 0, 4);
5072 int o2 = extract32(insn, 4, 1);
5073 int rn = extract32(insn, 5, 5);
5074 int imm6 = extract32(insn, 15, 6);
5075 int sf_op_s = extract32(insn, 29, 3);
5076 TCGv_i64 tcg_rn;
5077 TCGv_i32 nzcv;
5079 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5080 unallocated_encoding(s);
5081 return;
5084 tcg_rn = read_cpu_reg(s, rn, 1);
5085 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5087 nzcv = tcg_temp_new_i32();
5088 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5090 if (mask & 8) { /* N */
5091 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5093 if (mask & 4) { /* Z */
5094 tcg_gen_not_i32(cpu_ZF, nzcv);
5095 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5097 if (mask & 2) { /* C */
5098 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5100 if (mask & 1) { /* V */
5101 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5104 tcg_temp_free_i32(nzcv);
5108 * Evaluate into flags
5109 * 31 30 29 21 15 14 10 5 4 0
5110 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5111 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5112 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5114 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5116 int o3_mask = extract32(insn, 0, 5);
5117 int rn = extract32(insn, 5, 5);
5118 int o2 = extract32(insn, 15, 6);
5119 int sz = extract32(insn, 14, 1);
5120 int sf_op_s = extract32(insn, 29, 3);
5121 TCGv_i32 tmp;
5122 int shift;
5124 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5125 !dc_isar_feature(aa64_condm_4, s)) {
5126 unallocated_encoding(s);
5127 return;
5129 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5131 tmp = tcg_temp_new_i32();
5132 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5133 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5134 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5135 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5136 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5137 tcg_temp_free_i32(tmp);
5140 /* Conditional compare (immediate / register)
5141 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5142 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5143 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5144 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5145 * [1] y [0] [0]
5147 static void disas_cc(DisasContext *s, uint32_t insn)
5149 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5150 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5151 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5152 DisasCompare c;
5154 if (!extract32(insn, 29, 1)) {
5155 unallocated_encoding(s);
5156 return;
5158 if (insn & (1 << 10 | 1 << 4)) {
5159 unallocated_encoding(s);
5160 return;
5162 sf = extract32(insn, 31, 1);
5163 op = extract32(insn, 30, 1);
5164 is_imm = extract32(insn, 11, 1);
5165 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5166 cond = extract32(insn, 12, 4);
5167 rn = extract32(insn, 5, 5);
5168 nzcv = extract32(insn, 0, 4);
5170 /* Set T0 = !COND. */
5171 tcg_t0 = tcg_temp_new_i32();
5172 arm_test_cc(&c, cond);
5173 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5174 arm_free_cc(&c);
5176 /* Load the arguments for the new comparison. */
5177 if (is_imm) {
5178 tcg_y = new_tmp_a64(s);
5179 tcg_gen_movi_i64(tcg_y, y);
5180 } else {
5181 tcg_y = cpu_reg(s, y);
5183 tcg_rn = cpu_reg(s, rn);
5185 /* Set the flags for the new comparison. */
5186 tcg_tmp = tcg_temp_new_i64();
5187 if (op) {
5188 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5189 } else {
5190 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5192 tcg_temp_free_i64(tcg_tmp);
5194 /* If COND was false, force the flags to #nzcv. Compute two masks
5195 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5196 * For tcg hosts that support ANDC, we can make do with just T1.
5197 * In either case, allow the tcg optimizer to delete any unused mask.
5199 tcg_t1 = tcg_temp_new_i32();
5200 tcg_t2 = tcg_temp_new_i32();
5201 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5202 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5204 if (nzcv & 8) { /* N */
5205 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5206 } else {
5207 if (TCG_TARGET_HAS_andc_i32) {
5208 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5209 } else {
5210 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5213 if (nzcv & 4) { /* Z */
5214 if (TCG_TARGET_HAS_andc_i32) {
5215 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5216 } else {
5217 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5219 } else {
5220 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5222 if (nzcv & 2) { /* C */
5223 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5224 } else {
5225 if (TCG_TARGET_HAS_andc_i32) {
5226 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5227 } else {
5228 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5231 if (nzcv & 1) { /* V */
5232 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5233 } else {
5234 if (TCG_TARGET_HAS_andc_i32) {
5235 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5236 } else {
5237 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5240 tcg_temp_free_i32(tcg_t0);
5241 tcg_temp_free_i32(tcg_t1);
5242 tcg_temp_free_i32(tcg_t2);
5245 /* Conditional select
5246 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5247 * +----+----+---+-----------------+------+------+-----+------+------+
5248 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5249 * +----+----+---+-----------------+------+------+-----+------+------+
5251 static void disas_cond_select(DisasContext *s, uint32_t insn)
5253 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5254 TCGv_i64 tcg_rd, zero;
5255 DisasCompare64 c;
5257 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5258 /* S == 1 or op2<1> == 1 */
5259 unallocated_encoding(s);
5260 return;
5262 sf = extract32(insn, 31, 1);
5263 else_inv = extract32(insn, 30, 1);
5264 rm = extract32(insn, 16, 5);
5265 cond = extract32(insn, 12, 4);
5266 else_inc = extract32(insn, 10, 1);
5267 rn = extract32(insn, 5, 5);
5268 rd = extract32(insn, 0, 5);
5270 tcg_rd = cpu_reg(s, rd);
5272 a64_test_cc(&c, cond);
5273 zero = tcg_const_i64(0);
5275 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5276 /* CSET & CSETM. */
5277 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5278 if (else_inv) {
5279 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5281 } else {
5282 TCGv_i64 t_true = cpu_reg(s, rn);
5283 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5284 if (else_inv && else_inc) {
5285 tcg_gen_neg_i64(t_false, t_false);
5286 } else if (else_inv) {
5287 tcg_gen_not_i64(t_false, t_false);
5288 } else if (else_inc) {
5289 tcg_gen_addi_i64(t_false, t_false, 1);
5291 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5294 tcg_temp_free_i64(zero);
5295 a64_free_cc(&c);
5297 if (!sf) {
5298 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5302 static void handle_clz(DisasContext *s, unsigned int sf,
5303 unsigned int rn, unsigned int rd)
5305 TCGv_i64 tcg_rd, tcg_rn;
5306 tcg_rd = cpu_reg(s, rd);
5307 tcg_rn = cpu_reg(s, rn);
5309 if (sf) {
5310 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5311 } else {
5312 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5313 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5314 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5315 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5316 tcg_temp_free_i32(tcg_tmp32);
5320 static void handle_cls(DisasContext *s, unsigned int sf,
5321 unsigned int rn, unsigned int rd)
5323 TCGv_i64 tcg_rd, tcg_rn;
5324 tcg_rd = cpu_reg(s, rd);
5325 tcg_rn = cpu_reg(s, rn);
5327 if (sf) {
5328 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5329 } else {
5330 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5331 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5332 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5333 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5334 tcg_temp_free_i32(tcg_tmp32);
5338 static void handle_rbit(DisasContext *s, unsigned int sf,
5339 unsigned int rn, unsigned int rd)
5341 TCGv_i64 tcg_rd, tcg_rn;
5342 tcg_rd = cpu_reg(s, rd);
5343 tcg_rn = cpu_reg(s, rn);
5345 if (sf) {
5346 gen_helper_rbit64(tcg_rd, tcg_rn);
5347 } else {
5348 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5349 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5350 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5351 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5352 tcg_temp_free_i32(tcg_tmp32);
5356 /* REV with sf==1, opcode==3 ("REV64") */
5357 static void handle_rev64(DisasContext *s, unsigned int sf,
5358 unsigned int rn, unsigned int rd)
5360 if (!sf) {
5361 unallocated_encoding(s);
5362 return;
5364 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5367 /* REV with sf==0, opcode==2
5368 * REV32 (sf==1, opcode==2)
5370 static void handle_rev32(DisasContext *s, unsigned int sf,
5371 unsigned int rn, unsigned int rd)
5373 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5375 if (sf) {
5376 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5377 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5379 /* bswap32_i64 requires zero high word */
5380 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
5381 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
5382 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
5383 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
5384 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
5386 tcg_temp_free_i64(tcg_tmp);
5387 } else {
5388 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
5389 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
5393 /* REV16 (opcode==1) */
5394 static void handle_rev16(DisasContext *s, unsigned int sf,
5395 unsigned int rn, unsigned int rd)
5397 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5398 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5399 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5400 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5402 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5403 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5404 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5405 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5406 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5408 tcg_temp_free_i64(mask);
5409 tcg_temp_free_i64(tcg_tmp);
5412 /* Data-processing (1 source)
5413 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5414 * +----+---+---+-----------------+---------+--------+------+------+
5415 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5416 * +----+---+---+-----------------+---------+--------+------+------+
5418 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5420 unsigned int sf, opcode, opcode2, rn, rd;
5421 TCGv_i64 tcg_rd;
5423 if (extract32(insn, 29, 1)) {
5424 unallocated_encoding(s);
5425 return;
5428 sf = extract32(insn, 31, 1);
5429 opcode = extract32(insn, 10, 6);
5430 opcode2 = extract32(insn, 16, 5);
5431 rn = extract32(insn, 5, 5);
5432 rd = extract32(insn, 0, 5);
5434 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5436 switch (MAP(sf, opcode2, opcode)) {
5437 case MAP(0, 0x00, 0x00): /* RBIT */
5438 case MAP(1, 0x00, 0x00):
5439 handle_rbit(s, sf, rn, rd);
5440 break;
5441 case MAP(0, 0x00, 0x01): /* REV16 */
5442 case MAP(1, 0x00, 0x01):
5443 handle_rev16(s, sf, rn, rd);
5444 break;
5445 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5446 case MAP(1, 0x00, 0x02):
5447 handle_rev32(s, sf, rn, rd);
5448 break;
5449 case MAP(1, 0x00, 0x03): /* REV64 */
5450 handle_rev64(s, sf, rn, rd);
5451 break;
5452 case MAP(0, 0x00, 0x04): /* CLZ */
5453 case MAP(1, 0x00, 0x04):
5454 handle_clz(s, sf, rn, rd);
5455 break;
5456 case MAP(0, 0x00, 0x05): /* CLS */
5457 case MAP(1, 0x00, 0x05):
5458 handle_cls(s, sf, rn, rd);
5459 break;
5460 case MAP(1, 0x01, 0x00): /* PACIA */
5461 if (s->pauth_active) {
5462 tcg_rd = cpu_reg(s, rd);
5463 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5464 } else if (!dc_isar_feature(aa64_pauth, s)) {
5465 goto do_unallocated;
5467 break;
5468 case MAP(1, 0x01, 0x01): /* PACIB */
5469 if (s->pauth_active) {
5470 tcg_rd = cpu_reg(s, rd);
5471 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5472 } else if (!dc_isar_feature(aa64_pauth, s)) {
5473 goto do_unallocated;
5475 break;
5476 case MAP(1, 0x01, 0x02): /* PACDA */
5477 if (s->pauth_active) {
5478 tcg_rd = cpu_reg(s, rd);
5479 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5480 } else if (!dc_isar_feature(aa64_pauth, s)) {
5481 goto do_unallocated;
5483 break;
5484 case MAP(1, 0x01, 0x03): /* PACDB */
5485 if (s->pauth_active) {
5486 tcg_rd = cpu_reg(s, rd);
5487 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5488 } else if (!dc_isar_feature(aa64_pauth, s)) {
5489 goto do_unallocated;
5491 break;
5492 case MAP(1, 0x01, 0x04): /* AUTIA */
5493 if (s->pauth_active) {
5494 tcg_rd = cpu_reg(s, rd);
5495 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5496 } else if (!dc_isar_feature(aa64_pauth, s)) {
5497 goto do_unallocated;
5499 break;
5500 case MAP(1, 0x01, 0x05): /* AUTIB */
5501 if (s->pauth_active) {
5502 tcg_rd = cpu_reg(s, rd);
5503 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5504 } else if (!dc_isar_feature(aa64_pauth, s)) {
5505 goto do_unallocated;
5507 break;
5508 case MAP(1, 0x01, 0x06): /* AUTDA */
5509 if (s->pauth_active) {
5510 tcg_rd = cpu_reg(s, rd);
5511 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5512 } else if (!dc_isar_feature(aa64_pauth, s)) {
5513 goto do_unallocated;
5515 break;
5516 case MAP(1, 0x01, 0x07): /* AUTDB */
5517 if (s->pauth_active) {
5518 tcg_rd = cpu_reg(s, rd);
5519 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5520 } else if (!dc_isar_feature(aa64_pauth, s)) {
5521 goto do_unallocated;
5523 break;
5524 case MAP(1, 0x01, 0x08): /* PACIZA */
5525 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5526 goto do_unallocated;
5527 } else if (s->pauth_active) {
5528 tcg_rd = cpu_reg(s, rd);
5529 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5531 break;
5532 case MAP(1, 0x01, 0x09): /* PACIZB */
5533 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5534 goto do_unallocated;
5535 } else if (s->pauth_active) {
5536 tcg_rd = cpu_reg(s, rd);
5537 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5539 break;
5540 case MAP(1, 0x01, 0x0a): /* PACDZA */
5541 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5542 goto do_unallocated;
5543 } else if (s->pauth_active) {
5544 tcg_rd = cpu_reg(s, rd);
5545 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5547 break;
5548 case MAP(1, 0x01, 0x0b): /* PACDZB */
5549 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5550 goto do_unallocated;
5551 } else if (s->pauth_active) {
5552 tcg_rd = cpu_reg(s, rd);
5553 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5555 break;
5556 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5557 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5558 goto do_unallocated;
5559 } else if (s->pauth_active) {
5560 tcg_rd = cpu_reg(s, rd);
5561 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5563 break;
5564 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5565 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5566 goto do_unallocated;
5567 } else if (s->pauth_active) {
5568 tcg_rd = cpu_reg(s, rd);
5569 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5571 break;
5572 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5573 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5574 goto do_unallocated;
5575 } else if (s->pauth_active) {
5576 tcg_rd = cpu_reg(s, rd);
5577 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5579 break;
5580 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5581 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5582 goto do_unallocated;
5583 } else if (s->pauth_active) {
5584 tcg_rd = cpu_reg(s, rd);
5585 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5587 break;
5588 case MAP(1, 0x01, 0x10): /* XPACI */
5589 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5590 goto do_unallocated;
5591 } else if (s->pauth_active) {
5592 tcg_rd = cpu_reg(s, rd);
5593 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5595 break;
5596 case MAP(1, 0x01, 0x11): /* XPACD */
5597 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5598 goto do_unallocated;
5599 } else if (s->pauth_active) {
5600 tcg_rd = cpu_reg(s, rd);
5601 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5603 break;
5604 default:
5605 do_unallocated:
5606 unallocated_encoding(s);
5607 break;
5610 #undef MAP
5613 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5614 unsigned int rm, unsigned int rn, unsigned int rd)
5616 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5617 tcg_rd = cpu_reg(s, rd);
5619 if (!sf && is_signed) {
5620 tcg_n = new_tmp_a64(s);
5621 tcg_m = new_tmp_a64(s);
5622 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5623 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5624 } else {
5625 tcg_n = read_cpu_reg(s, rn, sf);
5626 tcg_m = read_cpu_reg(s, rm, sf);
5629 if (is_signed) {
5630 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5631 } else {
5632 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5635 if (!sf) { /* zero extend final result */
5636 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5640 /* LSLV, LSRV, ASRV, RORV */
5641 static void handle_shift_reg(DisasContext *s,
5642 enum a64_shift_type shift_type, unsigned int sf,
5643 unsigned int rm, unsigned int rn, unsigned int rd)
5645 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5646 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5647 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5649 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5650 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5651 tcg_temp_free_i64(tcg_shift);
5654 /* CRC32[BHWX], CRC32C[BHWX] */
5655 static void handle_crc32(DisasContext *s,
5656 unsigned int sf, unsigned int sz, bool crc32c,
5657 unsigned int rm, unsigned int rn, unsigned int rd)
5659 TCGv_i64 tcg_acc, tcg_val;
5660 TCGv_i32 tcg_bytes;
5662 if (!dc_isar_feature(aa64_crc32, s)
5663 || (sf == 1 && sz != 3)
5664 || (sf == 0 && sz == 3)) {
5665 unallocated_encoding(s);
5666 return;
5669 if (sz == 3) {
5670 tcg_val = cpu_reg(s, rm);
5671 } else {
5672 uint64_t mask;
5673 switch (sz) {
5674 case 0:
5675 mask = 0xFF;
5676 break;
5677 case 1:
5678 mask = 0xFFFF;
5679 break;
5680 case 2:
5681 mask = 0xFFFFFFFF;
5682 break;
5683 default:
5684 g_assert_not_reached();
5686 tcg_val = new_tmp_a64(s);
5687 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5690 tcg_acc = cpu_reg(s, rn);
5691 tcg_bytes = tcg_const_i32(1 << sz);
5693 if (crc32c) {
5694 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5695 } else {
5696 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5699 tcg_temp_free_i32(tcg_bytes);
5702 /* Data-processing (2 source)
5703 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5704 * +----+---+---+-----------------+------+--------+------+------+
5705 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5706 * +----+---+---+-----------------+------+--------+------+------+
5708 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5710 unsigned int sf, rm, opcode, rn, rd, setflag;
5711 sf = extract32(insn, 31, 1);
5712 setflag = extract32(insn, 29, 1);
5713 rm = extract32(insn, 16, 5);
5714 opcode = extract32(insn, 10, 6);
5715 rn = extract32(insn, 5, 5);
5716 rd = extract32(insn, 0, 5);
5718 if (setflag && opcode != 0) {
5719 unallocated_encoding(s);
5720 return;
5723 switch (opcode) {
5724 case 0: /* SUBP(S) */
5725 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5726 goto do_unallocated;
5727 } else {
5728 TCGv_i64 tcg_n, tcg_m, tcg_d;
5730 tcg_n = read_cpu_reg_sp(s, rn, true);
5731 tcg_m = read_cpu_reg_sp(s, rm, true);
5732 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5733 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5734 tcg_d = cpu_reg(s, rd);
5736 if (setflag) {
5737 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5738 } else {
5739 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5742 break;
5743 case 2: /* UDIV */
5744 handle_div(s, false, sf, rm, rn, rd);
5745 break;
5746 case 3: /* SDIV */
5747 handle_div(s, true, sf, rm, rn, rd);
5748 break;
5749 case 4: /* IRG */
5750 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5751 goto do_unallocated;
5753 if (s->ata) {
5754 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5755 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5756 } else {
5757 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5758 cpu_reg_sp(s, rn));
5760 break;
5761 case 5: /* GMI */
5762 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5763 goto do_unallocated;
5764 } else {
5765 TCGv_i64 t1 = tcg_const_i64(1);
5766 TCGv_i64 t2 = tcg_temp_new_i64();
5768 tcg_gen_extract_i64(t2, cpu_reg_sp(s, rn), 56, 4);
5769 tcg_gen_shl_i64(t1, t1, t2);
5770 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t1);
5772 tcg_temp_free_i64(t1);
5773 tcg_temp_free_i64(t2);
5775 break;
5776 case 8: /* LSLV */
5777 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5778 break;
5779 case 9: /* LSRV */
5780 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5781 break;
5782 case 10: /* ASRV */
5783 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5784 break;
5785 case 11: /* RORV */
5786 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5787 break;
5788 case 12: /* PACGA */
5789 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5790 goto do_unallocated;
5792 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5793 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5794 break;
5795 case 16:
5796 case 17:
5797 case 18:
5798 case 19:
5799 case 20:
5800 case 21:
5801 case 22:
5802 case 23: /* CRC32 */
5804 int sz = extract32(opcode, 0, 2);
5805 bool crc32c = extract32(opcode, 2, 1);
5806 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5807 break;
5809 default:
5810 do_unallocated:
5811 unallocated_encoding(s);
5812 break;
5817 * Data processing - register
5818 * 31 30 29 28 25 21 20 16 10 0
5819 * +--+---+--+---+-------+-----+-------+-------+---------+
5820 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5821 * +--+---+--+---+-------+-----+-------+-------+---------+
5823 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5825 int op0 = extract32(insn, 30, 1);
5826 int op1 = extract32(insn, 28, 1);
5827 int op2 = extract32(insn, 21, 4);
5828 int op3 = extract32(insn, 10, 6);
5830 if (!op1) {
5831 if (op2 & 8) {
5832 if (op2 & 1) {
5833 /* Add/sub (extended register) */
5834 disas_add_sub_ext_reg(s, insn);
5835 } else {
5836 /* Add/sub (shifted register) */
5837 disas_add_sub_reg(s, insn);
5839 } else {
5840 /* Logical (shifted register) */
5841 disas_logic_reg(s, insn);
5843 return;
5846 switch (op2) {
5847 case 0x0:
5848 switch (op3) {
5849 case 0x00: /* Add/subtract (with carry) */
5850 disas_adc_sbc(s, insn);
5851 break;
5853 case 0x01: /* Rotate right into flags */
5854 case 0x21:
5855 disas_rotate_right_into_flags(s, insn);
5856 break;
5858 case 0x02: /* Evaluate into flags */
5859 case 0x12:
5860 case 0x22:
5861 case 0x32:
5862 disas_evaluate_into_flags(s, insn);
5863 break;
5865 default:
5866 goto do_unallocated;
5868 break;
5870 case 0x2: /* Conditional compare */
5871 disas_cc(s, insn); /* both imm and reg forms */
5872 break;
5874 case 0x4: /* Conditional select */
5875 disas_cond_select(s, insn);
5876 break;
5878 case 0x6: /* Data-processing */
5879 if (op0) { /* (1 source) */
5880 disas_data_proc_1src(s, insn);
5881 } else { /* (2 source) */
5882 disas_data_proc_2src(s, insn);
5884 break;
5885 case 0x8 ... 0xf: /* (3 source) */
5886 disas_data_proc_3src(s, insn);
5887 break;
5889 default:
5890 do_unallocated:
5891 unallocated_encoding(s);
5892 break;
5896 static void handle_fp_compare(DisasContext *s, int size,
5897 unsigned int rn, unsigned int rm,
5898 bool cmp_with_zero, bool signal_all_nans)
5900 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5901 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5903 if (size == MO_64) {
5904 TCGv_i64 tcg_vn, tcg_vm;
5906 tcg_vn = read_fp_dreg(s, rn);
5907 if (cmp_with_zero) {
5908 tcg_vm = tcg_const_i64(0);
5909 } else {
5910 tcg_vm = read_fp_dreg(s, rm);
5912 if (signal_all_nans) {
5913 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5914 } else {
5915 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5917 tcg_temp_free_i64(tcg_vn);
5918 tcg_temp_free_i64(tcg_vm);
5919 } else {
5920 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5921 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5923 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5924 if (cmp_with_zero) {
5925 tcg_gen_movi_i32(tcg_vm, 0);
5926 } else {
5927 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5930 switch (size) {
5931 case MO_32:
5932 if (signal_all_nans) {
5933 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5934 } else {
5935 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5937 break;
5938 case MO_16:
5939 if (signal_all_nans) {
5940 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5941 } else {
5942 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5944 break;
5945 default:
5946 g_assert_not_reached();
5949 tcg_temp_free_i32(tcg_vn);
5950 tcg_temp_free_i32(tcg_vm);
5953 tcg_temp_free_ptr(fpst);
5955 gen_set_nzcv(tcg_flags);
5957 tcg_temp_free_i64(tcg_flags);
5960 /* Floating point compare
5961 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5962 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5963 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5964 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5966 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5968 unsigned int mos, type, rm, op, rn, opc, op2r;
5969 int size;
5971 mos = extract32(insn, 29, 3);
5972 type = extract32(insn, 22, 2);
5973 rm = extract32(insn, 16, 5);
5974 op = extract32(insn, 14, 2);
5975 rn = extract32(insn, 5, 5);
5976 opc = extract32(insn, 3, 2);
5977 op2r = extract32(insn, 0, 3);
5979 if (mos || op || op2r) {
5980 unallocated_encoding(s);
5981 return;
5984 switch (type) {
5985 case 0:
5986 size = MO_32;
5987 break;
5988 case 1:
5989 size = MO_64;
5990 break;
5991 case 3:
5992 size = MO_16;
5993 if (dc_isar_feature(aa64_fp16, s)) {
5994 break;
5996 /* fallthru */
5997 default:
5998 unallocated_encoding(s);
5999 return;
6002 if (!fp_access_check(s)) {
6003 return;
6006 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6009 /* Floating point conditional compare
6010 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6011 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6012 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
6013 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6015 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6017 unsigned int mos, type, rm, cond, rn, op, nzcv;
6018 TCGv_i64 tcg_flags;
6019 TCGLabel *label_continue = NULL;
6020 int size;
6022 mos = extract32(insn, 29, 3);
6023 type = extract32(insn, 22, 2);
6024 rm = extract32(insn, 16, 5);
6025 cond = extract32(insn, 12, 4);
6026 rn = extract32(insn, 5, 5);
6027 op = extract32(insn, 4, 1);
6028 nzcv = extract32(insn, 0, 4);
6030 if (mos) {
6031 unallocated_encoding(s);
6032 return;
6035 switch (type) {
6036 case 0:
6037 size = MO_32;
6038 break;
6039 case 1:
6040 size = MO_64;
6041 break;
6042 case 3:
6043 size = MO_16;
6044 if (dc_isar_feature(aa64_fp16, s)) {
6045 break;
6047 /* fallthru */
6048 default:
6049 unallocated_encoding(s);
6050 return;
6053 if (!fp_access_check(s)) {
6054 return;
6057 if (cond < 0x0e) { /* not always */
6058 TCGLabel *label_match = gen_new_label();
6059 label_continue = gen_new_label();
6060 arm_gen_test_cc(cond, label_match);
6061 /* nomatch: */
6062 tcg_flags = tcg_const_i64(nzcv << 28);
6063 gen_set_nzcv(tcg_flags);
6064 tcg_temp_free_i64(tcg_flags);
6065 tcg_gen_br(label_continue);
6066 gen_set_label(label_match);
6069 handle_fp_compare(s, size, rn, rm, false, op);
6071 if (cond < 0x0e) {
6072 gen_set_label(label_continue);
6076 /* Floating point conditional select
6077 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6078 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6079 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6080 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6082 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6084 unsigned int mos, type, rm, cond, rn, rd;
6085 TCGv_i64 t_true, t_false, t_zero;
6086 DisasCompare64 c;
6087 MemOp sz;
6089 mos = extract32(insn, 29, 3);
6090 type = extract32(insn, 22, 2);
6091 rm = extract32(insn, 16, 5);
6092 cond = extract32(insn, 12, 4);
6093 rn = extract32(insn, 5, 5);
6094 rd = extract32(insn, 0, 5);
6096 if (mos) {
6097 unallocated_encoding(s);
6098 return;
6101 switch (type) {
6102 case 0:
6103 sz = MO_32;
6104 break;
6105 case 1:
6106 sz = MO_64;
6107 break;
6108 case 3:
6109 sz = MO_16;
6110 if (dc_isar_feature(aa64_fp16, s)) {
6111 break;
6113 /* fallthru */
6114 default:
6115 unallocated_encoding(s);
6116 return;
6119 if (!fp_access_check(s)) {
6120 return;
6123 /* Zero extend sreg & hreg inputs to 64 bits now. */
6124 t_true = tcg_temp_new_i64();
6125 t_false = tcg_temp_new_i64();
6126 read_vec_element(s, t_true, rn, 0, sz);
6127 read_vec_element(s, t_false, rm, 0, sz);
6129 a64_test_cc(&c, cond);
6130 t_zero = tcg_const_i64(0);
6131 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
6132 tcg_temp_free_i64(t_zero);
6133 tcg_temp_free_i64(t_false);
6134 a64_free_cc(&c);
6136 /* Note that sregs & hregs write back zeros to the high bits,
6137 and we've already done the zero-extension. */
6138 write_fp_dreg(s, rd, t_true);
6139 tcg_temp_free_i64(t_true);
6142 /* Floating-point data-processing (1 source) - half precision */
6143 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6145 TCGv_ptr fpst = NULL;
6146 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6147 TCGv_i32 tcg_res = tcg_temp_new_i32();
6149 switch (opcode) {
6150 case 0x0: /* FMOV */
6151 tcg_gen_mov_i32(tcg_res, tcg_op);
6152 break;
6153 case 0x1: /* FABS */
6154 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6155 break;
6156 case 0x2: /* FNEG */
6157 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6158 break;
6159 case 0x3: /* FSQRT */
6160 fpst = get_fpstatus_ptr(true);
6161 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6162 break;
6163 case 0x8: /* FRINTN */
6164 case 0x9: /* FRINTP */
6165 case 0xa: /* FRINTM */
6166 case 0xb: /* FRINTZ */
6167 case 0xc: /* FRINTA */
6169 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6170 fpst = get_fpstatus_ptr(true);
6172 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6173 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6175 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6176 tcg_temp_free_i32(tcg_rmode);
6177 break;
6179 case 0xe: /* FRINTX */
6180 fpst = get_fpstatus_ptr(true);
6181 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6182 break;
6183 case 0xf: /* FRINTI */
6184 fpst = get_fpstatus_ptr(true);
6185 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6186 break;
6187 default:
6188 abort();
6191 write_fp_sreg(s, rd, tcg_res);
6193 if (fpst) {
6194 tcg_temp_free_ptr(fpst);
6196 tcg_temp_free_i32(tcg_op);
6197 tcg_temp_free_i32(tcg_res);
6200 /* Floating-point data-processing (1 source) - single precision */
6201 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6203 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6204 TCGv_i32 tcg_op, tcg_res;
6205 TCGv_ptr fpst;
6206 int rmode = -1;
6208 tcg_op = read_fp_sreg(s, rn);
6209 tcg_res = tcg_temp_new_i32();
6211 switch (opcode) {
6212 case 0x0: /* FMOV */
6213 tcg_gen_mov_i32(tcg_res, tcg_op);
6214 goto done;
6215 case 0x1: /* FABS */
6216 gen_helper_vfp_abss(tcg_res, tcg_op);
6217 goto done;
6218 case 0x2: /* FNEG */
6219 gen_helper_vfp_negs(tcg_res, tcg_op);
6220 goto done;
6221 case 0x3: /* FSQRT */
6222 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6223 goto done;
6224 case 0x8: /* FRINTN */
6225 case 0x9: /* FRINTP */
6226 case 0xa: /* FRINTM */
6227 case 0xb: /* FRINTZ */
6228 case 0xc: /* FRINTA */
6229 rmode = arm_rmode_to_sf(opcode & 7);
6230 gen_fpst = gen_helper_rints;
6231 break;
6232 case 0xe: /* FRINTX */
6233 gen_fpst = gen_helper_rints_exact;
6234 break;
6235 case 0xf: /* FRINTI */
6236 gen_fpst = gen_helper_rints;
6237 break;
6238 case 0x10: /* FRINT32Z */
6239 rmode = float_round_to_zero;
6240 gen_fpst = gen_helper_frint32_s;
6241 break;
6242 case 0x11: /* FRINT32X */
6243 gen_fpst = gen_helper_frint32_s;
6244 break;
6245 case 0x12: /* FRINT64Z */
6246 rmode = float_round_to_zero;
6247 gen_fpst = gen_helper_frint64_s;
6248 break;
6249 case 0x13: /* FRINT64X */
6250 gen_fpst = gen_helper_frint64_s;
6251 break;
6252 default:
6253 g_assert_not_reached();
6256 fpst = get_fpstatus_ptr(false);
6257 if (rmode >= 0) {
6258 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6259 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6260 gen_fpst(tcg_res, tcg_op, fpst);
6261 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6262 tcg_temp_free_i32(tcg_rmode);
6263 } else {
6264 gen_fpst(tcg_res, tcg_op, fpst);
6266 tcg_temp_free_ptr(fpst);
6268 done:
6269 write_fp_sreg(s, rd, tcg_res);
6270 tcg_temp_free_i32(tcg_op);
6271 tcg_temp_free_i32(tcg_res);
6274 /* Floating-point data-processing (1 source) - double precision */
6275 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6277 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6278 TCGv_i64 tcg_op, tcg_res;
6279 TCGv_ptr fpst;
6280 int rmode = -1;
6282 switch (opcode) {
6283 case 0x0: /* FMOV */
6284 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6285 return;
6288 tcg_op = read_fp_dreg(s, rn);
6289 tcg_res = tcg_temp_new_i64();
6291 switch (opcode) {
6292 case 0x1: /* FABS */
6293 gen_helper_vfp_absd(tcg_res, tcg_op);
6294 goto done;
6295 case 0x2: /* FNEG */
6296 gen_helper_vfp_negd(tcg_res, tcg_op);
6297 goto done;
6298 case 0x3: /* FSQRT */
6299 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6300 goto done;
6301 case 0x8: /* FRINTN */
6302 case 0x9: /* FRINTP */
6303 case 0xa: /* FRINTM */
6304 case 0xb: /* FRINTZ */
6305 case 0xc: /* FRINTA */
6306 rmode = arm_rmode_to_sf(opcode & 7);
6307 gen_fpst = gen_helper_rintd;
6308 break;
6309 case 0xe: /* FRINTX */
6310 gen_fpst = gen_helper_rintd_exact;
6311 break;
6312 case 0xf: /* FRINTI */
6313 gen_fpst = gen_helper_rintd;
6314 break;
6315 case 0x10: /* FRINT32Z */
6316 rmode = float_round_to_zero;
6317 gen_fpst = gen_helper_frint32_d;
6318 break;
6319 case 0x11: /* FRINT32X */
6320 gen_fpst = gen_helper_frint32_d;
6321 break;
6322 case 0x12: /* FRINT64Z */
6323 rmode = float_round_to_zero;
6324 gen_fpst = gen_helper_frint64_d;
6325 break;
6326 case 0x13: /* FRINT64X */
6327 gen_fpst = gen_helper_frint64_d;
6328 break;
6329 default:
6330 g_assert_not_reached();
6333 fpst = get_fpstatus_ptr(false);
6334 if (rmode >= 0) {
6335 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6336 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6337 gen_fpst(tcg_res, tcg_op, fpst);
6338 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6339 tcg_temp_free_i32(tcg_rmode);
6340 } else {
6341 gen_fpst(tcg_res, tcg_op, fpst);
6343 tcg_temp_free_ptr(fpst);
6345 done:
6346 write_fp_dreg(s, rd, tcg_res);
6347 tcg_temp_free_i64(tcg_op);
6348 tcg_temp_free_i64(tcg_res);
6351 static void handle_fp_fcvt(DisasContext *s, int opcode,
6352 int rd, int rn, int dtype, int ntype)
6354 switch (ntype) {
6355 case 0x0:
6357 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6358 if (dtype == 1) {
6359 /* Single to double */
6360 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6361 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6362 write_fp_dreg(s, rd, tcg_rd);
6363 tcg_temp_free_i64(tcg_rd);
6364 } else {
6365 /* Single to half */
6366 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6367 TCGv_i32 ahp = get_ahp_flag();
6368 TCGv_ptr fpst = get_fpstatus_ptr(false);
6370 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6371 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6372 write_fp_sreg(s, rd, tcg_rd);
6373 tcg_temp_free_i32(tcg_rd);
6374 tcg_temp_free_i32(ahp);
6375 tcg_temp_free_ptr(fpst);
6377 tcg_temp_free_i32(tcg_rn);
6378 break;
6380 case 0x1:
6382 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6383 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6384 if (dtype == 0) {
6385 /* Double to single */
6386 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6387 } else {
6388 TCGv_ptr fpst = get_fpstatus_ptr(false);
6389 TCGv_i32 ahp = get_ahp_flag();
6390 /* Double to half */
6391 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6392 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6393 tcg_temp_free_ptr(fpst);
6394 tcg_temp_free_i32(ahp);
6396 write_fp_sreg(s, rd, tcg_rd);
6397 tcg_temp_free_i32(tcg_rd);
6398 tcg_temp_free_i64(tcg_rn);
6399 break;
6401 case 0x3:
6403 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6404 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
6405 TCGv_i32 tcg_ahp = get_ahp_flag();
6406 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6407 if (dtype == 0) {
6408 /* Half to single */
6409 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6410 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6411 write_fp_sreg(s, rd, tcg_rd);
6412 tcg_temp_free_i32(tcg_rd);
6413 } else {
6414 /* Half to double */
6415 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6416 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6417 write_fp_dreg(s, rd, tcg_rd);
6418 tcg_temp_free_i64(tcg_rd);
6420 tcg_temp_free_i32(tcg_rn);
6421 tcg_temp_free_ptr(tcg_fpst);
6422 tcg_temp_free_i32(tcg_ahp);
6423 break;
6425 default:
6426 abort();
6430 /* Floating point data-processing (1 source)
6431 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6432 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6433 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6434 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6436 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6438 int mos = extract32(insn, 29, 3);
6439 int type = extract32(insn, 22, 2);
6440 int opcode = extract32(insn, 15, 6);
6441 int rn = extract32(insn, 5, 5);
6442 int rd = extract32(insn, 0, 5);
6444 if (mos) {
6445 unallocated_encoding(s);
6446 return;
6449 switch (opcode) {
6450 case 0x4: case 0x5: case 0x7:
6452 /* FCVT between half, single and double precision */
6453 int dtype = extract32(opcode, 0, 2);
6454 if (type == 2 || dtype == type) {
6455 unallocated_encoding(s);
6456 return;
6458 if (!fp_access_check(s)) {
6459 return;
6462 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6463 break;
6466 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6467 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6468 unallocated_encoding(s);
6469 return;
6471 /* fall through */
6472 case 0x0 ... 0x3:
6473 case 0x8 ... 0xc:
6474 case 0xe ... 0xf:
6475 /* 32-to-32 and 64-to-64 ops */
6476 switch (type) {
6477 case 0:
6478 if (!fp_access_check(s)) {
6479 return;
6481 handle_fp_1src_single(s, opcode, rd, rn);
6482 break;
6483 case 1:
6484 if (!fp_access_check(s)) {
6485 return;
6487 handle_fp_1src_double(s, opcode, rd, rn);
6488 break;
6489 case 3:
6490 if (!dc_isar_feature(aa64_fp16, s)) {
6491 unallocated_encoding(s);
6492 return;
6495 if (!fp_access_check(s)) {
6496 return;
6498 handle_fp_1src_half(s, opcode, rd, rn);
6499 break;
6500 default:
6501 unallocated_encoding(s);
6503 break;
6505 default:
6506 unallocated_encoding(s);
6507 break;
6511 /* Floating-point data-processing (2 source) - single precision */
6512 static void handle_fp_2src_single(DisasContext *s, int opcode,
6513 int rd, int rn, int rm)
6515 TCGv_i32 tcg_op1;
6516 TCGv_i32 tcg_op2;
6517 TCGv_i32 tcg_res;
6518 TCGv_ptr fpst;
6520 tcg_res = tcg_temp_new_i32();
6521 fpst = get_fpstatus_ptr(false);
6522 tcg_op1 = read_fp_sreg(s, rn);
6523 tcg_op2 = read_fp_sreg(s, rm);
6525 switch (opcode) {
6526 case 0x0: /* FMUL */
6527 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6528 break;
6529 case 0x1: /* FDIV */
6530 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6531 break;
6532 case 0x2: /* FADD */
6533 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6534 break;
6535 case 0x3: /* FSUB */
6536 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6537 break;
6538 case 0x4: /* FMAX */
6539 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6540 break;
6541 case 0x5: /* FMIN */
6542 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6543 break;
6544 case 0x6: /* FMAXNM */
6545 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6546 break;
6547 case 0x7: /* FMINNM */
6548 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6549 break;
6550 case 0x8: /* FNMUL */
6551 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6552 gen_helper_vfp_negs(tcg_res, tcg_res);
6553 break;
6556 write_fp_sreg(s, rd, tcg_res);
6558 tcg_temp_free_ptr(fpst);
6559 tcg_temp_free_i32(tcg_op1);
6560 tcg_temp_free_i32(tcg_op2);
6561 tcg_temp_free_i32(tcg_res);
6564 /* Floating-point data-processing (2 source) - double precision */
6565 static void handle_fp_2src_double(DisasContext *s, int opcode,
6566 int rd, int rn, int rm)
6568 TCGv_i64 tcg_op1;
6569 TCGv_i64 tcg_op2;
6570 TCGv_i64 tcg_res;
6571 TCGv_ptr fpst;
6573 tcg_res = tcg_temp_new_i64();
6574 fpst = get_fpstatus_ptr(false);
6575 tcg_op1 = read_fp_dreg(s, rn);
6576 tcg_op2 = read_fp_dreg(s, rm);
6578 switch (opcode) {
6579 case 0x0: /* FMUL */
6580 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6581 break;
6582 case 0x1: /* FDIV */
6583 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6584 break;
6585 case 0x2: /* FADD */
6586 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6587 break;
6588 case 0x3: /* FSUB */
6589 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6590 break;
6591 case 0x4: /* FMAX */
6592 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6593 break;
6594 case 0x5: /* FMIN */
6595 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6596 break;
6597 case 0x6: /* FMAXNM */
6598 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6599 break;
6600 case 0x7: /* FMINNM */
6601 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6602 break;
6603 case 0x8: /* FNMUL */
6604 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6605 gen_helper_vfp_negd(tcg_res, tcg_res);
6606 break;
6609 write_fp_dreg(s, rd, tcg_res);
6611 tcg_temp_free_ptr(fpst);
6612 tcg_temp_free_i64(tcg_op1);
6613 tcg_temp_free_i64(tcg_op2);
6614 tcg_temp_free_i64(tcg_res);
6617 /* Floating-point data-processing (2 source) - half precision */
6618 static void handle_fp_2src_half(DisasContext *s, int opcode,
6619 int rd, int rn, int rm)
6621 TCGv_i32 tcg_op1;
6622 TCGv_i32 tcg_op2;
6623 TCGv_i32 tcg_res;
6624 TCGv_ptr fpst;
6626 tcg_res = tcg_temp_new_i32();
6627 fpst = get_fpstatus_ptr(true);
6628 tcg_op1 = read_fp_hreg(s, rn);
6629 tcg_op2 = read_fp_hreg(s, rm);
6631 switch (opcode) {
6632 case 0x0: /* FMUL */
6633 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6634 break;
6635 case 0x1: /* FDIV */
6636 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6637 break;
6638 case 0x2: /* FADD */
6639 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6640 break;
6641 case 0x3: /* FSUB */
6642 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6643 break;
6644 case 0x4: /* FMAX */
6645 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6646 break;
6647 case 0x5: /* FMIN */
6648 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6649 break;
6650 case 0x6: /* FMAXNM */
6651 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6652 break;
6653 case 0x7: /* FMINNM */
6654 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6655 break;
6656 case 0x8: /* FNMUL */
6657 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6658 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6659 break;
6660 default:
6661 g_assert_not_reached();
6664 write_fp_sreg(s, rd, tcg_res);
6666 tcg_temp_free_ptr(fpst);
6667 tcg_temp_free_i32(tcg_op1);
6668 tcg_temp_free_i32(tcg_op2);
6669 tcg_temp_free_i32(tcg_res);
6672 /* Floating point data-processing (2 source)
6673 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6674 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6675 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6676 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6678 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6680 int mos = extract32(insn, 29, 3);
6681 int type = extract32(insn, 22, 2);
6682 int rd = extract32(insn, 0, 5);
6683 int rn = extract32(insn, 5, 5);
6684 int rm = extract32(insn, 16, 5);
6685 int opcode = extract32(insn, 12, 4);
6687 if (opcode > 8 || mos) {
6688 unallocated_encoding(s);
6689 return;
6692 switch (type) {
6693 case 0:
6694 if (!fp_access_check(s)) {
6695 return;
6697 handle_fp_2src_single(s, opcode, rd, rn, rm);
6698 break;
6699 case 1:
6700 if (!fp_access_check(s)) {
6701 return;
6703 handle_fp_2src_double(s, opcode, rd, rn, rm);
6704 break;
6705 case 3:
6706 if (!dc_isar_feature(aa64_fp16, s)) {
6707 unallocated_encoding(s);
6708 return;
6710 if (!fp_access_check(s)) {
6711 return;
6713 handle_fp_2src_half(s, opcode, rd, rn, rm);
6714 break;
6715 default:
6716 unallocated_encoding(s);
6720 /* Floating-point data-processing (3 source) - single precision */
6721 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6722 int rd, int rn, int rm, int ra)
6724 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6725 TCGv_i32 tcg_res = tcg_temp_new_i32();
6726 TCGv_ptr fpst = get_fpstatus_ptr(false);
6728 tcg_op1 = read_fp_sreg(s, rn);
6729 tcg_op2 = read_fp_sreg(s, rm);
6730 tcg_op3 = read_fp_sreg(s, ra);
6732 /* These are fused multiply-add, and must be done as one
6733 * floating point operation with no rounding between the
6734 * multiplication and addition steps.
6735 * NB that doing the negations here as separate steps is
6736 * correct : an input NaN should come out with its sign bit
6737 * flipped if it is a negated-input.
6739 if (o1 == true) {
6740 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6743 if (o0 != o1) {
6744 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6747 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6749 write_fp_sreg(s, rd, tcg_res);
6751 tcg_temp_free_ptr(fpst);
6752 tcg_temp_free_i32(tcg_op1);
6753 tcg_temp_free_i32(tcg_op2);
6754 tcg_temp_free_i32(tcg_op3);
6755 tcg_temp_free_i32(tcg_res);
6758 /* Floating-point data-processing (3 source) - double precision */
6759 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6760 int rd, int rn, int rm, int ra)
6762 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6763 TCGv_i64 tcg_res = tcg_temp_new_i64();
6764 TCGv_ptr fpst = get_fpstatus_ptr(false);
6766 tcg_op1 = read_fp_dreg(s, rn);
6767 tcg_op2 = read_fp_dreg(s, rm);
6768 tcg_op3 = read_fp_dreg(s, ra);
6770 /* These are fused multiply-add, and must be done as one
6771 * floating point operation with no rounding between the
6772 * multiplication and addition steps.
6773 * NB that doing the negations here as separate steps is
6774 * correct : an input NaN should come out with its sign bit
6775 * flipped if it is a negated-input.
6777 if (o1 == true) {
6778 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6781 if (o0 != o1) {
6782 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6785 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6787 write_fp_dreg(s, rd, tcg_res);
6789 tcg_temp_free_ptr(fpst);
6790 tcg_temp_free_i64(tcg_op1);
6791 tcg_temp_free_i64(tcg_op2);
6792 tcg_temp_free_i64(tcg_op3);
6793 tcg_temp_free_i64(tcg_res);
6796 /* Floating-point data-processing (3 source) - half precision */
6797 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6798 int rd, int rn, int rm, int ra)
6800 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6801 TCGv_i32 tcg_res = tcg_temp_new_i32();
6802 TCGv_ptr fpst = get_fpstatus_ptr(true);
6804 tcg_op1 = read_fp_hreg(s, rn);
6805 tcg_op2 = read_fp_hreg(s, rm);
6806 tcg_op3 = read_fp_hreg(s, ra);
6808 /* These are fused multiply-add, and must be done as one
6809 * floating point operation with no rounding between the
6810 * multiplication and addition steps.
6811 * NB that doing the negations here as separate steps is
6812 * correct : an input NaN should come out with its sign bit
6813 * flipped if it is a negated-input.
6815 if (o1 == true) {
6816 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6819 if (o0 != o1) {
6820 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6823 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6825 write_fp_sreg(s, rd, tcg_res);
6827 tcg_temp_free_ptr(fpst);
6828 tcg_temp_free_i32(tcg_op1);
6829 tcg_temp_free_i32(tcg_op2);
6830 tcg_temp_free_i32(tcg_op3);
6831 tcg_temp_free_i32(tcg_res);
6834 /* Floating point data-processing (3 source)
6835 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6836 * +---+---+---+-----------+------+----+------+----+------+------+------+
6837 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6838 * +---+---+---+-----------+------+----+------+----+------+------+------+
6840 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6842 int mos = extract32(insn, 29, 3);
6843 int type = extract32(insn, 22, 2);
6844 int rd = extract32(insn, 0, 5);
6845 int rn = extract32(insn, 5, 5);
6846 int ra = extract32(insn, 10, 5);
6847 int rm = extract32(insn, 16, 5);
6848 bool o0 = extract32(insn, 15, 1);
6849 bool o1 = extract32(insn, 21, 1);
6851 if (mos) {
6852 unallocated_encoding(s);
6853 return;
6856 switch (type) {
6857 case 0:
6858 if (!fp_access_check(s)) {
6859 return;
6861 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6862 break;
6863 case 1:
6864 if (!fp_access_check(s)) {
6865 return;
6867 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6868 break;
6869 case 3:
6870 if (!dc_isar_feature(aa64_fp16, s)) {
6871 unallocated_encoding(s);
6872 return;
6874 if (!fp_access_check(s)) {
6875 return;
6877 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6878 break;
6879 default:
6880 unallocated_encoding(s);
6884 /* Floating point immediate
6885 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6886 * +---+---+---+-----------+------+---+------------+-------+------+------+
6887 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6888 * +---+---+---+-----------+------+---+------------+-------+------+------+
6890 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6892 int rd = extract32(insn, 0, 5);
6893 int imm5 = extract32(insn, 5, 5);
6894 int imm8 = extract32(insn, 13, 8);
6895 int type = extract32(insn, 22, 2);
6896 int mos = extract32(insn, 29, 3);
6897 uint64_t imm;
6898 TCGv_i64 tcg_res;
6899 MemOp sz;
6901 if (mos || imm5) {
6902 unallocated_encoding(s);
6903 return;
6906 switch (type) {
6907 case 0:
6908 sz = MO_32;
6909 break;
6910 case 1:
6911 sz = MO_64;
6912 break;
6913 case 3:
6914 sz = MO_16;
6915 if (dc_isar_feature(aa64_fp16, s)) {
6916 break;
6918 /* fallthru */
6919 default:
6920 unallocated_encoding(s);
6921 return;
6924 if (!fp_access_check(s)) {
6925 return;
6928 imm = vfp_expand_imm(sz, imm8);
6930 tcg_res = tcg_const_i64(imm);
6931 write_fp_dreg(s, rd, tcg_res);
6932 tcg_temp_free_i64(tcg_res);
6935 /* Handle floating point <=> fixed point conversions. Note that we can
6936 * also deal with fp <=> integer conversions as a special case (scale == 64)
6937 * OPTME: consider handling that special case specially or at least skipping
6938 * the call to scalbn in the helpers for zero shifts.
6940 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6941 bool itof, int rmode, int scale, int sf, int type)
6943 bool is_signed = !(opcode & 1);
6944 TCGv_ptr tcg_fpstatus;
6945 TCGv_i32 tcg_shift, tcg_single;
6946 TCGv_i64 tcg_double;
6948 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6950 tcg_shift = tcg_const_i32(64 - scale);
6952 if (itof) {
6953 TCGv_i64 tcg_int = cpu_reg(s, rn);
6954 if (!sf) {
6955 TCGv_i64 tcg_extend = new_tmp_a64(s);
6957 if (is_signed) {
6958 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6959 } else {
6960 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6963 tcg_int = tcg_extend;
6966 switch (type) {
6967 case 1: /* float64 */
6968 tcg_double = tcg_temp_new_i64();
6969 if (is_signed) {
6970 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6971 tcg_shift, tcg_fpstatus);
6972 } else {
6973 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6974 tcg_shift, tcg_fpstatus);
6976 write_fp_dreg(s, rd, tcg_double);
6977 tcg_temp_free_i64(tcg_double);
6978 break;
6980 case 0: /* float32 */
6981 tcg_single = tcg_temp_new_i32();
6982 if (is_signed) {
6983 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6984 tcg_shift, tcg_fpstatus);
6985 } else {
6986 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6987 tcg_shift, tcg_fpstatus);
6989 write_fp_sreg(s, rd, tcg_single);
6990 tcg_temp_free_i32(tcg_single);
6991 break;
6993 case 3: /* float16 */
6994 tcg_single = tcg_temp_new_i32();
6995 if (is_signed) {
6996 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6997 tcg_shift, tcg_fpstatus);
6998 } else {
6999 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7000 tcg_shift, tcg_fpstatus);
7002 write_fp_sreg(s, rd, tcg_single);
7003 tcg_temp_free_i32(tcg_single);
7004 break;
7006 default:
7007 g_assert_not_reached();
7009 } else {
7010 TCGv_i64 tcg_int = cpu_reg(s, rd);
7011 TCGv_i32 tcg_rmode;
7013 if (extract32(opcode, 2, 1)) {
7014 /* There are too many rounding modes to all fit into rmode,
7015 * so FCVTA[US] is a special case.
7017 rmode = FPROUNDING_TIEAWAY;
7020 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7022 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7024 switch (type) {
7025 case 1: /* float64 */
7026 tcg_double = read_fp_dreg(s, rn);
7027 if (is_signed) {
7028 if (!sf) {
7029 gen_helper_vfp_tosld(tcg_int, tcg_double,
7030 tcg_shift, tcg_fpstatus);
7031 } else {
7032 gen_helper_vfp_tosqd(tcg_int, tcg_double,
7033 tcg_shift, tcg_fpstatus);
7035 } else {
7036 if (!sf) {
7037 gen_helper_vfp_tould(tcg_int, tcg_double,
7038 tcg_shift, tcg_fpstatus);
7039 } else {
7040 gen_helper_vfp_touqd(tcg_int, tcg_double,
7041 tcg_shift, tcg_fpstatus);
7044 if (!sf) {
7045 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7047 tcg_temp_free_i64(tcg_double);
7048 break;
7050 case 0: /* float32 */
7051 tcg_single = read_fp_sreg(s, rn);
7052 if (sf) {
7053 if (is_signed) {
7054 gen_helper_vfp_tosqs(tcg_int, tcg_single,
7055 tcg_shift, tcg_fpstatus);
7056 } else {
7057 gen_helper_vfp_touqs(tcg_int, tcg_single,
7058 tcg_shift, tcg_fpstatus);
7060 } else {
7061 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7062 if (is_signed) {
7063 gen_helper_vfp_tosls(tcg_dest, tcg_single,
7064 tcg_shift, tcg_fpstatus);
7065 } else {
7066 gen_helper_vfp_touls(tcg_dest, tcg_single,
7067 tcg_shift, tcg_fpstatus);
7069 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7070 tcg_temp_free_i32(tcg_dest);
7072 tcg_temp_free_i32(tcg_single);
7073 break;
7075 case 3: /* float16 */
7076 tcg_single = read_fp_sreg(s, rn);
7077 if (sf) {
7078 if (is_signed) {
7079 gen_helper_vfp_tosqh(tcg_int, tcg_single,
7080 tcg_shift, tcg_fpstatus);
7081 } else {
7082 gen_helper_vfp_touqh(tcg_int, tcg_single,
7083 tcg_shift, tcg_fpstatus);
7085 } else {
7086 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7087 if (is_signed) {
7088 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7089 tcg_shift, tcg_fpstatus);
7090 } else {
7091 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7092 tcg_shift, tcg_fpstatus);
7094 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7095 tcg_temp_free_i32(tcg_dest);
7097 tcg_temp_free_i32(tcg_single);
7098 break;
7100 default:
7101 g_assert_not_reached();
7104 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7105 tcg_temp_free_i32(tcg_rmode);
7108 tcg_temp_free_ptr(tcg_fpstatus);
7109 tcg_temp_free_i32(tcg_shift);
7112 /* Floating point <-> fixed point conversions
7113 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7114 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7115 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7116 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7118 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7120 int rd = extract32(insn, 0, 5);
7121 int rn = extract32(insn, 5, 5);
7122 int scale = extract32(insn, 10, 6);
7123 int opcode = extract32(insn, 16, 3);
7124 int rmode = extract32(insn, 19, 2);
7125 int type = extract32(insn, 22, 2);
7126 bool sbit = extract32(insn, 29, 1);
7127 bool sf = extract32(insn, 31, 1);
7128 bool itof;
7130 if (sbit || (!sf && scale < 32)) {
7131 unallocated_encoding(s);
7132 return;
7135 switch (type) {
7136 case 0: /* float32 */
7137 case 1: /* float64 */
7138 break;
7139 case 3: /* float16 */
7140 if (dc_isar_feature(aa64_fp16, s)) {
7141 break;
7143 /* fallthru */
7144 default:
7145 unallocated_encoding(s);
7146 return;
7149 switch ((rmode << 3) | opcode) {
7150 case 0x2: /* SCVTF */
7151 case 0x3: /* UCVTF */
7152 itof = true;
7153 break;
7154 case 0x18: /* FCVTZS */
7155 case 0x19: /* FCVTZU */
7156 itof = false;
7157 break;
7158 default:
7159 unallocated_encoding(s);
7160 return;
7163 if (!fp_access_check(s)) {
7164 return;
7167 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7170 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7172 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7173 * without conversion.
7176 if (itof) {
7177 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7178 TCGv_i64 tmp;
7180 switch (type) {
7181 case 0:
7182 /* 32 bit */
7183 tmp = tcg_temp_new_i64();
7184 tcg_gen_ext32u_i64(tmp, tcg_rn);
7185 write_fp_dreg(s, rd, tmp);
7186 tcg_temp_free_i64(tmp);
7187 break;
7188 case 1:
7189 /* 64 bit */
7190 write_fp_dreg(s, rd, tcg_rn);
7191 break;
7192 case 2:
7193 /* 64 bit to top half. */
7194 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7195 clear_vec_high(s, true, rd);
7196 break;
7197 case 3:
7198 /* 16 bit */
7199 tmp = tcg_temp_new_i64();
7200 tcg_gen_ext16u_i64(tmp, tcg_rn);
7201 write_fp_dreg(s, rd, tmp);
7202 tcg_temp_free_i64(tmp);
7203 break;
7204 default:
7205 g_assert_not_reached();
7207 } else {
7208 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7210 switch (type) {
7211 case 0:
7212 /* 32 bit */
7213 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7214 break;
7215 case 1:
7216 /* 64 bit */
7217 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7218 break;
7219 case 2:
7220 /* 64 bits from top half */
7221 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7222 break;
7223 case 3:
7224 /* 16 bit */
7225 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7226 break;
7227 default:
7228 g_assert_not_reached();
7233 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7235 TCGv_i64 t = read_fp_dreg(s, rn);
7236 TCGv_ptr fpstatus = get_fpstatus_ptr(false);
7238 gen_helper_fjcvtzs(t, t, fpstatus);
7240 tcg_temp_free_ptr(fpstatus);
7242 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7243 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7244 tcg_gen_movi_i32(cpu_CF, 0);
7245 tcg_gen_movi_i32(cpu_NF, 0);
7246 tcg_gen_movi_i32(cpu_VF, 0);
7248 tcg_temp_free_i64(t);
7251 /* Floating point <-> integer conversions
7252 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7253 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7254 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7255 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7257 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7259 int rd = extract32(insn, 0, 5);
7260 int rn = extract32(insn, 5, 5);
7261 int opcode = extract32(insn, 16, 3);
7262 int rmode = extract32(insn, 19, 2);
7263 int type = extract32(insn, 22, 2);
7264 bool sbit = extract32(insn, 29, 1);
7265 bool sf = extract32(insn, 31, 1);
7266 bool itof = false;
7268 if (sbit) {
7269 goto do_unallocated;
7272 switch (opcode) {
7273 case 2: /* SCVTF */
7274 case 3: /* UCVTF */
7275 itof = true;
7276 /* fallthru */
7277 case 4: /* FCVTAS */
7278 case 5: /* FCVTAU */
7279 if (rmode != 0) {
7280 goto do_unallocated;
7282 /* fallthru */
7283 case 0: /* FCVT[NPMZ]S */
7284 case 1: /* FCVT[NPMZ]U */
7285 switch (type) {
7286 case 0: /* float32 */
7287 case 1: /* float64 */
7288 break;
7289 case 3: /* float16 */
7290 if (!dc_isar_feature(aa64_fp16, s)) {
7291 goto do_unallocated;
7293 break;
7294 default:
7295 goto do_unallocated;
7297 if (!fp_access_check(s)) {
7298 return;
7300 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7301 break;
7303 default:
7304 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7305 case 0b01100110: /* FMOV half <-> 32-bit int */
7306 case 0b01100111:
7307 case 0b11100110: /* FMOV half <-> 64-bit int */
7308 case 0b11100111:
7309 if (!dc_isar_feature(aa64_fp16, s)) {
7310 goto do_unallocated;
7312 /* fallthru */
7313 case 0b00000110: /* FMOV 32-bit */
7314 case 0b00000111:
7315 case 0b10100110: /* FMOV 64-bit */
7316 case 0b10100111:
7317 case 0b11001110: /* FMOV top half of 128-bit */
7318 case 0b11001111:
7319 if (!fp_access_check(s)) {
7320 return;
7322 itof = opcode & 1;
7323 handle_fmov(s, rd, rn, type, itof);
7324 break;
7326 case 0b00111110: /* FJCVTZS */
7327 if (!dc_isar_feature(aa64_jscvt, s)) {
7328 goto do_unallocated;
7329 } else if (fp_access_check(s)) {
7330 handle_fjcvtzs(s, rd, rn);
7332 break;
7334 default:
7335 do_unallocated:
7336 unallocated_encoding(s);
7337 return;
7339 break;
7343 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7344 * 31 30 29 28 25 24 0
7345 * +---+---+---+---------+-----------------------------+
7346 * | | 0 | | 1 1 1 1 | |
7347 * +---+---+---+---------+-----------------------------+
7349 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7351 if (extract32(insn, 24, 1)) {
7352 /* Floating point data-processing (3 source) */
7353 disas_fp_3src(s, insn);
7354 } else if (extract32(insn, 21, 1) == 0) {
7355 /* Floating point to fixed point conversions */
7356 disas_fp_fixed_conv(s, insn);
7357 } else {
7358 switch (extract32(insn, 10, 2)) {
7359 case 1:
7360 /* Floating point conditional compare */
7361 disas_fp_ccomp(s, insn);
7362 break;
7363 case 2:
7364 /* Floating point data-processing (2 source) */
7365 disas_fp_2src(s, insn);
7366 break;
7367 case 3:
7368 /* Floating point conditional select */
7369 disas_fp_csel(s, insn);
7370 break;
7371 case 0:
7372 switch (ctz32(extract32(insn, 12, 4))) {
7373 case 0: /* [15:12] == xxx1 */
7374 /* Floating point immediate */
7375 disas_fp_imm(s, insn);
7376 break;
7377 case 1: /* [15:12] == xx10 */
7378 /* Floating point compare */
7379 disas_fp_compare(s, insn);
7380 break;
7381 case 2: /* [15:12] == x100 */
7382 /* Floating point data-processing (1 source) */
7383 disas_fp_1src(s, insn);
7384 break;
7385 case 3: /* [15:12] == 1000 */
7386 unallocated_encoding(s);
7387 break;
7388 default: /* [15:12] == 0000 */
7389 /* Floating point <-> integer conversions */
7390 disas_fp_int_conv(s, insn);
7391 break;
7393 break;
7398 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7399 int pos)
7401 /* Extract 64 bits from the middle of two concatenated 64 bit
7402 * vector register slices left:right. The extracted bits start
7403 * at 'pos' bits into the right (least significant) side.
7404 * We return the result in tcg_right, and guarantee not to
7405 * trash tcg_left.
7407 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7408 assert(pos > 0 && pos < 64);
7410 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7411 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7412 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7414 tcg_temp_free_i64(tcg_tmp);
7417 /* EXT
7418 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7419 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7420 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7421 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7423 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7425 int is_q = extract32(insn, 30, 1);
7426 int op2 = extract32(insn, 22, 2);
7427 int imm4 = extract32(insn, 11, 4);
7428 int rm = extract32(insn, 16, 5);
7429 int rn = extract32(insn, 5, 5);
7430 int rd = extract32(insn, 0, 5);
7431 int pos = imm4 << 3;
7432 TCGv_i64 tcg_resl, tcg_resh;
7434 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7435 unallocated_encoding(s);
7436 return;
7439 if (!fp_access_check(s)) {
7440 return;
7443 tcg_resh = tcg_temp_new_i64();
7444 tcg_resl = tcg_temp_new_i64();
7446 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7447 * either extracting 128 bits from a 128:128 concatenation, or
7448 * extracting 64 bits from a 64:64 concatenation.
7450 if (!is_q) {
7451 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7452 if (pos != 0) {
7453 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7454 do_ext64(s, tcg_resh, tcg_resl, pos);
7456 } else {
7457 TCGv_i64 tcg_hh;
7458 typedef struct {
7459 int reg;
7460 int elt;
7461 } EltPosns;
7462 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7463 EltPosns *elt = eltposns;
7465 if (pos >= 64) {
7466 elt++;
7467 pos -= 64;
7470 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7471 elt++;
7472 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7473 elt++;
7474 if (pos != 0) {
7475 do_ext64(s, tcg_resh, tcg_resl, pos);
7476 tcg_hh = tcg_temp_new_i64();
7477 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7478 do_ext64(s, tcg_hh, tcg_resh, pos);
7479 tcg_temp_free_i64(tcg_hh);
7483 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7484 tcg_temp_free_i64(tcg_resl);
7485 if (is_q) {
7486 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7488 tcg_temp_free_i64(tcg_resh);
7489 clear_vec_high(s, is_q, rd);
7492 /* TBL/TBX
7493 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7494 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7495 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7496 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7498 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7500 int op2 = extract32(insn, 22, 2);
7501 int is_q = extract32(insn, 30, 1);
7502 int rm = extract32(insn, 16, 5);
7503 int rn = extract32(insn, 5, 5);
7504 int rd = extract32(insn, 0, 5);
7505 int is_tblx = extract32(insn, 12, 1);
7506 int len = extract32(insn, 13, 2);
7507 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
7508 TCGv_i32 tcg_regno, tcg_numregs;
7510 if (op2 != 0) {
7511 unallocated_encoding(s);
7512 return;
7515 if (!fp_access_check(s)) {
7516 return;
7519 /* This does a table lookup: for every byte element in the input
7520 * we index into a table formed from up to four vector registers,
7521 * and then the output is the result of the lookups. Our helper
7522 * function does the lookup operation for a single 64 bit part of
7523 * the input.
7525 tcg_resl = tcg_temp_new_i64();
7526 tcg_resh = NULL;
7528 if (is_tblx) {
7529 read_vec_element(s, tcg_resl, rd, 0, MO_64);
7530 } else {
7531 tcg_gen_movi_i64(tcg_resl, 0);
7534 if (is_q) {
7535 tcg_resh = tcg_temp_new_i64();
7536 if (is_tblx) {
7537 read_vec_element(s, tcg_resh, rd, 1, MO_64);
7538 } else {
7539 tcg_gen_movi_i64(tcg_resh, 0);
7543 tcg_idx = tcg_temp_new_i64();
7544 tcg_regno = tcg_const_i32(rn);
7545 tcg_numregs = tcg_const_i32(len + 1);
7546 read_vec_element(s, tcg_idx, rm, 0, MO_64);
7547 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
7548 tcg_regno, tcg_numregs);
7549 if (is_q) {
7550 read_vec_element(s, tcg_idx, rm, 1, MO_64);
7551 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
7552 tcg_regno, tcg_numregs);
7554 tcg_temp_free_i64(tcg_idx);
7555 tcg_temp_free_i32(tcg_regno);
7556 tcg_temp_free_i32(tcg_numregs);
7558 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7559 tcg_temp_free_i64(tcg_resl);
7561 if (is_q) {
7562 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7563 tcg_temp_free_i64(tcg_resh);
7565 clear_vec_high(s, is_q, rd);
7568 /* ZIP/UZP/TRN
7569 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7570 * +---+---+-------------+------+---+------+---+------------------+------+
7571 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7572 * +---+---+-------------+------+---+------+---+------------------+------+
7574 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7576 int rd = extract32(insn, 0, 5);
7577 int rn = extract32(insn, 5, 5);
7578 int rm = extract32(insn, 16, 5);
7579 int size = extract32(insn, 22, 2);
7580 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7581 * bit 2 indicates 1 vs 2 variant of the insn.
7583 int opcode = extract32(insn, 12, 2);
7584 bool part = extract32(insn, 14, 1);
7585 bool is_q = extract32(insn, 30, 1);
7586 int esize = 8 << size;
7587 int i, ofs;
7588 int datasize = is_q ? 128 : 64;
7589 int elements = datasize / esize;
7590 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7592 if (opcode == 0 || (size == 3 && !is_q)) {
7593 unallocated_encoding(s);
7594 return;
7597 if (!fp_access_check(s)) {
7598 return;
7601 tcg_resl = tcg_const_i64(0);
7602 tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7603 tcg_res = tcg_temp_new_i64();
7605 for (i = 0; i < elements; i++) {
7606 switch (opcode) {
7607 case 1: /* UZP1/2 */
7609 int midpoint = elements / 2;
7610 if (i < midpoint) {
7611 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7612 } else {
7613 read_vec_element(s, tcg_res, rm,
7614 2 * (i - midpoint) + part, size);
7616 break;
7618 case 2: /* TRN1/2 */
7619 if (i & 1) {
7620 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7621 } else {
7622 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7624 break;
7625 case 3: /* ZIP1/2 */
7627 int base = part * elements / 2;
7628 if (i & 1) {
7629 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7630 } else {
7631 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7633 break;
7635 default:
7636 g_assert_not_reached();
7639 ofs = i * esize;
7640 if (ofs < 64) {
7641 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7642 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7643 } else {
7644 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7645 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7649 tcg_temp_free_i64(tcg_res);
7651 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7652 tcg_temp_free_i64(tcg_resl);
7654 if (is_q) {
7655 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7656 tcg_temp_free_i64(tcg_resh);
7658 clear_vec_high(s, is_q, rd);
7662 * do_reduction_op helper
7664 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7665 * important for correct NaN propagation that we do these
7666 * operations in exactly the order specified by the pseudocode.
7668 * This is a recursive function, TCG temps should be freed by the
7669 * calling function once it is done with the values.
7671 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7672 int esize, int size, int vmap, TCGv_ptr fpst)
7674 if (esize == size) {
7675 int element;
7676 MemOp msize = esize == 16 ? MO_16 : MO_32;
7677 TCGv_i32 tcg_elem;
7679 /* We should have one register left here */
7680 assert(ctpop8(vmap) == 1);
7681 element = ctz32(vmap);
7682 assert(element < 8);
7684 tcg_elem = tcg_temp_new_i32();
7685 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7686 return tcg_elem;
7687 } else {
7688 int bits = size / 2;
7689 int shift = ctpop8(vmap) / 2;
7690 int vmap_lo = (vmap >> shift) & vmap;
7691 int vmap_hi = (vmap & ~vmap_lo);
7692 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7694 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7695 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7696 tcg_res = tcg_temp_new_i32();
7698 switch (fpopcode) {
7699 case 0x0c: /* fmaxnmv half-precision */
7700 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7701 break;
7702 case 0x0f: /* fmaxv half-precision */
7703 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7704 break;
7705 case 0x1c: /* fminnmv half-precision */
7706 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7707 break;
7708 case 0x1f: /* fminv half-precision */
7709 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7710 break;
7711 case 0x2c: /* fmaxnmv */
7712 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7713 break;
7714 case 0x2f: /* fmaxv */
7715 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7716 break;
7717 case 0x3c: /* fminnmv */
7718 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7719 break;
7720 case 0x3f: /* fminv */
7721 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7722 break;
7723 default:
7724 g_assert_not_reached();
7727 tcg_temp_free_i32(tcg_hi);
7728 tcg_temp_free_i32(tcg_lo);
7729 return tcg_res;
7733 /* AdvSIMD across lanes
7734 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7735 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7736 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7737 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7739 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7741 int rd = extract32(insn, 0, 5);
7742 int rn = extract32(insn, 5, 5);
7743 int size = extract32(insn, 22, 2);
7744 int opcode = extract32(insn, 12, 5);
7745 bool is_q = extract32(insn, 30, 1);
7746 bool is_u = extract32(insn, 29, 1);
7747 bool is_fp = false;
7748 bool is_min = false;
7749 int esize;
7750 int elements;
7751 int i;
7752 TCGv_i64 tcg_res, tcg_elt;
7754 switch (opcode) {
7755 case 0x1b: /* ADDV */
7756 if (is_u) {
7757 unallocated_encoding(s);
7758 return;
7760 /* fall through */
7761 case 0x3: /* SADDLV, UADDLV */
7762 case 0xa: /* SMAXV, UMAXV */
7763 case 0x1a: /* SMINV, UMINV */
7764 if (size == 3 || (size == 2 && !is_q)) {
7765 unallocated_encoding(s);
7766 return;
7768 break;
7769 case 0xc: /* FMAXNMV, FMINNMV */
7770 case 0xf: /* FMAXV, FMINV */
7771 /* Bit 1 of size field encodes min vs max and the actual size
7772 * depends on the encoding of the U bit. If not set (and FP16
7773 * enabled) then we do half-precision float instead of single
7774 * precision.
7776 is_min = extract32(size, 1, 1);
7777 is_fp = true;
7778 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7779 size = 1;
7780 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7781 unallocated_encoding(s);
7782 return;
7783 } else {
7784 size = 2;
7786 break;
7787 default:
7788 unallocated_encoding(s);
7789 return;
7792 if (!fp_access_check(s)) {
7793 return;
7796 esize = 8 << size;
7797 elements = (is_q ? 128 : 64) / esize;
7799 tcg_res = tcg_temp_new_i64();
7800 tcg_elt = tcg_temp_new_i64();
7802 /* These instructions operate across all lanes of a vector
7803 * to produce a single result. We can guarantee that a 64
7804 * bit intermediate is sufficient:
7805 * + for [US]ADDLV the maximum element size is 32 bits, and
7806 * the result type is 64 bits
7807 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7808 * same as the element size, which is 32 bits at most
7809 * For the integer operations we can choose to work at 64
7810 * or 32 bits and truncate at the end; for simplicity
7811 * we use 64 bits always. The floating point
7812 * ops do require 32 bit intermediates, though.
7814 if (!is_fp) {
7815 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7817 for (i = 1; i < elements; i++) {
7818 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7820 switch (opcode) {
7821 case 0x03: /* SADDLV / UADDLV */
7822 case 0x1b: /* ADDV */
7823 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7824 break;
7825 case 0x0a: /* SMAXV / UMAXV */
7826 if (is_u) {
7827 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7828 } else {
7829 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7831 break;
7832 case 0x1a: /* SMINV / UMINV */
7833 if (is_u) {
7834 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7835 } else {
7836 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7838 break;
7839 default:
7840 g_assert_not_reached();
7844 } else {
7845 /* Floating point vector reduction ops which work across 32
7846 * bit (single) or 16 bit (half-precision) intermediates.
7847 * Note that correct NaN propagation requires that we do these
7848 * operations in exactly the order specified by the pseudocode.
7850 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7851 int fpopcode = opcode | is_min << 4 | is_u << 5;
7852 int vmap = (1 << elements) - 1;
7853 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7854 (is_q ? 128 : 64), vmap, fpst);
7855 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7856 tcg_temp_free_i32(tcg_res32);
7857 tcg_temp_free_ptr(fpst);
7860 tcg_temp_free_i64(tcg_elt);
7862 /* Now truncate the result to the width required for the final output */
7863 if (opcode == 0x03) {
7864 /* SADDLV, UADDLV: result is 2*esize */
7865 size++;
7868 switch (size) {
7869 case 0:
7870 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7871 break;
7872 case 1:
7873 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7874 break;
7875 case 2:
7876 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7877 break;
7878 case 3:
7879 break;
7880 default:
7881 g_assert_not_reached();
7884 write_fp_dreg(s, rd, tcg_res);
7885 tcg_temp_free_i64(tcg_res);
7888 /* DUP (Element, Vector)
7890 * 31 30 29 21 20 16 15 10 9 5 4 0
7891 * +---+---+-------------------+--------+-------------+------+------+
7892 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7893 * +---+---+-------------------+--------+-------------+------+------+
7895 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7897 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7898 int imm5)
7900 int size = ctz32(imm5);
7901 int index;
7903 if (size > 3 || (size == 3 && !is_q)) {
7904 unallocated_encoding(s);
7905 return;
7908 if (!fp_access_check(s)) {
7909 return;
7912 index = imm5 >> (size + 1);
7913 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7914 vec_reg_offset(s, rn, index, size),
7915 is_q ? 16 : 8, vec_full_reg_size(s));
7918 /* DUP (element, scalar)
7919 * 31 21 20 16 15 10 9 5 4 0
7920 * +-----------------------+--------+-------------+------+------+
7921 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7922 * +-----------------------+--------+-------------+------+------+
7924 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7925 int imm5)
7927 int size = ctz32(imm5);
7928 int index;
7929 TCGv_i64 tmp;
7931 if (size > 3) {
7932 unallocated_encoding(s);
7933 return;
7936 if (!fp_access_check(s)) {
7937 return;
7940 index = imm5 >> (size + 1);
7942 /* This instruction just extracts the specified element and
7943 * zero-extends it into the bottom of the destination register.
7945 tmp = tcg_temp_new_i64();
7946 read_vec_element(s, tmp, rn, index, size);
7947 write_fp_dreg(s, rd, tmp);
7948 tcg_temp_free_i64(tmp);
7951 /* DUP (General)
7953 * 31 30 29 21 20 16 15 10 9 5 4 0
7954 * +---+---+-------------------+--------+-------------+------+------+
7955 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7956 * +---+---+-------------------+--------+-------------+------+------+
7958 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7960 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7961 int imm5)
7963 int size = ctz32(imm5);
7964 uint32_t dofs, oprsz, maxsz;
7966 if (size > 3 || ((size == 3) && !is_q)) {
7967 unallocated_encoding(s);
7968 return;
7971 if (!fp_access_check(s)) {
7972 return;
7975 dofs = vec_full_reg_offset(s, rd);
7976 oprsz = is_q ? 16 : 8;
7977 maxsz = vec_full_reg_size(s);
7979 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7982 /* INS (Element)
7984 * 31 21 20 16 15 14 11 10 9 5 4 0
7985 * +-----------------------+--------+------------+---+------+------+
7986 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7987 * +-----------------------+--------+------------+---+------+------+
7989 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7990 * index: encoded in imm5<4:size+1>
7992 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7993 int imm4, int imm5)
7995 int size = ctz32(imm5);
7996 int src_index, dst_index;
7997 TCGv_i64 tmp;
7999 if (size > 3) {
8000 unallocated_encoding(s);
8001 return;
8004 if (!fp_access_check(s)) {
8005 return;
8008 dst_index = extract32(imm5, 1+size, 5);
8009 src_index = extract32(imm4, size, 4);
8011 tmp = tcg_temp_new_i64();
8013 read_vec_element(s, tmp, rn, src_index, size);
8014 write_vec_element(s, tmp, rd, dst_index, size);
8016 tcg_temp_free_i64(tmp);
8018 /* INS is considered a 128-bit write for SVE. */
8019 clear_vec_high(s, true, rd);
8023 /* INS (General)
8025 * 31 21 20 16 15 10 9 5 4 0
8026 * +-----------------------+--------+-------------+------+------+
8027 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
8028 * +-----------------------+--------+-------------+------+------+
8030 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8031 * index: encoded in imm5<4:size+1>
8033 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
8035 int size = ctz32(imm5);
8036 int idx;
8038 if (size > 3) {
8039 unallocated_encoding(s);
8040 return;
8043 if (!fp_access_check(s)) {
8044 return;
8047 idx = extract32(imm5, 1 + size, 4 - size);
8048 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8050 /* INS is considered a 128-bit write for SVE. */
8051 clear_vec_high(s, true, rd);
8055 * UMOV (General)
8056 * SMOV (General)
8058 * 31 30 29 21 20 16 15 12 10 9 5 4 0
8059 * +---+---+-------------------+--------+-------------+------+------+
8060 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
8061 * +---+---+-------------------+--------+-------------+------+------+
8063 * U: unsigned when set
8064 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8066 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8067 int rn, int rd, int imm5)
8069 int size = ctz32(imm5);
8070 int element;
8071 TCGv_i64 tcg_rd;
8073 /* Check for UnallocatedEncodings */
8074 if (is_signed) {
8075 if (size > 2 || (size == 2 && !is_q)) {
8076 unallocated_encoding(s);
8077 return;
8079 } else {
8080 if (size > 3
8081 || (size < 3 && is_q)
8082 || (size == 3 && !is_q)) {
8083 unallocated_encoding(s);
8084 return;
8088 if (!fp_access_check(s)) {
8089 return;
8092 element = extract32(imm5, 1+size, 4);
8094 tcg_rd = cpu_reg(s, rd);
8095 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8096 if (is_signed && !is_q) {
8097 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8101 /* AdvSIMD copy
8102 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8103 * +---+---+----+-----------------+------+---+------+---+------+------+
8104 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8105 * +---+---+----+-----------------+------+---+------+---+------+------+
8107 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8109 int rd = extract32(insn, 0, 5);
8110 int rn = extract32(insn, 5, 5);
8111 int imm4 = extract32(insn, 11, 4);
8112 int op = extract32(insn, 29, 1);
8113 int is_q = extract32(insn, 30, 1);
8114 int imm5 = extract32(insn, 16, 5);
8116 if (op) {
8117 if (is_q) {
8118 /* INS (element) */
8119 handle_simd_inse(s, rd, rn, imm4, imm5);
8120 } else {
8121 unallocated_encoding(s);
8123 } else {
8124 switch (imm4) {
8125 case 0:
8126 /* DUP (element - vector) */
8127 handle_simd_dupe(s, is_q, rd, rn, imm5);
8128 break;
8129 case 1:
8130 /* DUP (general) */
8131 handle_simd_dupg(s, is_q, rd, rn, imm5);
8132 break;
8133 case 3:
8134 if (is_q) {
8135 /* INS (general) */
8136 handle_simd_insg(s, rd, rn, imm5);
8137 } else {
8138 unallocated_encoding(s);
8140 break;
8141 case 5:
8142 case 7:
8143 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8144 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8145 break;
8146 default:
8147 unallocated_encoding(s);
8148 break;
8153 /* AdvSIMD modified immediate
8154 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8155 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8156 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8157 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8159 * There are a number of operations that can be carried out here:
8160 * MOVI - move (shifted) imm into register
8161 * MVNI - move inverted (shifted) imm into register
8162 * ORR - bitwise OR of (shifted) imm with register
8163 * BIC - bitwise clear of (shifted) imm with register
8164 * With ARMv8.2 we also have:
8165 * FMOV half-precision
8167 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8169 int rd = extract32(insn, 0, 5);
8170 int cmode = extract32(insn, 12, 4);
8171 int cmode_3_1 = extract32(cmode, 1, 3);
8172 int cmode_0 = extract32(cmode, 0, 1);
8173 int o2 = extract32(insn, 11, 1);
8174 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8175 bool is_neg = extract32(insn, 29, 1);
8176 bool is_q = extract32(insn, 30, 1);
8177 uint64_t imm = 0;
8179 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8180 /* Check for FMOV (vector, immediate) - half-precision */
8181 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8182 unallocated_encoding(s);
8183 return;
8187 if (!fp_access_check(s)) {
8188 return;
8191 /* See AdvSIMDExpandImm() in ARM ARM */
8192 switch (cmode_3_1) {
8193 case 0: /* Replicate(Zeros(24):imm8, 2) */
8194 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
8195 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
8196 case 3: /* Replicate(imm8:Zeros(24), 2) */
8198 int shift = cmode_3_1 * 8;
8199 imm = bitfield_replicate(abcdefgh << shift, 32);
8200 break;
8202 case 4: /* Replicate(Zeros(8):imm8, 4) */
8203 case 5: /* Replicate(imm8:Zeros(8), 4) */
8205 int shift = (cmode_3_1 & 0x1) * 8;
8206 imm = bitfield_replicate(abcdefgh << shift, 16);
8207 break;
8209 case 6:
8210 if (cmode_0) {
8211 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
8212 imm = (abcdefgh << 16) | 0xffff;
8213 } else {
8214 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
8215 imm = (abcdefgh << 8) | 0xff;
8217 imm = bitfield_replicate(imm, 32);
8218 break;
8219 case 7:
8220 if (!cmode_0 && !is_neg) {
8221 imm = bitfield_replicate(abcdefgh, 8);
8222 } else if (!cmode_0 && is_neg) {
8223 int i;
8224 imm = 0;
8225 for (i = 0; i < 8; i++) {
8226 if ((abcdefgh) & (1 << i)) {
8227 imm |= 0xffULL << (i * 8);
8230 } else if (cmode_0) {
8231 if (is_neg) {
8232 imm = (abcdefgh & 0x3f) << 48;
8233 if (abcdefgh & 0x80) {
8234 imm |= 0x8000000000000000ULL;
8236 if (abcdefgh & 0x40) {
8237 imm |= 0x3fc0000000000000ULL;
8238 } else {
8239 imm |= 0x4000000000000000ULL;
8241 } else {
8242 if (o2) {
8243 /* FMOV (vector, immediate) - half-precision */
8244 imm = vfp_expand_imm(MO_16, abcdefgh);
8245 /* now duplicate across the lanes */
8246 imm = bitfield_replicate(imm, 16);
8247 } else {
8248 imm = (abcdefgh & 0x3f) << 19;
8249 if (abcdefgh & 0x80) {
8250 imm |= 0x80000000;
8252 if (abcdefgh & 0x40) {
8253 imm |= 0x3e000000;
8254 } else {
8255 imm |= 0x40000000;
8257 imm |= (imm << 32);
8261 break;
8262 default:
8263 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
8264 g_assert_not_reached();
8267 if (cmode_3_1 != 7 && is_neg) {
8268 imm = ~imm;
8271 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8272 /* MOVI or MVNI, with MVNI negation handled above. */
8273 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8274 vec_full_reg_size(s), imm);
8275 } else {
8276 /* ORR or BIC, with BIC negation to AND handled above. */
8277 if (is_neg) {
8278 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8279 } else {
8280 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8285 /* AdvSIMD scalar copy
8286 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8287 * +-----+----+-----------------+------+---+------+---+------+------+
8288 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8289 * +-----+----+-----------------+------+---+------+---+------+------+
8291 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8293 int rd = extract32(insn, 0, 5);
8294 int rn = extract32(insn, 5, 5);
8295 int imm4 = extract32(insn, 11, 4);
8296 int imm5 = extract32(insn, 16, 5);
8297 int op = extract32(insn, 29, 1);
8299 if (op != 0 || imm4 != 0) {
8300 unallocated_encoding(s);
8301 return;
8304 /* DUP (element, scalar) */
8305 handle_simd_dupes(s, rd, rn, imm5);
8308 /* AdvSIMD scalar pairwise
8309 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8310 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8311 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8312 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8314 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8316 int u = extract32(insn, 29, 1);
8317 int size = extract32(insn, 22, 2);
8318 int opcode = extract32(insn, 12, 5);
8319 int rn = extract32(insn, 5, 5);
8320 int rd = extract32(insn, 0, 5);
8321 TCGv_ptr fpst;
8323 /* For some ops (the FP ones), size[1] is part of the encoding.
8324 * For ADDP strictly it is not but size[1] is always 1 for valid
8325 * encodings.
8327 opcode |= (extract32(size, 1, 1) << 5);
8329 switch (opcode) {
8330 case 0x3b: /* ADDP */
8331 if (u || size != 3) {
8332 unallocated_encoding(s);
8333 return;
8335 if (!fp_access_check(s)) {
8336 return;
8339 fpst = NULL;
8340 break;
8341 case 0xc: /* FMAXNMP */
8342 case 0xd: /* FADDP */
8343 case 0xf: /* FMAXP */
8344 case 0x2c: /* FMINNMP */
8345 case 0x2f: /* FMINP */
8346 /* FP op, size[0] is 32 or 64 bit*/
8347 if (!u) {
8348 if (!dc_isar_feature(aa64_fp16, s)) {
8349 unallocated_encoding(s);
8350 return;
8351 } else {
8352 size = MO_16;
8354 } else {
8355 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8358 if (!fp_access_check(s)) {
8359 return;
8362 fpst = get_fpstatus_ptr(size == MO_16);
8363 break;
8364 default:
8365 unallocated_encoding(s);
8366 return;
8369 if (size == MO_64) {
8370 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8371 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8372 TCGv_i64 tcg_res = tcg_temp_new_i64();
8374 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8375 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8377 switch (opcode) {
8378 case 0x3b: /* ADDP */
8379 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8380 break;
8381 case 0xc: /* FMAXNMP */
8382 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8383 break;
8384 case 0xd: /* FADDP */
8385 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8386 break;
8387 case 0xf: /* FMAXP */
8388 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8389 break;
8390 case 0x2c: /* FMINNMP */
8391 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8392 break;
8393 case 0x2f: /* FMINP */
8394 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8395 break;
8396 default:
8397 g_assert_not_reached();
8400 write_fp_dreg(s, rd, tcg_res);
8402 tcg_temp_free_i64(tcg_op1);
8403 tcg_temp_free_i64(tcg_op2);
8404 tcg_temp_free_i64(tcg_res);
8405 } else {
8406 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8407 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8408 TCGv_i32 tcg_res = tcg_temp_new_i32();
8410 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8411 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8413 if (size == MO_16) {
8414 switch (opcode) {
8415 case 0xc: /* FMAXNMP */
8416 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8417 break;
8418 case 0xd: /* FADDP */
8419 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8420 break;
8421 case 0xf: /* FMAXP */
8422 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8423 break;
8424 case 0x2c: /* FMINNMP */
8425 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8426 break;
8427 case 0x2f: /* FMINP */
8428 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8429 break;
8430 default:
8431 g_assert_not_reached();
8433 } else {
8434 switch (opcode) {
8435 case 0xc: /* FMAXNMP */
8436 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8437 break;
8438 case 0xd: /* FADDP */
8439 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8440 break;
8441 case 0xf: /* FMAXP */
8442 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8443 break;
8444 case 0x2c: /* FMINNMP */
8445 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8446 break;
8447 case 0x2f: /* FMINP */
8448 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8449 break;
8450 default:
8451 g_assert_not_reached();
8455 write_fp_sreg(s, rd, tcg_res);
8457 tcg_temp_free_i32(tcg_op1);
8458 tcg_temp_free_i32(tcg_op2);
8459 tcg_temp_free_i32(tcg_res);
8462 if (fpst) {
8463 tcg_temp_free_ptr(fpst);
8468 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8470 * This code is handles the common shifting code and is used by both
8471 * the vector and scalar code.
8473 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8474 TCGv_i64 tcg_rnd, bool accumulate,
8475 bool is_u, int size, int shift)
8477 bool extended_result = false;
8478 bool round = tcg_rnd != NULL;
8479 int ext_lshift = 0;
8480 TCGv_i64 tcg_src_hi;
8482 if (round && size == 3) {
8483 extended_result = true;
8484 ext_lshift = 64 - shift;
8485 tcg_src_hi = tcg_temp_new_i64();
8486 } else if (shift == 64) {
8487 if (!accumulate && is_u) {
8488 /* result is zero */
8489 tcg_gen_movi_i64(tcg_res, 0);
8490 return;
8494 /* Deal with the rounding step */
8495 if (round) {
8496 if (extended_result) {
8497 TCGv_i64 tcg_zero = tcg_const_i64(0);
8498 if (!is_u) {
8499 /* take care of sign extending tcg_res */
8500 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8501 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8502 tcg_src, tcg_src_hi,
8503 tcg_rnd, tcg_zero);
8504 } else {
8505 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8506 tcg_src, tcg_zero,
8507 tcg_rnd, tcg_zero);
8509 tcg_temp_free_i64(tcg_zero);
8510 } else {
8511 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8515 /* Now do the shift right */
8516 if (round && extended_result) {
8517 /* extended case, >64 bit precision required */
8518 if (ext_lshift == 0) {
8519 /* special case, only high bits matter */
8520 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8521 } else {
8522 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8523 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8524 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8526 } else {
8527 if (is_u) {
8528 if (shift == 64) {
8529 /* essentially shifting in 64 zeros */
8530 tcg_gen_movi_i64(tcg_src, 0);
8531 } else {
8532 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8534 } else {
8535 if (shift == 64) {
8536 /* effectively extending the sign-bit */
8537 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8538 } else {
8539 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8544 if (accumulate) {
8545 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8546 } else {
8547 tcg_gen_mov_i64(tcg_res, tcg_src);
8550 if (extended_result) {
8551 tcg_temp_free_i64(tcg_src_hi);
8555 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8556 static void handle_scalar_simd_shri(DisasContext *s,
8557 bool is_u, int immh, int immb,
8558 int opcode, int rn, int rd)
8560 const int size = 3;
8561 int immhb = immh << 3 | immb;
8562 int shift = 2 * (8 << size) - immhb;
8563 bool accumulate = false;
8564 bool round = false;
8565 bool insert = false;
8566 TCGv_i64 tcg_rn;
8567 TCGv_i64 tcg_rd;
8568 TCGv_i64 tcg_round;
8570 if (!extract32(immh, 3, 1)) {
8571 unallocated_encoding(s);
8572 return;
8575 if (!fp_access_check(s)) {
8576 return;
8579 switch (opcode) {
8580 case 0x02: /* SSRA / USRA (accumulate) */
8581 accumulate = true;
8582 break;
8583 case 0x04: /* SRSHR / URSHR (rounding) */
8584 round = true;
8585 break;
8586 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8587 accumulate = round = true;
8588 break;
8589 case 0x08: /* SRI */
8590 insert = true;
8591 break;
8594 if (round) {
8595 uint64_t round_const = 1ULL << (shift - 1);
8596 tcg_round = tcg_const_i64(round_const);
8597 } else {
8598 tcg_round = NULL;
8601 tcg_rn = read_fp_dreg(s, rn);
8602 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8604 if (insert) {
8605 /* shift count same as element size is valid but does nothing;
8606 * special case to avoid potential shift by 64.
8608 int esize = 8 << size;
8609 if (shift != esize) {
8610 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8611 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8613 } else {
8614 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8615 accumulate, is_u, size, shift);
8618 write_fp_dreg(s, rd, tcg_rd);
8620 tcg_temp_free_i64(tcg_rn);
8621 tcg_temp_free_i64(tcg_rd);
8622 if (round) {
8623 tcg_temp_free_i64(tcg_round);
8627 /* SHL/SLI - Scalar shift left */
8628 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8629 int immh, int immb, int opcode,
8630 int rn, int rd)
8632 int size = 32 - clz32(immh) - 1;
8633 int immhb = immh << 3 | immb;
8634 int shift = immhb - (8 << size);
8635 TCGv_i64 tcg_rn = new_tmp_a64(s);
8636 TCGv_i64 tcg_rd = new_tmp_a64(s);
8638 if (!extract32(immh, 3, 1)) {
8639 unallocated_encoding(s);
8640 return;
8643 if (!fp_access_check(s)) {
8644 return;
8647 tcg_rn = read_fp_dreg(s, rn);
8648 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8650 if (insert) {
8651 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8652 } else {
8653 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8656 write_fp_dreg(s, rd, tcg_rd);
8658 tcg_temp_free_i64(tcg_rn);
8659 tcg_temp_free_i64(tcg_rd);
8662 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8663 * (signed/unsigned) narrowing */
8664 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8665 bool is_u_shift, bool is_u_narrow,
8666 int immh, int immb, int opcode,
8667 int rn, int rd)
8669 int immhb = immh << 3 | immb;
8670 int size = 32 - clz32(immh) - 1;
8671 int esize = 8 << size;
8672 int shift = (2 * esize) - immhb;
8673 int elements = is_scalar ? 1 : (64 / esize);
8674 bool round = extract32(opcode, 0, 1);
8675 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8676 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8677 TCGv_i32 tcg_rd_narrowed;
8678 TCGv_i64 tcg_final;
8680 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8681 { gen_helper_neon_narrow_sat_s8,
8682 gen_helper_neon_unarrow_sat8 },
8683 { gen_helper_neon_narrow_sat_s16,
8684 gen_helper_neon_unarrow_sat16 },
8685 { gen_helper_neon_narrow_sat_s32,
8686 gen_helper_neon_unarrow_sat32 },
8687 { NULL, NULL },
8689 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8690 gen_helper_neon_narrow_sat_u8,
8691 gen_helper_neon_narrow_sat_u16,
8692 gen_helper_neon_narrow_sat_u32,
8693 NULL
8695 NeonGenNarrowEnvFn *narrowfn;
8697 int i;
8699 assert(size < 4);
8701 if (extract32(immh, 3, 1)) {
8702 unallocated_encoding(s);
8703 return;
8706 if (!fp_access_check(s)) {
8707 return;
8710 if (is_u_shift) {
8711 narrowfn = unsigned_narrow_fns[size];
8712 } else {
8713 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8716 tcg_rn = tcg_temp_new_i64();
8717 tcg_rd = tcg_temp_new_i64();
8718 tcg_rd_narrowed = tcg_temp_new_i32();
8719 tcg_final = tcg_const_i64(0);
8721 if (round) {
8722 uint64_t round_const = 1ULL << (shift - 1);
8723 tcg_round = tcg_const_i64(round_const);
8724 } else {
8725 tcg_round = NULL;
8728 for (i = 0; i < elements; i++) {
8729 read_vec_element(s, tcg_rn, rn, i, ldop);
8730 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8731 false, is_u_shift, size+1, shift);
8732 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8733 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8734 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8737 if (!is_q) {
8738 write_vec_element(s, tcg_final, rd, 0, MO_64);
8739 } else {
8740 write_vec_element(s, tcg_final, rd, 1, MO_64);
8743 if (round) {
8744 tcg_temp_free_i64(tcg_round);
8746 tcg_temp_free_i64(tcg_rn);
8747 tcg_temp_free_i64(tcg_rd);
8748 tcg_temp_free_i32(tcg_rd_narrowed);
8749 tcg_temp_free_i64(tcg_final);
8751 clear_vec_high(s, is_q, rd);
8754 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8755 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8756 bool src_unsigned, bool dst_unsigned,
8757 int immh, int immb, int rn, int rd)
8759 int immhb = immh << 3 | immb;
8760 int size = 32 - clz32(immh) - 1;
8761 int shift = immhb - (8 << size);
8762 int pass;
8764 assert(immh != 0);
8765 assert(!(scalar && is_q));
8767 if (!scalar) {
8768 if (!is_q && extract32(immh, 3, 1)) {
8769 unallocated_encoding(s);
8770 return;
8773 /* Since we use the variable-shift helpers we must
8774 * replicate the shift count into each element of
8775 * the tcg_shift value.
8777 switch (size) {
8778 case 0:
8779 shift |= shift << 8;
8780 /* fall through */
8781 case 1:
8782 shift |= shift << 16;
8783 break;
8784 case 2:
8785 case 3:
8786 break;
8787 default:
8788 g_assert_not_reached();
8792 if (!fp_access_check(s)) {
8793 return;
8796 if (size == 3) {
8797 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8798 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8799 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8800 { NULL, gen_helper_neon_qshl_u64 },
8802 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8803 int maxpass = is_q ? 2 : 1;
8805 for (pass = 0; pass < maxpass; pass++) {
8806 TCGv_i64 tcg_op = tcg_temp_new_i64();
8808 read_vec_element(s, tcg_op, rn, pass, MO_64);
8809 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8810 write_vec_element(s, tcg_op, rd, pass, MO_64);
8812 tcg_temp_free_i64(tcg_op);
8814 tcg_temp_free_i64(tcg_shift);
8815 clear_vec_high(s, is_q, rd);
8816 } else {
8817 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8818 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8820 { gen_helper_neon_qshl_s8,
8821 gen_helper_neon_qshl_s16,
8822 gen_helper_neon_qshl_s32 },
8823 { gen_helper_neon_qshlu_s8,
8824 gen_helper_neon_qshlu_s16,
8825 gen_helper_neon_qshlu_s32 }
8826 }, {
8827 { NULL, NULL, NULL },
8828 { gen_helper_neon_qshl_u8,
8829 gen_helper_neon_qshl_u16,
8830 gen_helper_neon_qshl_u32 }
8833 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8834 MemOp memop = scalar ? size : MO_32;
8835 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8837 for (pass = 0; pass < maxpass; pass++) {
8838 TCGv_i32 tcg_op = tcg_temp_new_i32();
8840 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8841 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8842 if (scalar) {
8843 switch (size) {
8844 case 0:
8845 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8846 break;
8847 case 1:
8848 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8849 break;
8850 case 2:
8851 break;
8852 default:
8853 g_assert_not_reached();
8855 write_fp_sreg(s, rd, tcg_op);
8856 } else {
8857 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8860 tcg_temp_free_i32(tcg_op);
8862 tcg_temp_free_i32(tcg_shift);
8864 if (!scalar) {
8865 clear_vec_high(s, is_q, rd);
8870 /* Common vector code for handling integer to FP conversion */
8871 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8872 int elements, int is_signed,
8873 int fracbits, int size)
8875 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8876 TCGv_i32 tcg_shift = NULL;
8878 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8879 int pass;
8881 if (fracbits || size == MO_64) {
8882 tcg_shift = tcg_const_i32(fracbits);
8885 if (size == MO_64) {
8886 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8887 TCGv_i64 tcg_double = tcg_temp_new_i64();
8889 for (pass = 0; pass < elements; pass++) {
8890 read_vec_element(s, tcg_int64, rn, pass, mop);
8892 if (is_signed) {
8893 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8894 tcg_shift, tcg_fpst);
8895 } else {
8896 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8897 tcg_shift, tcg_fpst);
8899 if (elements == 1) {
8900 write_fp_dreg(s, rd, tcg_double);
8901 } else {
8902 write_vec_element(s, tcg_double, rd, pass, MO_64);
8906 tcg_temp_free_i64(tcg_int64);
8907 tcg_temp_free_i64(tcg_double);
8909 } else {
8910 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8911 TCGv_i32 tcg_float = tcg_temp_new_i32();
8913 for (pass = 0; pass < elements; pass++) {
8914 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8916 switch (size) {
8917 case MO_32:
8918 if (fracbits) {
8919 if (is_signed) {
8920 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8921 tcg_shift, tcg_fpst);
8922 } else {
8923 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8924 tcg_shift, tcg_fpst);
8926 } else {
8927 if (is_signed) {
8928 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8929 } else {
8930 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8933 break;
8934 case MO_16:
8935 if (fracbits) {
8936 if (is_signed) {
8937 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8938 tcg_shift, tcg_fpst);
8939 } else {
8940 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8941 tcg_shift, tcg_fpst);
8943 } else {
8944 if (is_signed) {
8945 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8946 } else {
8947 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8950 break;
8951 default:
8952 g_assert_not_reached();
8955 if (elements == 1) {
8956 write_fp_sreg(s, rd, tcg_float);
8957 } else {
8958 write_vec_element_i32(s, tcg_float, rd, pass, size);
8962 tcg_temp_free_i32(tcg_int32);
8963 tcg_temp_free_i32(tcg_float);
8966 tcg_temp_free_ptr(tcg_fpst);
8967 if (tcg_shift) {
8968 tcg_temp_free_i32(tcg_shift);
8971 clear_vec_high(s, elements << size == 16, rd);
8974 /* UCVTF/SCVTF - Integer to FP conversion */
8975 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8976 bool is_q, bool is_u,
8977 int immh, int immb, int opcode,
8978 int rn, int rd)
8980 int size, elements, fracbits;
8981 int immhb = immh << 3 | immb;
8983 if (immh & 8) {
8984 size = MO_64;
8985 if (!is_scalar && !is_q) {
8986 unallocated_encoding(s);
8987 return;
8989 } else if (immh & 4) {
8990 size = MO_32;
8991 } else if (immh & 2) {
8992 size = MO_16;
8993 if (!dc_isar_feature(aa64_fp16, s)) {
8994 unallocated_encoding(s);
8995 return;
8997 } else {
8998 /* immh == 0 would be a failure of the decode logic */
8999 g_assert(immh == 1);
9000 unallocated_encoding(s);
9001 return;
9004 if (is_scalar) {
9005 elements = 1;
9006 } else {
9007 elements = (8 << is_q) >> size;
9009 fracbits = (16 << size) - immhb;
9011 if (!fp_access_check(s)) {
9012 return;
9015 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9018 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9019 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9020 bool is_q, bool is_u,
9021 int immh, int immb, int rn, int rd)
9023 int immhb = immh << 3 | immb;
9024 int pass, size, fracbits;
9025 TCGv_ptr tcg_fpstatus;
9026 TCGv_i32 tcg_rmode, tcg_shift;
9028 if (immh & 0x8) {
9029 size = MO_64;
9030 if (!is_scalar && !is_q) {
9031 unallocated_encoding(s);
9032 return;
9034 } else if (immh & 0x4) {
9035 size = MO_32;
9036 } else if (immh & 0x2) {
9037 size = MO_16;
9038 if (!dc_isar_feature(aa64_fp16, s)) {
9039 unallocated_encoding(s);
9040 return;
9042 } else {
9043 /* Should have split out AdvSIMD modified immediate earlier. */
9044 assert(immh == 1);
9045 unallocated_encoding(s);
9046 return;
9049 if (!fp_access_check(s)) {
9050 return;
9053 assert(!(is_scalar && is_q));
9055 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
9056 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
9057 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9058 fracbits = (16 << size) - immhb;
9059 tcg_shift = tcg_const_i32(fracbits);
9061 if (size == MO_64) {
9062 int maxpass = is_scalar ? 1 : 2;
9064 for (pass = 0; pass < maxpass; pass++) {
9065 TCGv_i64 tcg_op = tcg_temp_new_i64();
9067 read_vec_element(s, tcg_op, rn, pass, MO_64);
9068 if (is_u) {
9069 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9070 } else {
9071 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9073 write_vec_element(s, tcg_op, rd, pass, MO_64);
9074 tcg_temp_free_i64(tcg_op);
9076 clear_vec_high(s, is_q, rd);
9077 } else {
9078 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9079 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9081 switch (size) {
9082 case MO_16:
9083 if (is_u) {
9084 fn = gen_helper_vfp_touhh;
9085 } else {
9086 fn = gen_helper_vfp_toshh;
9088 break;
9089 case MO_32:
9090 if (is_u) {
9091 fn = gen_helper_vfp_touls;
9092 } else {
9093 fn = gen_helper_vfp_tosls;
9095 break;
9096 default:
9097 g_assert_not_reached();
9100 for (pass = 0; pass < maxpass; pass++) {
9101 TCGv_i32 tcg_op = tcg_temp_new_i32();
9103 read_vec_element_i32(s, tcg_op, rn, pass, size);
9104 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9105 if (is_scalar) {
9106 write_fp_sreg(s, rd, tcg_op);
9107 } else {
9108 write_vec_element_i32(s, tcg_op, rd, pass, size);
9110 tcg_temp_free_i32(tcg_op);
9112 if (!is_scalar) {
9113 clear_vec_high(s, is_q, rd);
9117 tcg_temp_free_ptr(tcg_fpstatus);
9118 tcg_temp_free_i32(tcg_shift);
9119 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9120 tcg_temp_free_i32(tcg_rmode);
9123 /* AdvSIMD scalar shift by immediate
9124 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9125 * +-----+---+-------------+------+------+--------+---+------+------+
9126 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9127 * +-----+---+-------------+------+------+--------+---+------+------+
9129 * This is the scalar version so it works on a fixed sized registers
9131 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9133 int rd = extract32(insn, 0, 5);
9134 int rn = extract32(insn, 5, 5);
9135 int opcode = extract32(insn, 11, 5);
9136 int immb = extract32(insn, 16, 3);
9137 int immh = extract32(insn, 19, 4);
9138 bool is_u = extract32(insn, 29, 1);
9140 if (immh == 0) {
9141 unallocated_encoding(s);
9142 return;
9145 switch (opcode) {
9146 case 0x08: /* SRI */
9147 if (!is_u) {
9148 unallocated_encoding(s);
9149 return;
9151 /* fall through */
9152 case 0x00: /* SSHR / USHR */
9153 case 0x02: /* SSRA / USRA */
9154 case 0x04: /* SRSHR / URSHR */
9155 case 0x06: /* SRSRA / URSRA */
9156 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9157 break;
9158 case 0x0a: /* SHL / SLI */
9159 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9160 break;
9161 case 0x1c: /* SCVTF, UCVTF */
9162 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9163 opcode, rn, rd);
9164 break;
9165 case 0x10: /* SQSHRUN, SQSHRUN2 */
9166 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9167 if (!is_u) {
9168 unallocated_encoding(s);
9169 return;
9171 handle_vec_simd_sqshrn(s, true, false, false, true,
9172 immh, immb, opcode, rn, rd);
9173 break;
9174 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9175 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9176 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9177 immh, immb, opcode, rn, rd);
9178 break;
9179 case 0xc: /* SQSHLU */
9180 if (!is_u) {
9181 unallocated_encoding(s);
9182 return;
9184 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9185 break;
9186 case 0xe: /* SQSHL, UQSHL */
9187 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9188 break;
9189 case 0x1f: /* FCVTZS, FCVTZU */
9190 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9191 break;
9192 default:
9193 unallocated_encoding(s);
9194 break;
9198 /* AdvSIMD scalar three different
9199 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9200 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9201 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9202 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9204 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9206 bool is_u = extract32(insn, 29, 1);
9207 int size = extract32(insn, 22, 2);
9208 int opcode = extract32(insn, 12, 4);
9209 int rm = extract32(insn, 16, 5);
9210 int rn = extract32(insn, 5, 5);
9211 int rd = extract32(insn, 0, 5);
9213 if (is_u) {
9214 unallocated_encoding(s);
9215 return;
9218 switch (opcode) {
9219 case 0x9: /* SQDMLAL, SQDMLAL2 */
9220 case 0xb: /* SQDMLSL, SQDMLSL2 */
9221 case 0xd: /* SQDMULL, SQDMULL2 */
9222 if (size == 0 || size == 3) {
9223 unallocated_encoding(s);
9224 return;
9226 break;
9227 default:
9228 unallocated_encoding(s);
9229 return;
9232 if (!fp_access_check(s)) {
9233 return;
9236 if (size == 2) {
9237 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9238 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9239 TCGv_i64 tcg_res = tcg_temp_new_i64();
9241 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9242 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9244 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9245 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9247 switch (opcode) {
9248 case 0xd: /* SQDMULL, SQDMULL2 */
9249 break;
9250 case 0xb: /* SQDMLSL, SQDMLSL2 */
9251 tcg_gen_neg_i64(tcg_res, tcg_res);
9252 /* fall through */
9253 case 0x9: /* SQDMLAL, SQDMLAL2 */
9254 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9255 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9256 tcg_res, tcg_op1);
9257 break;
9258 default:
9259 g_assert_not_reached();
9262 write_fp_dreg(s, rd, tcg_res);
9264 tcg_temp_free_i64(tcg_op1);
9265 tcg_temp_free_i64(tcg_op2);
9266 tcg_temp_free_i64(tcg_res);
9267 } else {
9268 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9269 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9270 TCGv_i64 tcg_res = tcg_temp_new_i64();
9272 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9273 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9275 switch (opcode) {
9276 case 0xd: /* SQDMULL, SQDMULL2 */
9277 break;
9278 case 0xb: /* SQDMLSL, SQDMLSL2 */
9279 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9280 /* fall through */
9281 case 0x9: /* SQDMLAL, SQDMLAL2 */
9283 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9284 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9285 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9286 tcg_res, tcg_op3);
9287 tcg_temp_free_i64(tcg_op3);
9288 break;
9290 default:
9291 g_assert_not_reached();
9294 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9295 write_fp_dreg(s, rd, tcg_res);
9297 tcg_temp_free_i32(tcg_op1);
9298 tcg_temp_free_i32(tcg_op2);
9299 tcg_temp_free_i64(tcg_res);
9303 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9304 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9306 /* Handle 64x64->64 opcodes which are shared between the scalar
9307 * and vector 3-same groups. We cover every opcode where size == 3
9308 * is valid in either the three-reg-same (integer, not pairwise)
9309 * or scalar-three-reg-same groups.
9311 TCGCond cond;
9313 switch (opcode) {
9314 case 0x1: /* SQADD */
9315 if (u) {
9316 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9317 } else {
9318 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9320 break;
9321 case 0x5: /* SQSUB */
9322 if (u) {
9323 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9324 } else {
9325 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9327 break;
9328 case 0x6: /* CMGT, CMHI */
9329 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9330 * We implement this using setcond (test) and then negating.
9332 cond = u ? TCG_COND_GTU : TCG_COND_GT;
9333 do_cmop:
9334 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9335 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9336 break;
9337 case 0x7: /* CMGE, CMHS */
9338 cond = u ? TCG_COND_GEU : TCG_COND_GE;
9339 goto do_cmop;
9340 case 0x11: /* CMTST, CMEQ */
9341 if (u) {
9342 cond = TCG_COND_EQ;
9343 goto do_cmop;
9345 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9346 break;
9347 case 0x8: /* SSHL, USHL */
9348 if (u) {
9349 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9350 } else {
9351 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9353 break;
9354 case 0x9: /* SQSHL, UQSHL */
9355 if (u) {
9356 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9357 } else {
9358 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9360 break;
9361 case 0xa: /* SRSHL, URSHL */
9362 if (u) {
9363 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9364 } else {
9365 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9367 break;
9368 case 0xb: /* SQRSHL, UQRSHL */
9369 if (u) {
9370 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9371 } else {
9372 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9374 break;
9375 case 0x10: /* ADD, SUB */
9376 if (u) {
9377 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9378 } else {
9379 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9381 break;
9382 default:
9383 g_assert_not_reached();
9387 /* Handle the 3-same-operands float operations; shared by the scalar
9388 * and vector encodings. The caller must filter out any encodings
9389 * not allocated for the encoding it is dealing with.
9391 static void handle_3same_float(DisasContext *s, int size, int elements,
9392 int fpopcode, int rd, int rn, int rm)
9394 int pass;
9395 TCGv_ptr fpst = get_fpstatus_ptr(false);
9397 for (pass = 0; pass < elements; pass++) {
9398 if (size) {
9399 /* Double */
9400 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9401 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9402 TCGv_i64 tcg_res = tcg_temp_new_i64();
9404 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9405 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9407 switch (fpopcode) {
9408 case 0x39: /* FMLS */
9409 /* As usual for ARM, separate negation for fused multiply-add */
9410 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9411 /* fall through */
9412 case 0x19: /* FMLA */
9413 read_vec_element(s, tcg_res, rd, pass, MO_64);
9414 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9415 tcg_res, fpst);
9416 break;
9417 case 0x18: /* FMAXNM */
9418 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9419 break;
9420 case 0x1a: /* FADD */
9421 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9422 break;
9423 case 0x1b: /* FMULX */
9424 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9425 break;
9426 case 0x1c: /* FCMEQ */
9427 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9428 break;
9429 case 0x1e: /* FMAX */
9430 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9431 break;
9432 case 0x1f: /* FRECPS */
9433 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9434 break;
9435 case 0x38: /* FMINNM */
9436 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9437 break;
9438 case 0x3a: /* FSUB */
9439 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9440 break;
9441 case 0x3e: /* FMIN */
9442 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9443 break;
9444 case 0x3f: /* FRSQRTS */
9445 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9446 break;
9447 case 0x5b: /* FMUL */
9448 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9449 break;
9450 case 0x5c: /* FCMGE */
9451 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9452 break;
9453 case 0x5d: /* FACGE */
9454 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9455 break;
9456 case 0x5f: /* FDIV */
9457 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9458 break;
9459 case 0x7a: /* FABD */
9460 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9461 gen_helper_vfp_absd(tcg_res, tcg_res);
9462 break;
9463 case 0x7c: /* FCMGT */
9464 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9465 break;
9466 case 0x7d: /* FACGT */
9467 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9468 break;
9469 default:
9470 g_assert_not_reached();
9473 write_vec_element(s, tcg_res, rd, pass, MO_64);
9475 tcg_temp_free_i64(tcg_res);
9476 tcg_temp_free_i64(tcg_op1);
9477 tcg_temp_free_i64(tcg_op2);
9478 } else {
9479 /* Single */
9480 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9481 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9482 TCGv_i32 tcg_res = tcg_temp_new_i32();
9484 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9485 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9487 switch (fpopcode) {
9488 case 0x39: /* FMLS */
9489 /* As usual for ARM, separate negation for fused multiply-add */
9490 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9491 /* fall through */
9492 case 0x19: /* FMLA */
9493 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9494 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9495 tcg_res, fpst);
9496 break;
9497 case 0x1a: /* FADD */
9498 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9499 break;
9500 case 0x1b: /* FMULX */
9501 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9502 break;
9503 case 0x1c: /* FCMEQ */
9504 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9505 break;
9506 case 0x1e: /* FMAX */
9507 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9508 break;
9509 case 0x1f: /* FRECPS */
9510 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9511 break;
9512 case 0x18: /* FMAXNM */
9513 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9514 break;
9515 case 0x38: /* FMINNM */
9516 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9517 break;
9518 case 0x3a: /* FSUB */
9519 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9520 break;
9521 case 0x3e: /* FMIN */
9522 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9523 break;
9524 case 0x3f: /* FRSQRTS */
9525 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9526 break;
9527 case 0x5b: /* FMUL */
9528 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9529 break;
9530 case 0x5c: /* FCMGE */
9531 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9532 break;
9533 case 0x5d: /* FACGE */
9534 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9535 break;
9536 case 0x5f: /* FDIV */
9537 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9538 break;
9539 case 0x7a: /* FABD */
9540 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9541 gen_helper_vfp_abss(tcg_res, tcg_res);
9542 break;
9543 case 0x7c: /* FCMGT */
9544 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9545 break;
9546 case 0x7d: /* FACGT */
9547 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9548 break;
9549 default:
9550 g_assert_not_reached();
9553 if (elements == 1) {
9554 /* scalar single so clear high part */
9555 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9557 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9558 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9559 tcg_temp_free_i64(tcg_tmp);
9560 } else {
9561 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9564 tcg_temp_free_i32(tcg_res);
9565 tcg_temp_free_i32(tcg_op1);
9566 tcg_temp_free_i32(tcg_op2);
9570 tcg_temp_free_ptr(fpst);
9572 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9575 /* AdvSIMD scalar three same
9576 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9577 * +-----+---+-----------+------+---+------+--------+---+------+------+
9578 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9579 * +-----+---+-----------+------+---+------+--------+---+------+------+
9581 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9583 int rd = extract32(insn, 0, 5);
9584 int rn = extract32(insn, 5, 5);
9585 int opcode = extract32(insn, 11, 5);
9586 int rm = extract32(insn, 16, 5);
9587 int size = extract32(insn, 22, 2);
9588 bool u = extract32(insn, 29, 1);
9589 TCGv_i64 tcg_rd;
9591 if (opcode >= 0x18) {
9592 /* Floating point: U, size[1] and opcode indicate operation */
9593 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9594 switch (fpopcode) {
9595 case 0x1b: /* FMULX */
9596 case 0x1f: /* FRECPS */
9597 case 0x3f: /* FRSQRTS */
9598 case 0x5d: /* FACGE */
9599 case 0x7d: /* FACGT */
9600 case 0x1c: /* FCMEQ */
9601 case 0x5c: /* FCMGE */
9602 case 0x7c: /* FCMGT */
9603 case 0x7a: /* FABD */
9604 break;
9605 default:
9606 unallocated_encoding(s);
9607 return;
9610 if (!fp_access_check(s)) {
9611 return;
9614 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9615 return;
9618 switch (opcode) {
9619 case 0x1: /* SQADD, UQADD */
9620 case 0x5: /* SQSUB, UQSUB */
9621 case 0x9: /* SQSHL, UQSHL */
9622 case 0xb: /* SQRSHL, UQRSHL */
9623 break;
9624 case 0x8: /* SSHL, USHL */
9625 case 0xa: /* SRSHL, URSHL */
9626 case 0x6: /* CMGT, CMHI */
9627 case 0x7: /* CMGE, CMHS */
9628 case 0x11: /* CMTST, CMEQ */
9629 case 0x10: /* ADD, SUB (vector) */
9630 if (size != 3) {
9631 unallocated_encoding(s);
9632 return;
9634 break;
9635 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9636 if (size != 1 && size != 2) {
9637 unallocated_encoding(s);
9638 return;
9640 break;
9641 default:
9642 unallocated_encoding(s);
9643 return;
9646 if (!fp_access_check(s)) {
9647 return;
9650 tcg_rd = tcg_temp_new_i64();
9652 if (size == 3) {
9653 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9654 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9656 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9657 tcg_temp_free_i64(tcg_rn);
9658 tcg_temp_free_i64(tcg_rm);
9659 } else {
9660 /* Do a single operation on the lowest element in the vector.
9661 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9662 * no side effects for all these operations.
9663 * OPTME: special-purpose helpers would avoid doing some
9664 * unnecessary work in the helper for the 8 and 16 bit cases.
9666 NeonGenTwoOpEnvFn *genenvfn;
9667 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9668 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9669 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9671 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9672 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9674 switch (opcode) {
9675 case 0x1: /* SQADD, UQADD */
9677 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9678 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9679 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9680 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9682 genenvfn = fns[size][u];
9683 break;
9685 case 0x5: /* SQSUB, UQSUB */
9687 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9688 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9689 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9690 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9692 genenvfn = fns[size][u];
9693 break;
9695 case 0x9: /* SQSHL, UQSHL */
9697 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9698 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9699 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9700 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9702 genenvfn = fns[size][u];
9703 break;
9705 case 0xb: /* SQRSHL, UQRSHL */
9707 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9708 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9709 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9710 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9712 genenvfn = fns[size][u];
9713 break;
9715 case 0x16: /* SQDMULH, SQRDMULH */
9717 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9718 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9719 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9721 assert(size == 1 || size == 2);
9722 genenvfn = fns[size - 1][u];
9723 break;
9725 default:
9726 g_assert_not_reached();
9729 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9730 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9731 tcg_temp_free_i32(tcg_rd32);
9732 tcg_temp_free_i32(tcg_rn);
9733 tcg_temp_free_i32(tcg_rm);
9736 write_fp_dreg(s, rd, tcg_rd);
9738 tcg_temp_free_i64(tcg_rd);
9741 /* AdvSIMD scalar three same FP16
9742 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9743 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9744 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9745 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9746 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9747 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9749 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9750 uint32_t insn)
9752 int rd = extract32(insn, 0, 5);
9753 int rn = extract32(insn, 5, 5);
9754 int opcode = extract32(insn, 11, 3);
9755 int rm = extract32(insn, 16, 5);
9756 bool u = extract32(insn, 29, 1);
9757 bool a = extract32(insn, 23, 1);
9758 int fpopcode = opcode | (a << 3) | (u << 4);
9759 TCGv_ptr fpst;
9760 TCGv_i32 tcg_op1;
9761 TCGv_i32 tcg_op2;
9762 TCGv_i32 tcg_res;
9764 switch (fpopcode) {
9765 case 0x03: /* FMULX */
9766 case 0x04: /* FCMEQ (reg) */
9767 case 0x07: /* FRECPS */
9768 case 0x0f: /* FRSQRTS */
9769 case 0x14: /* FCMGE (reg) */
9770 case 0x15: /* FACGE */
9771 case 0x1a: /* FABD */
9772 case 0x1c: /* FCMGT (reg) */
9773 case 0x1d: /* FACGT */
9774 break;
9775 default:
9776 unallocated_encoding(s);
9777 return;
9780 if (!dc_isar_feature(aa64_fp16, s)) {
9781 unallocated_encoding(s);
9784 if (!fp_access_check(s)) {
9785 return;
9788 fpst = get_fpstatus_ptr(true);
9790 tcg_op1 = read_fp_hreg(s, rn);
9791 tcg_op2 = read_fp_hreg(s, rm);
9792 tcg_res = tcg_temp_new_i32();
9794 switch (fpopcode) {
9795 case 0x03: /* FMULX */
9796 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9797 break;
9798 case 0x04: /* FCMEQ (reg) */
9799 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9800 break;
9801 case 0x07: /* FRECPS */
9802 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9803 break;
9804 case 0x0f: /* FRSQRTS */
9805 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9806 break;
9807 case 0x14: /* FCMGE (reg) */
9808 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9809 break;
9810 case 0x15: /* FACGE */
9811 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9812 break;
9813 case 0x1a: /* FABD */
9814 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9815 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9816 break;
9817 case 0x1c: /* FCMGT (reg) */
9818 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9819 break;
9820 case 0x1d: /* FACGT */
9821 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9822 break;
9823 default:
9824 g_assert_not_reached();
9827 write_fp_sreg(s, rd, tcg_res);
9830 tcg_temp_free_i32(tcg_res);
9831 tcg_temp_free_i32(tcg_op1);
9832 tcg_temp_free_i32(tcg_op2);
9833 tcg_temp_free_ptr(fpst);
9836 /* AdvSIMD scalar three same extra
9837 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9838 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9839 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9840 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9842 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9843 uint32_t insn)
9845 int rd = extract32(insn, 0, 5);
9846 int rn = extract32(insn, 5, 5);
9847 int opcode = extract32(insn, 11, 4);
9848 int rm = extract32(insn, 16, 5);
9849 int size = extract32(insn, 22, 2);
9850 bool u = extract32(insn, 29, 1);
9851 TCGv_i32 ele1, ele2, ele3;
9852 TCGv_i64 res;
9853 bool feature;
9855 switch (u * 16 + opcode) {
9856 case 0x10: /* SQRDMLAH (vector) */
9857 case 0x11: /* SQRDMLSH (vector) */
9858 if (size != 1 && size != 2) {
9859 unallocated_encoding(s);
9860 return;
9862 feature = dc_isar_feature(aa64_rdm, s);
9863 break;
9864 default:
9865 unallocated_encoding(s);
9866 return;
9868 if (!feature) {
9869 unallocated_encoding(s);
9870 return;
9872 if (!fp_access_check(s)) {
9873 return;
9876 /* Do a single operation on the lowest element in the vector.
9877 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9878 * with no side effects for all these operations.
9879 * OPTME: special-purpose helpers would avoid doing some
9880 * unnecessary work in the helper for the 16 bit cases.
9882 ele1 = tcg_temp_new_i32();
9883 ele2 = tcg_temp_new_i32();
9884 ele3 = tcg_temp_new_i32();
9886 read_vec_element_i32(s, ele1, rn, 0, size);
9887 read_vec_element_i32(s, ele2, rm, 0, size);
9888 read_vec_element_i32(s, ele3, rd, 0, size);
9890 switch (opcode) {
9891 case 0x0: /* SQRDMLAH */
9892 if (size == 1) {
9893 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9894 } else {
9895 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9897 break;
9898 case 0x1: /* SQRDMLSH */
9899 if (size == 1) {
9900 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9901 } else {
9902 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9904 break;
9905 default:
9906 g_assert_not_reached();
9908 tcg_temp_free_i32(ele1);
9909 tcg_temp_free_i32(ele2);
9911 res = tcg_temp_new_i64();
9912 tcg_gen_extu_i32_i64(res, ele3);
9913 tcg_temp_free_i32(ele3);
9915 write_fp_dreg(s, rd, res);
9916 tcg_temp_free_i64(res);
9919 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9920 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9921 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9923 /* Handle 64->64 opcodes which are shared between the scalar and
9924 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9925 * is valid in either group and also the double-precision fp ops.
9926 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9927 * requires them.
9929 TCGCond cond;
9931 switch (opcode) {
9932 case 0x4: /* CLS, CLZ */
9933 if (u) {
9934 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9935 } else {
9936 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9938 break;
9939 case 0x5: /* NOT */
9940 /* This opcode is shared with CNT and RBIT but we have earlier
9941 * enforced that size == 3 if and only if this is the NOT insn.
9943 tcg_gen_not_i64(tcg_rd, tcg_rn);
9944 break;
9945 case 0x7: /* SQABS, SQNEG */
9946 if (u) {
9947 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9948 } else {
9949 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9951 break;
9952 case 0xa: /* CMLT */
9953 /* 64 bit integer comparison against zero, result is
9954 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9955 * subtracting 1.
9957 cond = TCG_COND_LT;
9958 do_cmop:
9959 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9960 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9961 break;
9962 case 0x8: /* CMGT, CMGE */
9963 cond = u ? TCG_COND_GE : TCG_COND_GT;
9964 goto do_cmop;
9965 case 0x9: /* CMEQ, CMLE */
9966 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9967 goto do_cmop;
9968 case 0xb: /* ABS, NEG */
9969 if (u) {
9970 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9971 } else {
9972 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9974 break;
9975 case 0x2f: /* FABS */
9976 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9977 break;
9978 case 0x6f: /* FNEG */
9979 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9980 break;
9981 case 0x7f: /* FSQRT */
9982 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9983 break;
9984 case 0x1a: /* FCVTNS */
9985 case 0x1b: /* FCVTMS */
9986 case 0x1c: /* FCVTAS */
9987 case 0x3a: /* FCVTPS */
9988 case 0x3b: /* FCVTZS */
9990 TCGv_i32 tcg_shift = tcg_const_i32(0);
9991 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9992 tcg_temp_free_i32(tcg_shift);
9993 break;
9995 case 0x5a: /* FCVTNU */
9996 case 0x5b: /* FCVTMU */
9997 case 0x5c: /* FCVTAU */
9998 case 0x7a: /* FCVTPU */
9999 case 0x7b: /* FCVTZU */
10001 TCGv_i32 tcg_shift = tcg_const_i32(0);
10002 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10003 tcg_temp_free_i32(tcg_shift);
10004 break;
10006 case 0x18: /* FRINTN */
10007 case 0x19: /* FRINTM */
10008 case 0x38: /* FRINTP */
10009 case 0x39: /* FRINTZ */
10010 case 0x58: /* FRINTA */
10011 case 0x79: /* FRINTI */
10012 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
10013 break;
10014 case 0x59: /* FRINTX */
10015 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
10016 break;
10017 case 0x1e: /* FRINT32Z */
10018 case 0x5e: /* FRINT32X */
10019 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
10020 break;
10021 case 0x1f: /* FRINT64Z */
10022 case 0x5f: /* FRINT64X */
10023 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
10024 break;
10025 default:
10026 g_assert_not_reached();
10030 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
10031 bool is_scalar, bool is_u, bool is_q,
10032 int size, int rn, int rd)
10034 bool is_double = (size == MO_64);
10035 TCGv_ptr fpst;
10037 if (!fp_access_check(s)) {
10038 return;
10041 fpst = get_fpstatus_ptr(size == MO_16);
10043 if (is_double) {
10044 TCGv_i64 tcg_op = tcg_temp_new_i64();
10045 TCGv_i64 tcg_zero = tcg_const_i64(0);
10046 TCGv_i64 tcg_res = tcg_temp_new_i64();
10047 NeonGenTwoDoubleOpFn *genfn;
10048 bool swap = false;
10049 int pass;
10051 switch (opcode) {
10052 case 0x2e: /* FCMLT (zero) */
10053 swap = true;
10054 /* fallthrough */
10055 case 0x2c: /* FCMGT (zero) */
10056 genfn = gen_helper_neon_cgt_f64;
10057 break;
10058 case 0x2d: /* FCMEQ (zero) */
10059 genfn = gen_helper_neon_ceq_f64;
10060 break;
10061 case 0x6d: /* FCMLE (zero) */
10062 swap = true;
10063 /* fall through */
10064 case 0x6c: /* FCMGE (zero) */
10065 genfn = gen_helper_neon_cge_f64;
10066 break;
10067 default:
10068 g_assert_not_reached();
10071 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10072 read_vec_element(s, tcg_op, rn, pass, MO_64);
10073 if (swap) {
10074 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10075 } else {
10076 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10078 write_vec_element(s, tcg_res, rd, pass, MO_64);
10080 tcg_temp_free_i64(tcg_res);
10081 tcg_temp_free_i64(tcg_zero);
10082 tcg_temp_free_i64(tcg_op);
10084 clear_vec_high(s, !is_scalar, rd);
10085 } else {
10086 TCGv_i32 tcg_op = tcg_temp_new_i32();
10087 TCGv_i32 tcg_zero = tcg_const_i32(0);
10088 TCGv_i32 tcg_res = tcg_temp_new_i32();
10089 NeonGenTwoSingleOpFn *genfn;
10090 bool swap = false;
10091 int pass, maxpasses;
10093 if (size == MO_16) {
10094 switch (opcode) {
10095 case 0x2e: /* FCMLT (zero) */
10096 swap = true;
10097 /* fall through */
10098 case 0x2c: /* FCMGT (zero) */
10099 genfn = gen_helper_advsimd_cgt_f16;
10100 break;
10101 case 0x2d: /* FCMEQ (zero) */
10102 genfn = gen_helper_advsimd_ceq_f16;
10103 break;
10104 case 0x6d: /* FCMLE (zero) */
10105 swap = true;
10106 /* fall through */
10107 case 0x6c: /* FCMGE (zero) */
10108 genfn = gen_helper_advsimd_cge_f16;
10109 break;
10110 default:
10111 g_assert_not_reached();
10113 } else {
10114 switch (opcode) {
10115 case 0x2e: /* FCMLT (zero) */
10116 swap = true;
10117 /* fall through */
10118 case 0x2c: /* FCMGT (zero) */
10119 genfn = gen_helper_neon_cgt_f32;
10120 break;
10121 case 0x2d: /* FCMEQ (zero) */
10122 genfn = gen_helper_neon_ceq_f32;
10123 break;
10124 case 0x6d: /* FCMLE (zero) */
10125 swap = true;
10126 /* fall through */
10127 case 0x6c: /* FCMGE (zero) */
10128 genfn = gen_helper_neon_cge_f32;
10129 break;
10130 default:
10131 g_assert_not_reached();
10135 if (is_scalar) {
10136 maxpasses = 1;
10137 } else {
10138 int vector_size = 8 << is_q;
10139 maxpasses = vector_size >> size;
10142 for (pass = 0; pass < maxpasses; pass++) {
10143 read_vec_element_i32(s, tcg_op, rn, pass, size);
10144 if (swap) {
10145 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10146 } else {
10147 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10149 if (is_scalar) {
10150 write_fp_sreg(s, rd, tcg_res);
10151 } else {
10152 write_vec_element_i32(s, tcg_res, rd, pass, size);
10155 tcg_temp_free_i32(tcg_res);
10156 tcg_temp_free_i32(tcg_zero);
10157 tcg_temp_free_i32(tcg_op);
10158 if (!is_scalar) {
10159 clear_vec_high(s, is_q, rd);
10163 tcg_temp_free_ptr(fpst);
10166 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10167 bool is_scalar, bool is_u, bool is_q,
10168 int size, int rn, int rd)
10170 bool is_double = (size == 3);
10171 TCGv_ptr fpst = get_fpstatus_ptr(false);
10173 if (is_double) {
10174 TCGv_i64 tcg_op = tcg_temp_new_i64();
10175 TCGv_i64 tcg_res = tcg_temp_new_i64();
10176 int pass;
10178 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10179 read_vec_element(s, tcg_op, rn, pass, MO_64);
10180 switch (opcode) {
10181 case 0x3d: /* FRECPE */
10182 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10183 break;
10184 case 0x3f: /* FRECPX */
10185 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10186 break;
10187 case 0x7d: /* FRSQRTE */
10188 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10189 break;
10190 default:
10191 g_assert_not_reached();
10193 write_vec_element(s, tcg_res, rd, pass, MO_64);
10195 tcg_temp_free_i64(tcg_res);
10196 tcg_temp_free_i64(tcg_op);
10197 clear_vec_high(s, !is_scalar, rd);
10198 } else {
10199 TCGv_i32 tcg_op = tcg_temp_new_i32();
10200 TCGv_i32 tcg_res = tcg_temp_new_i32();
10201 int pass, maxpasses;
10203 if (is_scalar) {
10204 maxpasses = 1;
10205 } else {
10206 maxpasses = is_q ? 4 : 2;
10209 for (pass = 0; pass < maxpasses; pass++) {
10210 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10212 switch (opcode) {
10213 case 0x3c: /* URECPE */
10214 gen_helper_recpe_u32(tcg_res, tcg_op);
10215 break;
10216 case 0x3d: /* FRECPE */
10217 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10218 break;
10219 case 0x3f: /* FRECPX */
10220 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10221 break;
10222 case 0x7d: /* FRSQRTE */
10223 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10224 break;
10225 default:
10226 g_assert_not_reached();
10229 if (is_scalar) {
10230 write_fp_sreg(s, rd, tcg_res);
10231 } else {
10232 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10235 tcg_temp_free_i32(tcg_res);
10236 tcg_temp_free_i32(tcg_op);
10237 if (!is_scalar) {
10238 clear_vec_high(s, is_q, rd);
10241 tcg_temp_free_ptr(fpst);
10244 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10245 int opcode, bool u, bool is_q,
10246 int size, int rn, int rd)
10248 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10249 * in the source becomes a size element in the destination).
10251 int pass;
10252 TCGv_i32 tcg_res[2];
10253 int destelt = is_q ? 2 : 0;
10254 int passes = scalar ? 1 : 2;
10256 if (scalar) {
10257 tcg_res[1] = tcg_const_i32(0);
10260 for (pass = 0; pass < passes; pass++) {
10261 TCGv_i64 tcg_op = tcg_temp_new_i64();
10262 NeonGenNarrowFn *genfn = NULL;
10263 NeonGenNarrowEnvFn *genenvfn = NULL;
10265 if (scalar) {
10266 read_vec_element(s, tcg_op, rn, pass, size + 1);
10267 } else {
10268 read_vec_element(s, tcg_op, rn, pass, MO_64);
10270 tcg_res[pass] = tcg_temp_new_i32();
10272 switch (opcode) {
10273 case 0x12: /* XTN, SQXTUN */
10275 static NeonGenNarrowFn * const xtnfns[3] = {
10276 gen_helper_neon_narrow_u8,
10277 gen_helper_neon_narrow_u16,
10278 tcg_gen_extrl_i64_i32,
10280 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10281 gen_helper_neon_unarrow_sat8,
10282 gen_helper_neon_unarrow_sat16,
10283 gen_helper_neon_unarrow_sat32,
10285 if (u) {
10286 genenvfn = sqxtunfns[size];
10287 } else {
10288 genfn = xtnfns[size];
10290 break;
10292 case 0x14: /* SQXTN, UQXTN */
10294 static NeonGenNarrowEnvFn * const fns[3][2] = {
10295 { gen_helper_neon_narrow_sat_s8,
10296 gen_helper_neon_narrow_sat_u8 },
10297 { gen_helper_neon_narrow_sat_s16,
10298 gen_helper_neon_narrow_sat_u16 },
10299 { gen_helper_neon_narrow_sat_s32,
10300 gen_helper_neon_narrow_sat_u32 },
10302 genenvfn = fns[size][u];
10303 break;
10305 case 0x16: /* FCVTN, FCVTN2 */
10306 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10307 if (size == 2) {
10308 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10309 } else {
10310 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10311 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10312 TCGv_ptr fpst = get_fpstatus_ptr(false);
10313 TCGv_i32 ahp = get_ahp_flag();
10315 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10316 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10317 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10318 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10319 tcg_temp_free_i32(tcg_lo);
10320 tcg_temp_free_i32(tcg_hi);
10321 tcg_temp_free_ptr(fpst);
10322 tcg_temp_free_i32(ahp);
10324 break;
10325 case 0x56: /* FCVTXN, FCVTXN2 */
10326 /* 64 bit to 32 bit float conversion
10327 * with von Neumann rounding (round to odd)
10329 assert(size == 2);
10330 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10331 break;
10332 default:
10333 g_assert_not_reached();
10336 if (genfn) {
10337 genfn(tcg_res[pass], tcg_op);
10338 } else if (genenvfn) {
10339 genenvfn(tcg_res[pass], cpu_env, tcg_op);
10342 tcg_temp_free_i64(tcg_op);
10345 for (pass = 0; pass < 2; pass++) {
10346 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10347 tcg_temp_free_i32(tcg_res[pass]);
10349 clear_vec_high(s, is_q, rd);
10352 /* Remaining saturating accumulating ops */
10353 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10354 bool is_q, int size, int rn, int rd)
10356 bool is_double = (size == 3);
10358 if (is_double) {
10359 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10360 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10361 int pass;
10363 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10364 read_vec_element(s, tcg_rn, rn, pass, MO_64);
10365 read_vec_element(s, tcg_rd, rd, pass, MO_64);
10367 if (is_u) { /* USQADD */
10368 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10369 } else { /* SUQADD */
10370 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10372 write_vec_element(s, tcg_rd, rd, pass, MO_64);
10374 tcg_temp_free_i64(tcg_rd);
10375 tcg_temp_free_i64(tcg_rn);
10376 clear_vec_high(s, !is_scalar, rd);
10377 } else {
10378 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10379 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10380 int pass, maxpasses;
10382 if (is_scalar) {
10383 maxpasses = 1;
10384 } else {
10385 maxpasses = is_q ? 4 : 2;
10388 for (pass = 0; pass < maxpasses; pass++) {
10389 if (is_scalar) {
10390 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10391 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10392 } else {
10393 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10394 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10397 if (is_u) { /* USQADD */
10398 switch (size) {
10399 case 0:
10400 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10401 break;
10402 case 1:
10403 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10404 break;
10405 case 2:
10406 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10407 break;
10408 default:
10409 g_assert_not_reached();
10411 } else { /* SUQADD */
10412 switch (size) {
10413 case 0:
10414 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10415 break;
10416 case 1:
10417 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10418 break;
10419 case 2:
10420 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10421 break;
10422 default:
10423 g_assert_not_reached();
10427 if (is_scalar) {
10428 TCGv_i64 tcg_zero = tcg_const_i64(0);
10429 write_vec_element(s, tcg_zero, rd, 0, MO_64);
10430 tcg_temp_free_i64(tcg_zero);
10432 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10434 tcg_temp_free_i32(tcg_rd);
10435 tcg_temp_free_i32(tcg_rn);
10436 clear_vec_high(s, is_q, rd);
10440 /* AdvSIMD scalar two reg misc
10441 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10442 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10443 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10444 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10446 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10448 int rd = extract32(insn, 0, 5);
10449 int rn = extract32(insn, 5, 5);
10450 int opcode = extract32(insn, 12, 5);
10451 int size = extract32(insn, 22, 2);
10452 bool u = extract32(insn, 29, 1);
10453 bool is_fcvt = false;
10454 int rmode;
10455 TCGv_i32 tcg_rmode;
10456 TCGv_ptr tcg_fpstatus;
10458 switch (opcode) {
10459 case 0x3: /* USQADD / SUQADD*/
10460 if (!fp_access_check(s)) {
10461 return;
10463 handle_2misc_satacc(s, true, u, false, size, rn, rd);
10464 return;
10465 case 0x7: /* SQABS / SQNEG */
10466 break;
10467 case 0xa: /* CMLT */
10468 if (u) {
10469 unallocated_encoding(s);
10470 return;
10472 /* fall through */
10473 case 0x8: /* CMGT, CMGE */
10474 case 0x9: /* CMEQ, CMLE */
10475 case 0xb: /* ABS, NEG */
10476 if (size != 3) {
10477 unallocated_encoding(s);
10478 return;
10480 break;
10481 case 0x12: /* SQXTUN */
10482 if (!u) {
10483 unallocated_encoding(s);
10484 return;
10486 /* fall through */
10487 case 0x14: /* SQXTN, UQXTN */
10488 if (size == 3) {
10489 unallocated_encoding(s);
10490 return;
10492 if (!fp_access_check(s)) {
10493 return;
10495 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10496 return;
10497 case 0xc ... 0xf:
10498 case 0x16 ... 0x1d:
10499 case 0x1f:
10500 /* Floating point: U, size[1] and opcode indicate operation;
10501 * size[0] indicates single or double precision.
10503 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10504 size = extract32(size, 0, 1) ? 3 : 2;
10505 switch (opcode) {
10506 case 0x2c: /* FCMGT (zero) */
10507 case 0x2d: /* FCMEQ (zero) */
10508 case 0x2e: /* FCMLT (zero) */
10509 case 0x6c: /* FCMGE (zero) */
10510 case 0x6d: /* FCMLE (zero) */
10511 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10512 return;
10513 case 0x1d: /* SCVTF */
10514 case 0x5d: /* UCVTF */
10516 bool is_signed = (opcode == 0x1d);
10517 if (!fp_access_check(s)) {
10518 return;
10520 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10521 return;
10523 case 0x3d: /* FRECPE */
10524 case 0x3f: /* FRECPX */
10525 case 0x7d: /* FRSQRTE */
10526 if (!fp_access_check(s)) {
10527 return;
10529 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10530 return;
10531 case 0x1a: /* FCVTNS */
10532 case 0x1b: /* FCVTMS */
10533 case 0x3a: /* FCVTPS */
10534 case 0x3b: /* FCVTZS */
10535 case 0x5a: /* FCVTNU */
10536 case 0x5b: /* FCVTMU */
10537 case 0x7a: /* FCVTPU */
10538 case 0x7b: /* FCVTZU */
10539 is_fcvt = true;
10540 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10541 break;
10542 case 0x1c: /* FCVTAS */
10543 case 0x5c: /* FCVTAU */
10544 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10545 is_fcvt = true;
10546 rmode = FPROUNDING_TIEAWAY;
10547 break;
10548 case 0x56: /* FCVTXN, FCVTXN2 */
10549 if (size == 2) {
10550 unallocated_encoding(s);
10551 return;
10553 if (!fp_access_check(s)) {
10554 return;
10556 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10557 return;
10558 default:
10559 unallocated_encoding(s);
10560 return;
10562 break;
10563 default:
10564 unallocated_encoding(s);
10565 return;
10568 if (!fp_access_check(s)) {
10569 return;
10572 if (is_fcvt) {
10573 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10574 tcg_fpstatus = get_fpstatus_ptr(false);
10575 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10576 } else {
10577 tcg_rmode = NULL;
10578 tcg_fpstatus = NULL;
10581 if (size == 3) {
10582 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10583 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10585 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10586 write_fp_dreg(s, rd, tcg_rd);
10587 tcg_temp_free_i64(tcg_rd);
10588 tcg_temp_free_i64(tcg_rn);
10589 } else {
10590 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10591 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10593 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10595 switch (opcode) {
10596 case 0x7: /* SQABS, SQNEG */
10598 NeonGenOneOpEnvFn *genfn;
10599 static NeonGenOneOpEnvFn * const fns[3][2] = {
10600 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10601 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10602 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10604 genfn = fns[size][u];
10605 genfn(tcg_rd, cpu_env, tcg_rn);
10606 break;
10608 case 0x1a: /* FCVTNS */
10609 case 0x1b: /* FCVTMS */
10610 case 0x1c: /* FCVTAS */
10611 case 0x3a: /* FCVTPS */
10612 case 0x3b: /* FCVTZS */
10614 TCGv_i32 tcg_shift = tcg_const_i32(0);
10615 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10616 tcg_temp_free_i32(tcg_shift);
10617 break;
10619 case 0x5a: /* FCVTNU */
10620 case 0x5b: /* FCVTMU */
10621 case 0x5c: /* FCVTAU */
10622 case 0x7a: /* FCVTPU */
10623 case 0x7b: /* FCVTZU */
10625 TCGv_i32 tcg_shift = tcg_const_i32(0);
10626 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10627 tcg_temp_free_i32(tcg_shift);
10628 break;
10630 default:
10631 g_assert_not_reached();
10634 write_fp_sreg(s, rd, tcg_rd);
10635 tcg_temp_free_i32(tcg_rd);
10636 tcg_temp_free_i32(tcg_rn);
10639 if (is_fcvt) {
10640 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10641 tcg_temp_free_i32(tcg_rmode);
10642 tcg_temp_free_ptr(tcg_fpstatus);
10646 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10647 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10648 int immh, int immb, int opcode, int rn, int rd)
10650 int size = 32 - clz32(immh) - 1;
10651 int immhb = immh << 3 | immb;
10652 int shift = 2 * (8 << size) - immhb;
10653 GVecGen2iFn *gvec_fn;
10655 if (extract32(immh, 3, 1) && !is_q) {
10656 unallocated_encoding(s);
10657 return;
10659 tcg_debug_assert(size <= 3);
10661 if (!fp_access_check(s)) {
10662 return;
10665 switch (opcode) {
10666 case 0x02: /* SSRA / USRA (accumulate) */
10667 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10668 break;
10670 case 0x08: /* SRI */
10671 gvec_fn = gen_gvec_sri;
10672 break;
10674 case 0x00: /* SSHR / USHR */
10675 if (is_u) {
10676 if (shift == 8 << size) {
10677 /* Shift count the same size as element size produces zero. */
10678 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10679 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10680 return;
10682 gvec_fn = tcg_gen_gvec_shri;
10683 } else {
10684 /* Shift count the same size as element size produces all sign. */
10685 if (shift == 8 << size) {
10686 shift -= 1;
10688 gvec_fn = tcg_gen_gvec_sari;
10690 break;
10692 case 0x04: /* SRSHR / URSHR (rounding) */
10693 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10694 break;
10696 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10697 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10698 break;
10700 default:
10701 g_assert_not_reached();
10704 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10707 /* SHL/SLI - Vector shift left */
10708 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10709 int immh, int immb, int opcode, int rn, int rd)
10711 int size = 32 - clz32(immh) - 1;
10712 int immhb = immh << 3 | immb;
10713 int shift = immhb - (8 << size);
10715 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10716 assert(size >= 0 && size <= 3);
10718 if (extract32(immh, 3, 1) && !is_q) {
10719 unallocated_encoding(s);
10720 return;
10723 if (!fp_access_check(s)) {
10724 return;
10727 if (insert) {
10728 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10729 } else {
10730 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10734 /* USHLL/SHLL - Vector shift left with widening */
10735 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10736 int immh, int immb, int opcode, int rn, int rd)
10738 int size = 32 - clz32(immh) - 1;
10739 int immhb = immh << 3 | immb;
10740 int shift = immhb - (8 << size);
10741 int dsize = 64;
10742 int esize = 8 << size;
10743 int elements = dsize/esize;
10744 TCGv_i64 tcg_rn = new_tmp_a64(s);
10745 TCGv_i64 tcg_rd = new_tmp_a64(s);
10746 int i;
10748 if (size >= 3) {
10749 unallocated_encoding(s);
10750 return;
10753 if (!fp_access_check(s)) {
10754 return;
10757 /* For the LL variants the store is larger than the load,
10758 * so if rd == rn we would overwrite parts of our input.
10759 * So load everything right now and use shifts in the main loop.
10761 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10763 for (i = 0; i < elements; i++) {
10764 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10765 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10766 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10767 write_vec_element(s, tcg_rd, rd, i, size + 1);
10771 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10772 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10773 int immh, int immb, int opcode, int rn, int rd)
10775 int immhb = immh << 3 | immb;
10776 int size = 32 - clz32(immh) - 1;
10777 int dsize = 64;
10778 int esize = 8 << size;
10779 int elements = dsize/esize;
10780 int shift = (2 * esize) - immhb;
10781 bool round = extract32(opcode, 0, 1);
10782 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10783 TCGv_i64 tcg_round;
10784 int i;
10786 if (extract32(immh, 3, 1)) {
10787 unallocated_encoding(s);
10788 return;
10791 if (!fp_access_check(s)) {
10792 return;
10795 tcg_rn = tcg_temp_new_i64();
10796 tcg_rd = tcg_temp_new_i64();
10797 tcg_final = tcg_temp_new_i64();
10798 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10800 if (round) {
10801 uint64_t round_const = 1ULL << (shift - 1);
10802 tcg_round = tcg_const_i64(round_const);
10803 } else {
10804 tcg_round = NULL;
10807 for (i = 0; i < elements; i++) {
10808 read_vec_element(s, tcg_rn, rn, i, size+1);
10809 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10810 false, true, size+1, shift);
10812 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10815 if (!is_q) {
10816 write_vec_element(s, tcg_final, rd, 0, MO_64);
10817 } else {
10818 write_vec_element(s, tcg_final, rd, 1, MO_64);
10820 if (round) {
10821 tcg_temp_free_i64(tcg_round);
10823 tcg_temp_free_i64(tcg_rn);
10824 tcg_temp_free_i64(tcg_rd);
10825 tcg_temp_free_i64(tcg_final);
10827 clear_vec_high(s, is_q, rd);
10831 /* AdvSIMD shift by immediate
10832 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10833 * +---+---+---+-------------+------+------+--------+---+------+------+
10834 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10835 * +---+---+---+-------------+------+------+--------+---+------+------+
10837 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10839 int rd = extract32(insn, 0, 5);
10840 int rn = extract32(insn, 5, 5);
10841 int opcode = extract32(insn, 11, 5);
10842 int immb = extract32(insn, 16, 3);
10843 int immh = extract32(insn, 19, 4);
10844 bool is_u = extract32(insn, 29, 1);
10845 bool is_q = extract32(insn, 30, 1);
10847 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10848 assert(immh != 0);
10850 switch (opcode) {
10851 case 0x08: /* SRI */
10852 if (!is_u) {
10853 unallocated_encoding(s);
10854 return;
10856 /* fall through */
10857 case 0x00: /* SSHR / USHR */
10858 case 0x02: /* SSRA / USRA (accumulate) */
10859 case 0x04: /* SRSHR / URSHR (rounding) */
10860 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10861 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10862 break;
10863 case 0x0a: /* SHL / SLI */
10864 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10865 break;
10866 case 0x10: /* SHRN */
10867 case 0x11: /* RSHRN / SQRSHRUN */
10868 if (is_u) {
10869 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10870 opcode, rn, rd);
10871 } else {
10872 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10874 break;
10875 case 0x12: /* SQSHRN / UQSHRN */
10876 case 0x13: /* SQRSHRN / UQRSHRN */
10877 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10878 opcode, rn, rd);
10879 break;
10880 case 0x14: /* SSHLL / USHLL */
10881 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10882 break;
10883 case 0x1c: /* SCVTF / UCVTF */
10884 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10885 opcode, rn, rd);
10886 break;
10887 case 0xc: /* SQSHLU */
10888 if (!is_u) {
10889 unallocated_encoding(s);
10890 return;
10892 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10893 break;
10894 case 0xe: /* SQSHL, UQSHL */
10895 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10896 break;
10897 case 0x1f: /* FCVTZS/ FCVTZU */
10898 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10899 return;
10900 default:
10901 unallocated_encoding(s);
10902 return;
10906 /* Generate code to do a "long" addition or subtraction, ie one done in
10907 * TCGv_i64 on vector lanes twice the width specified by size.
10909 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10910 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10912 static NeonGenTwo64OpFn * const fns[3][2] = {
10913 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10914 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10915 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10917 NeonGenTwo64OpFn *genfn;
10918 assert(size < 3);
10920 genfn = fns[size][is_sub];
10921 genfn(tcg_res, tcg_op1, tcg_op2);
10924 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10925 int opcode, int rd, int rn, int rm)
10927 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10928 TCGv_i64 tcg_res[2];
10929 int pass, accop;
10931 tcg_res[0] = tcg_temp_new_i64();
10932 tcg_res[1] = tcg_temp_new_i64();
10934 /* Does this op do an adding accumulate, a subtracting accumulate,
10935 * or no accumulate at all?
10937 switch (opcode) {
10938 case 5:
10939 case 8:
10940 case 9:
10941 accop = 1;
10942 break;
10943 case 10:
10944 case 11:
10945 accop = -1;
10946 break;
10947 default:
10948 accop = 0;
10949 break;
10952 if (accop != 0) {
10953 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10954 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10957 /* size == 2 means two 32x32->64 operations; this is worth special
10958 * casing because we can generally handle it inline.
10960 if (size == 2) {
10961 for (pass = 0; pass < 2; pass++) {
10962 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10963 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10964 TCGv_i64 tcg_passres;
10965 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10967 int elt = pass + is_q * 2;
10969 read_vec_element(s, tcg_op1, rn, elt, memop);
10970 read_vec_element(s, tcg_op2, rm, elt, memop);
10972 if (accop == 0) {
10973 tcg_passres = tcg_res[pass];
10974 } else {
10975 tcg_passres = tcg_temp_new_i64();
10978 switch (opcode) {
10979 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10980 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10981 break;
10982 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10983 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10984 break;
10985 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10986 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10988 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10989 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10991 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10992 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10993 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10994 tcg_passres,
10995 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10996 tcg_temp_free_i64(tcg_tmp1);
10997 tcg_temp_free_i64(tcg_tmp2);
10998 break;
11000 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11001 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11002 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11003 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
11004 break;
11005 case 9: /* SQDMLAL, SQDMLAL2 */
11006 case 11: /* SQDMLSL, SQDMLSL2 */
11007 case 13: /* SQDMULL, SQDMULL2 */
11008 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
11009 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
11010 tcg_passres, tcg_passres);
11011 break;
11012 default:
11013 g_assert_not_reached();
11016 if (opcode == 9 || opcode == 11) {
11017 /* saturating accumulate ops */
11018 if (accop < 0) {
11019 tcg_gen_neg_i64(tcg_passres, tcg_passres);
11021 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
11022 tcg_res[pass], tcg_passres);
11023 } else if (accop > 0) {
11024 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
11025 } else if (accop < 0) {
11026 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
11029 if (accop != 0) {
11030 tcg_temp_free_i64(tcg_passres);
11033 tcg_temp_free_i64(tcg_op1);
11034 tcg_temp_free_i64(tcg_op2);
11036 } else {
11037 /* size 0 or 1, generally helper functions */
11038 for (pass = 0; pass < 2; pass++) {
11039 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11040 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11041 TCGv_i64 tcg_passres;
11042 int elt = pass + is_q * 2;
11044 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
11045 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
11047 if (accop == 0) {
11048 tcg_passres = tcg_res[pass];
11049 } else {
11050 tcg_passres = tcg_temp_new_i64();
11053 switch (opcode) {
11054 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11055 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11057 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
11058 static NeonGenWidenFn * const widenfns[2][2] = {
11059 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11060 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11062 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11064 widenfn(tcg_op2_64, tcg_op2);
11065 widenfn(tcg_passres, tcg_op1);
11066 gen_neon_addl(size, (opcode == 2), tcg_passres,
11067 tcg_passres, tcg_op2_64);
11068 tcg_temp_free_i64(tcg_op2_64);
11069 break;
11071 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11072 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11073 if (size == 0) {
11074 if (is_u) {
11075 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11076 } else {
11077 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11079 } else {
11080 if (is_u) {
11081 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11082 } else {
11083 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11086 break;
11087 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11088 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11089 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11090 if (size == 0) {
11091 if (is_u) {
11092 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11093 } else {
11094 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11096 } else {
11097 if (is_u) {
11098 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11099 } else {
11100 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11103 break;
11104 case 9: /* SQDMLAL, SQDMLAL2 */
11105 case 11: /* SQDMLSL, SQDMLSL2 */
11106 case 13: /* SQDMULL, SQDMULL2 */
11107 assert(size == 1);
11108 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11109 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11110 tcg_passres, tcg_passres);
11111 break;
11112 default:
11113 g_assert_not_reached();
11115 tcg_temp_free_i32(tcg_op1);
11116 tcg_temp_free_i32(tcg_op2);
11118 if (accop != 0) {
11119 if (opcode == 9 || opcode == 11) {
11120 /* saturating accumulate ops */
11121 if (accop < 0) {
11122 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11124 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11125 tcg_res[pass],
11126 tcg_passres);
11127 } else {
11128 gen_neon_addl(size, (accop < 0), tcg_res[pass],
11129 tcg_res[pass], tcg_passres);
11131 tcg_temp_free_i64(tcg_passres);
11136 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11137 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11138 tcg_temp_free_i64(tcg_res[0]);
11139 tcg_temp_free_i64(tcg_res[1]);
11142 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11143 int opcode, int rd, int rn, int rm)
11145 TCGv_i64 tcg_res[2];
11146 int part = is_q ? 2 : 0;
11147 int pass;
11149 for (pass = 0; pass < 2; pass++) {
11150 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11151 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11152 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11153 static NeonGenWidenFn * const widenfns[3][2] = {
11154 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11155 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11156 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11158 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11160 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11161 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11162 widenfn(tcg_op2_wide, tcg_op2);
11163 tcg_temp_free_i32(tcg_op2);
11164 tcg_res[pass] = tcg_temp_new_i64();
11165 gen_neon_addl(size, (opcode == 3),
11166 tcg_res[pass], tcg_op1, tcg_op2_wide);
11167 tcg_temp_free_i64(tcg_op1);
11168 tcg_temp_free_i64(tcg_op2_wide);
11171 for (pass = 0; pass < 2; pass++) {
11172 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11173 tcg_temp_free_i64(tcg_res[pass]);
11177 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11179 tcg_gen_addi_i64(in, in, 1U << 31);
11180 tcg_gen_extrh_i64_i32(res, in);
11183 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11184 int opcode, int rd, int rn, int rm)
11186 TCGv_i32 tcg_res[2];
11187 int part = is_q ? 2 : 0;
11188 int pass;
11190 for (pass = 0; pass < 2; pass++) {
11191 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11192 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11193 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11194 static NeonGenNarrowFn * const narrowfns[3][2] = {
11195 { gen_helper_neon_narrow_high_u8,
11196 gen_helper_neon_narrow_round_high_u8 },
11197 { gen_helper_neon_narrow_high_u16,
11198 gen_helper_neon_narrow_round_high_u16 },
11199 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11201 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11203 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11204 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11206 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11208 tcg_temp_free_i64(tcg_op1);
11209 tcg_temp_free_i64(tcg_op2);
11211 tcg_res[pass] = tcg_temp_new_i32();
11212 gennarrow(tcg_res[pass], tcg_wideres);
11213 tcg_temp_free_i64(tcg_wideres);
11216 for (pass = 0; pass < 2; pass++) {
11217 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11218 tcg_temp_free_i32(tcg_res[pass]);
11220 clear_vec_high(s, is_q, rd);
11223 /* AdvSIMD three different
11224 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
11225 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11226 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
11227 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11229 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11231 /* Instructions in this group fall into three basic classes
11232 * (in each case with the operation working on each element in
11233 * the input vectors):
11234 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11235 * 128 bit input)
11236 * (2) wide 64 x 128 -> 128
11237 * (3) narrowing 128 x 128 -> 64
11238 * Here we do initial decode, catch unallocated cases and
11239 * dispatch to separate functions for each class.
11241 int is_q = extract32(insn, 30, 1);
11242 int is_u = extract32(insn, 29, 1);
11243 int size = extract32(insn, 22, 2);
11244 int opcode = extract32(insn, 12, 4);
11245 int rm = extract32(insn, 16, 5);
11246 int rn = extract32(insn, 5, 5);
11247 int rd = extract32(insn, 0, 5);
11249 switch (opcode) {
11250 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11251 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11252 /* 64 x 128 -> 128 */
11253 if (size == 3) {
11254 unallocated_encoding(s);
11255 return;
11257 if (!fp_access_check(s)) {
11258 return;
11260 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11261 break;
11262 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11263 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11264 /* 128 x 128 -> 64 */
11265 if (size == 3) {
11266 unallocated_encoding(s);
11267 return;
11269 if (!fp_access_check(s)) {
11270 return;
11272 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11273 break;
11274 case 14: /* PMULL, PMULL2 */
11275 if (is_u) {
11276 unallocated_encoding(s);
11277 return;
11279 switch (size) {
11280 case 0: /* PMULL.P8 */
11281 if (!fp_access_check(s)) {
11282 return;
11284 /* The Q field specifies lo/hi half input for this insn. */
11285 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11286 gen_helper_neon_pmull_h);
11287 break;
11289 case 3: /* PMULL.P64 */
11290 if (!dc_isar_feature(aa64_pmull, s)) {
11291 unallocated_encoding(s);
11292 return;
11294 if (!fp_access_check(s)) {
11295 return;
11297 /* The Q field specifies lo/hi half input for this insn. */
11298 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11299 gen_helper_gvec_pmull_q);
11300 break;
11302 default:
11303 unallocated_encoding(s);
11304 break;
11306 return;
11307 case 9: /* SQDMLAL, SQDMLAL2 */
11308 case 11: /* SQDMLSL, SQDMLSL2 */
11309 case 13: /* SQDMULL, SQDMULL2 */
11310 if (is_u || size == 0) {
11311 unallocated_encoding(s);
11312 return;
11314 /* fall through */
11315 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11316 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11317 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11318 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11319 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11320 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11321 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11322 /* 64 x 64 -> 128 */
11323 if (size == 3) {
11324 unallocated_encoding(s);
11325 return;
11327 if (!fp_access_check(s)) {
11328 return;
11331 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11332 break;
11333 default:
11334 /* opcode 15 not allocated */
11335 unallocated_encoding(s);
11336 break;
11340 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11341 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11343 int rd = extract32(insn, 0, 5);
11344 int rn = extract32(insn, 5, 5);
11345 int rm = extract32(insn, 16, 5);
11346 int size = extract32(insn, 22, 2);
11347 bool is_u = extract32(insn, 29, 1);
11348 bool is_q = extract32(insn, 30, 1);
11350 if (!fp_access_check(s)) {
11351 return;
11354 switch (size + 4 * is_u) {
11355 case 0: /* AND */
11356 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11357 return;
11358 case 1: /* BIC */
11359 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11360 return;
11361 case 2: /* ORR */
11362 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11363 return;
11364 case 3: /* ORN */
11365 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11366 return;
11367 case 4: /* EOR */
11368 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11369 return;
11371 case 5: /* BSL bitwise select */
11372 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11373 return;
11374 case 6: /* BIT, bitwise insert if true */
11375 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11376 return;
11377 case 7: /* BIF, bitwise insert if false */
11378 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11379 return;
11381 default:
11382 g_assert_not_reached();
11386 /* Pairwise op subgroup of C3.6.16.
11388 * This is called directly or via the handle_3same_float for float pairwise
11389 * operations where the opcode and size are calculated differently.
11391 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11392 int size, int rn, int rm, int rd)
11394 TCGv_ptr fpst;
11395 int pass;
11397 /* Floating point operations need fpst */
11398 if (opcode >= 0x58) {
11399 fpst = get_fpstatus_ptr(false);
11400 } else {
11401 fpst = NULL;
11404 if (!fp_access_check(s)) {
11405 return;
11408 /* These operations work on the concatenated rm:rn, with each pair of
11409 * adjacent elements being operated on to produce an element in the result.
11411 if (size == 3) {
11412 TCGv_i64 tcg_res[2];
11414 for (pass = 0; pass < 2; pass++) {
11415 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11416 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11417 int passreg = (pass == 0) ? rn : rm;
11419 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11420 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11421 tcg_res[pass] = tcg_temp_new_i64();
11423 switch (opcode) {
11424 case 0x17: /* ADDP */
11425 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11426 break;
11427 case 0x58: /* FMAXNMP */
11428 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11429 break;
11430 case 0x5a: /* FADDP */
11431 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11432 break;
11433 case 0x5e: /* FMAXP */
11434 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11435 break;
11436 case 0x78: /* FMINNMP */
11437 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11438 break;
11439 case 0x7e: /* FMINP */
11440 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11441 break;
11442 default:
11443 g_assert_not_reached();
11446 tcg_temp_free_i64(tcg_op1);
11447 tcg_temp_free_i64(tcg_op2);
11450 for (pass = 0; pass < 2; pass++) {
11451 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11452 tcg_temp_free_i64(tcg_res[pass]);
11454 } else {
11455 int maxpass = is_q ? 4 : 2;
11456 TCGv_i32 tcg_res[4];
11458 for (pass = 0; pass < maxpass; pass++) {
11459 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11460 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11461 NeonGenTwoOpFn *genfn = NULL;
11462 int passreg = pass < (maxpass / 2) ? rn : rm;
11463 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11465 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11466 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11467 tcg_res[pass] = tcg_temp_new_i32();
11469 switch (opcode) {
11470 case 0x17: /* ADDP */
11472 static NeonGenTwoOpFn * const fns[3] = {
11473 gen_helper_neon_padd_u8,
11474 gen_helper_neon_padd_u16,
11475 tcg_gen_add_i32,
11477 genfn = fns[size];
11478 break;
11480 case 0x14: /* SMAXP, UMAXP */
11482 static NeonGenTwoOpFn * const fns[3][2] = {
11483 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11484 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11485 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11487 genfn = fns[size][u];
11488 break;
11490 case 0x15: /* SMINP, UMINP */
11492 static NeonGenTwoOpFn * const fns[3][2] = {
11493 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11494 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11495 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11497 genfn = fns[size][u];
11498 break;
11500 /* The FP operations are all on single floats (32 bit) */
11501 case 0x58: /* FMAXNMP */
11502 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11503 break;
11504 case 0x5a: /* FADDP */
11505 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11506 break;
11507 case 0x5e: /* FMAXP */
11508 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11509 break;
11510 case 0x78: /* FMINNMP */
11511 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11512 break;
11513 case 0x7e: /* FMINP */
11514 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11515 break;
11516 default:
11517 g_assert_not_reached();
11520 /* FP ops called directly, otherwise call now */
11521 if (genfn) {
11522 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11525 tcg_temp_free_i32(tcg_op1);
11526 tcg_temp_free_i32(tcg_op2);
11529 for (pass = 0; pass < maxpass; pass++) {
11530 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11531 tcg_temp_free_i32(tcg_res[pass]);
11533 clear_vec_high(s, is_q, rd);
11536 if (fpst) {
11537 tcg_temp_free_ptr(fpst);
11541 /* Floating point op subgroup of C3.6.16. */
11542 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11544 /* For floating point ops, the U, size[1] and opcode bits
11545 * together indicate the operation. size[0] indicates single
11546 * or double.
11548 int fpopcode = extract32(insn, 11, 5)
11549 | (extract32(insn, 23, 1) << 5)
11550 | (extract32(insn, 29, 1) << 6);
11551 int is_q = extract32(insn, 30, 1);
11552 int size = extract32(insn, 22, 1);
11553 int rm = extract32(insn, 16, 5);
11554 int rn = extract32(insn, 5, 5);
11555 int rd = extract32(insn, 0, 5);
11557 int datasize = is_q ? 128 : 64;
11558 int esize = 32 << size;
11559 int elements = datasize / esize;
11561 if (size == 1 && !is_q) {
11562 unallocated_encoding(s);
11563 return;
11566 switch (fpopcode) {
11567 case 0x58: /* FMAXNMP */
11568 case 0x5a: /* FADDP */
11569 case 0x5e: /* FMAXP */
11570 case 0x78: /* FMINNMP */
11571 case 0x7e: /* FMINP */
11572 if (size && !is_q) {
11573 unallocated_encoding(s);
11574 return;
11576 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11577 rn, rm, rd);
11578 return;
11579 case 0x1b: /* FMULX */
11580 case 0x1f: /* FRECPS */
11581 case 0x3f: /* FRSQRTS */
11582 case 0x5d: /* FACGE */
11583 case 0x7d: /* FACGT */
11584 case 0x19: /* FMLA */
11585 case 0x39: /* FMLS */
11586 case 0x18: /* FMAXNM */
11587 case 0x1a: /* FADD */
11588 case 0x1c: /* FCMEQ */
11589 case 0x1e: /* FMAX */
11590 case 0x38: /* FMINNM */
11591 case 0x3a: /* FSUB */
11592 case 0x3e: /* FMIN */
11593 case 0x5b: /* FMUL */
11594 case 0x5c: /* FCMGE */
11595 case 0x5f: /* FDIV */
11596 case 0x7a: /* FABD */
11597 case 0x7c: /* FCMGT */
11598 if (!fp_access_check(s)) {
11599 return;
11601 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11602 return;
11604 case 0x1d: /* FMLAL */
11605 case 0x3d: /* FMLSL */
11606 case 0x59: /* FMLAL2 */
11607 case 0x79: /* FMLSL2 */
11608 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11609 unallocated_encoding(s);
11610 return;
11612 if (fp_access_check(s)) {
11613 int is_s = extract32(insn, 23, 1);
11614 int is_2 = extract32(insn, 29, 1);
11615 int data = (is_2 << 1) | is_s;
11616 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11617 vec_full_reg_offset(s, rn),
11618 vec_full_reg_offset(s, rm), cpu_env,
11619 is_q ? 16 : 8, vec_full_reg_size(s),
11620 data, gen_helper_gvec_fmlal_a64);
11622 return;
11624 default:
11625 unallocated_encoding(s);
11626 return;
11630 /* Integer op subgroup of C3.6.16. */
11631 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11633 int is_q = extract32(insn, 30, 1);
11634 int u = extract32(insn, 29, 1);
11635 int size = extract32(insn, 22, 2);
11636 int opcode = extract32(insn, 11, 5);
11637 int rm = extract32(insn, 16, 5);
11638 int rn = extract32(insn, 5, 5);
11639 int rd = extract32(insn, 0, 5);
11640 int pass;
11641 TCGCond cond;
11643 switch (opcode) {
11644 case 0x13: /* MUL, PMUL */
11645 if (u && size != 0) {
11646 unallocated_encoding(s);
11647 return;
11649 /* fall through */
11650 case 0x0: /* SHADD, UHADD */
11651 case 0x2: /* SRHADD, URHADD */
11652 case 0x4: /* SHSUB, UHSUB */
11653 case 0xc: /* SMAX, UMAX */
11654 case 0xd: /* SMIN, UMIN */
11655 case 0xe: /* SABD, UABD */
11656 case 0xf: /* SABA, UABA */
11657 case 0x12: /* MLA, MLS */
11658 if (size == 3) {
11659 unallocated_encoding(s);
11660 return;
11662 break;
11663 case 0x16: /* SQDMULH, SQRDMULH */
11664 if (size == 0 || size == 3) {
11665 unallocated_encoding(s);
11666 return;
11668 break;
11669 default:
11670 if (size == 3 && !is_q) {
11671 unallocated_encoding(s);
11672 return;
11674 break;
11677 if (!fp_access_check(s)) {
11678 return;
11681 switch (opcode) {
11682 case 0x01: /* SQADD, UQADD */
11683 if (u) {
11684 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11685 } else {
11686 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11688 return;
11689 case 0x05: /* SQSUB, UQSUB */
11690 if (u) {
11691 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11692 } else {
11693 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11695 return;
11696 case 0x08: /* SSHL, USHL */
11697 if (u) {
11698 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11699 } else {
11700 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11702 return;
11703 case 0x0c: /* SMAX, UMAX */
11704 if (u) {
11705 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11706 } else {
11707 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11709 return;
11710 case 0x0d: /* SMIN, UMIN */
11711 if (u) {
11712 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11713 } else {
11714 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11716 return;
11717 case 0xe: /* SABD, UABD */
11718 if (u) {
11719 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11720 } else {
11721 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11723 return;
11724 case 0xf: /* SABA, UABA */
11725 if (u) {
11726 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11727 } else {
11728 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11730 return;
11731 case 0x10: /* ADD, SUB */
11732 if (u) {
11733 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11734 } else {
11735 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11737 return;
11738 case 0x13: /* MUL, PMUL */
11739 if (!u) { /* MUL */
11740 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11741 } else { /* PMUL */
11742 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11744 return;
11745 case 0x12: /* MLA, MLS */
11746 if (u) {
11747 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11748 } else {
11749 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11751 return;
11752 case 0x11:
11753 if (!u) { /* CMTST */
11754 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11755 return;
11757 /* else CMEQ */
11758 cond = TCG_COND_EQ;
11759 goto do_gvec_cmp;
11760 case 0x06: /* CMGT, CMHI */
11761 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11762 goto do_gvec_cmp;
11763 case 0x07: /* CMGE, CMHS */
11764 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11765 do_gvec_cmp:
11766 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11767 vec_full_reg_offset(s, rn),
11768 vec_full_reg_offset(s, rm),
11769 is_q ? 16 : 8, vec_full_reg_size(s));
11770 return;
11773 if (size == 3) {
11774 assert(is_q);
11775 for (pass = 0; pass < 2; pass++) {
11776 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11777 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11778 TCGv_i64 tcg_res = tcg_temp_new_i64();
11780 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11781 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11783 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11785 write_vec_element(s, tcg_res, rd, pass, MO_64);
11787 tcg_temp_free_i64(tcg_res);
11788 tcg_temp_free_i64(tcg_op1);
11789 tcg_temp_free_i64(tcg_op2);
11791 } else {
11792 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11793 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11794 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11795 TCGv_i32 tcg_res = tcg_temp_new_i32();
11796 NeonGenTwoOpFn *genfn = NULL;
11797 NeonGenTwoOpEnvFn *genenvfn = NULL;
11799 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11800 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11802 switch (opcode) {
11803 case 0x0: /* SHADD, UHADD */
11805 static NeonGenTwoOpFn * const fns[3][2] = {
11806 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11807 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11808 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11810 genfn = fns[size][u];
11811 break;
11813 case 0x2: /* SRHADD, URHADD */
11815 static NeonGenTwoOpFn * const fns[3][2] = {
11816 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11817 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11818 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11820 genfn = fns[size][u];
11821 break;
11823 case 0x4: /* SHSUB, UHSUB */
11825 static NeonGenTwoOpFn * const fns[3][2] = {
11826 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11827 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11828 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11830 genfn = fns[size][u];
11831 break;
11833 case 0x9: /* SQSHL, UQSHL */
11835 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11836 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11837 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11838 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11840 genenvfn = fns[size][u];
11841 break;
11843 case 0xa: /* SRSHL, URSHL */
11845 static NeonGenTwoOpFn * const fns[3][2] = {
11846 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11847 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11848 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11850 genfn = fns[size][u];
11851 break;
11853 case 0xb: /* SQRSHL, UQRSHL */
11855 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11856 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11857 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11858 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11860 genenvfn = fns[size][u];
11861 break;
11863 case 0x16: /* SQDMULH, SQRDMULH */
11865 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11866 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11867 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11869 assert(size == 1 || size == 2);
11870 genenvfn = fns[size - 1][u];
11871 break;
11873 default:
11874 g_assert_not_reached();
11877 if (genenvfn) {
11878 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11879 } else {
11880 genfn(tcg_res, tcg_op1, tcg_op2);
11883 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11885 tcg_temp_free_i32(tcg_res);
11886 tcg_temp_free_i32(tcg_op1);
11887 tcg_temp_free_i32(tcg_op2);
11890 clear_vec_high(s, is_q, rd);
11893 /* AdvSIMD three same
11894 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11895 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11896 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11897 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11899 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11901 int opcode = extract32(insn, 11, 5);
11903 switch (opcode) {
11904 case 0x3: /* logic ops */
11905 disas_simd_3same_logic(s, insn);
11906 break;
11907 case 0x17: /* ADDP */
11908 case 0x14: /* SMAXP, UMAXP */
11909 case 0x15: /* SMINP, UMINP */
11911 /* Pairwise operations */
11912 int is_q = extract32(insn, 30, 1);
11913 int u = extract32(insn, 29, 1);
11914 int size = extract32(insn, 22, 2);
11915 int rm = extract32(insn, 16, 5);
11916 int rn = extract32(insn, 5, 5);
11917 int rd = extract32(insn, 0, 5);
11918 if (opcode == 0x17) {
11919 if (u || (size == 3 && !is_q)) {
11920 unallocated_encoding(s);
11921 return;
11923 } else {
11924 if (size == 3) {
11925 unallocated_encoding(s);
11926 return;
11929 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11930 break;
11932 case 0x18 ... 0x31:
11933 /* floating point ops, sz[1] and U are part of opcode */
11934 disas_simd_3same_float(s, insn);
11935 break;
11936 default:
11937 disas_simd_3same_int(s, insn);
11938 break;
11943 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11945 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11946 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11947 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11948 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11950 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11951 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11954 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11956 int opcode, fpopcode;
11957 int is_q, u, a, rm, rn, rd;
11958 int datasize, elements;
11959 int pass;
11960 TCGv_ptr fpst;
11961 bool pairwise = false;
11963 if (!dc_isar_feature(aa64_fp16, s)) {
11964 unallocated_encoding(s);
11965 return;
11968 if (!fp_access_check(s)) {
11969 return;
11972 /* For these floating point ops, the U, a and opcode bits
11973 * together indicate the operation.
11975 opcode = extract32(insn, 11, 3);
11976 u = extract32(insn, 29, 1);
11977 a = extract32(insn, 23, 1);
11978 is_q = extract32(insn, 30, 1);
11979 rm = extract32(insn, 16, 5);
11980 rn = extract32(insn, 5, 5);
11981 rd = extract32(insn, 0, 5);
11983 fpopcode = opcode | (a << 3) | (u << 4);
11984 datasize = is_q ? 128 : 64;
11985 elements = datasize / 16;
11987 switch (fpopcode) {
11988 case 0x10: /* FMAXNMP */
11989 case 0x12: /* FADDP */
11990 case 0x16: /* FMAXP */
11991 case 0x18: /* FMINNMP */
11992 case 0x1e: /* FMINP */
11993 pairwise = true;
11994 break;
11997 fpst = get_fpstatus_ptr(true);
11999 if (pairwise) {
12000 int maxpass = is_q ? 8 : 4;
12001 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12002 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12003 TCGv_i32 tcg_res[8];
12005 for (pass = 0; pass < maxpass; pass++) {
12006 int passreg = pass < (maxpass / 2) ? rn : rm;
12007 int passelt = (pass << 1) & (maxpass - 1);
12009 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
12010 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
12011 tcg_res[pass] = tcg_temp_new_i32();
12013 switch (fpopcode) {
12014 case 0x10: /* FMAXNMP */
12015 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
12016 fpst);
12017 break;
12018 case 0x12: /* FADDP */
12019 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12020 break;
12021 case 0x16: /* FMAXP */
12022 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12023 break;
12024 case 0x18: /* FMINNMP */
12025 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
12026 fpst);
12027 break;
12028 case 0x1e: /* FMINP */
12029 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12030 break;
12031 default:
12032 g_assert_not_reached();
12036 for (pass = 0; pass < maxpass; pass++) {
12037 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
12038 tcg_temp_free_i32(tcg_res[pass]);
12041 tcg_temp_free_i32(tcg_op1);
12042 tcg_temp_free_i32(tcg_op2);
12044 } else {
12045 for (pass = 0; pass < elements; pass++) {
12046 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12047 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12048 TCGv_i32 tcg_res = tcg_temp_new_i32();
12050 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12051 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12053 switch (fpopcode) {
12054 case 0x0: /* FMAXNM */
12055 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12056 break;
12057 case 0x1: /* FMLA */
12058 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12059 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12060 fpst);
12061 break;
12062 case 0x2: /* FADD */
12063 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12064 break;
12065 case 0x3: /* FMULX */
12066 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12067 break;
12068 case 0x4: /* FCMEQ */
12069 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12070 break;
12071 case 0x6: /* FMAX */
12072 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12073 break;
12074 case 0x7: /* FRECPS */
12075 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12076 break;
12077 case 0x8: /* FMINNM */
12078 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12079 break;
12080 case 0x9: /* FMLS */
12081 /* As usual for ARM, separate negation for fused multiply-add */
12082 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12083 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12084 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12085 fpst);
12086 break;
12087 case 0xa: /* FSUB */
12088 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12089 break;
12090 case 0xe: /* FMIN */
12091 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12092 break;
12093 case 0xf: /* FRSQRTS */
12094 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12095 break;
12096 case 0x13: /* FMUL */
12097 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12098 break;
12099 case 0x14: /* FCMGE */
12100 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12101 break;
12102 case 0x15: /* FACGE */
12103 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12104 break;
12105 case 0x17: /* FDIV */
12106 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12107 break;
12108 case 0x1a: /* FABD */
12109 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12110 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12111 break;
12112 case 0x1c: /* FCMGT */
12113 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12114 break;
12115 case 0x1d: /* FACGT */
12116 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12117 break;
12118 default:
12119 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
12120 __func__, insn, fpopcode, s->pc_curr);
12121 g_assert_not_reached();
12124 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12125 tcg_temp_free_i32(tcg_res);
12126 tcg_temp_free_i32(tcg_op1);
12127 tcg_temp_free_i32(tcg_op2);
12131 tcg_temp_free_ptr(fpst);
12133 clear_vec_high(s, is_q, rd);
12136 /* AdvSIMD three same extra
12137 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
12138 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12139 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
12140 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12142 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12144 int rd = extract32(insn, 0, 5);
12145 int rn = extract32(insn, 5, 5);
12146 int opcode = extract32(insn, 11, 4);
12147 int rm = extract32(insn, 16, 5);
12148 int size = extract32(insn, 22, 2);
12149 bool u = extract32(insn, 29, 1);
12150 bool is_q = extract32(insn, 30, 1);
12151 bool feature;
12152 int rot;
12154 switch (u * 16 + opcode) {
12155 case 0x10: /* SQRDMLAH (vector) */
12156 case 0x11: /* SQRDMLSH (vector) */
12157 if (size != 1 && size != 2) {
12158 unallocated_encoding(s);
12159 return;
12161 feature = dc_isar_feature(aa64_rdm, s);
12162 break;
12163 case 0x02: /* SDOT (vector) */
12164 case 0x12: /* UDOT (vector) */
12165 if (size != MO_32) {
12166 unallocated_encoding(s);
12167 return;
12169 feature = dc_isar_feature(aa64_dp, s);
12170 break;
12171 case 0x18: /* FCMLA, #0 */
12172 case 0x19: /* FCMLA, #90 */
12173 case 0x1a: /* FCMLA, #180 */
12174 case 0x1b: /* FCMLA, #270 */
12175 case 0x1c: /* FCADD, #90 */
12176 case 0x1e: /* FCADD, #270 */
12177 if (size == 0
12178 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12179 || (size == 3 && !is_q)) {
12180 unallocated_encoding(s);
12181 return;
12183 feature = dc_isar_feature(aa64_fcma, s);
12184 break;
12185 default:
12186 unallocated_encoding(s);
12187 return;
12189 if (!feature) {
12190 unallocated_encoding(s);
12191 return;
12193 if (!fp_access_check(s)) {
12194 return;
12197 switch (opcode) {
12198 case 0x0: /* SQRDMLAH (vector) */
12199 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12200 return;
12202 case 0x1: /* SQRDMLSH (vector) */
12203 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12204 return;
12206 case 0x2: /* SDOT / UDOT */
12207 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
12208 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12209 return;
12211 case 0x8: /* FCMLA, #0 */
12212 case 0x9: /* FCMLA, #90 */
12213 case 0xa: /* FCMLA, #180 */
12214 case 0xb: /* FCMLA, #270 */
12215 rot = extract32(opcode, 0, 2);
12216 switch (size) {
12217 case 1:
12218 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
12219 gen_helper_gvec_fcmlah);
12220 break;
12221 case 2:
12222 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
12223 gen_helper_gvec_fcmlas);
12224 break;
12225 case 3:
12226 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
12227 gen_helper_gvec_fcmlad);
12228 break;
12229 default:
12230 g_assert_not_reached();
12232 return;
12234 case 0xc: /* FCADD, #90 */
12235 case 0xe: /* FCADD, #270 */
12236 rot = extract32(opcode, 1, 1);
12237 switch (size) {
12238 case 1:
12239 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12240 gen_helper_gvec_fcaddh);
12241 break;
12242 case 2:
12243 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12244 gen_helper_gvec_fcadds);
12245 break;
12246 case 3:
12247 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12248 gen_helper_gvec_fcaddd);
12249 break;
12250 default:
12251 g_assert_not_reached();
12253 return;
12255 default:
12256 g_assert_not_reached();
12260 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12261 int size, int rn, int rd)
12263 /* Handle 2-reg-misc ops which are widening (so each size element
12264 * in the source becomes a 2*size element in the destination.
12265 * The only instruction like this is FCVTL.
12267 int pass;
12269 if (size == 3) {
12270 /* 32 -> 64 bit fp conversion */
12271 TCGv_i64 tcg_res[2];
12272 int srcelt = is_q ? 2 : 0;
12274 for (pass = 0; pass < 2; pass++) {
12275 TCGv_i32 tcg_op = tcg_temp_new_i32();
12276 tcg_res[pass] = tcg_temp_new_i64();
12278 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12279 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12280 tcg_temp_free_i32(tcg_op);
12282 for (pass = 0; pass < 2; pass++) {
12283 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12284 tcg_temp_free_i64(tcg_res[pass]);
12286 } else {
12287 /* 16 -> 32 bit fp conversion */
12288 int srcelt = is_q ? 4 : 0;
12289 TCGv_i32 tcg_res[4];
12290 TCGv_ptr fpst = get_fpstatus_ptr(false);
12291 TCGv_i32 ahp = get_ahp_flag();
12293 for (pass = 0; pass < 4; pass++) {
12294 tcg_res[pass] = tcg_temp_new_i32();
12296 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12297 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12298 fpst, ahp);
12300 for (pass = 0; pass < 4; pass++) {
12301 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12302 tcg_temp_free_i32(tcg_res[pass]);
12305 tcg_temp_free_ptr(fpst);
12306 tcg_temp_free_i32(ahp);
12310 static void handle_rev(DisasContext *s, int opcode, bool u,
12311 bool is_q, int size, int rn, int rd)
12313 int op = (opcode << 1) | u;
12314 int opsz = op + size;
12315 int grp_size = 3 - opsz;
12316 int dsize = is_q ? 128 : 64;
12317 int i;
12319 if (opsz >= 3) {
12320 unallocated_encoding(s);
12321 return;
12324 if (!fp_access_check(s)) {
12325 return;
12328 if (size == 0) {
12329 /* Special case bytes, use bswap op on each group of elements */
12330 int groups = dsize / (8 << grp_size);
12332 for (i = 0; i < groups; i++) {
12333 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12335 read_vec_element(s, tcg_tmp, rn, i, grp_size);
12336 switch (grp_size) {
12337 case MO_16:
12338 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
12339 break;
12340 case MO_32:
12341 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
12342 break;
12343 case MO_64:
12344 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12345 break;
12346 default:
12347 g_assert_not_reached();
12349 write_vec_element(s, tcg_tmp, rd, i, grp_size);
12350 tcg_temp_free_i64(tcg_tmp);
12352 clear_vec_high(s, is_q, rd);
12353 } else {
12354 int revmask = (1 << grp_size) - 1;
12355 int esize = 8 << size;
12356 int elements = dsize / esize;
12357 TCGv_i64 tcg_rn = tcg_temp_new_i64();
12358 TCGv_i64 tcg_rd = tcg_const_i64(0);
12359 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12361 for (i = 0; i < elements; i++) {
12362 int e_rev = (i & 0xf) ^ revmask;
12363 int off = e_rev * esize;
12364 read_vec_element(s, tcg_rn, rn, i, size);
12365 if (off >= 64) {
12366 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12367 tcg_rn, off - 64, esize);
12368 } else {
12369 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12372 write_vec_element(s, tcg_rd, rd, 0, MO_64);
12373 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12375 tcg_temp_free_i64(tcg_rd_hi);
12376 tcg_temp_free_i64(tcg_rd);
12377 tcg_temp_free_i64(tcg_rn);
12381 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12382 bool is_q, int size, int rn, int rd)
12384 /* Implement the pairwise operations from 2-misc:
12385 * SADDLP, UADDLP, SADALP, UADALP.
12386 * These all add pairs of elements in the input to produce a
12387 * double-width result element in the output (possibly accumulating).
12389 bool accum = (opcode == 0x6);
12390 int maxpass = is_q ? 2 : 1;
12391 int pass;
12392 TCGv_i64 tcg_res[2];
12394 if (size == 2) {
12395 /* 32 + 32 -> 64 op */
12396 MemOp memop = size + (u ? 0 : MO_SIGN);
12398 for (pass = 0; pass < maxpass; pass++) {
12399 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12400 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12402 tcg_res[pass] = tcg_temp_new_i64();
12404 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12405 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12406 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12407 if (accum) {
12408 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12409 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12412 tcg_temp_free_i64(tcg_op1);
12413 tcg_temp_free_i64(tcg_op2);
12415 } else {
12416 for (pass = 0; pass < maxpass; pass++) {
12417 TCGv_i64 tcg_op = tcg_temp_new_i64();
12418 NeonGenOne64OpFn *genfn;
12419 static NeonGenOne64OpFn * const fns[2][2] = {
12420 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12421 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12424 genfn = fns[size][u];
12426 tcg_res[pass] = tcg_temp_new_i64();
12428 read_vec_element(s, tcg_op, rn, pass, MO_64);
12429 genfn(tcg_res[pass], tcg_op);
12431 if (accum) {
12432 read_vec_element(s, tcg_op, rd, pass, MO_64);
12433 if (size == 0) {
12434 gen_helper_neon_addl_u16(tcg_res[pass],
12435 tcg_res[pass], tcg_op);
12436 } else {
12437 gen_helper_neon_addl_u32(tcg_res[pass],
12438 tcg_res[pass], tcg_op);
12441 tcg_temp_free_i64(tcg_op);
12444 if (!is_q) {
12445 tcg_res[1] = tcg_const_i64(0);
12447 for (pass = 0; pass < 2; pass++) {
12448 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12449 tcg_temp_free_i64(tcg_res[pass]);
12453 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12455 /* Implement SHLL and SHLL2 */
12456 int pass;
12457 int part = is_q ? 2 : 0;
12458 TCGv_i64 tcg_res[2];
12460 for (pass = 0; pass < 2; pass++) {
12461 static NeonGenWidenFn * const widenfns[3] = {
12462 gen_helper_neon_widen_u8,
12463 gen_helper_neon_widen_u16,
12464 tcg_gen_extu_i32_i64,
12466 NeonGenWidenFn *widenfn = widenfns[size];
12467 TCGv_i32 tcg_op = tcg_temp_new_i32();
12469 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12470 tcg_res[pass] = tcg_temp_new_i64();
12471 widenfn(tcg_res[pass], tcg_op);
12472 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12474 tcg_temp_free_i32(tcg_op);
12477 for (pass = 0; pass < 2; pass++) {
12478 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12479 tcg_temp_free_i64(tcg_res[pass]);
12483 /* AdvSIMD two reg misc
12484 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12485 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12486 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12487 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12489 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12491 int size = extract32(insn, 22, 2);
12492 int opcode = extract32(insn, 12, 5);
12493 bool u = extract32(insn, 29, 1);
12494 bool is_q = extract32(insn, 30, 1);
12495 int rn = extract32(insn, 5, 5);
12496 int rd = extract32(insn, 0, 5);
12497 bool need_fpstatus = false;
12498 bool need_rmode = false;
12499 int rmode = -1;
12500 TCGv_i32 tcg_rmode;
12501 TCGv_ptr tcg_fpstatus;
12503 switch (opcode) {
12504 case 0x0: /* REV64, REV32 */
12505 case 0x1: /* REV16 */
12506 handle_rev(s, opcode, u, is_q, size, rn, rd);
12507 return;
12508 case 0x5: /* CNT, NOT, RBIT */
12509 if (u && size == 0) {
12510 /* NOT */
12511 break;
12512 } else if (u && size == 1) {
12513 /* RBIT */
12514 break;
12515 } else if (!u && size == 0) {
12516 /* CNT */
12517 break;
12519 unallocated_encoding(s);
12520 return;
12521 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12522 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12523 if (size == 3) {
12524 unallocated_encoding(s);
12525 return;
12527 if (!fp_access_check(s)) {
12528 return;
12531 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12532 return;
12533 case 0x4: /* CLS, CLZ */
12534 if (size == 3) {
12535 unallocated_encoding(s);
12536 return;
12538 break;
12539 case 0x2: /* SADDLP, UADDLP */
12540 case 0x6: /* SADALP, UADALP */
12541 if (size == 3) {
12542 unallocated_encoding(s);
12543 return;
12545 if (!fp_access_check(s)) {
12546 return;
12548 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12549 return;
12550 case 0x13: /* SHLL, SHLL2 */
12551 if (u == 0 || size == 3) {
12552 unallocated_encoding(s);
12553 return;
12555 if (!fp_access_check(s)) {
12556 return;
12558 handle_shll(s, is_q, size, rn, rd);
12559 return;
12560 case 0xa: /* CMLT */
12561 if (u == 1) {
12562 unallocated_encoding(s);
12563 return;
12565 /* fall through */
12566 case 0x8: /* CMGT, CMGE */
12567 case 0x9: /* CMEQ, CMLE */
12568 case 0xb: /* ABS, NEG */
12569 if (size == 3 && !is_q) {
12570 unallocated_encoding(s);
12571 return;
12573 break;
12574 case 0x3: /* SUQADD, USQADD */
12575 if (size == 3 && !is_q) {
12576 unallocated_encoding(s);
12577 return;
12579 if (!fp_access_check(s)) {
12580 return;
12582 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12583 return;
12584 case 0x7: /* SQABS, SQNEG */
12585 if (size == 3 && !is_q) {
12586 unallocated_encoding(s);
12587 return;
12589 break;
12590 case 0xc ... 0xf:
12591 case 0x16 ... 0x1f:
12593 /* Floating point: U, size[1] and opcode indicate operation;
12594 * size[0] indicates single or double precision.
12596 int is_double = extract32(size, 0, 1);
12597 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12598 size = is_double ? 3 : 2;
12599 switch (opcode) {
12600 case 0x2f: /* FABS */
12601 case 0x6f: /* FNEG */
12602 if (size == 3 && !is_q) {
12603 unallocated_encoding(s);
12604 return;
12606 break;
12607 case 0x1d: /* SCVTF */
12608 case 0x5d: /* UCVTF */
12610 bool is_signed = (opcode == 0x1d) ? true : false;
12611 int elements = is_double ? 2 : is_q ? 4 : 2;
12612 if (is_double && !is_q) {
12613 unallocated_encoding(s);
12614 return;
12616 if (!fp_access_check(s)) {
12617 return;
12619 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12620 return;
12622 case 0x2c: /* FCMGT (zero) */
12623 case 0x2d: /* FCMEQ (zero) */
12624 case 0x2e: /* FCMLT (zero) */
12625 case 0x6c: /* FCMGE (zero) */
12626 case 0x6d: /* FCMLE (zero) */
12627 if (size == 3 && !is_q) {
12628 unallocated_encoding(s);
12629 return;
12631 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12632 return;
12633 case 0x7f: /* FSQRT */
12634 if (size == 3 && !is_q) {
12635 unallocated_encoding(s);
12636 return;
12638 break;
12639 case 0x1a: /* FCVTNS */
12640 case 0x1b: /* FCVTMS */
12641 case 0x3a: /* FCVTPS */
12642 case 0x3b: /* FCVTZS */
12643 case 0x5a: /* FCVTNU */
12644 case 0x5b: /* FCVTMU */
12645 case 0x7a: /* FCVTPU */
12646 case 0x7b: /* FCVTZU */
12647 need_fpstatus = true;
12648 need_rmode = true;
12649 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12650 if (size == 3 && !is_q) {
12651 unallocated_encoding(s);
12652 return;
12654 break;
12655 case 0x5c: /* FCVTAU */
12656 case 0x1c: /* FCVTAS */
12657 need_fpstatus = true;
12658 need_rmode = true;
12659 rmode = FPROUNDING_TIEAWAY;
12660 if (size == 3 && !is_q) {
12661 unallocated_encoding(s);
12662 return;
12664 break;
12665 case 0x3c: /* URECPE */
12666 if (size == 3) {
12667 unallocated_encoding(s);
12668 return;
12670 /* fall through */
12671 case 0x3d: /* FRECPE */
12672 case 0x7d: /* FRSQRTE */
12673 if (size == 3 && !is_q) {
12674 unallocated_encoding(s);
12675 return;
12677 if (!fp_access_check(s)) {
12678 return;
12680 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12681 return;
12682 case 0x56: /* FCVTXN, FCVTXN2 */
12683 if (size == 2) {
12684 unallocated_encoding(s);
12685 return;
12687 /* fall through */
12688 case 0x16: /* FCVTN, FCVTN2 */
12689 /* handle_2misc_narrow does a 2*size -> size operation, but these
12690 * instructions encode the source size rather than dest size.
12692 if (!fp_access_check(s)) {
12693 return;
12695 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12696 return;
12697 case 0x17: /* FCVTL, FCVTL2 */
12698 if (!fp_access_check(s)) {
12699 return;
12701 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12702 return;
12703 case 0x18: /* FRINTN */
12704 case 0x19: /* FRINTM */
12705 case 0x38: /* FRINTP */
12706 case 0x39: /* FRINTZ */
12707 need_rmode = true;
12708 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12709 /* fall through */
12710 case 0x59: /* FRINTX */
12711 case 0x79: /* FRINTI */
12712 need_fpstatus = true;
12713 if (size == 3 && !is_q) {
12714 unallocated_encoding(s);
12715 return;
12717 break;
12718 case 0x58: /* FRINTA */
12719 need_rmode = true;
12720 rmode = FPROUNDING_TIEAWAY;
12721 need_fpstatus = true;
12722 if (size == 3 && !is_q) {
12723 unallocated_encoding(s);
12724 return;
12726 break;
12727 case 0x7c: /* URSQRTE */
12728 if (size == 3) {
12729 unallocated_encoding(s);
12730 return;
12732 break;
12733 case 0x1e: /* FRINT32Z */
12734 case 0x1f: /* FRINT64Z */
12735 need_rmode = true;
12736 rmode = FPROUNDING_ZERO;
12737 /* fall through */
12738 case 0x5e: /* FRINT32X */
12739 case 0x5f: /* FRINT64X */
12740 need_fpstatus = true;
12741 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12742 unallocated_encoding(s);
12743 return;
12745 break;
12746 default:
12747 unallocated_encoding(s);
12748 return;
12750 break;
12752 default:
12753 unallocated_encoding(s);
12754 return;
12757 if (!fp_access_check(s)) {
12758 return;
12761 if (need_fpstatus || need_rmode) {
12762 tcg_fpstatus = get_fpstatus_ptr(false);
12763 } else {
12764 tcg_fpstatus = NULL;
12766 if (need_rmode) {
12767 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12768 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12769 } else {
12770 tcg_rmode = NULL;
12773 switch (opcode) {
12774 case 0x5:
12775 if (u && size == 0) { /* NOT */
12776 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12777 return;
12779 break;
12780 case 0x8: /* CMGT, CMGE */
12781 if (u) {
12782 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12783 } else {
12784 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12786 return;
12787 case 0x9: /* CMEQ, CMLE */
12788 if (u) {
12789 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12790 } else {
12791 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12793 return;
12794 case 0xa: /* CMLT */
12795 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12796 return;
12797 case 0xb:
12798 if (u) { /* ABS, NEG */
12799 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12800 } else {
12801 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12803 return;
12806 if (size == 3) {
12807 /* All 64-bit element operations can be shared with scalar 2misc */
12808 int pass;
12810 /* Coverity claims (size == 3 && !is_q) has been eliminated
12811 * from all paths leading to here.
12813 tcg_debug_assert(is_q);
12814 for (pass = 0; pass < 2; pass++) {
12815 TCGv_i64 tcg_op = tcg_temp_new_i64();
12816 TCGv_i64 tcg_res = tcg_temp_new_i64();
12818 read_vec_element(s, tcg_op, rn, pass, MO_64);
12820 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12821 tcg_rmode, tcg_fpstatus);
12823 write_vec_element(s, tcg_res, rd, pass, MO_64);
12825 tcg_temp_free_i64(tcg_res);
12826 tcg_temp_free_i64(tcg_op);
12828 } else {
12829 int pass;
12831 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12832 TCGv_i32 tcg_op = tcg_temp_new_i32();
12833 TCGv_i32 tcg_res = tcg_temp_new_i32();
12835 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12837 if (size == 2) {
12838 /* Special cases for 32 bit elements */
12839 switch (opcode) {
12840 case 0x4: /* CLS */
12841 if (u) {
12842 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12843 } else {
12844 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12846 break;
12847 case 0x7: /* SQABS, SQNEG */
12848 if (u) {
12849 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12850 } else {
12851 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12853 break;
12854 case 0x2f: /* FABS */
12855 gen_helper_vfp_abss(tcg_res, tcg_op);
12856 break;
12857 case 0x6f: /* FNEG */
12858 gen_helper_vfp_negs(tcg_res, tcg_op);
12859 break;
12860 case 0x7f: /* FSQRT */
12861 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12862 break;
12863 case 0x1a: /* FCVTNS */
12864 case 0x1b: /* FCVTMS */
12865 case 0x1c: /* FCVTAS */
12866 case 0x3a: /* FCVTPS */
12867 case 0x3b: /* FCVTZS */
12869 TCGv_i32 tcg_shift = tcg_const_i32(0);
12870 gen_helper_vfp_tosls(tcg_res, tcg_op,
12871 tcg_shift, tcg_fpstatus);
12872 tcg_temp_free_i32(tcg_shift);
12873 break;
12875 case 0x5a: /* FCVTNU */
12876 case 0x5b: /* FCVTMU */
12877 case 0x5c: /* FCVTAU */
12878 case 0x7a: /* FCVTPU */
12879 case 0x7b: /* FCVTZU */
12881 TCGv_i32 tcg_shift = tcg_const_i32(0);
12882 gen_helper_vfp_touls(tcg_res, tcg_op,
12883 tcg_shift, tcg_fpstatus);
12884 tcg_temp_free_i32(tcg_shift);
12885 break;
12887 case 0x18: /* FRINTN */
12888 case 0x19: /* FRINTM */
12889 case 0x38: /* FRINTP */
12890 case 0x39: /* FRINTZ */
12891 case 0x58: /* FRINTA */
12892 case 0x79: /* FRINTI */
12893 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12894 break;
12895 case 0x59: /* FRINTX */
12896 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12897 break;
12898 case 0x7c: /* URSQRTE */
12899 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12900 break;
12901 case 0x1e: /* FRINT32Z */
12902 case 0x5e: /* FRINT32X */
12903 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12904 break;
12905 case 0x1f: /* FRINT64Z */
12906 case 0x5f: /* FRINT64X */
12907 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12908 break;
12909 default:
12910 g_assert_not_reached();
12912 } else {
12913 /* Use helpers for 8 and 16 bit elements */
12914 switch (opcode) {
12915 case 0x5: /* CNT, RBIT */
12916 /* For these two insns size is part of the opcode specifier
12917 * (handled earlier); they always operate on byte elements.
12919 if (u) {
12920 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12921 } else {
12922 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12924 break;
12925 case 0x7: /* SQABS, SQNEG */
12927 NeonGenOneOpEnvFn *genfn;
12928 static NeonGenOneOpEnvFn * const fns[2][2] = {
12929 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12930 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12932 genfn = fns[size][u];
12933 genfn(tcg_res, cpu_env, tcg_op);
12934 break;
12936 case 0x4: /* CLS, CLZ */
12937 if (u) {
12938 if (size == 0) {
12939 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12940 } else {
12941 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12943 } else {
12944 if (size == 0) {
12945 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12946 } else {
12947 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12950 break;
12951 default:
12952 g_assert_not_reached();
12956 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12958 tcg_temp_free_i32(tcg_res);
12959 tcg_temp_free_i32(tcg_op);
12962 clear_vec_high(s, is_q, rd);
12964 if (need_rmode) {
12965 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12966 tcg_temp_free_i32(tcg_rmode);
12968 if (need_fpstatus) {
12969 tcg_temp_free_ptr(tcg_fpstatus);
12973 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12975 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12976 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12977 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12978 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12979 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12980 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12982 * This actually covers two groups where scalar access is governed by
12983 * bit 28. A bunch of the instructions (float to integral) only exist
12984 * in the vector form and are un-allocated for the scalar decode. Also
12985 * in the scalar decode Q is always 1.
12987 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12989 int fpop, opcode, a, u;
12990 int rn, rd;
12991 bool is_q;
12992 bool is_scalar;
12993 bool only_in_vector = false;
12995 int pass;
12996 TCGv_i32 tcg_rmode = NULL;
12997 TCGv_ptr tcg_fpstatus = NULL;
12998 bool need_rmode = false;
12999 bool need_fpst = true;
13000 int rmode;
13002 if (!dc_isar_feature(aa64_fp16, s)) {
13003 unallocated_encoding(s);
13004 return;
13007 rd = extract32(insn, 0, 5);
13008 rn = extract32(insn, 5, 5);
13010 a = extract32(insn, 23, 1);
13011 u = extract32(insn, 29, 1);
13012 is_scalar = extract32(insn, 28, 1);
13013 is_q = extract32(insn, 30, 1);
13015 opcode = extract32(insn, 12, 5);
13016 fpop = deposit32(opcode, 5, 1, a);
13017 fpop = deposit32(fpop, 6, 1, u);
13019 rd = extract32(insn, 0, 5);
13020 rn = extract32(insn, 5, 5);
13022 switch (fpop) {
13023 case 0x1d: /* SCVTF */
13024 case 0x5d: /* UCVTF */
13026 int elements;
13028 if (is_scalar) {
13029 elements = 1;
13030 } else {
13031 elements = (is_q ? 8 : 4);
13034 if (!fp_access_check(s)) {
13035 return;
13037 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
13038 return;
13040 break;
13041 case 0x2c: /* FCMGT (zero) */
13042 case 0x2d: /* FCMEQ (zero) */
13043 case 0x2e: /* FCMLT (zero) */
13044 case 0x6c: /* FCMGE (zero) */
13045 case 0x6d: /* FCMLE (zero) */
13046 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13047 return;
13048 case 0x3d: /* FRECPE */
13049 case 0x3f: /* FRECPX */
13050 break;
13051 case 0x18: /* FRINTN */
13052 need_rmode = true;
13053 only_in_vector = true;
13054 rmode = FPROUNDING_TIEEVEN;
13055 break;
13056 case 0x19: /* FRINTM */
13057 need_rmode = true;
13058 only_in_vector = true;
13059 rmode = FPROUNDING_NEGINF;
13060 break;
13061 case 0x38: /* FRINTP */
13062 need_rmode = true;
13063 only_in_vector = true;
13064 rmode = FPROUNDING_POSINF;
13065 break;
13066 case 0x39: /* FRINTZ */
13067 need_rmode = true;
13068 only_in_vector = true;
13069 rmode = FPROUNDING_ZERO;
13070 break;
13071 case 0x58: /* FRINTA */
13072 need_rmode = true;
13073 only_in_vector = true;
13074 rmode = FPROUNDING_TIEAWAY;
13075 break;
13076 case 0x59: /* FRINTX */
13077 case 0x79: /* FRINTI */
13078 only_in_vector = true;
13079 /* current rounding mode */
13080 break;
13081 case 0x1a: /* FCVTNS */
13082 need_rmode = true;
13083 rmode = FPROUNDING_TIEEVEN;
13084 break;
13085 case 0x1b: /* FCVTMS */
13086 need_rmode = true;
13087 rmode = FPROUNDING_NEGINF;
13088 break;
13089 case 0x1c: /* FCVTAS */
13090 need_rmode = true;
13091 rmode = FPROUNDING_TIEAWAY;
13092 break;
13093 case 0x3a: /* FCVTPS */
13094 need_rmode = true;
13095 rmode = FPROUNDING_POSINF;
13096 break;
13097 case 0x3b: /* FCVTZS */
13098 need_rmode = true;
13099 rmode = FPROUNDING_ZERO;
13100 break;
13101 case 0x5a: /* FCVTNU */
13102 need_rmode = true;
13103 rmode = FPROUNDING_TIEEVEN;
13104 break;
13105 case 0x5b: /* FCVTMU */
13106 need_rmode = true;
13107 rmode = FPROUNDING_NEGINF;
13108 break;
13109 case 0x5c: /* FCVTAU */
13110 need_rmode = true;
13111 rmode = FPROUNDING_TIEAWAY;
13112 break;
13113 case 0x7a: /* FCVTPU */
13114 need_rmode = true;
13115 rmode = FPROUNDING_POSINF;
13116 break;
13117 case 0x7b: /* FCVTZU */
13118 need_rmode = true;
13119 rmode = FPROUNDING_ZERO;
13120 break;
13121 case 0x2f: /* FABS */
13122 case 0x6f: /* FNEG */
13123 need_fpst = false;
13124 break;
13125 case 0x7d: /* FRSQRTE */
13126 case 0x7f: /* FSQRT (vector) */
13127 break;
13128 default:
13129 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
13130 g_assert_not_reached();
13134 /* Check additional constraints for the scalar encoding */
13135 if (is_scalar) {
13136 if (!is_q) {
13137 unallocated_encoding(s);
13138 return;
13140 /* FRINTxx is only in the vector form */
13141 if (only_in_vector) {
13142 unallocated_encoding(s);
13143 return;
13147 if (!fp_access_check(s)) {
13148 return;
13151 if (need_rmode || need_fpst) {
13152 tcg_fpstatus = get_fpstatus_ptr(true);
13155 if (need_rmode) {
13156 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13157 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13160 if (is_scalar) {
13161 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13162 TCGv_i32 tcg_res = tcg_temp_new_i32();
13164 switch (fpop) {
13165 case 0x1a: /* FCVTNS */
13166 case 0x1b: /* FCVTMS */
13167 case 0x1c: /* FCVTAS */
13168 case 0x3a: /* FCVTPS */
13169 case 0x3b: /* FCVTZS */
13170 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13171 break;
13172 case 0x3d: /* FRECPE */
13173 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13174 break;
13175 case 0x3f: /* FRECPX */
13176 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13177 break;
13178 case 0x5a: /* FCVTNU */
13179 case 0x5b: /* FCVTMU */
13180 case 0x5c: /* FCVTAU */
13181 case 0x7a: /* FCVTPU */
13182 case 0x7b: /* FCVTZU */
13183 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13184 break;
13185 case 0x6f: /* FNEG */
13186 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13187 break;
13188 case 0x7d: /* FRSQRTE */
13189 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13190 break;
13191 default:
13192 g_assert_not_reached();
13195 /* limit any sign extension going on */
13196 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13197 write_fp_sreg(s, rd, tcg_res);
13199 tcg_temp_free_i32(tcg_res);
13200 tcg_temp_free_i32(tcg_op);
13201 } else {
13202 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13203 TCGv_i32 tcg_op = tcg_temp_new_i32();
13204 TCGv_i32 tcg_res = tcg_temp_new_i32();
13206 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13208 switch (fpop) {
13209 case 0x1a: /* FCVTNS */
13210 case 0x1b: /* FCVTMS */
13211 case 0x1c: /* FCVTAS */
13212 case 0x3a: /* FCVTPS */
13213 case 0x3b: /* FCVTZS */
13214 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13215 break;
13216 case 0x3d: /* FRECPE */
13217 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13218 break;
13219 case 0x5a: /* FCVTNU */
13220 case 0x5b: /* FCVTMU */
13221 case 0x5c: /* FCVTAU */
13222 case 0x7a: /* FCVTPU */
13223 case 0x7b: /* FCVTZU */
13224 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13225 break;
13226 case 0x18: /* FRINTN */
13227 case 0x19: /* FRINTM */
13228 case 0x38: /* FRINTP */
13229 case 0x39: /* FRINTZ */
13230 case 0x58: /* FRINTA */
13231 case 0x79: /* FRINTI */
13232 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13233 break;
13234 case 0x59: /* FRINTX */
13235 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13236 break;
13237 case 0x2f: /* FABS */
13238 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13239 break;
13240 case 0x6f: /* FNEG */
13241 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13242 break;
13243 case 0x7d: /* FRSQRTE */
13244 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13245 break;
13246 case 0x7f: /* FSQRT */
13247 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13248 break;
13249 default:
13250 g_assert_not_reached();
13253 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13255 tcg_temp_free_i32(tcg_res);
13256 tcg_temp_free_i32(tcg_op);
13259 clear_vec_high(s, is_q, rd);
13262 if (tcg_rmode) {
13263 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13264 tcg_temp_free_i32(tcg_rmode);
13267 if (tcg_fpstatus) {
13268 tcg_temp_free_ptr(tcg_fpstatus);
13272 /* AdvSIMD scalar x indexed element
13273 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13274 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13275 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13276 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13277 * AdvSIMD vector x indexed element
13278 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13279 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13280 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13281 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13283 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13285 /* This encoding has two kinds of instruction:
13286 * normal, where we perform elt x idxelt => elt for each
13287 * element in the vector
13288 * long, where we perform elt x idxelt and generate a result of
13289 * double the width of the input element
13290 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13292 bool is_scalar = extract32(insn, 28, 1);
13293 bool is_q = extract32(insn, 30, 1);
13294 bool u = extract32(insn, 29, 1);
13295 int size = extract32(insn, 22, 2);
13296 int l = extract32(insn, 21, 1);
13297 int m = extract32(insn, 20, 1);
13298 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13299 int rm = extract32(insn, 16, 4);
13300 int opcode = extract32(insn, 12, 4);
13301 int h = extract32(insn, 11, 1);
13302 int rn = extract32(insn, 5, 5);
13303 int rd = extract32(insn, 0, 5);
13304 bool is_long = false;
13305 int is_fp = 0;
13306 bool is_fp16 = false;
13307 int index;
13308 TCGv_ptr fpst;
13310 switch (16 * u + opcode) {
13311 case 0x08: /* MUL */
13312 case 0x10: /* MLA */
13313 case 0x14: /* MLS */
13314 if (is_scalar) {
13315 unallocated_encoding(s);
13316 return;
13318 break;
13319 case 0x02: /* SMLAL, SMLAL2 */
13320 case 0x12: /* UMLAL, UMLAL2 */
13321 case 0x06: /* SMLSL, SMLSL2 */
13322 case 0x16: /* UMLSL, UMLSL2 */
13323 case 0x0a: /* SMULL, SMULL2 */
13324 case 0x1a: /* UMULL, UMULL2 */
13325 if (is_scalar) {
13326 unallocated_encoding(s);
13327 return;
13329 is_long = true;
13330 break;
13331 case 0x03: /* SQDMLAL, SQDMLAL2 */
13332 case 0x07: /* SQDMLSL, SQDMLSL2 */
13333 case 0x0b: /* SQDMULL, SQDMULL2 */
13334 is_long = true;
13335 break;
13336 case 0x0c: /* SQDMULH */
13337 case 0x0d: /* SQRDMULH */
13338 break;
13339 case 0x01: /* FMLA */
13340 case 0x05: /* FMLS */
13341 case 0x09: /* FMUL */
13342 case 0x19: /* FMULX */
13343 is_fp = 1;
13344 break;
13345 case 0x1d: /* SQRDMLAH */
13346 case 0x1f: /* SQRDMLSH */
13347 if (!dc_isar_feature(aa64_rdm, s)) {
13348 unallocated_encoding(s);
13349 return;
13351 break;
13352 case 0x0e: /* SDOT */
13353 case 0x1e: /* UDOT */
13354 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13355 unallocated_encoding(s);
13356 return;
13358 break;
13359 case 0x11: /* FCMLA #0 */
13360 case 0x13: /* FCMLA #90 */
13361 case 0x15: /* FCMLA #180 */
13362 case 0x17: /* FCMLA #270 */
13363 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13364 unallocated_encoding(s);
13365 return;
13367 is_fp = 2;
13368 break;
13369 case 0x00: /* FMLAL */
13370 case 0x04: /* FMLSL */
13371 case 0x18: /* FMLAL2 */
13372 case 0x1c: /* FMLSL2 */
13373 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13374 unallocated_encoding(s);
13375 return;
13377 size = MO_16;
13378 /* is_fp, but we pass cpu_env not fp_status. */
13379 break;
13380 default:
13381 unallocated_encoding(s);
13382 return;
13385 switch (is_fp) {
13386 case 1: /* normal fp */
13387 /* convert insn encoded size to MemOp size */
13388 switch (size) {
13389 case 0: /* half-precision */
13390 size = MO_16;
13391 is_fp16 = true;
13392 break;
13393 case MO_32: /* single precision */
13394 case MO_64: /* double precision */
13395 break;
13396 default:
13397 unallocated_encoding(s);
13398 return;
13400 break;
13402 case 2: /* complex fp */
13403 /* Each indexable element is a complex pair. */
13404 size += 1;
13405 switch (size) {
13406 case MO_32:
13407 if (h && !is_q) {
13408 unallocated_encoding(s);
13409 return;
13411 is_fp16 = true;
13412 break;
13413 case MO_64:
13414 break;
13415 default:
13416 unallocated_encoding(s);
13417 return;
13419 break;
13421 default: /* integer */
13422 switch (size) {
13423 case MO_8:
13424 case MO_64:
13425 unallocated_encoding(s);
13426 return;
13428 break;
13430 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13431 unallocated_encoding(s);
13432 return;
13435 /* Given MemOp size, adjust register and indexing. */
13436 switch (size) {
13437 case MO_16:
13438 index = h << 2 | l << 1 | m;
13439 break;
13440 case MO_32:
13441 index = h << 1 | l;
13442 rm |= m << 4;
13443 break;
13444 case MO_64:
13445 if (l || !is_q) {
13446 unallocated_encoding(s);
13447 return;
13449 index = h;
13450 rm |= m << 4;
13451 break;
13452 default:
13453 g_assert_not_reached();
13456 if (!fp_access_check(s)) {
13457 return;
13460 if (is_fp) {
13461 fpst = get_fpstatus_ptr(is_fp16);
13462 } else {
13463 fpst = NULL;
13466 switch (16 * u + opcode) {
13467 case 0x0e: /* SDOT */
13468 case 0x1e: /* UDOT */
13469 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
13470 u ? gen_helper_gvec_udot_idx_b
13471 : gen_helper_gvec_sdot_idx_b);
13472 return;
13473 case 0x11: /* FCMLA #0 */
13474 case 0x13: /* FCMLA #90 */
13475 case 0x15: /* FCMLA #180 */
13476 case 0x17: /* FCMLA #270 */
13478 int rot = extract32(insn, 13, 2);
13479 int data = (index << 2) | rot;
13480 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13481 vec_full_reg_offset(s, rn),
13482 vec_full_reg_offset(s, rm), fpst,
13483 is_q ? 16 : 8, vec_full_reg_size(s), data,
13484 size == MO_64
13485 ? gen_helper_gvec_fcmlas_idx
13486 : gen_helper_gvec_fcmlah_idx);
13487 tcg_temp_free_ptr(fpst);
13489 return;
13491 case 0x00: /* FMLAL */
13492 case 0x04: /* FMLSL */
13493 case 0x18: /* FMLAL2 */
13494 case 0x1c: /* FMLSL2 */
13496 int is_s = extract32(opcode, 2, 1);
13497 int is_2 = u;
13498 int data = (index << 2) | (is_2 << 1) | is_s;
13499 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13500 vec_full_reg_offset(s, rn),
13501 vec_full_reg_offset(s, rm), cpu_env,
13502 is_q ? 16 : 8, vec_full_reg_size(s),
13503 data, gen_helper_gvec_fmlal_idx_a64);
13505 return;
13508 if (size == 3) {
13509 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13510 int pass;
13512 assert(is_fp && is_q && !is_long);
13514 read_vec_element(s, tcg_idx, rm, index, MO_64);
13516 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13517 TCGv_i64 tcg_op = tcg_temp_new_i64();
13518 TCGv_i64 tcg_res = tcg_temp_new_i64();
13520 read_vec_element(s, tcg_op, rn, pass, MO_64);
13522 switch (16 * u + opcode) {
13523 case 0x05: /* FMLS */
13524 /* As usual for ARM, separate negation for fused multiply-add */
13525 gen_helper_vfp_negd(tcg_op, tcg_op);
13526 /* fall through */
13527 case 0x01: /* FMLA */
13528 read_vec_element(s, tcg_res, rd, pass, MO_64);
13529 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13530 break;
13531 case 0x09: /* FMUL */
13532 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13533 break;
13534 case 0x19: /* FMULX */
13535 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13536 break;
13537 default:
13538 g_assert_not_reached();
13541 write_vec_element(s, tcg_res, rd, pass, MO_64);
13542 tcg_temp_free_i64(tcg_op);
13543 tcg_temp_free_i64(tcg_res);
13546 tcg_temp_free_i64(tcg_idx);
13547 clear_vec_high(s, !is_scalar, rd);
13548 } else if (!is_long) {
13549 /* 32 bit floating point, or 16 or 32 bit integer.
13550 * For the 16 bit scalar case we use the usual Neon helpers and
13551 * rely on the fact that 0 op 0 == 0 with no side effects.
13553 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13554 int pass, maxpasses;
13556 if (is_scalar) {
13557 maxpasses = 1;
13558 } else {
13559 maxpasses = is_q ? 4 : 2;
13562 read_vec_element_i32(s, tcg_idx, rm, index, size);
13564 if (size == 1 && !is_scalar) {
13565 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13566 * the index into both halves of the 32 bit tcg_idx and then use
13567 * the usual Neon helpers.
13569 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13572 for (pass = 0; pass < maxpasses; pass++) {
13573 TCGv_i32 tcg_op = tcg_temp_new_i32();
13574 TCGv_i32 tcg_res = tcg_temp_new_i32();
13576 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13578 switch (16 * u + opcode) {
13579 case 0x08: /* MUL */
13580 case 0x10: /* MLA */
13581 case 0x14: /* MLS */
13583 static NeonGenTwoOpFn * const fns[2][2] = {
13584 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13585 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13587 NeonGenTwoOpFn *genfn;
13588 bool is_sub = opcode == 0x4;
13590 if (size == 1) {
13591 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13592 } else {
13593 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13595 if (opcode == 0x8) {
13596 break;
13598 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13599 genfn = fns[size - 1][is_sub];
13600 genfn(tcg_res, tcg_op, tcg_res);
13601 break;
13603 case 0x05: /* FMLS */
13604 case 0x01: /* FMLA */
13605 read_vec_element_i32(s, tcg_res, rd, pass,
13606 is_scalar ? size : MO_32);
13607 switch (size) {
13608 case 1:
13609 if (opcode == 0x5) {
13610 /* As usual for ARM, separate negation for fused
13611 * multiply-add */
13612 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13614 if (is_scalar) {
13615 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13616 tcg_res, fpst);
13617 } else {
13618 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13619 tcg_res, fpst);
13621 break;
13622 case 2:
13623 if (opcode == 0x5) {
13624 /* As usual for ARM, separate negation for
13625 * fused multiply-add */
13626 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13628 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13629 tcg_res, fpst);
13630 break;
13631 default:
13632 g_assert_not_reached();
13634 break;
13635 case 0x09: /* FMUL */
13636 switch (size) {
13637 case 1:
13638 if (is_scalar) {
13639 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13640 tcg_idx, fpst);
13641 } else {
13642 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13643 tcg_idx, fpst);
13645 break;
13646 case 2:
13647 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13648 break;
13649 default:
13650 g_assert_not_reached();
13652 break;
13653 case 0x19: /* FMULX */
13654 switch (size) {
13655 case 1:
13656 if (is_scalar) {
13657 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13658 tcg_idx, fpst);
13659 } else {
13660 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13661 tcg_idx, fpst);
13663 break;
13664 case 2:
13665 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13666 break;
13667 default:
13668 g_assert_not_reached();
13670 break;
13671 case 0x0c: /* SQDMULH */
13672 if (size == 1) {
13673 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13674 tcg_op, tcg_idx);
13675 } else {
13676 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13677 tcg_op, tcg_idx);
13679 break;
13680 case 0x0d: /* SQRDMULH */
13681 if (size == 1) {
13682 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13683 tcg_op, tcg_idx);
13684 } else {
13685 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13686 tcg_op, tcg_idx);
13688 break;
13689 case 0x1d: /* SQRDMLAH */
13690 read_vec_element_i32(s, tcg_res, rd, pass,
13691 is_scalar ? size : MO_32);
13692 if (size == 1) {
13693 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13694 tcg_op, tcg_idx, tcg_res);
13695 } else {
13696 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13697 tcg_op, tcg_idx, tcg_res);
13699 break;
13700 case 0x1f: /* SQRDMLSH */
13701 read_vec_element_i32(s, tcg_res, rd, pass,
13702 is_scalar ? size : MO_32);
13703 if (size == 1) {
13704 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13705 tcg_op, tcg_idx, tcg_res);
13706 } else {
13707 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13708 tcg_op, tcg_idx, tcg_res);
13710 break;
13711 default:
13712 g_assert_not_reached();
13715 if (is_scalar) {
13716 write_fp_sreg(s, rd, tcg_res);
13717 } else {
13718 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13721 tcg_temp_free_i32(tcg_op);
13722 tcg_temp_free_i32(tcg_res);
13725 tcg_temp_free_i32(tcg_idx);
13726 clear_vec_high(s, is_q, rd);
13727 } else {
13728 /* long ops: 16x16->32 or 32x32->64 */
13729 TCGv_i64 tcg_res[2];
13730 int pass;
13731 bool satop = extract32(opcode, 0, 1);
13732 MemOp memop = MO_32;
13734 if (satop || !u) {
13735 memop |= MO_SIGN;
13738 if (size == 2) {
13739 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13741 read_vec_element(s, tcg_idx, rm, index, memop);
13743 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13744 TCGv_i64 tcg_op = tcg_temp_new_i64();
13745 TCGv_i64 tcg_passres;
13746 int passelt;
13748 if (is_scalar) {
13749 passelt = 0;
13750 } else {
13751 passelt = pass + (is_q * 2);
13754 read_vec_element(s, tcg_op, rn, passelt, memop);
13756 tcg_res[pass] = tcg_temp_new_i64();
13758 if (opcode == 0xa || opcode == 0xb) {
13759 /* Non-accumulating ops */
13760 tcg_passres = tcg_res[pass];
13761 } else {
13762 tcg_passres = tcg_temp_new_i64();
13765 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13766 tcg_temp_free_i64(tcg_op);
13768 if (satop) {
13769 /* saturating, doubling */
13770 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13771 tcg_passres, tcg_passres);
13774 if (opcode == 0xa || opcode == 0xb) {
13775 continue;
13778 /* Accumulating op: handle accumulate step */
13779 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13781 switch (opcode) {
13782 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13783 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13784 break;
13785 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13786 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13787 break;
13788 case 0x7: /* SQDMLSL, SQDMLSL2 */
13789 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13790 /* fall through */
13791 case 0x3: /* SQDMLAL, SQDMLAL2 */
13792 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13793 tcg_res[pass],
13794 tcg_passres);
13795 break;
13796 default:
13797 g_assert_not_reached();
13799 tcg_temp_free_i64(tcg_passres);
13801 tcg_temp_free_i64(tcg_idx);
13803 clear_vec_high(s, !is_scalar, rd);
13804 } else {
13805 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13807 assert(size == 1);
13808 read_vec_element_i32(s, tcg_idx, rm, index, size);
13810 if (!is_scalar) {
13811 /* The simplest way to handle the 16x16 indexed ops is to
13812 * duplicate the index into both halves of the 32 bit tcg_idx
13813 * and then use the usual Neon helpers.
13815 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13818 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13819 TCGv_i32 tcg_op = tcg_temp_new_i32();
13820 TCGv_i64 tcg_passres;
13822 if (is_scalar) {
13823 read_vec_element_i32(s, tcg_op, rn, pass, size);
13824 } else {
13825 read_vec_element_i32(s, tcg_op, rn,
13826 pass + (is_q * 2), MO_32);
13829 tcg_res[pass] = tcg_temp_new_i64();
13831 if (opcode == 0xa || opcode == 0xb) {
13832 /* Non-accumulating ops */
13833 tcg_passres = tcg_res[pass];
13834 } else {
13835 tcg_passres = tcg_temp_new_i64();
13838 if (memop & MO_SIGN) {
13839 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13840 } else {
13841 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13843 if (satop) {
13844 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13845 tcg_passres, tcg_passres);
13847 tcg_temp_free_i32(tcg_op);
13849 if (opcode == 0xa || opcode == 0xb) {
13850 continue;
13853 /* Accumulating op: handle accumulate step */
13854 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13856 switch (opcode) {
13857 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13858 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13859 tcg_passres);
13860 break;
13861 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13862 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13863 tcg_passres);
13864 break;
13865 case 0x7: /* SQDMLSL, SQDMLSL2 */
13866 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13867 /* fall through */
13868 case 0x3: /* SQDMLAL, SQDMLAL2 */
13869 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13870 tcg_res[pass],
13871 tcg_passres);
13872 break;
13873 default:
13874 g_assert_not_reached();
13876 tcg_temp_free_i64(tcg_passres);
13878 tcg_temp_free_i32(tcg_idx);
13880 if (is_scalar) {
13881 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13885 if (is_scalar) {
13886 tcg_res[1] = tcg_const_i64(0);
13889 for (pass = 0; pass < 2; pass++) {
13890 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13891 tcg_temp_free_i64(tcg_res[pass]);
13895 if (fpst) {
13896 tcg_temp_free_ptr(fpst);
13900 /* Crypto AES
13901 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13902 * +-----------------+------+-----------+--------+-----+------+------+
13903 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13904 * +-----------------+------+-----------+--------+-----+------+------+
13906 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13908 int size = extract32(insn, 22, 2);
13909 int opcode = extract32(insn, 12, 5);
13910 int rn = extract32(insn, 5, 5);
13911 int rd = extract32(insn, 0, 5);
13912 int decrypt;
13913 gen_helper_gvec_2 *genfn2 = NULL;
13914 gen_helper_gvec_3 *genfn3 = NULL;
13916 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13917 unallocated_encoding(s);
13918 return;
13921 switch (opcode) {
13922 case 0x4: /* AESE */
13923 decrypt = 0;
13924 genfn3 = gen_helper_crypto_aese;
13925 break;
13926 case 0x6: /* AESMC */
13927 decrypt = 0;
13928 genfn2 = gen_helper_crypto_aesmc;
13929 break;
13930 case 0x5: /* AESD */
13931 decrypt = 1;
13932 genfn3 = gen_helper_crypto_aese;
13933 break;
13934 case 0x7: /* AESIMC */
13935 decrypt = 1;
13936 genfn2 = gen_helper_crypto_aesmc;
13937 break;
13938 default:
13939 unallocated_encoding(s);
13940 return;
13943 if (!fp_access_check(s)) {
13944 return;
13946 if (genfn2) {
13947 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13948 } else {
13949 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13953 /* Crypto three-reg SHA
13954 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13955 * +-----------------+------+---+------+---+--------+-----+------+------+
13956 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13957 * +-----------------+------+---+------+---+--------+-----+------+------+
13959 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13961 int size = extract32(insn, 22, 2);
13962 int opcode = extract32(insn, 12, 3);
13963 int rm = extract32(insn, 16, 5);
13964 int rn = extract32(insn, 5, 5);
13965 int rd = extract32(insn, 0, 5);
13966 gen_helper_gvec_3 *genfn;
13967 bool feature;
13969 if (size != 0) {
13970 unallocated_encoding(s);
13971 return;
13974 switch (opcode) {
13975 case 0: /* SHA1C */
13976 genfn = gen_helper_crypto_sha1c;
13977 feature = dc_isar_feature(aa64_sha1, s);
13978 break;
13979 case 1: /* SHA1P */
13980 genfn = gen_helper_crypto_sha1p;
13981 feature = dc_isar_feature(aa64_sha1, s);
13982 break;
13983 case 2: /* SHA1M */
13984 genfn = gen_helper_crypto_sha1m;
13985 feature = dc_isar_feature(aa64_sha1, s);
13986 break;
13987 case 3: /* SHA1SU0 */
13988 genfn = gen_helper_crypto_sha1su0;
13989 feature = dc_isar_feature(aa64_sha1, s);
13990 break;
13991 case 4: /* SHA256H */
13992 genfn = gen_helper_crypto_sha256h;
13993 feature = dc_isar_feature(aa64_sha256, s);
13994 break;
13995 case 5: /* SHA256H2 */
13996 genfn = gen_helper_crypto_sha256h2;
13997 feature = dc_isar_feature(aa64_sha256, s);
13998 break;
13999 case 6: /* SHA256SU1 */
14000 genfn = gen_helper_crypto_sha256su1;
14001 feature = dc_isar_feature(aa64_sha256, s);
14002 break;
14003 default:
14004 unallocated_encoding(s);
14005 return;
14008 if (!feature) {
14009 unallocated_encoding(s);
14010 return;
14013 if (!fp_access_check(s)) {
14014 return;
14016 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
14019 /* Crypto two-reg SHA
14020 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14021 * +-----------------+------+-----------+--------+-----+------+------+
14022 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14023 * +-----------------+------+-----------+--------+-----+------+------+
14025 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
14027 int size = extract32(insn, 22, 2);
14028 int opcode = extract32(insn, 12, 5);
14029 int rn = extract32(insn, 5, 5);
14030 int rd = extract32(insn, 0, 5);
14031 gen_helper_gvec_2 *genfn;
14032 bool feature;
14034 if (size != 0) {
14035 unallocated_encoding(s);
14036 return;
14039 switch (opcode) {
14040 case 0: /* SHA1H */
14041 feature = dc_isar_feature(aa64_sha1, s);
14042 genfn = gen_helper_crypto_sha1h;
14043 break;
14044 case 1: /* SHA1SU1 */
14045 feature = dc_isar_feature(aa64_sha1, s);
14046 genfn = gen_helper_crypto_sha1su1;
14047 break;
14048 case 2: /* SHA256SU0 */
14049 feature = dc_isar_feature(aa64_sha256, s);
14050 genfn = gen_helper_crypto_sha256su0;
14051 break;
14052 default:
14053 unallocated_encoding(s);
14054 return;
14057 if (!feature) {
14058 unallocated_encoding(s);
14059 return;
14062 if (!fp_access_check(s)) {
14063 return;
14065 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14068 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14070 tcg_gen_rotli_i64(d, m, 1);
14071 tcg_gen_xor_i64(d, d, n);
14074 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14076 tcg_gen_rotli_vec(vece, d, m, 1);
14077 tcg_gen_xor_vec(vece, d, d, n);
14080 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14081 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14083 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14084 static const GVecGen3 op = {
14085 .fni8 = gen_rax1_i64,
14086 .fniv = gen_rax1_vec,
14087 .opt_opc = vecop_list,
14088 .fno = gen_helper_crypto_rax1,
14089 .vece = MO_64,
14091 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14094 /* Crypto three-reg SHA512
14095 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14096 * +-----------------------+------+---+---+-----+--------+------+------+
14097 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
14098 * +-----------------------+------+---+---+-----+--------+------+------+
14100 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14102 int opcode = extract32(insn, 10, 2);
14103 int o = extract32(insn, 14, 1);
14104 int rm = extract32(insn, 16, 5);
14105 int rn = extract32(insn, 5, 5);
14106 int rd = extract32(insn, 0, 5);
14107 bool feature;
14108 gen_helper_gvec_3 *oolfn = NULL;
14109 GVecGen3Fn *gvecfn = NULL;
14111 if (o == 0) {
14112 switch (opcode) {
14113 case 0: /* SHA512H */
14114 feature = dc_isar_feature(aa64_sha512, s);
14115 oolfn = gen_helper_crypto_sha512h;
14116 break;
14117 case 1: /* SHA512H2 */
14118 feature = dc_isar_feature(aa64_sha512, s);
14119 oolfn = gen_helper_crypto_sha512h2;
14120 break;
14121 case 2: /* SHA512SU1 */
14122 feature = dc_isar_feature(aa64_sha512, s);
14123 oolfn = gen_helper_crypto_sha512su1;
14124 break;
14125 case 3: /* RAX1 */
14126 feature = dc_isar_feature(aa64_sha3, s);
14127 gvecfn = gen_gvec_rax1;
14128 break;
14129 default:
14130 g_assert_not_reached();
14132 } else {
14133 switch (opcode) {
14134 case 0: /* SM3PARTW1 */
14135 feature = dc_isar_feature(aa64_sm3, s);
14136 oolfn = gen_helper_crypto_sm3partw1;
14137 break;
14138 case 1: /* SM3PARTW2 */
14139 feature = dc_isar_feature(aa64_sm3, s);
14140 oolfn = gen_helper_crypto_sm3partw2;
14141 break;
14142 case 2: /* SM4EKEY */
14143 feature = dc_isar_feature(aa64_sm4, s);
14144 oolfn = gen_helper_crypto_sm4ekey;
14145 break;
14146 default:
14147 unallocated_encoding(s);
14148 return;
14152 if (!feature) {
14153 unallocated_encoding(s);
14154 return;
14157 if (!fp_access_check(s)) {
14158 return;
14161 if (oolfn) {
14162 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14163 } else {
14164 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14168 /* Crypto two-reg SHA512
14169 * 31 12 11 10 9 5 4 0
14170 * +-----------------------------------------+--------+------+------+
14171 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
14172 * +-----------------------------------------+--------+------+------+
14174 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14176 int opcode = extract32(insn, 10, 2);
14177 int rn = extract32(insn, 5, 5);
14178 int rd = extract32(insn, 0, 5);
14179 bool feature;
14181 switch (opcode) {
14182 case 0: /* SHA512SU0 */
14183 feature = dc_isar_feature(aa64_sha512, s);
14184 break;
14185 case 1: /* SM4E */
14186 feature = dc_isar_feature(aa64_sm4, s);
14187 break;
14188 default:
14189 unallocated_encoding(s);
14190 return;
14193 if (!feature) {
14194 unallocated_encoding(s);
14195 return;
14198 if (!fp_access_check(s)) {
14199 return;
14202 switch (opcode) {
14203 case 0: /* SHA512SU0 */
14204 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14205 break;
14206 case 1: /* SM4E */
14207 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14208 break;
14209 default:
14210 g_assert_not_reached();
14214 /* Crypto four-register
14215 * 31 23 22 21 20 16 15 14 10 9 5 4 0
14216 * +-------------------+-----+------+---+------+------+------+
14217 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
14218 * +-------------------+-----+------+---+------+------+------+
14220 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14222 int op0 = extract32(insn, 21, 2);
14223 int rm = extract32(insn, 16, 5);
14224 int ra = extract32(insn, 10, 5);
14225 int rn = extract32(insn, 5, 5);
14226 int rd = extract32(insn, 0, 5);
14227 bool feature;
14229 switch (op0) {
14230 case 0: /* EOR3 */
14231 case 1: /* BCAX */
14232 feature = dc_isar_feature(aa64_sha3, s);
14233 break;
14234 case 2: /* SM3SS1 */
14235 feature = dc_isar_feature(aa64_sm3, s);
14236 break;
14237 default:
14238 unallocated_encoding(s);
14239 return;
14242 if (!feature) {
14243 unallocated_encoding(s);
14244 return;
14247 if (!fp_access_check(s)) {
14248 return;
14251 if (op0 < 2) {
14252 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14253 int pass;
14255 tcg_op1 = tcg_temp_new_i64();
14256 tcg_op2 = tcg_temp_new_i64();
14257 tcg_op3 = tcg_temp_new_i64();
14258 tcg_res[0] = tcg_temp_new_i64();
14259 tcg_res[1] = tcg_temp_new_i64();
14261 for (pass = 0; pass < 2; pass++) {
14262 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14263 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14264 read_vec_element(s, tcg_op3, ra, pass, MO_64);
14266 if (op0 == 0) {
14267 /* EOR3 */
14268 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14269 } else {
14270 /* BCAX */
14271 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14273 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14275 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14276 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14278 tcg_temp_free_i64(tcg_op1);
14279 tcg_temp_free_i64(tcg_op2);
14280 tcg_temp_free_i64(tcg_op3);
14281 tcg_temp_free_i64(tcg_res[0]);
14282 tcg_temp_free_i64(tcg_res[1]);
14283 } else {
14284 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14286 tcg_op1 = tcg_temp_new_i32();
14287 tcg_op2 = tcg_temp_new_i32();
14288 tcg_op3 = tcg_temp_new_i32();
14289 tcg_res = tcg_temp_new_i32();
14290 tcg_zero = tcg_const_i32(0);
14292 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14293 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14294 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14296 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14297 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14298 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14299 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14301 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14302 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14303 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14304 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14306 tcg_temp_free_i32(tcg_op1);
14307 tcg_temp_free_i32(tcg_op2);
14308 tcg_temp_free_i32(tcg_op3);
14309 tcg_temp_free_i32(tcg_res);
14310 tcg_temp_free_i32(tcg_zero);
14314 /* Crypto XAR
14315 * 31 21 20 16 15 10 9 5 4 0
14316 * +-----------------------+------+--------+------+------+
14317 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
14318 * +-----------------------+------+--------+------+------+
14320 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14322 int rm = extract32(insn, 16, 5);
14323 int imm6 = extract32(insn, 10, 6);
14324 int rn = extract32(insn, 5, 5);
14325 int rd = extract32(insn, 0, 5);
14326 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
14327 int pass;
14329 if (!dc_isar_feature(aa64_sha3, s)) {
14330 unallocated_encoding(s);
14331 return;
14334 if (!fp_access_check(s)) {
14335 return;
14338 tcg_op1 = tcg_temp_new_i64();
14339 tcg_op2 = tcg_temp_new_i64();
14340 tcg_res[0] = tcg_temp_new_i64();
14341 tcg_res[1] = tcg_temp_new_i64();
14343 for (pass = 0; pass < 2; pass++) {
14344 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14345 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14347 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
14348 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
14350 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14351 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14353 tcg_temp_free_i64(tcg_op1);
14354 tcg_temp_free_i64(tcg_op2);
14355 tcg_temp_free_i64(tcg_res[0]);
14356 tcg_temp_free_i64(tcg_res[1]);
14359 /* Crypto three-reg imm2
14360 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14361 * +-----------------------+------+-----+------+--------+------+------+
14362 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14363 * +-----------------------+------+-----+------+--------+------+------+
14365 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14367 static gen_helper_gvec_3 * const fns[4] = {
14368 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14369 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14371 int opcode = extract32(insn, 10, 2);
14372 int imm2 = extract32(insn, 12, 2);
14373 int rm = extract32(insn, 16, 5);
14374 int rn = extract32(insn, 5, 5);
14375 int rd = extract32(insn, 0, 5);
14377 if (!dc_isar_feature(aa64_sm3, s)) {
14378 unallocated_encoding(s);
14379 return;
14382 if (!fp_access_check(s)) {
14383 return;
14386 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14389 /* C3.6 Data processing - SIMD, inc Crypto
14391 * As the decode gets a little complex we are using a table based
14392 * approach for this part of the decode.
14394 static const AArch64DecodeTable data_proc_simd[] = {
14395 /* pattern , mask , fn */
14396 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14397 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14398 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14399 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14400 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14401 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14402 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14403 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14404 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14405 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14406 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14407 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14408 { 0x2e000000, 0xbf208400, disas_simd_ext },
14409 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14410 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14411 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14412 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14413 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14414 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14415 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14416 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14417 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14418 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14419 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14420 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14421 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14422 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14423 { 0xce800000, 0xffe00000, disas_crypto_xar },
14424 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14425 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14426 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14427 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14428 { 0x00000000, 0x00000000, NULL }
14431 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14433 /* Note that this is called with all non-FP cases from
14434 * table C3-6 so it must UNDEF for entries not specifically
14435 * allocated to instructions in that table.
14437 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14438 if (fn) {
14439 fn(s, insn);
14440 } else {
14441 unallocated_encoding(s);
14445 /* C3.6 Data processing - SIMD and floating point */
14446 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14448 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14449 disas_data_proc_fp(s, insn);
14450 } else {
14451 /* SIMD, including crypto */
14452 disas_data_proc_simd(s, insn);
14457 * is_guarded_page:
14458 * @env: The cpu environment
14459 * @s: The DisasContext
14461 * Return true if the page is guarded.
14463 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14465 #ifdef CONFIG_USER_ONLY
14466 return false; /* FIXME */
14467 #else
14468 uint64_t addr = s->base.pc_first;
14469 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14470 unsigned int index = tlb_index(env, mmu_idx, addr);
14471 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14474 * We test this immediately after reading an insn, which means
14475 * that any normal page must be in the TLB. The only exception
14476 * would be for executing from flash or device memory, which
14477 * does not retain the TLB entry.
14479 * FIXME: Assume false for those, for now. We could use
14480 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14481 * table entry even for that case.
14483 return (tlb_hit(entry->addr_code, addr) &&
14484 arm_tlb_bti_gp(&env_tlb(env)->d[mmu_idx].iotlb[index].attrs));
14485 #endif
14489 * btype_destination_ok:
14490 * @insn: The instruction at the branch destination
14491 * @bt: SCTLR_ELx.BT
14492 * @btype: PSTATE.BTYPE, and is non-zero
14494 * On a guarded page, there are a limited number of insns
14495 * that may be present at the branch target:
14496 * - branch target identifiers,
14497 * - paciasp, pacibsp,
14498 * - BRK insn
14499 * - HLT insn
14500 * Anything else causes a Branch Target Exception.
14502 * Return true if the branch is compatible, false to raise BTITRAP.
14504 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14506 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14507 /* HINT space */
14508 switch (extract32(insn, 5, 7)) {
14509 case 0b011001: /* PACIASP */
14510 case 0b011011: /* PACIBSP */
14512 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14513 * with btype == 3. Otherwise all btype are ok.
14515 return !bt || btype != 3;
14516 case 0b100000: /* BTI */
14517 /* Not compatible with any btype. */
14518 return false;
14519 case 0b100010: /* BTI c */
14520 /* Not compatible with btype == 3 */
14521 return btype != 3;
14522 case 0b100100: /* BTI j */
14523 /* Not compatible with btype == 2 */
14524 return btype != 2;
14525 case 0b100110: /* BTI jc */
14526 /* Compatible with any btype. */
14527 return true;
14529 } else {
14530 switch (insn & 0xffe0001fu) {
14531 case 0xd4200000u: /* BRK */
14532 case 0xd4400000u: /* HLT */
14533 /* Give priority to the breakpoint exception. */
14534 return true;
14537 return false;
14540 /* C3.1 A64 instruction index by encoding */
14541 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
14543 uint32_t insn;
14545 s->pc_curr = s->base.pc_next;
14546 insn = arm_ldl_code(env, s->base.pc_next, s->sctlr_b);
14547 s->insn = insn;
14548 s->base.pc_next += 4;
14550 s->fp_access_checked = false;
14552 if (dc_isar_feature(aa64_bti, s)) {
14553 if (s->base.num_insns == 1) {
14555 * At the first insn of the TB, compute s->guarded_page.
14556 * We delayed computing this until successfully reading
14557 * the first insn of the TB, above. This (mostly) ensures
14558 * that the softmmu tlb entry has been populated, and the
14559 * page table GP bit is available.
14561 * Note that we need to compute this even if btype == 0,
14562 * because this value is used for BR instructions later
14563 * where ENV is not available.
14565 s->guarded_page = is_guarded_page(env, s);
14567 /* First insn can have btype set to non-zero. */
14568 tcg_debug_assert(s->btype >= 0);
14571 * Note that the Branch Target Exception has fairly high
14572 * priority -- below debugging exceptions but above most
14573 * everything else. This allows us to handle this now
14574 * instead of waiting until the insn is otherwise decoded.
14576 if (s->btype != 0
14577 && s->guarded_page
14578 && !btype_destination_ok(insn, s->bt, s->btype)) {
14579 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14580 syn_btitrap(s->btype),
14581 default_exception_el(s));
14582 return;
14584 } else {
14585 /* Not the first insn: btype must be 0. */
14586 tcg_debug_assert(s->btype == 0);
14590 switch (extract32(insn, 25, 4)) {
14591 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14592 unallocated_encoding(s);
14593 break;
14594 case 0x2:
14595 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14596 unallocated_encoding(s);
14598 break;
14599 case 0x8: case 0x9: /* Data processing - immediate */
14600 disas_data_proc_imm(s, insn);
14601 break;
14602 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14603 disas_b_exc_sys(s, insn);
14604 break;
14605 case 0x4:
14606 case 0x6:
14607 case 0xc:
14608 case 0xe: /* Loads and stores */
14609 disas_ldst(s, insn);
14610 break;
14611 case 0x5:
14612 case 0xd: /* Data processing - register */
14613 disas_data_proc_reg(s, insn);
14614 break;
14615 case 0x7:
14616 case 0xf: /* Data processing - SIMD and floating point */
14617 disas_data_proc_simd_fp(s, insn);
14618 break;
14619 default:
14620 assert(FALSE); /* all 15 cases should be handled above */
14621 break;
14624 /* if we allocated any temporaries, free them here */
14625 free_tmp_a64(s);
14628 * After execution of most insns, btype is reset to 0.
14629 * Note that we set btype == -1 when the insn sets btype.
14631 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14632 reset_btype(s);
14636 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14637 CPUState *cpu)
14639 DisasContext *dc = container_of(dcbase, DisasContext, base);
14640 CPUARMState *env = cpu->env_ptr;
14641 ARMCPU *arm_cpu = env_archcpu(env);
14642 uint32_t tb_flags = dc->base.tb->flags;
14643 int bound, core_mmu_idx;
14645 dc->isar = &arm_cpu->isar;
14646 dc->condjmp = 0;
14648 dc->aarch64 = 1;
14649 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14650 * there is no secure EL1, so we route exceptions to EL3.
14652 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14653 !arm_el_is_aa64(env, 3);
14654 dc->thumb = 0;
14655 dc->sctlr_b = 0;
14656 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14657 dc->condexec_mask = 0;
14658 dc->condexec_cond = 0;
14659 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14660 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14661 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14662 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14663 dc->tcma = FIELD_EX32(tb_flags, TBFLAG_A64, TCMA);
14664 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14665 #if !defined(CONFIG_USER_ONLY)
14666 dc->user = (dc->current_el == 0);
14667 #endif
14668 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14669 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14670 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14671 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14672 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14673 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14674 dc->unpriv = FIELD_EX32(tb_flags, TBFLAG_A64, UNPRIV);
14675 dc->ata = FIELD_EX32(tb_flags, TBFLAG_A64, ATA);
14676 dc->mte_active[0] = FIELD_EX32(tb_flags, TBFLAG_A64, MTE_ACTIVE);
14677 dc->mte_active[1] = FIELD_EX32(tb_flags, TBFLAG_A64, MTE0_ACTIVE);
14678 dc->vec_len = 0;
14679 dc->vec_stride = 0;
14680 dc->cp_regs = arm_cpu->cp_regs;
14681 dc->features = env->features;
14682 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14684 #ifdef CONFIG_USER_ONLY
14685 /* In sve_probe_page, we assume TBI is enabled. */
14686 tcg_debug_assert(dc->tbid & 1);
14687 #endif
14689 /* Single step state. The code-generation logic here is:
14690 * SS_ACTIVE == 0:
14691 * generate code with no special handling for single-stepping (except
14692 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14693 * this happens anyway because those changes are all system register or
14694 * PSTATE writes).
14695 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14696 * emit code for one insn
14697 * emit code to clear PSTATE.SS
14698 * emit code to generate software step exception for completed step
14699 * end TB (as usual for having generated an exception)
14700 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14701 * emit code to generate a software step exception
14702 * end the TB
14704 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14705 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14706 dc->is_ldex = false;
14707 dc->debug_target_el = FIELD_EX32(tb_flags, TBFLAG_ANY, DEBUG_TARGET_EL);
14709 /* Bound the number of insns to execute to those left on the page. */
14710 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14712 /* If architectural single step active, limit to 1. */
14713 if (dc->ss_active) {
14714 bound = 1;
14716 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14718 init_tmp_a64_array(dc);
14721 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14725 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14727 DisasContext *dc = container_of(dcbase, DisasContext, base);
14729 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14730 dc->insn_start = tcg_last_op();
14733 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14734 const CPUBreakpoint *bp)
14736 DisasContext *dc = container_of(dcbase, DisasContext, base);
14738 if (bp->flags & BP_CPU) {
14739 gen_a64_set_pc_im(dc->base.pc_next);
14740 gen_helper_check_breakpoints(cpu_env);
14741 /* End the TB early; it likely won't be executed */
14742 dc->base.is_jmp = DISAS_TOO_MANY;
14743 } else {
14744 gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG);
14745 /* The address covered by the breakpoint must be
14746 included in [tb->pc, tb->pc + tb->size) in order
14747 to for it to be properly cleared -- thus we
14748 increment the PC here so that the logic setting
14749 tb->size below does the right thing. */
14750 dc->base.pc_next += 4;
14751 dc->base.is_jmp = DISAS_NORETURN;
14754 return true;
14757 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14759 DisasContext *dc = container_of(dcbase, DisasContext, base);
14760 CPUARMState *env = cpu->env_ptr;
14762 if (dc->ss_active && !dc->pstate_ss) {
14763 /* Singlestep state is Active-pending.
14764 * If we're in this state at the start of a TB then either
14765 * a) we just took an exception to an EL which is being debugged
14766 * and this is the first insn in the exception handler
14767 * b) debug exceptions were masked and we just unmasked them
14768 * without changing EL (eg by clearing PSTATE.D)
14769 * In either case we're going to take a swstep exception in the
14770 * "did not step an insn" case, and so the syndrome ISV and EX
14771 * bits should be zero.
14773 assert(dc->base.num_insns == 1);
14774 gen_swstep_exception(dc, 0, 0);
14775 dc->base.is_jmp = DISAS_NORETURN;
14776 } else {
14777 disas_a64_insn(env, dc);
14780 translator_loop_temp_check(&dc->base);
14783 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14785 DisasContext *dc = container_of(dcbase, DisasContext, base);
14787 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14788 /* Note that this means single stepping WFI doesn't halt the CPU.
14789 * For conditional branch insns this is harmless unreachable code as
14790 * gen_goto_tb() has already handled emitting the debug exception
14791 * (and thus a tb-jump is not possible when singlestepping).
14793 switch (dc->base.is_jmp) {
14794 default:
14795 gen_a64_set_pc_im(dc->base.pc_next);
14796 /* fall through */
14797 case DISAS_EXIT:
14798 case DISAS_JUMP:
14799 if (dc->base.singlestep_enabled) {
14800 gen_exception_internal(EXCP_DEBUG);
14801 } else {
14802 gen_step_complete_exception(dc);
14804 break;
14805 case DISAS_NORETURN:
14806 break;
14808 } else {
14809 switch (dc->base.is_jmp) {
14810 case DISAS_NEXT:
14811 case DISAS_TOO_MANY:
14812 gen_goto_tb(dc, 1, dc->base.pc_next);
14813 break;
14814 default:
14815 case DISAS_UPDATE_EXIT:
14816 gen_a64_set_pc_im(dc->base.pc_next);
14817 /* fall through */
14818 case DISAS_EXIT:
14819 tcg_gen_exit_tb(NULL, 0);
14820 break;
14821 case DISAS_UPDATE_NOCHAIN:
14822 gen_a64_set_pc_im(dc->base.pc_next);
14823 /* fall through */
14824 case DISAS_JUMP:
14825 tcg_gen_lookup_and_goto_ptr();
14826 break;
14827 case DISAS_NORETURN:
14828 case DISAS_SWI:
14829 break;
14830 case DISAS_WFE:
14831 gen_a64_set_pc_im(dc->base.pc_next);
14832 gen_helper_wfe(cpu_env);
14833 break;
14834 case DISAS_YIELD:
14835 gen_a64_set_pc_im(dc->base.pc_next);
14836 gen_helper_yield(cpu_env);
14837 break;
14838 case DISAS_WFI:
14840 /* This is a special case because we don't want to just halt the CPU
14841 * if trying to debug across a WFI.
14843 TCGv_i32 tmp = tcg_const_i32(4);
14845 gen_a64_set_pc_im(dc->base.pc_next);
14846 gen_helper_wfi(cpu_env, tmp);
14847 tcg_temp_free_i32(tmp);
14848 /* The helper doesn't necessarily throw an exception, but we
14849 * must go back to the main loop to check for interrupts anyway.
14851 tcg_gen_exit_tb(NULL, 0);
14852 break;
14858 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14859 CPUState *cpu)
14861 DisasContext *dc = container_of(dcbase, DisasContext, base);
14863 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14864 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14867 const TranslatorOps aarch64_translator_ops = {
14868 .init_disas_context = aarch64_tr_init_disas_context,
14869 .tb_start = aarch64_tr_tb_start,
14870 .insn_start = aarch64_tr_insn_start,
14871 .breakpoint_check = aarch64_tr_breakpoint_check,
14872 .translate_insn = aarch64_tr_translate_insn,
14873 .tb_stop = aarch64_tr_tb_stop,
14874 .disas_log = aarch64_tr_disas_log,