Merge tag 'v3.1.0-rc0'
[qemu/ar7.git] / exec.c
blob22b61a0780a9385a0517470a6594f08757af7ed0
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90 #endif
92 #ifdef TARGET_PAGE_BITS_VARY
93 int target_page_bits;
94 bool target_page_bits_decided;
95 #endif
97 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98 /* current CPU in the current thread. It is only valid inside
99 cpu_exec() */
100 __thread CPUState *current_cpu;
101 /* 0 = Do not count executed instructions.
102 1 = Precise instruction counting.
103 2 = Adaptive rate instruction counting. */
104 int use_icount;
106 uintptr_t qemu_host_page_size;
107 intptr_t qemu_host_page_mask;
109 bool set_preferred_target_page_bits(int bits)
111 /* The target page size is the lowest common denominator for all
112 * the CPUs in the system, so we can only make it smaller, never
113 * larger. And we can't make it smaller once we've committed to
114 * a particular size.
116 #ifdef TARGET_PAGE_BITS_VARY
117 assert(bits >= TARGET_PAGE_BITS_MIN);
118 if (target_page_bits == 0 || target_page_bits > bits) {
119 if (target_page_bits_decided) {
120 return false;
122 target_page_bits = bits;
124 #endif
125 return true;
128 #if !defined(CONFIG_USER_ONLY)
130 static void finalize_target_page_bits(void)
132 #ifdef TARGET_PAGE_BITS_VARY
133 if (target_page_bits == 0) {
134 target_page_bits = TARGET_PAGE_BITS_MIN;
136 target_page_bits_decided = true;
137 #endif
140 typedef struct PhysPageEntry PhysPageEntry;
142 struct PhysPageEntry {
143 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
144 uint32_t skip : 6;
145 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
146 uint32_t ptr : 26;
149 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151 /* Size of the L2 (and L3, etc) page tables. */
152 #define ADDR_SPACE_BITS 64
154 #define P_L2_BITS 9
155 #define P_L2_SIZE (1 << P_L2_BITS)
157 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159 typedef PhysPageEntry Node[P_L2_SIZE];
161 typedef struct PhysPageMap {
162 struct rcu_head rcu;
164 unsigned sections_nb;
165 unsigned sections_nb_alloc;
166 unsigned nodes_nb;
167 unsigned nodes_nb_alloc;
168 Node *nodes;
169 MemoryRegionSection *sections;
170 } PhysPageMap;
172 struct AddressSpaceDispatch {
173 MemoryRegionSection *mru_section;
174 /* This is a multi-level map on the physical address space.
175 * The bottom level has pointers to MemoryRegionSections.
177 PhysPageEntry phys_map;
178 PhysPageMap map;
181 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
182 typedef struct subpage_t {
183 MemoryRegion iomem;
184 FlatView *fv;
185 hwaddr base;
186 uint16_t sub_section[];
187 } subpage_t;
189 #define PHYS_SECTION_UNASSIGNED 0
190 #define PHYS_SECTION_NOTDIRTY 1
191 #define PHYS_SECTION_ROM 2
192 #define PHYS_SECTION_WATCH 3
194 static void io_mem_init(void);
195 static void memory_map_init(void);
196 static void tcg_commit(MemoryListener *listener);
198 static MemoryRegion io_mem_watch;
201 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
202 * @cpu: the CPU whose AddressSpace this is
203 * @as: the AddressSpace itself
204 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
205 * @tcg_as_listener: listener for tracking changes to the AddressSpace
207 struct CPUAddressSpace {
208 CPUState *cpu;
209 AddressSpace *as;
210 struct AddressSpaceDispatch *memory_dispatch;
211 MemoryListener tcg_as_listener;
214 struct DirtyBitmapSnapshot {
215 ram_addr_t start;
216 ram_addr_t end;
217 unsigned long dirty[];
220 #endif
222 #if !defined(CONFIG_USER_ONLY)
224 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
226 static unsigned alloc_hint = 16;
227 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
228 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
230 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
231 alloc_hint = map->nodes_nb_alloc;
235 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
237 unsigned i;
238 uint32_t ret;
239 PhysPageEntry e;
240 PhysPageEntry *p;
242 ret = map->nodes_nb++;
243 p = map->nodes[ret];
244 assert(ret != PHYS_MAP_NODE_NIL);
245 assert(ret != map->nodes_nb_alloc);
247 e.skip = leaf ? 0 : 1;
248 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
249 for (i = 0; i < P_L2_SIZE; ++i) {
250 memcpy(&p[i], &e, sizeof(e));
252 return ret;
255 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
256 hwaddr *index, hwaddr *nb, uint16_t leaf,
257 int level)
259 PhysPageEntry *p;
260 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
262 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
263 lp->ptr = phys_map_node_alloc(map, level == 0);
265 p = map->nodes[lp->ptr];
266 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
268 while (*nb && lp < &p[P_L2_SIZE]) {
269 if ((*index & (step - 1)) == 0 && *nb >= step) {
270 lp->skip = 0;
271 lp->ptr = leaf;
272 *index += step;
273 *nb -= step;
274 } else {
275 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
277 ++lp;
281 static void phys_page_set(AddressSpaceDispatch *d,
282 hwaddr index, hwaddr nb,
283 uint16_t leaf)
285 /* Wildly overreserve - it doesn't matter much. */
286 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
288 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
291 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
292 * and update our entry so we can skip it and go directly to the destination.
294 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
296 unsigned valid_ptr = P_L2_SIZE;
297 int valid = 0;
298 PhysPageEntry *p;
299 int i;
301 if (lp->ptr == PHYS_MAP_NODE_NIL) {
302 return;
305 p = nodes[lp->ptr];
306 for (i = 0; i < P_L2_SIZE; i++) {
307 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
308 continue;
311 valid_ptr = i;
312 valid++;
313 if (p[i].skip) {
314 phys_page_compact(&p[i], nodes);
318 /* We can only compress if there's only one child. */
319 if (valid != 1) {
320 return;
323 assert(valid_ptr < P_L2_SIZE);
325 /* Don't compress if it won't fit in the # of bits we have. */
326 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
327 return;
330 lp->ptr = p[valid_ptr].ptr;
331 if (!p[valid_ptr].skip) {
332 /* If our only child is a leaf, make this a leaf. */
333 /* By design, we should have made this node a leaf to begin with so we
334 * should never reach here.
335 * But since it's so simple to handle this, let's do it just in case we
336 * change this rule.
338 lp->skip = 0;
339 } else {
340 lp->skip += p[valid_ptr].skip;
344 void address_space_dispatch_compact(AddressSpaceDispatch *d)
346 if (d->phys_map.skip) {
347 phys_page_compact(&d->phys_map, d->map.nodes);
351 static inline bool section_covers_addr(const MemoryRegionSection *section,
352 hwaddr addr)
354 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
355 * the section must cover the entire address space.
357 return int128_gethi(section->size) ||
358 range_covers_byte(section->offset_within_address_space,
359 int128_getlo(section->size), addr);
362 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
364 PhysPageEntry lp = d->phys_map, *p;
365 Node *nodes = d->map.nodes;
366 MemoryRegionSection *sections = d->map.sections;
367 hwaddr index = addr >> TARGET_PAGE_BITS;
368 int i;
370 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
371 if (lp.ptr == PHYS_MAP_NODE_NIL) {
372 return &sections[PHYS_SECTION_UNASSIGNED];
374 p = nodes[lp.ptr];
375 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
378 if (section_covers_addr(&sections[lp.ptr], addr)) {
379 return &sections[lp.ptr];
380 } else {
381 return &sections[PHYS_SECTION_UNASSIGNED];
385 /* Called from RCU critical section */
386 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
387 hwaddr addr,
388 bool resolve_subpage)
390 MemoryRegionSection *section = atomic_read(&d->mru_section);
391 subpage_t *subpage;
393 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
394 !section_covers_addr(section, addr)) {
395 section = phys_page_find(d, addr);
396 atomic_set(&d->mru_section, section);
398 if (resolve_subpage && section->mr->subpage) {
399 subpage = container_of(section->mr, subpage_t, iomem);
400 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
402 return section;
405 /* Called from RCU critical section */
406 static MemoryRegionSection *
407 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
408 hwaddr *plen, bool resolve_subpage)
410 MemoryRegionSection *section;
411 MemoryRegion *mr;
412 Int128 diff;
414 section = address_space_lookup_region(d, addr, resolve_subpage);
415 /* Compute offset within MemoryRegionSection */
416 addr -= section->offset_within_address_space;
418 /* Compute offset within MemoryRegion */
419 *xlat = addr + section->offset_within_region;
421 mr = section->mr;
423 /* MMIO registers can be expected to perform full-width accesses based only
424 * on their address, without considering adjacent registers that could
425 * decode to completely different MemoryRegions. When such registers
426 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
427 * regions overlap wildly. For this reason we cannot clamp the accesses
428 * here.
430 * If the length is small (as is the case for address_space_ldl/stl),
431 * everything works fine. If the incoming length is large, however,
432 * the caller really has to do the clamping through memory_access_size.
434 if (memory_region_is_ram(mr)) {
435 diff = int128_sub(section->size, int128_make64(addr));
436 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
438 return section;
442 * address_space_translate_iommu - translate an address through an IOMMU
443 * memory region and then through the target address space.
445 * @iommu_mr: the IOMMU memory region that we start the translation from
446 * @addr: the address to be translated through the MMU
447 * @xlat: the translated address offset within the destination memory region.
448 * It cannot be %NULL.
449 * @plen_out: valid read/write length of the translated address. It
450 * cannot be %NULL.
451 * @page_mask_out: page mask for the translated address. This
452 * should only be meaningful for IOMMU translated
453 * addresses, since there may be huge pages that this bit
454 * would tell. It can be %NULL if we don't care about it.
455 * @is_write: whether the translation operation is for write
456 * @is_mmio: whether this can be MMIO, set true if it can
457 * @target_as: the address space targeted by the IOMMU
458 * @attrs: transaction attributes
460 * This function is called from RCU critical section. It is the common
461 * part of flatview_do_translate and address_space_translate_cached.
463 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
464 hwaddr *xlat,
465 hwaddr *plen_out,
466 hwaddr *page_mask_out,
467 bool is_write,
468 bool is_mmio,
469 AddressSpace **target_as,
470 MemTxAttrs attrs)
472 MemoryRegionSection *section;
473 hwaddr page_mask = (hwaddr)-1;
475 do {
476 hwaddr addr = *xlat;
477 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
478 int iommu_idx = 0;
479 IOMMUTLBEntry iotlb;
481 if (imrc->attrs_to_index) {
482 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
485 iotlb = imrc->translate(iommu_mr, addr, is_write ?
486 IOMMU_WO : IOMMU_RO, iommu_idx);
488 if (!(iotlb.perm & (1 << is_write))) {
489 goto unassigned;
492 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
493 | (addr & iotlb.addr_mask));
494 page_mask &= iotlb.addr_mask;
495 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
496 *target_as = iotlb.target_as;
498 section = address_space_translate_internal(
499 address_space_to_dispatch(iotlb.target_as), addr, xlat,
500 plen_out, is_mmio);
502 iommu_mr = memory_region_get_iommu(section->mr);
503 } while (unlikely(iommu_mr));
505 if (page_mask_out) {
506 *page_mask_out = page_mask;
508 return *section;
510 unassigned:
511 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
515 * flatview_do_translate - translate an address in FlatView
517 * @fv: the flat view that we want to translate on
518 * @addr: the address to be translated in above address space
519 * @xlat: the translated address offset within memory region. It
520 * cannot be @NULL.
521 * @plen_out: valid read/write length of the translated address. It
522 * can be @NULL when we don't care about it.
523 * @page_mask_out: page mask for the translated address. This
524 * should only be meaningful for IOMMU translated
525 * addresses, since there may be huge pages that this bit
526 * would tell. It can be @NULL if we don't care about it.
527 * @is_write: whether the translation operation is for write
528 * @is_mmio: whether this can be MMIO, set true if it can
529 * @target_as: the address space targeted by the IOMMU
530 * @attrs: memory transaction attributes
532 * This function is called from RCU critical section
534 static MemoryRegionSection flatview_do_translate(FlatView *fv,
535 hwaddr addr,
536 hwaddr *xlat,
537 hwaddr *plen_out,
538 hwaddr *page_mask_out,
539 bool is_write,
540 bool is_mmio,
541 AddressSpace **target_as,
542 MemTxAttrs attrs)
544 MemoryRegionSection *section;
545 IOMMUMemoryRegion *iommu_mr;
546 hwaddr plen = (hwaddr)(-1);
548 if (!plen_out) {
549 plen_out = &plen;
552 section = address_space_translate_internal(
553 flatview_to_dispatch(fv), addr, xlat,
554 plen_out, is_mmio);
556 iommu_mr = memory_region_get_iommu(section->mr);
557 if (unlikely(iommu_mr)) {
558 return address_space_translate_iommu(iommu_mr, xlat,
559 plen_out, page_mask_out,
560 is_write, is_mmio,
561 target_as, attrs);
563 if (page_mask_out) {
564 /* Not behind an IOMMU, use default page size. */
565 *page_mask_out = ~TARGET_PAGE_MASK;
568 return *section;
571 /* Called from RCU critical section */
572 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
573 bool is_write, MemTxAttrs attrs)
575 MemoryRegionSection section;
576 hwaddr xlat, page_mask;
579 * This can never be MMIO, and we don't really care about plen,
580 * but page mask.
582 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
583 NULL, &page_mask, is_write, false, &as,
584 attrs);
586 /* Illegal translation */
587 if (section.mr == &io_mem_unassigned) {
588 goto iotlb_fail;
591 /* Convert memory region offset into address space offset */
592 xlat += section.offset_within_address_space -
593 section.offset_within_region;
595 return (IOMMUTLBEntry) {
596 .target_as = as,
597 .iova = addr & ~page_mask,
598 .translated_addr = xlat & ~page_mask,
599 .addr_mask = page_mask,
600 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
601 .perm = IOMMU_RW,
604 iotlb_fail:
605 return (IOMMUTLBEntry) {0};
608 /* Called from RCU critical section */
609 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
610 hwaddr *plen, bool is_write,
611 MemTxAttrs attrs)
613 MemoryRegion *mr;
614 MemoryRegionSection section;
615 AddressSpace *as = NULL;
617 /* This can be MMIO, so setup MMIO bit. */
618 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
619 is_write, true, &as, attrs);
620 mr = section.mr;
622 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
623 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
624 *plen = MIN(page, *plen);
627 return mr;
630 typedef struct TCGIOMMUNotifier {
631 IOMMUNotifier n;
632 MemoryRegion *mr;
633 CPUState *cpu;
634 int iommu_idx;
635 bool active;
636 } TCGIOMMUNotifier;
638 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
640 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
642 if (!notifier->active) {
643 return;
645 tlb_flush(notifier->cpu);
646 notifier->active = false;
647 /* We leave the notifier struct on the list to avoid reallocating it later.
648 * Generally the number of IOMMUs a CPU deals with will be small.
649 * In any case we can't unregister the iommu notifier from a notify
650 * callback.
654 static void tcg_register_iommu_notifier(CPUState *cpu,
655 IOMMUMemoryRegion *iommu_mr,
656 int iommu_idx)
658 /* Make sure this CPU has an IOMMU notifier registered for this
659 * IOMMU/IOMMU index combination, so that we can flush its TLB
660 * when the IOMMU tells us the mappings we've cached have changed.
662 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
663 TCGIOMMUNotifier *notifier;
664 int i;
666 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
667 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
668 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
669 break;
672 if (i == cpu->iommu_notifiers->len) {
673 /* Not found, add a new entry at the end of the array */
674 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
675 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
677 notifier->mr = mr;
678 notifier->iommu_idx = iommu_idx;
679 notifier->cpu = cpu;
680 /* Rather than trying to register interest in the specific part
681 * of the iommu's address space that we've accessed and then
682 * expand it later as subsequent accesses touch more of it, we
683 * just register interest in the whole thing, on the assumption
684 * that iommu reconfiguration will be rare.
686 iommu_notifier_init(&notifier->n,
687 tcg_iommu_unmap_notify,
688 IOMMU_NOTIFIER_UNMAP,
690 HWADDR_MAX,
691 iommu_idx);
692 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
695 if (!notifier->active) {
696 notifier->active = true;
700 static void tcg_iommu_free_notifier_list(CPUState *cpu)
702 /* Destroy the CPU's notifier list */
703 int i;
704 TCGIOMMUNotifier *notifier;
706 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
707 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
708 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
710 g_array_free(cpu->iommu_notifiers, true);
713 /* Called from RCU critical section */
714 MemoryRegionSection *
715 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
716 hwaddr *xlat, hwaddr *plen,
717 MemTxAttrs attrs, int *prot)
719 MemoryRegionSection *section;
720 IOMMUMemoryRegion *iommu_mr;
721 IOMMUMemoryRegionClass *imrc;
722 IOMMUTLBEntry iotlb;
723 int iommu_idx;
724 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
726 for (;;) {
727 section = address_space_translate_internal(d, addr, &addr, plen, false);
729 iommu_mr = memory_region_get_iommu(section->mr);
730 if (!iommu_mr) {
731 break;
734 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
736 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
737 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
738 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
739 * doesn't short-cut its translation table walk.
741 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
742 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
743 | (addr & iotlb.addr_mask));
744 /* Update the caller's prot bits to remove permissions the IOMMU
745 * is giving us a failure response for. If we get down to no
746 * permissions left at all we can give up now.
748 if (!(iotlb.perm & IOMMU_RO)) {
749 *prot &= ~(PAGE_READ | PAGE_EXEC);
751 if (!(iotlb.perm & IOMMU_WO)) {
752 *prot &= ~PAGE_WRITE;
755 if (!*prot) {
756 goto translate_fail;
759 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
762 assert(!memory_region_is_iommu(section->mr));
763 *xlat = addr;
764 return section;
766 translate_fail:
767 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
769 #endif
771 #if !defined(CONFIG_USER_ONLY)
773 static int cpu_common_post_load(void *opaque, int version_id)
775 CPUState *cpu = opaque;
777 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
778 version_id is increased. */
779 cpu->interrupt_request &= ~0x01;
780 tlb_flush(cpu);
782 /* loadvm has just updated the content of RAM, bypassing the
783 * usual mechanisms that ensure we flush TBs for writes to
784 * memory we've translated code from. So we must flush all TBs,
785 * which will now be stale.
787 tb_flush(cpu);
789 return 0;
792 static int cpu_common_pre_load(void *opaque)
794 CPUState *cpu = opaque;
796 cpu->exception_index = -1;
798 return 0;
801 static bool cpu_common_exception_index_needed(void *opaque)
803 CPUState *cpu = opaque;
805 return tcg_enabled() && cpu->exception_index != -1;
808 static const VMStateDescription vmstate_cpu_common_exception_index = {
809 .name = "cpu_common/exception_index",
810 .version_id = 1,
811 .minimum_version_id = 1,
812 .needed = cpu_common_exception_index_needed,
813 .fields = (VMStateField[]) {
814 VMSTATE_INT32(exception_index, CPUState),
815 VMSTATE_END_OF_LIST()
819 static bool cpu_common_crash_occurred_needed(void *opaque)
821 CPUState *cpu = opaque;
823 return cpu->crash_occurred;
826 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
827 .name = "cpu_common/crash_occurred",
828 .version_id = 1,
829 .minimum_version_id = 1,
830 .needed = cpu_common_crash_occurred_needed,
831 .fields = (VMStateField[]) {
832 VMSTATE_BOOL(crash_occurred, CPUState),
833 VMSTATE_END_OF_LIST()
837 const VMStateDescription vmstate_cpu_common = {
838 .name = "cpu_common",
839 .version_id = 1,
840 .minimum_version_id = 1,
841 .pre_load = cpu_common_pre_load,
842 .post_load = cpu_common_post_load,
843 .fields = (VMStateField[]) {
844 VMSTATE_UINT32(halted, CPUState),
845 VMSTATE_UINT32(interrupt_request, CPUState),
846 VMSTATE_END_OF_LIST()
848 .subsections = (const VMStateDescription*[]) {
849 &vmstate_cpu_common_exception_index,
850 &vmstate_cpu_common_crash_occurred,
851 NULL
855 #endif
857 CPUState *qemu_get_cpu(int index)
859 CPUState *cpu;
861 CPU_FOREACH(cpu) {
862 if (cpu->cpu_index == index) {
863 return cpu;
867 return NULL;
870 #if !defined(CONFIG_USER_ONLY)
871 void cpu_address_space_init(CPUState *cpu, int asidx,
872 const char *prefix, MemoryRegion *mr)
874 CPUAddressSpace *newas;
875 AddressSpace *as = g_new0(AddressSpace, 1);
876 char *as_name;
878 assert(mr);
879 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
880 address_space_init(as, mr, as_name);
881 g_free(as_name);
883 /* Target code should have set num_ases before calling us */
884 assert(asidx < cpu->num_ases);
886 if (asidx == 0) {
887 /* address space 0 gets the convenience alias */
888 cpu->as = as;
891 /* KVM cannot currently support multiple address spaces. */
892 assert(asidx == 0 || !kvm_enabled());
894 if (!cpu->cpu_ases) {
895 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
898 newas = &cpu->cpu_ases[asidx];
899 newas->cpu = cpu;
900 newas->as = as;
901 if (tcg_enabled()) {
902 newas->tcg_as_listener.commit = tcg_commit;
903 memory_listener_register(&newas->tcg_as_listener, as);
907 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
909 /* Return the AddressSpace corresponding to the specified index */
910 return cpu->cpu_ases[asidx].as;
912 #endif
914 void cpu_exec_unrealizefn(CPUState *cpu)
916 CPUClass *cc = CPU_GET_CLASS(cpu);
918 cpu_list_remove(cpu);
920 if (cc->vmsd != NULL) {
921 vmstate_unregister(NULL, cc->vmsd, cpu);
923 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
924 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
926 #ifndef CONFIG_USER_ONLY
927 tcg_iommu_free_notifier_list(cpu);
928 #endif
931 Property cpu_common_props[] = {
932 #ifndef CONFIG_USER_ONLY
933 /* Create a memory property for softmmu CPU object,
934 * so users can wire up its memory. (This can't go in qom/cpu.c
935 * because that file is compiled only once for both user-mode
936 * and system builds.) The default if no link is set up is to use
937 * the system address space.
939 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
940 MemoryRegion *),
941 #endif
942 DEFINE_PROP_END_OF_LIST(),
945 void cpu_exec_initfn(CPUState *cpu)
947 #ifdef TARGET_WORDS_BIGENDIAN
948 cpu->bigendian = true;
949 #else
950 cpu->bigendian = false;
951 #endif
952 cpu->as = NULL;
953 cpu->num_ases = 0;
955 #ifndef CONFIG_USER_ONLY
956 cpu->thread_id = qemu_get_thread_id();
957 cpu->memory = system_memory;
958 object_ref(OBJECT(cpu->memory));
959 #endif
962 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
964 CPUClass *cc = CPU_GET_CLASS(cpu);
965 static bool tcg_target_initialized;
967 cpu_list_add(cpu);
969 if (tcg_enabled() && !tcg_target_initialized) {
970 tcg_target_initialized = true;
971 cc->tcg_initialize();
973 tlb_init(cpu);
975 #ifndef CONFIG_USER_ONLY
976 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
977 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
979 if (cc->vmsd != NULL) {
980 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
983 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
984 #endif
987 const char *parse_cpu_model(const char *cpu_model)
989 ObjectClass *oc;
990 CPUClass *cc;
991 gchar **model_pieces;
992 const char *cpu_type;
994 model_pieces = g_strsplit(cpu_model, ",", 2);
996 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
997 if (oc == NULL) {
998 error_report("unable to find CPU model '%s'", model_pieces[0]);
999 g_strfreev(model_pieces);
1000 exit(EXIT_FAILURE);
1003 cpu_type = object_class_get_name(oc);
1004 cc = CPU_CLASS(oc);
1005 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1006 g_strfreev(model_pieces);
1007 return cpu_type;
1010 #if defined(CONFIG_USER_ONLY)
1011 void tb_invalidate_phys_addr(target_ulong addr)
1013 mmap_lock();
1014 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1015 mmap_unlock();
1018 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1020 tb_invalidate_phys_addr(pc);
1022 #else
1023 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1025 ram_addr_t ram_addr;
1026 MemoryRegion *mr;
1027 hwaddr l = 1;
1029 if (!tcg_enabled()) {
1030 return;
1033 rcu_read_lock();
1034 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1035 if (!(memory_region_is_ram(mr)
1036 || memory_region_is_romd(mr))) {
1037 rcu_read_unlock();
1038 return;
1040 ram_addr = memory_region_get_ram_addr(mr) + addr;
1041 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1042 rcu_read_unlock();
1045 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1047 MemTxAttrs attrs;
1048 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1049 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1050 if (phys != -1) {
1051 /* Locks grabbed by tb_invalidate_phys_addr */
1052 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1053 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1056 #endif
1058 #if defined(CONFIG_USER_ONLY)
1059 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1064 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1065 int flags)
1067 return -ENOSYS;
1070 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1074 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1075 int flags, CPUWatchpoint **watchpoint)
1077 return -ENOSYS;
1079 #else
1080 /* Add a watchpoint. */
1081 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1082 int flags, CPUWatchpoint **watchpoint)
1084 CPUWatchpoint *wp;
1086 /* forbid ranges which are empty or run off the end of the address space */
1087 if (len == 0 || (addr + len - 1) < addr) {
1088 error_report("tried to set invalid watchpoint at %"
1089 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1090 return -EINVAL;
1092 wp = g_malloc(sizeof(*wp));
1094 wp->vaddr = addr;
1095 wp->len = len;
1096 wp->flags = flags;
1098 /* keep all GDB-injected watchpoints in front */
1099 if (flags & BP_GDB) {
1100 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1101 } else {
1102 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1105 tlb_flush_page(cpu, addr);
1107 if (watchpoint)
1108 *watchpoint = wp;
1109 return 0;
1112 /* Remove a specific watchpoint. */
1113 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1114 int flags)
1116 CPUWatchpoint *wp;
1118 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1119 if (addr == wp->vaddr && len == wp->len
1120 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1121 cpu_watchpoint_remove_by_ref(cpu, wp);
1122 return 0;
1125 return -ENOENT;
1128 /* Remove a specific watchpoint by reference. */
1129 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1131 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1133 tlb_flush_page(cpu, watchpoint->vaddr);
1135 g_free(watchpoint);
1138 /* Remove all matching watchpoints. */
1139 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1141 CPUWatchpoint *wp, *next;
1143 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1144 if (wp->flags & mask) {
1145 cpu_watchpoint_remove_by_ref(cpu, wp);
1150 /* Return true if this watchpoint address matches the specified
1151 * access (ie the address range covered by the watchpoint overlaps
1152 * partially or completely with the address range covered by the
1153 * access).
1155 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1156 vaddr addr,
1157 vaddr len)
1159 /* We know the lengths are non-zero, but a little caution is
1160 * required to avoid errors in the case where the range ends
1161 * exactly at the top of the address space and so addr + len
1162 * wraps round to zero.
1164 vaddr wpend = wp->vaddr + wp->len - 1;
1165 vaddr addrend = addr + len - 1;
1167 return !(addr > wpend || wp->vaddr > addrend);
1170 #endif
1172 /* Add a breakpoint. */
1173 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1174 CPUBreakpoint **breakpoint)
1176 CPUBreakpoint *bp;
1178 bp = g_malloc(sizeof(*bp));
1180 bp->pc = pc;
1181 bp->flags = flags;
1183 /* keep all GDB-injected breakpoints in front */
1184 if (flags & BP_GDB) {
1185 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1186 } else {
1187 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1190 breakpoint_invalidate(cpu, pc);
1192 if (breakpoint) {
1193 *breakpoint = bp;
1195 return 0;
1198 /* Remove a specific breakpoint. */
1199 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1201 CPUBreakpoint *bp;
1203 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1204 if (bp->pc == pc && bp->flags == flags) {
1205 cpu_breakpoint_remove_by_ref(cpu, bp);
1206 return 0;
1209 return -ENOENT;
1212 /* Remove a specific breakpoint by reference. */
1213 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1215 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1217 breakpoint_invalidate(cpu, breakpoint->pc);
1219 g_free(breakpoint);
1222 /* Remove all matching breakpoints. */
1223 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1225 CPUBreakpoint *bp, *next;
1227 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1228 if (bp->flags & mask) {
1229 cpu_breakpoint_remove_by_ref(cpu, bp);
1234 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1235 CPU loop after each instruction */
1236 void cpu_single_step(CPUState *cpu, int enabled)
1238 if (cpu->singlestep_enabled != enabled) {
1239 cpu->singlestep_enabled = enabled;
1240 if (kvm_enabled()) {
1241 kvm_update_guest_debug(cpu, 0);
1242 } else {
1243 /* must flush all the translated code to avoid inconsistencies */
1244 /* XXX: only flush what is necessary */
1245 tb_flush(cpu);
1250 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1252 va_list ap;
1253 va_list ap2;
1255 va_start(ap, fmt);
1256 va_copy(ap2, ap);
1257 fprintf(stderr, "qemu: fatal: ");
1258 vfprintf(stderr, fmt, ap);
1259 fprintf(stderr, "\n");
1260 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1261 if (qemu_log_separate()) {
1262 qemu_log_lock();
1263 qemu_log("qemu: fatal: ");
1264 qemu_log_vprintf(fmt, ap2);
1265 qemu_log("\n");
1266 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1267 qemu_log_flush();
1268 qemu_log_unlock();
1269 qemu_log_close();
1271 va_end(ap2);
1272 va_end(ap);
1273 replay_finish();
1274 #if defined(CONFIG_USER_ONLY)
1276 struct sigaction act;
1277 sigfillset(&act.sa_mask);
1278 act.sa_handler = SIG_DFL;
1279 act.sa_flags = 0;
1280 sigaction(SIGABRT, &act, NULL);
1282 #endif
1283 abort();
1286 #if !defined(CONFIG_USER_ONLY)
1287 /* Called from RCU critical section */
1288 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1290 RAMBlock *block;
1292 block = atomic_rcu_read(&ram_list.mru_block);
1293 if (block && addr - block->offset < block->max_length) {
1294 return block;
1296 RAMBLOCK_FOREACH(block) {
1297 if (addr - block->offset < block->max_length) {
1298 goto found;
1302 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1303 abort();
1305 found:
1306 /* It is safe to write mru_block outside the iothread lock. This
1307 * is what happens:
1309 * mru_block = xxx
1310 * rcu_read_unlock()
1311 * xxx removed from list
1312 * rcu_read_lock()
1313 * read mru_block
1314 * mru_block = NULL;
1315 * call_rcu(reclaim_ramblock, xxx);
1316 * rcu_read_unlock()
1318 * atomic_rcu_set is not needed here. The block was already published
1319 * when it was placed into the list. Here we're just making an extra
1320 * copy of the pointer.
1322 ram_list.mru_block = block;
1323 return block;
1326 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1328 CPUState *cpu;
1329 ram_addr_t start1;
1330 RAMBlock *block;
1331 ram_addr_t end;
1333 assert(tcg_enabled());
1334 end = TARGET_PAGE_ALIGN(start + length);
1335 start &= TARGET_PAGE_MASK;
1337 rcu_read_lock();
1338 block = qemu_get_ram_block(start);
1339 assert(block == qemu_get_ram_block(end - 1));
1340 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1341 CPU_FOREACH(cpu) {
1342 tlb_reset_dirty(cpu, start1, length);
1344 rcu_read_unlock();
1347 /* Note: start and end must be within the same ram block. */
1348 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1349 ram_addr_t length,
1350 unsigned client)
1352 DirtyMemoryBlocks *blocks;
1353 unsigned long end, page;
1354 bool dirty = false;
1356 if (length == 0) {
1357 return false;
1360 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1361 page = start >> TARGET_PAGE_BITS;
1363 rcu_read_lock();
1365 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1367 while (page < end) {
1368 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1369 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1370 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1372 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1373 offset, num);
1374 page += num;
1377 rcu_read_unlock();
1379 if (dirty && tcg_enabled()) {
1380 tlb_reset_dirty_range_all(start, length);
1383 return dirty;
1386 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1387 (ram_addr_t start, ram_addr_t length, unsigned client)
1389 DirtyMemoryBlocks *blocks;
1390 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1391 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1392 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1393 DirtyBitmapSnapshot *snap;
1394 unsigned long page, end, dest;
1396 snap = g_malloc0(sizeof(*snap) +
1397 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1398 snap->start = first;
1399 snap->end = last;
1401 page = first >> TARGET_PAGE_BITS;
1402 end = last >> TARGET_PAGE_BITS;
1403 dest = 0;
1405 rcu_read_lock();
1407 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1409 while (page < end) {
1410 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1411 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1412 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1414 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1415 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1416 offset >>= BITS_PER_LEVEL;
1418 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1419 blocks->blocks[idx] + offset,
1420 num);
1421 page += num;
1422 dest += num >> BITS_PER_LEVEL;
1425 rcu_read_unlock();
1427 if (tcg_enabled()) {
1428 tlb_reset_dirty_range_all(start, length);
1431 return snap;
1434 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1435 ram_addr_t start,
1436 ram_addr_t length)
1438 unsigned long page, end;
1440 assert(start >= snap->start);
1441 assert(start + length <= snap->end);
1443 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1444 page = (start - snap->start) >> TARGET_PAGE_BITS;
1446 while (page < end) {
1447 if (test_bit(page, snap->dirty)) {
1448 return true;
1450 page++;
1452 return false;
1455 /* Called from RCU critical section */
1456 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1457 MemoryRegionSection *section,
1458 target_ulong vaddr,
1459 hwaddr paddr, hwaddr xlat,
1460 int prot,
1461 target_ulong *address)
1463 hwaddr iotlb;
1464 CPUWatchpoint *wp;
1466 if (memory_region_is_ram(section->mr)) {
1467 /* Normal RAM. */
1468 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1469 if (!section->readonly) {
1470 iotlb |= PHYS_SECTION_NOTDIRTY;
1471 } else {
1472 iotlb |= PHYS_SECTION_ROM;
1474 } else {
1475 AddressSpaceDispatch *d;
1477 d = flatview_to_dispatch(section->fv);
1478 iotlb = section - d->map.sections;
1479 iotlb += xlat;
1482 /* Make accesses to pages with watchpoints go via the
1483 watchpoint trap routines. */
1484 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1485 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1486 /* Avoid trapping reads of pages with a write breakpoint. */
1487 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1488 iotlb = PHYS_SECTION_WATCH + paddr;
1489 *address |= TLB_MMIO;
1490 break;
1495 return iotlb;
1497 #endif /* defined(CONFIG_USER_ONLY) */
1499 #if !defined(CONFIG_USER_ONLY)
1501 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1502 uint16_t section);
1503 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1505 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1506 qemu_anon_ram_alloc;
1509 * Set a custom physical guest memory alloator.
1510 * Accelerators with unusual needs may need this. Hopefully, we can
1511 * get rid of it eventually.
1513 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1515 phys_mem_alloc = alloc;
1518 static uint16_t phys_section_add(PhysPageMap *map,
1519 MemoryRegionSection *section)
1521 /* The physical section number is ORed with a page-aligned
1522 * pointer to produce the iotlb entries. Thus it should
1523 * never overflow into the page-aligned value.
1525 assert(map->sections_nb < TARGET_PAGE_SIZE);
1527 if (map->sections_nb == map->sections_nb_alloc) {
1528 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1529 map->sections = g_renew(MemoryRegionSection, map->sections,
1530 map->sections_nb_alloc);
1532 map->sections[map->sections_nb] = *section;
1533 memory_region_ref(section->mr);
1534 return map->sections_nb++;
1537 static void phys_section_destroy(MemoryRegion *mr)
1539 bool have_sub_page = mr->subpage;
1541 memory_region_unref(mr);
1543 if (have_sub_page) {
1544 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1545 object_unref(OBJECT(&subpage->iomem));
1546 g_free(subpage);
1550 static void phys_sections_free(PhysPageMap *map)
1552 while (map->sections_nb > 0) {
1553 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1554 phys_section_destroy(section->mr);
1556 g_free(map->sections);
1557 g_free(map->nodes);
1560 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1562 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1563 subpage_t *subpage;
1564 hwaddr base = section->offset_within_address_space
1565 & TARGET_PAGE_MASK;
1566 MemoryRegionSection *existing = phys_page_find(d, base);
1567 MemoryRegionSection subsection = {
1568 .offset_within_address_space = base,
1569 .size = int128_make64(TARGET_PAGE_SIZE),
1571 hwaddr start, end;
1573 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1575 if (!(existing->mr->subpage)) {
1576 subpage = subpage_init(fv, base);
1577 subsection.fv = fv;
1578 subsection.mr = &subpage->iomem;
1579 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1580 phys_section_add(&d->map, &subsection));
1581 } else {
1582 subpage = container_of(existing->mr, subpage_t, iomem);
1584 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1585 end = start + int128_get64(section->size) - 1;
1586 subpage_register(subpage, start, end,
1587 phys_section_add(&d->map, section));
1591 static void register_multipage(FlatView *fv,
1592 MemoryRegionSection *section)
1594 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1595 hwaddr start_addr = section->offset_within_address_space;
1596 uint16_t section_index = phys_section_add(&d->map, section);
1597 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1598 TARGET_PAGE_BITS));
1600 assert(num_pages);
1601 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1604 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1606 MemoryRegionSection now = *section, remain = *section;
1607 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1609 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1610 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1611 - now.offset_within_address_space;
1613 now.size = int128_min(int128_make64(left), now.size);
1614 register_subpage(fv, &now);
1615 } else {
1616 now.size = int128_zero();
1618 while (int128_ne(remain.size, now.size)) {
1619 remain.size = int128_sub(remain.size, now.size);
1620 remain.offset_within_address_space += int128_get64(now.size);
1621 remain.offset_within_region += int128_get64(now.size);
1622 now = remain;
1623 if (int128_lt(remain.size, page_size)) {
1624 register_subpage(fv, &now);
1625 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1626 now.size = page_size;
1627 register_subpage(fv, &now);
1628 } else {
1629 now.size = int128_and(now.size, int128_neg(page_size));
1630 register_multipage(fv, &now);
1635 void qemu_flush_coalesced_mmio_buffer(void)
1637 if (kvm_enabled())
1638 kvm_flush_coalesced_mmio_buffer();
1641 void qemu_mutex_lock_ramlist(void)
1643 qemu_mutex_lock(&ram_list.mutex);
1646 void qemu_mutex_unlock_ramlist(void)
1648 qemu_mutex_unlock(&ram_list.mutex);
1651 void ram_block_dump(Monitor *mon)
1653 RAMBlock *block;
1654 char *psize;
1656 rcu_read_lock();
1657 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1658 "Block Name", "PSize", "Offset", "Used", "Total");
1659 RAMBLOCK_FOREACH(block) {
1660 psize = size_to_str(block->page_size);
1661 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1662 " 0x%016" PRIx64 "\n", block->idstr, psize,
1663 (uint64_t)block->offset,
1664 (uint64_t)block->used_length,
1665 (uint64_t)block->max_length);
1666 g_free(psize);
1668 rcu_read_unlock();
1671 #ifdef __linux__
1673 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1674 * may or may not name the same files / on the same filesystem now as
1675 * when we actually open and map them. Iterate over the file
1676 * descriptors instead, and use qemu_fd_getpagesize().
1678 static int find_max_supported_pagesize(Object *obj, void *opaque)
1680 long *hpsize_min = opaque;
1682 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1683 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1685 if (hpsize < *hpsize_min) {
1686 *hpsize_min = hpsize;
1690 return 0;
1693 long qemu_getrampagesize(void)
1695 long hpsize = LONG_MAX;
1696 long mainrampagesize;
1697 Object *memdev_root;
1699 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1701 /* it's possible we have memory-backend objects with
1702 * hugepage-backed RAM. these may get mapped into system
1703 * address space via -numa parameters or memory hotplug
1704 * hooks. we want to take these into account, but we
1705 * also want to make sure these supported hugepage
1706 * sizes are applicable across the entire range of memory
1707 * we may boot from, so we take the min across all
1708 * backends, and assume normal pages in cases where a
1709 * backend isn't backed by hugepages.
1711 memdev_root = object_resolve_path("/objects", NULL);
1712 if (memdev_root) {
1713 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1715 if (hpsize == LONG_MAX) {
1716 /* No additional memory regions found ==> Report main RAM page size */
1717 return mainrampagesize;
1720 /* If NUMA is disabled or the NUMA nodes are not backed with a
1721 * memory-backend, then there is at least one node using "normal" RAM,
1722 * so if its page size is smaller we have got to report that size instead.
1724 if (hpsize > mainrampagesize &&
1725 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1726 static bool warned;
1727 if (!warned) {
1728 error_report("Huge page support disabled (n/a for main memory).");
1729 warned = true;
1731 return mainrampagesize;
1734 return hpsize;
1736 #else
1737 long qemu_getrampagesize(void)
1739 return getpagesize();
1741 #endif
1743 #ifdef CONFIG_POSIX
1744 static int64_t get_file_size(int fd)
1746 int64_t size = lseek(fd, 0, SEEK_END);
1747 if (size < 0) {
1748 return -errno;
1750 return size;
1753 static int file_ram_open(const char *path,
1754 const char *region_name,
1755 bool *created,
1756 Error **errp)
1758 char *filename;
1759 char *sanitized_name;
1760 char *c;
1761 int fd = -1;
1763 *created = false;
1764 for (;;) {
1765 fd = open(path, O_RDWR);
1766 if (fd >= 0) {
1767 /* @path names an existing file, use it */
1768 break;
1770 if (errno == ENOENT) {
1771 /* @path names a file that doesn't exist, create it */
1772 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1773 if (fd >= 0) {
1774 *created = true;
1775 break;
1777 } else if (errno == EISDIR) {
1778 /* @path names a directory, create a file there */
1779 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1780 sanitized_name = g_strdup(region_name);
1781 for (c = sanitized_name; *c != '\0'; c++) {
1782 if (*c == '/') {
1783 *c = '_';
1787 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1788 sanitized_name);
1789 g_free(sanitized_name);
1791 fd = mkstemp(filename);
1792 if (fd >= 0) {
1793 unlink(filename);
1794 g_free(filename);
1795 break;
1797 g_free(filename);
1799 if (errno != EEXIST && errno != EINTR) {
1800 error_setg_errno(errp, errno,
1801 "can't open backing store %s for guest RAM",
1802 path);
1803 return -1;
1806 * Try again on EINTR and EEXIST. The latter happens when
1807 * something else creates the file between our two open().
1811 return fd;
1814 static void *file_ram_alloc(RAMBlock *block,
1815 ram_addr_t memory,
1816 int fd,
1817 bool truncate,
1818 Error **errp)
1820 void *area;
1822 block->page_size = qemu_fd_getpagesize(fd);
1823 if (block->mr->align % block->page_size) {
1824 error_setg(errp, "alignment 0x%" PRIx64
1825 " must be multiples of page size 0x%zx",
1826 block->mr->align, block->page_size);
1827 return NULL;
1828 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1829 error_setg(errp, "alignment 0x%" PRIx64
1830 " must be a power of two", block->mr->align);
1831 return NULL;
1833 block->mr->align = MAX(block->page_size, block->mr->align);
1834 #if defined(__s390x__)
1835 if (kvm_enabled()) {
1836 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1838 #endif
1840 if (memory < block->page_size) {
1841 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1842 "or larger than page size 0x%zx",
1843 memory, block->page_size);
1844 return NULL;
1847 memory = ROUND_UP(memory, block->page_size);
1850 * ftruncate is not supported by hugetlbfs in older
1851 * hosts, so don't bother bailing out on errors.
1852 * If anything goes wrong with it under other filesystems,
1853 * mmap will fail.
1855 * Do not truncate the non-empty backend file to avoid corrupting
1856 * the existing data in the file. Disabling shrinking is not
1857 * enough. For example, the current vNVDIMM implementation stores
1858 * the guest NVDIMM labels at the end of the backend file. If the
1859 * backend file is later extended, QEMU will not be able to find
1860 * those labels. Therefore, extending the non-empty backend file
1861 * is disabled as well.
1863 if (truncate && ftruncate(fd, memory)) {
1864 perror("ftruncate");
1867 area = qemu_ram_mmap(fd, memory, block->mr->align,
1868 block->flags & RAM_SHARED);
1869 if (area == MAP_FAILED) {
1870 error_setg_errno(errp, errno,
1871 "unable to map backing store for guest RAM");
1872 return NULL;
1875 if (mem_prealloc) {
1876 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1877 if (errp && *errp) {
1878 qemu_ram_munmap(area, memory);
1879 return NULL;
1883 block->fd = fd;
1884 return area;
1886 #endif
1888 /* Allocate space within the ram_addr_t space that governs the
1889 * dirty bitmaps.
1890 * Called with the ramlist lock held.
1892 static ram_addr_t find_ram_offset(ram_addr_t size)
1894 RAMBlock *block, *next_block;
1895 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1897 assert(size != 0); /* it would hand out same offset multiple times */
1899 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1900 return 0;
1903 RAMBLOCK_FOREACH(block) {
1904 ram_addr_t candidate, next = RAM_ADDR_MAX;
1906 /* Align blocks to start on a 'long' in the bitmap
1907 * which makes the bitmap sync'ing take the fast path.
1909 candidate = block->offset + block->max_length;
1910 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1912 /* Search for the closest following block
1913 * and find the gap.
1915 RAMBLOCK_FOREACH(next_block) {
1916 if (next_block->offset >= candidate) {
1917 next = MIN(next, next_block->offset);
1921 /* If it fits remember our place and remember the size
1922 * of gap, but keep going so that we might find a smaller
1923 * gap to fill so avoiding fragmentation.
1925 if (next - candidate >= size && next - candidate < mingap) {
1926 offset = candidate;
1927 mingap = next - candidate;
1930 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1933 if (offset == RAM_ADDR_MAX) {
1934 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1935 (uint64_t)size);
1936 abort();
1939 trace_find_ram_offset(size, offset);
1941 return offset;
1944 static unsigned long last_ram_page(void)
1946 RAMBlock *block;
1947 ram_addr_t last = 0;
1949 rcu_read_lock();
1950 RAMBLOCK_FOREACH(block) {
1951 last = MAX(last, block->offset + block->max_length);
1953 rcu_read_unlock();
1954 return last >> TARGET_PAGE_BITS;
1957 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1959 int ret;
1961 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1962 if (!machine_dump_guest_core(current_machine)) {
1963 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1964 if (ret) {
1965 perror("qemu_madvise");
1966 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1967 "but dump_guest_core=off specified\n");
1972 const char *qemu_ram_get_idstr(RAMBlock *rb)
1974 return rb->idstr;
1977 bool qemu_ram_is_shared(RAMBlock *rb)
1979 return rb->flags & RAM_SHARED;
1982 /* Note: Only set at the start of postcopy */
1983 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1985 return rb->flags & RAM_UF_ZEROPAGE;
1988 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1990 rb->flags |= RAM_UF_ZEROPAGE;
1993 bool qemu_ram_is_migratable(RAMBlock *rb)
1995 return rb->flags & RAM_MIGRATABLE;
1998 void qemu_ram_set_migratable(RAMBlock *rb)
2000 rb->flags |= RAM_MIGRATABLE;
2003 void qemu_ram_unset_migratable(RAMBlock *rb)
2005 rb->flags &= ~RAM_MIGRATABLE;
2008 /* Called with iothread lock held. */
2009 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2011 RAMBlock *block;
2013 assert(new_block);
2014 assert(!new_block->idstr[0]);
2016 if (dev) {
2017 char *id = qdev_get_dev_path(dev);
2018 if (id) {
2019 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2020 g_free(id);
2023 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2025 rcu_read_lock();
2026 RAMBLOCK_FOREACH(block) {
2027 if (block != new_block &&
2028 !strcmp(block->idstr, new_block->idstr)) {
2029 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2030 new_block->idstr);
2031 abort();
2034 rcu_read_unlock();
2037 /* Called with iothread lock held. */
2038 void qemu_ram_unset_idstr(RAMBlock *block)
2040 /* FIXME: arch_init.c assumes that this is not called throughout
2041 * migration. Ignore the problem since hot-unplug during migration
2042 * does not work anyway.
2044 if (block) {
2045 memset(block->idstr, 0, sizeof(block->idstr));
2049 size_t qemu_ram_pagesize(RAMBlock *rb)
2051 return rb->page_size;
2054 /* Returns the largest size of page in use */
2055 size_t qemu_ram_pagesize_largest(void)
2057 RAMBlock *block;
2058 size_t largest = 0;
2060 RAMBLOCK_FOREACH(block) {
2061 largest = MAX(largest, qemu_ram_pagesize(block));
2064 return largest;
2067 static int memory_try_enable_merging(void *addr, size_t len)
2069 if (!machine_mem_merge(current_machine)) {
2070 /* disabled by the user */
2071 return 0;
2074 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2077 /* Only legal before guest might have detected the memory size: e.g. on
2078 * incoming migration, or right after reset.
2080 * As memory core doesn't know how is memory accessed, it is up to
2081 * resize callback to update device state and/or add assertions to detect
2082 * misuse, if necessary.
2084 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2086 assert(block);
2088 newsize = HOST_PAGE_ALIGN(newsize);
2090 if (block->used_length == newsize) {
2091 return 0;
2094 if (!(block->flags & RAM_RESIZEABLE)) {
2095 error_setg_errno(errp, EINVAL,
2096 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2097 " in != 0x" RAM_ADDR_FMT, block->idstr,
2098 newsize, block->used_length);
2099 return -EINVAL;
2102 if (block->max_length < newsize) {
2103 error_setg_errno(errp, EINVAL,
2104 "Length too large: %s: 0x" RAM_ADDR_FMT
2105 " > 0x" RAM_ADDR_FMT, block->idstr,
2106 newsize, block->max_length);
2107 return -EINVAL;
2110 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2111 block->used_length = newsize;
2112 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2113 DIRTY_CLIENTS_ALL);
2114 memory_region_set_size(block->mr, newsize);
2115 if (block->resized) {
2116 block->resized(block->idstr, newsize, block->host);
2118 return 0;
2121 /* Called with ram_list.mutex held */
2122 static void dirty_memory_extend(ram_addr_t old_ram_size,
2123 ram_addr_t new_ram_size)
2125 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2126 DIRTY_MEMORY_BLOCK_SIZE);
2127 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2128 DIRTY_MEMORY_BLOCK_SIZE);
2129 int i;
2131 /* Only need to extend if block count increased */
2132 if (new_num_blocks <= old_num_blocks) {
2133 return;
2136 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2137 DirtyMemoryBlocks *old_blocks;
2138 DirtyMemoryBlocks *new_blocks;
2139 int j;
2141 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2142 new_blocks = g_malloc(sizeof(*new_blocks) +
2143 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2145 if (old_num_blocks) {
2146 memcpy(new_blocks->blocks, old_blocks->blocks,
2147 old_num_blocks * sizeof(old_blocks->blocks[0]));
2150 for (j = old_num_blocks; j < new_num_blocks; j++) {
2151 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2154 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2156 if (old_blocks) {
2157 g_free_rcu(old_blocks, rcu);
2162 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2164 RAMBlock *block;
2165 RAMBlock *last_block = NULL;
2166 ram_addr_t old_ram_size, new_ram_size;
2167 Error *err = NULL;
2169 old_ram_size = last_ram_page();
2171 qemu_mutex_lock_ramlist();
2172 new_block->offset = find_ram_offset(new_block->max_length);
2174 if (!new_block->host) {
2175 if (xen_enabled()) {
2176 xen_ram_alloc(new_block->offset, new_block->max_length,
2177 new_block->mr, &err);
2178 if (err) {
2179 error_propagate(errp, err);
2180 qemu_mutex_unlock_ramlist();
2181 return;
2183 } else {
2184 new_block->host = phys_mem_alloc(new_block->max_length,
2185 &new_block->mr->align, shared);
2186 if (!new_block->host) {
2187 error_setg_errno(errp, errno,
2188 "cannot set up guest memory '%s'",
2189 memory_region_name(new_block->mr));
2190 qemu_mutex_unlock_ramlist();
2191 return;
2193 memory_try_enable_merging(new_block->host, new_block->max_length);
2197 new_ram_size = MAX(old_ram_size,
2198 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2199 if (new_ram_size > old_ram_size) {
2200 dirty_memory_extend(old_ram_size, new_ram_size);
2202 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2203 * QLIST (which has an RCU-friendly variant) does not have insertion at
2204 * tail, so save the last element in last_block.
2206 RAMBLOCK_FOREACH(block) {
2207 last_block = block;
2208 if (block->max_length < new_block->max_length) {
2209 break;
2212 if (block) {
2213 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2214 } else if (last_block) {
2215 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2216 } else { /* list is empty */
2217 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2219 ram_list.mru_block = NULL;
2221 /* Write list before version */
2222 smp_wmb();
2223 ram_list.version++;
2224 qemu_mutex_unlock_ramlist();
2226 cpu_physical_memory_set_dirty_range(new_block->offset,
2227 new_block->used_length,
2228 DIRTY_CLIENTS_ALL);
2230 if (new_block->host) {
2231 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2232 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2233 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2234 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2235 ram_block_notify_add(new_block->host, new_block->max_length);
2239 #ifdef CONFIG_POSIX
2240 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2241 uint32_t ram_flags, int fd,
2242 Error **errp)
2244 RAMBlock *new_block;
2245 Error *local_err = NULL;
2246 int64_t file_size;
2248 /* Just support these ram flags by now. */
2249 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2251 if (xen_enabled()) {
2252 error_setg(errp, "-mem-path not supported with Xen");
2253 return NULL;
2256 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2257 error_setg(errp,
2258 "host lacks kvm mmu notifiers, -mem-path unsupported");
2259 return NULL;
2262 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2264 * file_ram_alloc() needs to allocate just like
2265 * phys_mem_alloc, but we haven't bothered to provide
2266 * a hook there.
2268 error_setg(errp,
2269 "-mem-path not supported with this accelerator");
2270 return NULL;
2273 size = HOST_PAGE_ALIGN(size);
2274 file_size = get_file_size(fd);
2275 if (file_size > 0 && file_size < size) {
2276 error_setg(errp, "backing store %s size 0x%" PRIx64
2277 " does not match 'size' option 0x" RAM_ADDR_FMT,
2278 mem_path, file_size, size);
2279 return NULL;
2282 new_block = g_malloc0(sizeof(*new_block));
2283 new_block->mr = mr;
2284 new_block->used_length = size;
2285 new_block->max_length = size;
2286 new_block->flags = ram_flags;
2287 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2288 if (!new_block->host) {
2289 g_free(new_block);
2290 return NULL;
2293 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2294 if (local_err) {
2295 g_free(new_block);
2296 error_propagate(errp, local_err);
2297 return NULL;
2299 return new_block;
2304 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2305 uint32_t ram_flags, const char *mem_path,
2306 Error **errp)
2308 int fd;
2309 bool created;
2310 RAMBlock *block;
2312 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2313 if (fd < 0) {
2314 return NULL;
2317 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2318 if (!block) {
2319 if (created) {
2320 unlink(mem_path);
2322 close(fd);
2323 return NULL;
2326 return block;
2328 #endif
2330 static
2331 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2332 void (*resized)(const char*,
2333 uint64_t length,
2334 void *host),
2335 void *host, bool resizeable, bool share,
2336 MemoryRegion *mr, Error **errp)
2338 RAMBlock *new_block;
2339 Error *local_err = NULL;
2341 size = HOST_PAGE_ALIGN(size);
2342 max_size = HOST_PAGE_ALIGN(max_size);
2343 new_block = g_malloc0(sizeof(*new_block));
2344 new_block->mr = mr;
2345 new_block->resized = resized;
2346 new_block->used_length = size;
2347 new_block->max_length = max_size;
2348 assert(max_size >= size);
2349 new_block->fd = -1;
2350 new_block->page_size = getpagesize();
2351 new_block->host = host;
2352 if (host) {
2353 new_block->flags |= RAM_PREALLOC;
2355 if (resizeable) {
2356 new_block->flags |= RAM_RESIZEABLE;
2358 ram_block_add(new_block, &local_err, share);
2359 if (local_err) {
2360 g_free(new_block);
2361 error_propagate(errp, local_err);
2362 return NULL;
2364 return new_block;
2367 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2368 MemoryRegion *mr, Error **errp)
2370 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2371 false, mr, errp);
2374 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2375 MemoryRegion *mr, Error **errp)
2377 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2378 share, mr, errp);
2381 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2382 void (*resized)(const char*,
2383 uint64_t length,
2384 void *host),
2385 MemoryRegion *mr, Error **errp)
2387 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2388 false, mr, errp);
2391 static void reclaim_ramblock(RAMBlock *block)
2393 if (block->flags & RAM_PREALLOC) {
2395 } else if (xen_enabled()) {
2396 xen_invalidate_map_cache_entry(block->host);
2397 #ifndef _WIN32
2398 } else if (block->fd >= 0) {
2399 qemu_ram_munmap(block->host, block->max_length);
2400 close(block->fd);
2401 #endif
2402 } else {
2403 qemu_anon_ram_free(block->host, block->max_length);
2405 g_free(block);
2408 void qemu_ram_free(RAMBlock *block)
2410 if (!block) {
2411 return;
2414 if (block->host) {
2415 ram_block_notify_remove(block->host, block->max_length);
2418 qemu_mutex_lock_ramlist();
2419 QLIST_REMOVE_RCU(block, next);
2420 ram_list.mru_block = NULL;
2421 /* Write list before version */
2422 smp_wmb();
2423 ram_list.version++;
2424 call_rcu(block, reclaim_ramblock, rcu);
2425 qemu_mutex_unlock_ramlist();
2428 #ifndef _WIN32
2429 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2431 RAMBlock *block;
2432 ram_addr_t offset;
2433 int flags;
2434 void *area, *vaddr;
2436 RAMBLOCK_FOREACH(block) {
2437 offset = addr - block->offset;
2438 if (offset < block->max_length) {
2439 vaddr = ramblock_ptr(block, offset);
2440 if (block->flags & RAM_PREALLOC) {
2442 } else if (xen_enabled()) {
2443 abort();
2444 } else {
2445 flags = MAP_FIXED;
2446 if (block->fd >= 0) {
2447 flags |= (block->flags & RAM_SHARED ?
2448 MAP_SHARED : MAP_PRIVATE);
2449 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2450 flags, block->fd, offset);
2451 } else {
2453 * Remap needs to match alloc. Accelerators that
2454 * set phys_mem_alloc never remap. If they did,
2455 * we'd need a remap hook here.
2457 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2459 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2460 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2461 flags, -1, 0);
2463 if (area != vaddr) {
2464 error_report("Could not remap addr: "
2465 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2466 length, addr);
2467 exit(1);
2469 memory_try_enable_merging(vaddr, length);
2470 qemu_ram_setup_dump(vaddr, length);
2475 #endif /* !_WIN32 */
2477 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2478 * This should not be used for general purpose DMA. Use address_space_map
2479 * or address_space_rw instead. For local memory (e.g. video ram) that the
2480 * device owns, use memory_region_get_ram_ptr.
2482 * Called within RCU critical section.
2484 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2486 RAMBlock *block = ram_block;
2488 if (block == NULL) {
2489 block = qemu_get_ram_block(addr);
2490 addr -= block->offset;
2493 if (xen_enabled() && block->host == NULL) {
2494 /* We need to check if the requested address is in the RAM
2495 * because we don't want to map the entire memory in QEMU.
2496 * In that case just map until the end of the page.
2498 if (block->offset == 0) {
2499 return xen_map_cache(addr, 0, 0, false);
2502 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2504 return ramblock_ptr(block, addr);
2507 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2508 * but takes a size argument.
2510 * Called within RCU critical section.
2512 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2513 hwaddr *size, bool lock)
2515 RAMBlock *block = ram_block;
2516 if (*size == 0) {
2517 return NULL;
2520 if (block == NULL) {
2521 block = qemu_get_ram_block(addr);
2522 addr -= block->offset;
2524 *size = MIN(*size, block->max_length - addr);
2526 if (xen_enabled() && block->host == NULL) {
2527 /* We need to check if the requested address is in the RAM
2528 * because we don't want to map the entire memory in QEMU.
2529 * In that case just map the requested area.
2531 if (block->offset == 0) {
2532 return xen_map_cache(addr, *size, lock, lock);
2535 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2538 return ramblock_ptr(block, addr);
2541 /* Return the offset of a hostpointer within a ramblock */
2542 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2544 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2545 assert((uintptr_t)host >= (uintptr_t)rb->host);
2546 assert(res < rb->max_length);
2548 return res;
2552 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2553 * in that RAMBlock.
2555 * ptr: Host pointer to look up
2556 * round_offset: If true round the result offset down to a page boundary
2557 * *ram_addr: set to result ram_addr
2558 * *offset: set to result offset within the RAMBlock
2560 * Returns: RAMBlock (or NULL if not found)
2562 * By the time this function returns, the returned pointer is not protected
2563 * by RCU anymore. If the caller is not within an RCU critical section and
2564 * does not hold the iothread lock, it must have other means of protecting the
2565 * pointer, such as a reference to the region that includes the incoming
2566 * ram_addr_t.
2568 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2569 ram_addr_t *offset)
2571 RAMBlock *block;
2572 uint8_t *host = ptr;
2574 if (xen_enabled()) {
2575 ram_addr_t ram_addr;
2576 rcu_read_lock();
2577 ram_addr = xen_ram_addr_from_mapcache(ptr);
2578 block = qemu_get_ram_block(ram_addr);
2579 if (block) {
2580 *offset = ram_addr - block->offset;
2582 rcu_read_unlock();
2583 return block;
2586 rcu_read_lock();
2587 block = atomic_rcu_read(&ram_list.mru_block);
2588 if (block && block->host && host - block->host < block->max_length) {
2589 goto found;
2592 RAMBLOCK_FOREACH(block) {
2593 /* This case append when the block is not mapped. */
2594 if (block->host == NULL) {
2595 continue;
2597 if (host - block->host < block->max_length) {
2598 goto found;
2602 rcu_read_unlock();
2603 return NULL;
2605 found:
2606 *offset = (host - block->host);
2607 if (round_offset) {
2608 *offset &= TARGET_PAGE_MASK;
2610 rcu_read_unlock();
2611 return block;
2615 * Finds the named RAMBlock
2617 * name: The name of RAMBlock to find
2619 * Returns: RAMBlock (or NULL if not found)
2621 RAMBlock *qemu_ram_block_by_name(const char *name)
2623 RAMBlock *block;
2625 RAMBLOCK_FOREACH(block) {
2626 if (!strcmp(name, block->idstr)) {
2627 return block;
2631 return NULL;
2634 /* Some of the softmmu routines need to translate from a host pointer
2635 (typically a TLB entry) back to a ram offset. */
2636 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2638 RAMBlock *block;
2639 ram_addr_t offset;
2641 block = qemu_ram_block_from_host(ptr, false, &offset);
2642 if (!block) {
2643 return RAM_ADDR_INVALID;
2646 return block->offset + offset;
2649 /* Called within RCU critical section. */
2650 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2651 CPUState *cpu,
2652 vaddr mem_vaddr,
2653 ram_addr_t ram_addr,
2654 unsigned size)
2656 ndi->cpu = cpu;
2657 ndi->ram_addr = ram_addr;
2658 ndi->mem_vaddr = mem_vaddr;
2659 ndi->size = size;
2660 ndi->pages = NULL;
2662 assert(tcg_enabled());
2663 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2664 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2665 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2669 /* Called within RCU critical section. */
2670 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2672 if (ndi->pages) {
2673 assert(tcg_enabled());
2674 page_collection_unlock(ndi->pages);
2675 ndi->pages = NULL;
2678 /* Set both VGA and migration bits for simplicity and to remove
2679 * the notdirty callback faster.
2681 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2682 DIRTY_CLIENTS_NOCODE);
2683 /* we remove the notdirty callback only if the code has been
2684 flushed */
2685 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2686 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2690 /* Called within RCU critical section. */
2691 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2692 uint64_t val, unsigned size)
2694 NotDirtyInfo ndi;
2696 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2697 ram_addr, size);
2699 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2700 memory_notdirty_write_complete(&ndi);
2703 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2704 unsigned size, bool is_write,
2705 MemTxAttrs attrs)
2707 return is_write;
2710 static const MemoryRegionOps notdirty_mem_ops = {
2711 .write = notdirty_mem_write,
2712 .valid.accepts = notdirty_mem_accepts,
2713 .endianness = DEVICE_NATIVE_ENDIAN,
2714 .valid = {
2715 .min_access_size = 1,
2716 .max_access_size = 8,
2717 .unaligned = false,
2719 .impl = {
2720 .min_access_size = 1,
2721 .max_access_size = 8,
2722 .unaligned = false,
2726 /* Generate a debug exception if a watchpoint has been hit. */
2727 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2729 CPUState *cpu = current_cpu;
2730 CPUClass *cc = CPU_GET_CLASS(cpu);
2731 target_ulong vaddr;
2732 CPUWatchpoint *wp;
2734 assert(tcg_enabled());
2735 if (cpu->watchpoint_hit) {
2736 /* We re-entered the check after replacing the TB. Now raise
2737 * the debug interrupt so that is will trigger after the
2738 * current instruction. */
2739 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2740 return;
2742 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2743 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2744 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2745 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2746 && (wp->flags & flags)) {
2747 if (flags == BP_MEM_READ) {
2748 wp->flags |= BP_WATCHPOINT_HIT_READ;
2749 } else {
2750 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2752 wp->hitaddr = vaddr;
2753 wp->hitattrs = attrs;
2754 if (!cpu->watchpoint_hit) {
2755 if (wp->flags & BP_CPU &&
2756 !cc->debug_check_watchpoint(cpu, wp)) {
2757 wp->flags &= ~BP_WATCHPOINT_HIT;
2758 continue;
2760 cpu->watchpoint_hit = wp;
2762 mmap_lock();
2763 tb_check_watchpoint(cpu);
2764 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2765 cpu->exception_index = EXCP_DEBUG;
2766 mmap_unlock();
2767 cpu_loop_exit(cpu);
2768 } else {
2769 /* Force execution of one insn next time. */
2770 cpu->cflags_next_tb = 1 | curr_cflags();
2771 mmap_unlock();
2772 cpu_loop_exit_noexc(cpu);
2775 } else {
2776 wp->flags &= ~BP_WATCHPOINT_HIT;
2781 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2782 so these check for a hit then pass through to the normal out-of-line
2783 phys routines. */
2784 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2785 unsigned size, MemTxAttrs attrs)
2787 MemTxResult res;
2788 uint64_t data;
2789 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2790 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2792 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2793 switch (size) {
2794 case 1:
2795 data = address_space_ldub(as, addr, attrs, &res);
2796 break;
2797 case 2:
2798 data = address_space_lduw(as, addr, attrs, &res);
2799 break;
2800 case 4:
2801 data = address_space_ldl(as, addr, attrs, &res);
2802 break;
2803 case 8:
2804 data = address_space_ldq(as, addr, attrs, &res);
2805 break;
2806 default: abort();
2808 *pdata = data;
2809 return res;
2812 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2813 uint64_t val, unsigned size,
2814 MemTxAttrs attrs)
2816 MemTxResult res;
2817 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2818 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2820 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2821 switch (size) {
2822 case 1:
2823 address_space_stb(as, addr, val, attrs, &res);
2824 break;
2825 case 2:
2826 address_space_stw(as, addr, val, attrs, &res);
2827 break;
2828 case 4:
2829 address_space_stl(as, addr, val, attrs, &res);
2830 break;
2831 case 8:
2832 address_space_stq(as, addr, val, attrs, &res);
2833 break;
2834 default: abort();
2836 return res;
2839 static const MemoryRegionOps watch_mem_ops = {
2840 .read_with_attrs = watch_mem_read,
2841 .write_with_attrs = watch_mem_write,
2842 .endianness = DEVICE_NATIVE_ENDIAN,
2843 .valid = {
2844 .min_access_size = 1,
2845 .max_access_size = 8,
2846 .unaligned = false,
2848 .impl = {
2849 .min_access_size = 1,
2850 .max_access_size = 8,
2851 .unaligned = false,
2855 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2856 MemTxAttrs attrs, uint8_t *buf, int len);
2857 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2858 const uint8_t *buf, int len);
2859 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2860 bool is_write, MemTxAttrs attrs);
2862 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2863 unsigned len, MemTxAttrs attrs)
2865 subpage_t *subpage = opaque;
2866 uint8_t buf[8];
2867 MemTxResult res;
2869 #if defined(DEBUG_SUBPAGE)
2870 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2871 subpage, len, addr);
2872 #endif
2873 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2874 if (res) {
2875 return res;
2877 *data = ldn_p(buf, len);
2878 return MEMTX_OK;
2881 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2882 uint64_t value, unsigned len, MemTxAttrs attrs)
2884 subpage_t *subpage = opaque;
2885 uint8_t buf[8];
2887 #if defined(DEBUG_SUBPAGE)
2888 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2889 " value %"PRIx64"\n",
2890 __func__, subpage, len, addr, value);
2891 #endif
2892 stn_p(buf, len, value);
2893 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2896 static bool subpage_accepts(void *opaque, hwaddr addr,
2897 unsigned len, bool is_write,
2898 MemTxAttrs attrs)
2900 subpage_t *subpage = opaque;
2901 #if defined(DEBUG_SUBPAGE)
2902 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2903 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2904 #endif
2906 return flatview_access_valid(subpage->fv, addr + subpage->base,
2907 len, is_write, attrs);
2910 static const MemoryRegionOps subpage_ops = {
2911 .read_with_attrs = subpage_read,
2912 .write_with_attrs = subpage_write,
2913 .impl.min_access_size = 1,
2914 .impl.max_access_size = 8,
2915 .valid.min_access_size = 1,
2916 .valid.max_access_size = 8,
2917 .valid.accepts = subpage_accepts,
2918 .endianness = DEVICE_NATIVE_ENDIAN,
2921 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2922 uint16_t section)
2924 int idx, eidx;
2926 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2927 return -1;
2928 idx = SUBPAGE_IDX(start);
2929 eidx = SUBPAGE_IDX(end);
2930 #if defined(DEBUG_SUBPAGE)
2931 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2932 __func__, mmio, start, end, idx, eidx, section);
2933 #endif
2934 for (; idx <= eidx; idx++) {
2935 mmio->sub_section[idx] = section;
2938 return 0;
2941 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2943 subpage_t *mmio;
2945 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2946 mmio->fv = fv;
2947 mmio->base = base;
2948 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2949 NULL, TARGET_PAGE_SIZE);
2950 mmio->iomem.subpage = true;
2951 #if defined(DEBUG_SUBPAGE)
2952 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2953 mmio, base, TARGET_PAGE_SIZE);
2954 #endif
2955 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2957 return mmio;
2960 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2962 assert(fv);
2963 MemoryRegionSection section = {
2964 .fv = fv,
2965 .mr = mr,
2966 .offset_within_address_space = 0,
2967 .offset_within_region = 0,
2968 .size = int128_2_64(),
2971 return phys_section_add(map, &section);
2974 static void readonly_mem_write(void *opaque, hwaddr addr,
2975 uint64_t val, unsigned size)
2977 /* Ignore any write to ROM. */
2980 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2981 unsigned size, bool is_write,
2982 MemTxAttrs attrs)
2984 return is_write;
2987 /* This will only be used for writes, because reads are special cased
2988 * to directly access the underlying host ram.
2990 static const MemoryRegionOps readonly_mem_ops = {
2991 .write = readonly_mem_write,
2992 .valid.accepts = readonly_mem_accepts,
2993 .endianness = DEVICE_NATIVE_ENDIAN,
2994 .valid = {
2995 .min_access_size = 1,
2996 .max_access_size = 8,
2997 .unaligned = false,
2999 .impl = {
3000 .min_access_size = 1,
3001 .max_access_size = 8,
3002 .unaligned = false,
3006 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3007 hwaddr index, MemTxAttrs attrs)
3009 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3010 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3011 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3012 MemoryRegionSection *sections = d->map.sections;
3014 return &sections[index & ~TARGET_PAGE_MASK];
3017 static void io_mem_init(void)
3019 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3020 NULL, NULL, UINT64_MAX);
3021 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3022 NULL, UINT64_MAX);
3024 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3025 * which can be called without the iothread mutex.
3027 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3028 NULL, UINT64_MAX);
3029 memory_region_clear_global_locking(&io_mem_notdirty);
3031 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3032 NULL, UINT64_MAX);
3035 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3037 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3038 uint16_t n;
3040 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3041 assert(n == PHYS_SECTION_UNASSIGNED);
3042 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3043 assert(n == PHYS_SECTION_NOTDIRTY);
3044 n = dummy_section(&d->map, fv, &io_mem_rom);
3045 assert(n == PHYS_SECTION_ROM);
3046 n = dummy_section(&d->map, fv, &io_mem_watch);
3047 assert(n == PHYS_SECTION_WATCH);
3049 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3051 return d;
3054 void address_space_dispatch_free(AddressSpaceDispatch *d)
3056 phys_sections_free(&d->map);
3057 g_free(d);
3060 static void tcg_commit(MemoryListener *listener)
3062 CPUAddressSpace *cpuas;
3063 AddressSpaceDispatch *d;
3065 assert(tcg_enabled());
3066 /* since each CPU stores ram addresses in its TLB cache, we must
3067 reset the modified entries */
3068 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3069 cpu_reloading_memory_map();
3070 /* The CPU and TLB are protected by the iothread lock.
3071 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3072 * may have split the RCU critical section.
3074 d = address_space_to_dispatch(cpuas->as);
3075 atomic_rcu_set(&cpuas->memory_dispatch, d);
3076 tlb_flush(cpuas->cpu);
3079 static void memory_map_init(void)
3081 system_memory = g_malloc(sizeof(*system_memory));
3083 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3084 address_space_init(&address_space_memory, system_memory, "memory");
3086 system_io = g_malloc(sizeof(*system_io));
3087 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3088 65536);
3089 address_space_init(&address_space_io, system_io, "I/O");
3092 MemoryRegion *get_system_memory(void)
3094 return system_memory;
3097 MemoryRegion *get_system_io(void)
3099 return system_io;
3102 #endif /* !defined(CONFIG_USER_ONLY) */
3104 /* physical memory access (slow version, mainly for debug) */
3105 #if defined(CONFIG_USER_ONLY)
3106 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3107 uint8_t *buf, int len, int is_write)
3109 int l, flags;
3110 target_ulong page;
3111 void * p;
3113 while (len > 0) {
3114 page = addr & TARGET_PAGE_MASK;
3115 l = (page + TARGET_PAGE_SIZE) - addr;
3116 if (l > len)
3117 l = len;
3118 flags = page_get_flags(page);
3119 if (!(flags & PAGE_VALID))
3120 return -1;
3121 if (is_write) {
3122 if (!(flags & PAGE_WRITE))
3123 return -1;
3124 /* XXX: this code should not depend on lock_user */
3125 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3126 return -1;
3127 memcpy(p, buf, l);
3128 unlock_user(p, addr, l);
3129 } else {
3130 if (!(flags & PAGE_READ))
3131 return -1;
3132 /* XXX: this code should not depend on lock_user */
3133 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3134 return -1;
3135 memcpy(buf, p, l);
3136 unlock_user(p, addr, 0);
3138 len -= l;
3139 buf += l;
3140 addr += l;
3142 return 0;
3145 #else
3147 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3148 hwaddr length)
3150 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3151 addr += memory_region_get_ram_addr(mr);
3153 /* No early return if dirty_log_mask is or becomes 0, because
3154 * cpu_physical_memory_set_dirty_range will still call
3155 * xen_modified_memory.
3157 if (dirty_log_mask) {
3158 dirty_log_mask =
3159 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3161 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3162 assert(tcg_enabled());
3163 tb_invalidate_phys_range(addr, addr + length);
3164 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3166 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3169 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3171 unsigned access_size_max = mr->ops->valid.max_access_size;
3173 /* Regions are assumed to support 1-4 byte accesses unless
3174 otherwise specified. */
3175 if (access_size_max == 0) {
3176 access_size_max = 4;
3179 /* Bound the maximum access by the alignment of the address. */
3180 if (!mr->ops->impl.unaligned) {
3181 unsigned align_size_max = addr & -addr;
3182 if (align_size_max != 0 && align_size_max < access_size_max) {
3183 access_size_max = align_size_max;
3187 /* Don't attempt accesses larger than the maximum. */
3188 if (l > access_size_max) {
3189 l = access_size_max;
3191 l = pow2floor(l);
3193 return l;
3196 static bool prepare_mmio_access(MemoryRegion *mr)
3198 bool unlocked = !qemu_mutex_iothread_locked();
3199 bool release_lock = false;
3201 if (unlocked && mr->global_locking) {
3202 qemu_mutex_lock_iothread();
3203 unlocked = false;
3204 release_lock = true;
3206 if (mr->flush_coalesced_mmio) {
3207 if (unlocked) {
3208 qemu_mutex_lock_iothread();
3210 qemu_flush_coalesced_mmio_buffer();
3211 if (unlocked) {
3212 qemu_mutex_unlock_iothread();
3216 return release_lock;
3219 /* Called within RCU critical section. */
3220 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3221 MemTxAttrs attrs,
3222 const uint8_t *buf,
3223 int len, hwaddr addr1,
3224 hwaddr l, MemoryRegion *mr)
3226 uint8_t *ptr;
3227 uint64_t val;
3228 MemTxResult result = MEMTX_OK;
3229 bool release_lock = false;
3231 for (;;) {
3232 if (!memory_access_is_direct(mr, true)) {
3233 release_lock |= prepare_mmio_access(mr);
3234 l = memory_access_size(mr, l, addr1);
3235 /* XXX: could force current_cpu to NULL to avoid
3236 potential bugs */
3237 val = ldn_p(buf, l);
3238 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3239 } else {
3240 /* RAM case */
3241 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3242 memcpy(ptr, buf, l);
3243 invalidate_and_set_dirty(mr, addr1, l);
3246 if (release_lock) {
3247 qemu_mutex_unlock_iothread();
3248 release_lock = false;
3251 len -= l;
3252 buf += l;
3253 addr += l;
3255 if (!len) {
3256 break;
3259 l = len;
3260 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3263 return result;
3266 /* Called from RCU critical section. */
3267 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3268 const uint8_t *buf, int len)
3270 hwaddr l;
3271 hwaddr addr1;
3272 MemoryRegion *mr;
3273 MemTxResult result = MEMTX_OK;
3275 l = len;
3276 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3277 result = flatview_write_continue(fv, addr, attrs, buf, len,
3278 addr1, l, mr);
3280 return result;
3283 /* Called within RCU critical section. */
3284 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3285 MemTxAttrs attrs, uint8_t *buf,
3286 int len, hwaddr addr1, hwaddr l,
3287 MemoryRegion *mr)
3289 uint8_t *ptr;
3290 uint64_t val;
3291 MemTxResult result = MEMTX_OK;
3292 bool release_lock = false;
3294 for (;;) {
3295 if (!memory_access_is_direct(mr, false)) {
3296 /* I/O case */
3297 release_lock |= prepare_mmio_access(mr);
3298 l = memory_access_size(mr, l, addr1);
3299 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3300 stn_p(buf, l, val);
3301 } else {
3302 /* RAM case */
3303 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3304 memcpy(buf, ptr, l);
3307 if (release_lock) {
3308 qemu_mutex_unlock_iothread();
3309 release_lock = false;
3312 len -= l;
3313 buf += l;
3314 addr += l;
3316 if (!len) {
3317 break;
3320 l = len;
3321 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3324 return result;
3327 /* Called from RCU critical section. */
3328 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3329 MemTxAttrs attrs, uint8_t *buf, int len)
3331 hwaddr l;
3332 hwaddr addr1;
3333 MemoryRegion *mr;
3335 l = len;
3336 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3337 return flatview_read_continue(fv, addr, attrs, buf, len,
3338 addr1, l, mr);
3341 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3342 MemTxAttrs attrs, uint8_t *buf, int len)
3344 MemTxResult result = MEMTX_OK;
3345 FlatView *fv;
3347 if (len > 0) {
3348 rcu_read_lock();
3349 fv = address_space_to_flatview(as);
3350 result = flatview_read(fv, addr, attrs, buf, len);
3351 rcu_read_unlock();
3354 return result;
3357 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3358 MemTxAttrs attrs,
3359 const uint8_t *buf, int len)
3361 MemTxResult result = MEMTX_OK;
3362 FlatView *fv;
3364 if (len > 0) {
3365 rcu_read_lock();
3366 fv = address_space_to_flatview(as);
3367 result = flatview_write(fv, addr, attrs, buf, len);
3368 rcu_read_unlock();
3371 return result;
3374 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3375 uint8_t *buf, int len, bool is_write)
3377 if (is_write) {
3378 return address_space_write(as, addr, attrs, buf, len);
3379 } else {
3380 return address_space_read_full(as, addr, attrs, buf, len);
3384 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3385 int len, int is_write)
3387 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3388 buf, len, is_write);
3391 enum write_rom_type {
3392 WRITE_DATA,
3393 FLUSH_CACHE,
3396 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3397 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3399 hwaddr l;
3400 uint8_t *ptr;
3401 hwaddr addr1;
3402 MemoryRegion *mr;
3404 rcu_read_lock();
3405 while (len > 0) {
3406 l = len;
3407 mr = address_space_translate(as, addr, &addr1, &l, true,
3408 MEMTXATTRS_UNSPECIFIED);
3410 if (!(memory_region_is_ram(mr) ||
3411 memory_region_is_romd(mr))) {
3412 l = memory_access_size(mr, l, addr1);
3413 } else {
3414 /* ROM/RAM case */
3415 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3416 switch (type) {
3417 case WRITE_DATA:
3418 memcpy(ptr, buf, l);
3419 invalidate_and_set_dirty(mr, addr1, l);
3420 break;
3421 case FLUSH_CACHE:
3422 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3423 break;
3426 len -= l;
3427 buf += l;
3428 addr += l;
3430 rcu_read_unlock();
3433 /* used for ROM loading : can write in RAM and ROM */
3434 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3435 const uint8_t *buf, int len)
3437 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3440 void cpu_flush_icache_range(hwaddr start, int len)
3443 * This function should do the same thing as an icache flush that was
3444 * triggered from within the guest. For TCG we are always cache coherent,
3445 * so there is no need to flush anything. For KVM / Xen we need to flush
3446 * the host's instruction cache at least.
3448 if (tcg_enabled()) {
3449 return;
3452 cpu_physical_memory_write_rom_internal(&address_space_memory,
3453 start, NULL, len, FLUSH_CACHE);
3456 typedef struct {
3457 MemoryRegion *mr;
3458 void *buffer;
3459 hwaddr addr;
3460 hwaddr len;
3461 bool in_use;
3462 } BounceBuffer;
3464 static BounceBuffer bounce;
3466 typedef struct MapClient {
3467 QEMUBH *bh;
3468 QLIST_ENTRY(MapClient) link;
3469 } MapClient;
3471 QemuMutex map_client_list_lock;
3472 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3473 = QLIST_HEAD_INITIALIZER(map_client_list);
3475 static void cpu_unregister_map_client_do(MapClient *client)
3477 QLIST_REMOVE(client, link);
3478 g_free(client);
3481 static void cpu_notify_map_clients_locked(void)
3483 MapClient *client;
3485 while (!QLIST_EMPTY(&map_client_list)) {
3486 client = QLIST_FIRST(&map_client_list);
3487 qemu_bh_schedule(client->bh);
3488 cpu_unregister_map_client_do(client);
3492 void cpu_register_map_client(QEMUBH *bh)
3494 MapClient *client = g_malloc(sizeof(*client));
3496 qemu_mutex_lock(&map_client_list_lock);
3497 client->bh = bh;
3498 QLIST_INSERT_HEAD(&map_client_list, client, link);
3499 if (!atomic_read(&bounce.in_use)) {
3500 cpu_notify_map_clients_locked();
3502 qemu_mutex_unlock(&map_client_list_lock);
3505 void cpu_exec_init_all(void)
3507 qemu_mutex_init(&ram_list.mutex);
3508 /* The data structures we set up here depend on knowing the page size,
3509 * so no more changes can be made after this point.
3510 * In an ideal world, nothing we did before we had finished the
3511 * machine setup would care about the target page size, and we could
3512 * do this much later, rather than requiring board models to state
3513 * up front what their requirements are.
3515 finalize_target_page_bits();
3516 io_mem_init();
3517 memory_map_init();
3518 qemu_mutex_init(&map_client_list_lock);
3521 void cpu_unregister_map_client(QEMUBH *bh)
3523 MapClient *client;
3525 qemu_mutex_lock(&map_client_list_lock);
3526 QLIST_FOREACH(client, &map_client_list, link) {
3527 if (client->bh == bh) {
3528 cpu_unregister_map_client_do(client);
3529 break;
3532 qemu_mutex_unlock(&map_client_list_lock);
3535 static void cpu_notify_map_clients(void)
3537 qemu_mutex_lock(&map_client_list_lock);
3538 cpu_notify_map_clients_locked();
3539 qemu_mutex_unlock(&map_client_list_lock);
3542 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3543 bool is_write, MemTxAttrs attrs)
3545 MemoryRegion *mr;
3546 hwaddr l, xlat;
3548 while (len > 0) {
3549 l = len;
3550 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3551 if (!memory_access_is_direct(mr, is_write)) {
3552 l = memory_access_size(mr, l, addr);
3553 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3554 return false;
3558 len -= l;
3559 addr += l;
3561 return true;
3564 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3565 int len, bool is_write,
3566 MemTxAttrs attrs)
3568 FlatView *fv;
3569 bool result;
3571 rcu_read_lock();
3572 fv = address_space_to_flatview(as);
3573 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3574 rcu_read_unlock();
3575 return result;
3578 static hwaddr
3579 flatview_extend_translation(FlatView *fv, hwaddr addr,
3580 hwaddr target_len,
3581 MemoryRegion *mr, hwaddr base, hwaddr len,
3582 bool is_write, MemTxAttrs attrs)
3584 hwaddr done = 0;
3585 hwaddr xlat;
3586 MemoryRegion *this_mr;
3588 for (;;) {
3589 target_len -= len;
3590 addr += len;
3591 done += len;
3592 if (target_len == 0) {
3593 return done;
3596 len = target_len;
3597 this_mr = flatview_translate(fv, addr, &xlat,
3598 &len, is_write, attrs);
3599 if (this_mr != mr || xlat != base + done) {
3600 return done;
3605 /* Map a physical memory region into a host virtual address.
3606 * May map a subset of the requested range, given by and returned in *plen.
3607 * May return NULL if resources needed to perform the mapping are exhausted.
3608 * Use only for reads OR writes - not for read-modify-write operations.
3609 * Use cpu_register_map_client() to know when retrying the map operation is
3610 * likely to succeed.
3612 void *address_space_map(AddressSpace *as,
3613 hwaddr addr,
3614 hwaddr *plen,
3615 bool is_write,
3616 MemTxAttrs attrs)
3618 hwaddr len = *plen;
3619 hwaddr l, xlat;
3620 MemoryRegion *mr;
3621 void *ptr;
3622 FlatView *fv;
3624 if (len == 0) {
3625 return NULL;
3628 l = len;
3629 rcu_read_lock();
3630 fv = address_space_to_flatview(as);
3631 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3633 if (!memory_access_is_direct(mr, is_write)) {
3634 if (atomic_xchg(&bounce.in_use, true)) {
3635 rcu_read_unlock();
3636 return NULL;
3638 /* Avoid unbounded allocations */
3639 l = MIN(l, TARGET_PAGE_SIZE);
3640 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3641 bounce.addr = addr;
3642 bounce.len = l;
3644 memory_region_ref(mr);
3645 bounce.mr = mr;
3646 if (!is_write) {
3647 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3648 bounce.buffer, l);
3651 rcu_read_unlock();
3652 *plen = l;
3653 return bounce.buffer;
3657 memory_region_ref(mr);
3658 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3659 l, is_write, attrs);
3660 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3661 rcu_read_unlock();
3663 return ptr;
3666 /* Unmaps a memory region previously mapped by address_space_map().
3667 * Will also mark the memory as dirty if is_write == 1. access_len gives
3668 * the amount of memory that was actually read or written by the caller.
3670 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3671 int is_write, hwaddr access_len)
3673 if (buffer != bounce.buffer) {
3674 MemoryRegion *mr;
3675 ram_addr_t addr1;
3677 mr = memory_region_from_host(buffer, &addr1);
3678 assert(mr != NULL);
3679 if (is_write) {
3680 invalidate_and_set_dirty(mr, addr1, access_len);
3682 if (xen_enabled()) {
3683 xen_invalidate_map_cache_entry(buffer);
3685 memory_region_unref(mr);
3686 return;
3688 if (is_write) {
3689 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3690 bounce.buffer, access_len);
3692 qemu_vfree(bounce.buffer);
3693 bounce.buffer = NULL;
3694 memory_region_unref(bounce.mr);
3695 atomic_mb_set(&bounce.in_use, false);
3696 cpu_notify_map_clients();
3699 void *cpu_physical_memory_map(hwaddr addr,
3700 hwaddr *plen,
3701 int is_write)
3703 return address_space_map(&address_space_memory, addr, plen, is_write,
3704 MEMTXATTRS_UNSPECIFIED);
3707 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3708 int is_write, hwaddr access_len)
3710 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3713 #define ARG1_DECL AddressSpace *as
3714 #define ARG1 as
3715 #define SUFFIX
3716 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3717 #define RCU_READ_LOCK(...) rcu_read_lock()
3718 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3719 #include "memory_ldst.inc.c"
3721 int64_t address_space_cache_init(MemoryRegionCache *cache,
3722 AddressSpace *as,
3723 hwaddr addr,
3724 hwaddr len,
3725 bool is_write)
3727 AddressSpaceDispatch *d;
3728 hwaddr l;
3729 MemoryRegion *mr;
3731 assert(len > 0);
3733 l = len;
3734 cache->fv = address_space_get_flatview(as);
3735 d = flatview_to_dispatch(cache->fv);
3736 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3738 mr = cache->mrs.mr;
3739 memory_region_ref(mr);
3740 if (memory_access_is_direct(mr, is_write)) {
3741 /* We don't care about the memory attributes here as we're only
3742 * doing this if we found actual RAM, which behaves the same
3743 * regardless of attributes; so UNSPECIFIED is fine.
3745 l = flatview_extend_translation(cache->fv, addr, len, mr,
3746 cache->xlat, l, is_write,
3747 MEMTXATTRS_UNSPECIFIED);
3748 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3749 } else {
3750 cache->ptr = NULL;
3753 cache->len = l;
3754 cache->is_write = is_write;
3755 return l;
3758 void address_space_cache_invalidate(MemoryRegionCache *cache,
3759 hwaddr addr,
3760 hwaddr access_len)
3762 assert(cache->is_write);
3763 if (likely(cache->ptr)) {
3764 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3768 void address_space_cache_destroy(MemoryRegionCache *cache)
3770 if (!cache->mrs.mr) {
3771 return;
3774 if (xen_enabled()) {
3775 xen_invalidate_map_cache_entry(cache->ptr);
3777 memory_region_unref(cache->mrs.mr);
3778 flatview_unref(cache->fv);
3779 cache->mrs.mr = NULL;
3780 cache->fv = NULL;
3783 /* Called from RCU critical section. This function has the same
3784 * semantics as address_space_translate, but it only works on a
3785 * predefined range of a MemoryRegion that was mapped with
3786 * address_space_cache_init.
3788 static inline MemoryRegion *address_space_translate_cached(
3789 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3790 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3792 MemoryRegionSection section;
3793 MemoryRegion *mr;
3794 IOMMUMemoryRegion *iommu_mr;
3795 AddressSpace *target_as;
3797 assert(!cache->ptr);
3798 *xlat = addr + cache->xlat;
3800 mr = cache->mrs.mr;
3801 iommu_mr = memory_region_get_iommu(mr);
3802 if (!iommu_mr) {
3803 /* MMIO region. */
3804 return mr;
3807 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3808 NULL, is_write, true,
3809 &target_as, attrs);
3810 return section.mr;
3813 /* Called from RCU critical section. address_space_read_cached uses this
3814 * out of line function when the target is an MMIO or IOMMU region.
3816 void
3817 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3818 void *buf, int len)
3820 hwaddr addr1, l;
3821 MemoryRegion *mr;
3823 l = len;
3824 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3825 MEMTXATTRS_UNSPECIFIED);
3826 flatview_read_continue(cache->fv,
3827 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3828 addr1, l, mr);
3831 /* Called from RCU critical section. address_space_write_cached uses this
3832 * out of line function when the target is an MMIO or IOMMU region.
3834 void
3835 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3836 const void *buf, int len)
3838 hwaddr addr1, l;
3839 MemoryRegion *mr;
3841 l = len;
3842 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3843 MEMTXATTRS_UNSPECIFIED);
3844 flatview_write_continue(cache->fv,
3845 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3846 addr1, l, mr);
3849 #define ARG1_DECL MemoryRegionCache *cache
3850 #define ARG1 cache
3851 #define SUFFIX _cached_slow
3852 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3853 #define RCU_READ_LOCK() ((void)0)
3854 #define RCU_READ_UNLOCK() ((void)0)
3855 #include "memory_ldst.inc.c"
3857 /* virtual memory access for debug (includes writing to ROM) */
3858 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3859 uint8_t *buf, int len, int is_write)
3861 int l;
3862 hwaddr phys_addr;
3863 target_ulong page;
3865 cpu_synchronize_state(cpu);
3866 while (len > 0) {
3867 int asidx;
3868 MemTxAttrs attrs;
3870 page = addr & TARGET_PAGE_MASK;
3871 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3872 asidx = cpu_asidx_from_attrs(cpu, attrs);
3873 /* if no physical page mapped, return an error */
3874 if (phys_addr == -1)
3875 return -1;
3876 l = (page + TARGET_PAGE_SIZE) - addr;
3877 if (l > len)
3878 l = len;
3879 phys_addr += (addr & ~TARGET_PAGE_MASK);
3880 if (is_write) {
3881 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3882 phys_addr, buf, l);
3883 } else {
3884 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3885 MEMTXATTRS_UNSPECIFIED,
3886 buf, l, 0);
3888 len -= l;
3889 buf += l;
3890 addr += l;
3892 return 0;
3896 * Allows code that needs to deal with migration bitmaps etc to still be built
3897 * target independent.
3899 size_t qemu_target_page_size(void)
3901 return TARGET_PAGE_SIZE;
3904 int qemu_target_page_bits(void)
3906 return TARGET_PAGE_BITS;
3909 int qemu_target_page_bits_min(void)
3911 return TARGET_PAGE_BITS_MIN;
3913 #endif
3915 bool target_words_bigendian(void)
3917 #if defined(TARGET_WORDS_BIGENDIAN)
3918 return true;
3919 #else
3920 return false;
3921 #endif
3924 #ifndef CONFIG_USER_ONLY
3925 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3927 MemoryRegion*mr;
3928 hwaddr l = 1;
3929 bool res;
3931 rcu_read_lock();
3932 mr = address_space_translate(&address_space_memory,
3933 phys_addr, &phys_addr, &l, false,
3934 MEMTXATTRS_UNSPECIFIED);
3936 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3937 rcu_read_unlock();
3938 return res;
3941 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3943 RAMBlock *block;
3944 int ret = 0;
3946 rcu_read_lock();
3947 RAMBLOCK_FOREACH(block) {
3948 ret = func(block->idstr, block->host, block->offset,
3949 block->used_length, opaque);
3950 if (ret) {
3951 break;
3954 rcu_read_unlock();
3955 return ret;
3958 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3960 RAMBlock *block;
3961 int ret = 0;
3963 rcu_read_lock();
3964 RAMBLOCK_FOREACH(block) {
3965 if (!qemu_ram_is_migratable(block)) {
3966 continue;
3968 ret = func(block->idstr, block->host, block->offset,
3969 block->used_length, opaque);
3970 if (ret) {
3971 break;
3974 rcu_read_unlock();
3975 return ret;
3979 * Unmap pages of memory from start to start+length such that
3980 * they a) read as 0, b) Trigger whatever fault mechanism
3981 * the OS provides for postcopy.
3982 * The pages must be unmapped by the end of the function.
3983 * Returns: 0 on success, none-0 on failure
3986 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3988 int ret = -1;
3990 uint8_t *host_startaddr = rb->host + start;
3992 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3993 error_report("ram_block_discard_range: Unaligned start address: %p",
3994 host_startaddr);
3995 goto err;
3998 if ((start + length) <= rb->used_length) {
3999 bool need_madvise, need_fallocate;
4000 uint8_t *host_endaddr = host_startaddr + length;
4001 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4002 error_report("ram_block_discard_range: Unaligned end address: %p",
4003 host_endaddr);
4004 goto err;
4007 errno = ENOTSUP; /* If we are missing MADVISE etc */
4009 /* The logic here is messy;
4010 * madvise DONTNEED fails for hugepages
4011 * fallocate works on hugepages and shmem
4013 need_madvise = (rb->page_size == qemu_host_page_size);
4014 need_fallocate = rb->fd != -1;
4015 if (need_fallocate) {
4016 /* For a file, this causes the area of the file to be zero'd
4017 * if read, and for hugetlbfs also causes it to be unmapped
4018 * so a userfault will trigger.
4020 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4021 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4022 start, length);
4023 if (ret) {
4024 ret = -errno;
4025 error_report("ram_block_discard_range: Failed to fallocate "
4026 "%s:%" PRIx64 " +%zx (%d)",
4027 rb->idstr, start, length, ret);
4028 goto err;
4030 #else
4031 ret = -ENOSYS;
4032 error_report("ram_block_discard_range: fallocate not available/file"
4033 "%s:%" PRIx64 " +%zx (%d)",
4034 rb->idstr, start, length, ret);
4035 goto err;
4036 #endif
4038 if (need_madvise) {
4039 /* For normal RAM this causes it to be unmapped,
4040 * for shared memory it causes the local mapping to disappear
4041 * and to fall back on the file contents (which we just
4042 * fallocate'd away).
4044 #if defined(CONFIG_MADVISE)
4045 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4046 if (ret) {
4047 ret = -errno;
4048 error_report("ram_block_discard_range: Failed to discard range "
4049 "%s:%" PRIx64 " +%zx (%d)",
4050 rb->idstr, start, length, ret);
4051 goto err;
4053 #else
4054 ret = -ENOSYS;
4055 error_report("ram_block_discard_range: MADVISE not available"
4056 "%s:%" PRIx64 " +%zx (%d)",
4057 rb->idstr, start, length, ret);
4058 goto err;
4059 #endif
4061 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4062 need_madvise, need_fallocate, ret);
4063 } else {
4064 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4065 "/%zx/" RAM_ADDR_FMT")",
4066 rb->idstr, start, length, rb->used_length);
4069 err:
4070 return ret;
4073 bool ramblock_is_pmem(RAMBlock *rb)
4075 return rb->flags & RAM_PMEM;
4078 #endif
4080 void page_size_init(void)
4082 /* NOTE: we can always suppose that qemu_host_page_size >=
4083 TARGET_PAGE_SIZE */
4084 if (qemu_host_page_size == 0) {
4085 qemu_host_page_size = qemu_real_host_page_size;
4087 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4088 qemu_host_page_size = TARGET_PAGE_SIZE;
4090 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4093 #if !defined(CONFIG_USER_ONLY)
4095 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4096 int start, int end, int skip, int ptr)
4098 if (start == end - 1) {
4099 mon(f, "\t%3d ", start);
4100 } else {
4101 mon(f, "\t%3d..%-3d ", start, end - 1);
4103 mon(f, " skip=%d ", skip);
4104 if (ptr == PHYS_MAP_NODE_NIL) {
4105 mon(f, " ptr=NIL");
4106 } else if (!skip) {
4107 mon(f, " ptr=#%d", ptr);
4108 } else {
4109 mon(f, " ptr=[%d]", ptr);
4111 mon(f, "\n");
4114 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4115 int128_sub((size), int128_one())) : 0)
4117 void mtree_print_dispatch(fprintf_function mon, void *f,
4118 AddressSpaceDispatch *d, MemoryRegion *root)
4120 int i;
4122 mon(f, " Dispatch\n");
4123 mon(f, " Physical sections\n");
4125 for (i = 0; i < d->map.sections_nb; ++i) {
4126 MemoryRegionSection *s = d->map.sections + i;
4127 const char *names[] = { " [unassigned]", " [not dirty]",
4128 " [ROM]", " [watch]" };
4130 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4132 s->offset_within_address_space,
4133 s->offset_within_address_space + MR_SIZE(s->mr->size),
4134 s->mr->name ? s->mr->name : "(noname)",
4135 i < ARRAY_SIZE(names) ? names[i] : "",
4136 s->mr == root ? " [ROOT]" : "",
4137 s == d->mru_section ? " [MRU]" : "",
4138 s->mr->is_iommu ? " [iommu]" : "");
4140 if (s->mr->alias) {
4141 mon(f, " alias=%s", s->mr->alias->name ?
4142 s->mr->alias->name : "noname");
4144 mon(f, "\n");
4147 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4148 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4149 for (i = 0; i < d->map.nodes_nb; ++i) {
4150 int j, jprev;
4151 PhysPageEntry prev;
4152 Node *n = d->map.nodes + i;
4154 mon(f, " [%d]\n", i);
4156 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4157 PhysPageEntry *pe = *n + j;
4159 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4160 continue;
4163 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4165 jprev = j;
4166 prev = *pe;
4169 if (jprev != ARRAY_SIZE(*n)) {
4170 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4175 #endif