nbd: Don't kill server on client that doesn't request TLS
[qemu/ar7.git] / bsd-user / main.c
blob27854c1f9176731cd59408c23df128f0e555dc26
1 /*
2 * qemu user main
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include <machine/trap.h>
21 #include <sys/mman.h>
23 #include "qemu.h"
24 #include "qemu/path.h"
25 #include "qemu/help_option.h"
26 /* For tb_lock */
27 #include "cpu.h"
28 #include "tcg.h"
29 #include "qemu/timer.h"
30 #include "qemu/envlist.h"
31 #include "exec/log.h"
33 int singlestep;
34 unsigned long mmap_min_addr;
35 unsigned long guest_base;
36 int have_guest_base;
37 unsigned long reserved_va;
39 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
40 const char *qemu_uname_release;
41 extern char **environ;
42 enum BSDType bsd_type;
44 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
45 we allocate a bigger stack. Need a better solution, for example
46 by remapping the process stack directly at the right place */
47 unsigned long x86_stack_size = 512 * 1024;
49 void gemu_log(const char *fmt, ...)
51 va_list ap;
53 va_start(ap, fmt);
54 vfprintf(stderr, fmt, ap);
55 va_end(ap);
58 #if defined(TARGET_I386)
59 int cpu_get_pic_interrupt(CPUX86State *env)
61 return -1;
63 #endif
65 /* These are no-ops because we are not threadsafe. */
66 static inline void cpu_exec_start(CPUArchState *env)
70 static inline void cpu_exec_end(CPUArchState *env)
74 static inline void start_exclusive(void)
78 static inline void end_exclusive(void)
82 void fork_start(void)
86 void fork_end(int child)
88 if (child) {
89 gdbserver_fork(thread_cpu);
93 void cpu_list_lock(void)
97 void cpu_list_unlock(void)
101 #ifdef TARGET_I386
102 /***********************************************************/
103 /* CPUX86 core interface */
105 uint64_t cpu_get_tsc(CPUX86State *env)
107 return cpu_get_host_ticks();
110 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
111 int flags)
113 unsigned int e1, e2;
114 uint32_t *p;
115 e1 = (addr << 16) | (limit & 0xffff);
116 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
117 e2 |= flags;
118 p = ptr;
119 p[0] = tswap32(e1);
120 p[1] = tswap32(e2);
123 static uint64_t *idt_table;
124 #ifdef TARGET_X86_64
125 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
126 uint64_t addr, unsigned int sel)
128 uint32_t *p, e1, e2;
129 e1 = (addr & 0xffff) | (sel << 16);
130 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
131 p = ptr;
132 p[0] = tswap32(e1);
133 p[1] = tswap32(e2);
134 p[2] = tswap32(addr >> 32);
135 p[3] = 0;
137 /* only dpl matters as we do only user space emulation */
138 static void set_idt(int n, unsigned int dpl)
140 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
142 #else
143 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
144 uint32_t addr, unsigned int sel)
146 uint32_t *p, e1, e2;
147 e1 = (addr & 0xffff) | (sel << 16);
148 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
149 p = ptr;
150 p[0] = tswap32(e1);
151 p[1] = tswap32(e2);
154 /* only dpl matters as we do only user space emulation */
155 static void set_idt(int n, unsigned int dpl)
157 set_gate(idt_table + n, 0, dpl, 0, 0);
159 #endif
161 void cpu_loop(CPUX86State *env)
163 X86CPU *cpu = x86_env_get_cpu(env);
164 CPUState *cs = CPU(cpu);
165 int trapnr;
166 abi_ulong pc;
167 //target_siginfo_t info;
169 for(;;) {
170 trapnr = cpu_x86_exec(cs);
171 switch(trapnr) {
172 case 0x80:
173 /* syscall from int $0x80 */
174 if (bsd_type == target_freebsd) {
175 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
176 sizeof(int32_t);
177 int32_t syscall_nr = env->regs[R_EAX];
178 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
180 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
181 get_user_s32(syscall_nr, params);
182 params += sizeof(int32_t);
183 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
184 get_user_s32(syscall_nr, params);
185 params += sizeof(int64_t);
187 get_user_s32(arg1, params);
188 params += sizeof(int32_t);
189 get_user_s32(arg2, params);
190 params += sizeof(int32_t);
191 get_user_s32(arg3, params);
192 params += sizeof(int32_t);
193 get_user_s32(arg4, params);
194 params += sizeof(int32_t);
195 get_user_s32(arg5, params);
196 params += sizeof(int32_t);
197 get_user_s32(arg6, params);
198 params += sizeof(int32_t);
199 get_user_s32(arg7, params);
200 params += sizeof(int32_t);
201 get_user_s32(arg8, params);
202 env->regs[R_EAX] = do_freebsd_syscall(env,
203 syscall_nr,
204 arg1,
205 arg2,
206 arg3,
207 arg4,
208 arg5,
209 arg6,
210 arg7,
211 arg8);
212 } else { //if (bsd_type == target_openbsd)
213 env->regs[R_EAX] = do_openbsd_syscall(env,
214 env->regs[R_EAX],
215 env->regs[R_EBX],
216 env->regs[R_ECX],
217 env->regs[R_EDX],
218 env->regs[R_ESI],
219 env->regs[R_EDI],
220 env->regs[R_EBP]);
222 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
223 env->regs[R_EAX] = -env->regs[R_EAX];
224 env->eflags |= CC_C;
225 } else {
226 env->eflags &= ~CC_C;
228 break;
229 #ifndef TARGET_ABI32
230 case EXCP_SYSCALL:
231 /* syscall from syscall instruction */
232 if (bsd_type == target_freebsd)
233 env->regs[R_EAX] = do_freebsd_syscall(env,
234 env->regs[R_EAX],
235 env->regs[R_EDI],
236 env->regs[R_ESI],
237 env->regs[R_EDX],
238 env->regs[R_ECX],
239 env->regs[8],
240 env->regs[9], 0, 0);
241 else { //if (bsd_type == target_openbsd)
242 env->regs[R_EAX] = do_openbsd_syscall(env,
243 env->regs[R_EAX],
244 env->regs[R_EDI],
245 env->regs[R_ESI],
246 env->regs[R_EDX],
247 env->regs[10],
248 env->regs[8],
249 env->regs[9]);
251 env->eip = env->exception_next_eip;
252 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
253 env->regs[R_EAX] = -env->regs[R_EAX];
254 env->eflags |= CC_C;
255 } else {
256 env->eflags &= ~CC_C;
258 break;
259 #endif
260 #if 0
261 case EXCP0B_NOSEG:
262 case EXCP0C_STACK:
263 info.si_signo = SIGBUS;
264 info.si_errno = 0;
265 info.si_code = TARGET_SI_KERNEL;
266 info._sifields._sigfault._addr = 0;
267 queue_signal(env, info.si_signo, &info);
268 break;
269 case EXCP0D_GPF:
270 /* XXX: potential problem if ABI32 */
271 #ifndef TARGET_X86_64
272 if (env->eflags & VM_MASK) {
273 handle_vm86_fault(env);
274 } else
275 #endif
277 info.si_signo = SIGSEGV;
278 info.si_errno = 0;
279 info.si_code = TARGET_SI_KERNEL;
280 info._sifields._sigfault._addr = 0;
281 queue_signal(env, info.si_signo, &info);
283 break;
284 case EXCP0E_PAGE:
285 info.si_signo = SIGSEGV;
286 info.si_errno = 0;
287 if (!(env->error_code & 1))
288 info.si_code = TARGET_SEGV_MAPERR;
289 else
290 info.si_code = TARGET_SEGV_ACCERR;
291 info._sifields._sigfault._addr = env->cr[2];
292 queue_signal(env, info.si_signo, &info);
293 break;
294 case EXCP00_DIVZ:
295 #ifndef TARGET_X86_64
296 if (env->eflags & VM_MASK) {
297 handle_vm86_trap(env, trapnr);
298 } else
299 #endif
301 /* division by zero */
302 info.si_signo = SIGFPE;
303 info.si_errno = 0;
304 info.si_code = TARGET_FPE_INTDIV;
305 info._sifields._sigfault._addr = env->eip;
306 queue_signal(env, info.si_signo, &info);
308 break;
309 case EXCP01_DB:
310 case EXCP03_INT3:
311 #ifndef TARGET_X86_64
312 if (env->eflags & VM_MASK) {
313 handle_vm86_trap(env, trapnr);
314 } else
315 #endif
317 info.si_signo = SIGTRAP;
318 info.si_errno = 0;
319 if (trapnr == EXCP01_DB) {
320 info.si_code = TARGET_TRAP_BRKPT;
321 info._sifields._sigfault._addr = env->eip;
322 } else {
323 info.si_code = TARGET_SI_KERNEL;
324 info._sifields._sigfault._addr = 0;
326 queue_signal(env, info.si_signo, &info);
328 break;
329 case EXCP04_INTO:
330 case EXCP05_BOUND:
331 #ifndef TARGET_X86_64
332 if (env->eflags & VM_MASK) {
333 handle_vm86_trap(env, trapnr);
334 } else
335 #endif
337 info.si_signo = SIGSEGV;
338 info.si_errno = 0;
339 info.si_code = TARGET_SI_KERNEL;
340 info._sifields._sigfault._addr = 0;
341 queue_signal(env, info.si_signo, &info);
343 break;
344 case EXCP06_ILLOP:
345 info.si_signo = SIGILL;
346 info.si_errno = 0;
347 info.si_code = TARGET_ILL_ILLOPN;
348 info._sifields._sigfault._addr = env->eip;
349 queue_signal(env, info.si_signo, &info);
350 break;
351 #endif
352 case EXCP_INTERRUPT:
353 /* just indicate that signals should be handled asap */
354 break;
355 #if 0
356 case EXCP_DEBUG:
358 int sig;
360 sig = gdb_handlesig (env, TARGET_SIGTRAP);
361 if (sig)
363 info.si_signo = sig;
364 info.si_errno = 0;
365 info.si_code = TARGET_TRAP_BRKPT;
366 queue_signal(env, info.si_signo, &info);
369 break;
370 #endif
371 default:
372 pc = env->segs[R_CS].base + env->eip;
373 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
374 (long)pc, trapnr);
375 abort();
377 process_pending_signals(env);
380 #endif
382 #ifdef TARGET_SPARC
383 #define SPARC64_STACK_BIAS 2047
385 //#define DEBUG_WIN
386 /* WARNING: dealing with register windows _is_ complicated. More info
387 can be found at http://www.sics.se/~psm/sparcstack.html */
388 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
390 index = (index + cwp * 16) % (16 * env->nwindows);
391 /* wrap handling : if cwp is on the last window, then we use the
392 registers 'after' the end */
393 if (index < 8 && env->cwp == env->nwindows - 1)
394 index += 16 * env->nwindows;
395 return index;
398 /* save the register window 'cwp1' */
399 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
401 unsigned int i;
402 abi_ulong sp_ptr;
404 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
405 #ifdef TARGET_SPARC64
406 if (sp_ptr & 3)
407 sp_ptr += SPARC64_STACK_BIAS;
408 #endif
409 #if defined(DEBUG_WIN)
410 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
411 sp_ptr, cwp1);
412 #endif
413 for(i = 0; i < 16; i++) {
414 /* FIXME - what to do if put_user() fails? */
415 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
416 sp_ptr += sizeof(abi_ulong);
420 static void save_window(CPUSPARCState *env)
422 #ifndef TARGET_SPARC64
423 unsigned int new_wim;
424 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
425 ((1LL << env->nwindows) - 1);
426 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
427 env->wim = new_wim;
428 #else
429 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
430 env->cansave++;
431 env->canrestore--;
432 #endif
435 static void restore_window(CPUSPARCState *env)
437 #ifndef TARGET_SPARC64
438 unsigned int new_wim;
439 #endif
440 unsigned int i, cwp1;
441 abi_ulong sp_ptr;
443 #ifndef TARGET_SPARC64
444 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
445 ((1LL << env->nwindows) - 1);
446 #endif
448 /* restore the invalid window */
449 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
450 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
451 #ifdef TARGET_SPARC64
452 if (sp_ptr & 3)
453 sp_ptr += SPARC64_STACK_BIAS;
454 #endif
455 #if defined(DEBUG_WIN)
456 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
457 sp_ptr, cwp1);
458 #endif
459 for(i = 0; i < 16; i++) {
460 /* FIXME - what to do if get_user() fails? */
461 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
462 sp_ptr += sizeof(abi_ulong);
464 #ifdef TARGET_SPARC64
465 env->canrestore++;
466 if (env->cleanwin < env->nwindows - 1)
467 env->cleanwin++;
468 env->cansave--;
469 #else
470 env->wim = new_wim;
471 #endif
474 static void flush_windows(CPUSPARCState *env)
476 int offset, cwp1;
478 offset = 1;
479 for(;;) {
480 /* if restore would invoke restore_window(), then we can stop */
481 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
482 #ifndef TARGET_SPARC64
483 if (env->wim & (1 << cwp1))
484 break;
485 #else
486 if (env->canrestore == 0)
487 break;
488 env->cansave++;
489 env->canrestore--;
490 #endif
491 save_window_offset(env, cwp1);
492 offset++;
494 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
495 #ifndef TARGET_SPARC64
496 /* set wim so that restore will reload the registers */
497 env->wim = 1 << cwp1;
498 #endif
499 #if defined(DEBUG_WIN)
500 printf("flush_windows: nb=%d\n", offset - 1);
501 #endif
504 void cpu_loop(CPUSPARCState *env)
506 CPUState *cs = CPU(sparc_env_get_cpu(env));
507 int trapnr, ret, syscall_nr;
508 //target_siginfo_t info;
510 while (1) {
511 trapnr = cpu_sparc_exec(cs);
513 switch (trapnr) {
514 #ifndef TARGET_SPARC64
515 case 0x80:
516 #else
517 /* FreeBSD uses 0x141 for syscalls too */
518 case 0x141:
519 if (bsd_type != target_freebsd)
520 goto badtrap;
521 case 0x100:
522 #endif
523 syscall_nr = env->gregs[1];
524 if (bsd_type == target_freebsd)
525 ret = do_freebsd_syscall(env, syscall_nr,
526 env->regwptr[0], env->regwptr[1],
527 env->regwptr[2], env->regwptr[3],
528 env->regwptr[4], env->regwptr[5], 0, 0);
529 else if (bsd_type == target_netbsd)
530 ret = do_netbsd_syscall(env, syscall_nr,
531 env->regwptr[0], env->regwptr[1],
532 env->regwptr[2], env->regwptr[3],
533 env->regwptr[4], env->regwptr[5]);
534 else { //if (bsd_type == target_openbsd)
535 #if defined(TARGET_SPARC64)
536 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
537 TARGET_OPENBSD_SYSCALL_G2RFLAG);
538 #endif
539 ret = do_openbsd_syscall(env, syscall_nr,
540 env->regwptr[0], env->regwptr[1],
541 env->regwptr[2], env->regwptr[3],
542 env->regwptr[4], env->regwptr[5]);
544 if ((unsigned int)ret >= (unsigned int)(-515)) {
545 ret = -ret;
546 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
547 env->xcc |= PSR_CARRY;
548 #else
549 env->psr |= PSR_CARRY;
550 #endif
551 } else {
552 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
553 env->xcc &= ~PSR_CARRY;
554 #else
555 env->psr &= ~PSR_CARRY;
556 #endif
558 env->regwptr[0] = ret;
559 /* next instruction */
560 #if defined(TARGET_SPARC64)
561 if (bsd_type == target_openbsd &&
562 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
563 env->pc = env->gregs[2];
564 env->npc = env->pc + 4;
565 } else if (bsd_type == target_openbsd &&
566 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
567 env->pc = env->gregs[7];
568 env->npc = env->pc + 4;
569 } else {
570 env->pc = env->npc;
571 env->npc = env->npc + 4;
573 #else
574 env->pc = env->npc;
575 env->npc = env->npc + 4;
576 #endif
577 break;
578 case 0x83: /* flush windows */
579 #ifdef TARGET_ABI32
580 case 0x103:
581 #endif
582 flush_windows(env);
583 /* next instruction */
584 env->pc = env->npc;
585 env->npc = env->npc + 4;
586 break;
587 #ifndef TARGET_SPARC64
588 case TT_WIN_OVF: /* window overflow */
589 save_window(env);
590 break;
591 case TT_WIN_UNF: /* window underflow */
592 restore_window(env);
593 break;
594 case TT_TFAULT:
595 case TT_DFAULT:
596 #if 0
598 info.si_signo = SIGSEGV;
599 info.si_errno = 0;
600 /* XXX: check env->error_code */
601 info.si_code = TARGET_SEGV_MAPERR;
602 info._sifields._sigfault._addr = env->mmuregs[4];
603 queue_signal(env, info.si_signo, &info);
605 #endif
606 break;
607 #else
608 case TT_SPILL: /* window overflow */
609 save_window(env);
610 break;
611 case TT_FILL: /* window underflow */
612 restore_window(env);
613 break;
614 case TT_TFAULT:
615 case TT_DFAULT:
616 #if 0
618 info.si_signo = SIGSEGV;
619 info.si_errno = 0;
620 /* XXX: check env->error_code */
621 info.si_code = TARGET_SEGV_MAPERR;
622 if (trapnr == TT_DFAULT)
623 info._sifields._sigfault._addr = env->dmmuregs[4];
624 else
625 info._sifields._sigfault._addr = env->tsptr->tpc;
626 //queue_signal(env, info.si_signo, &info);
628 #endif
629 break;
630 #endif
631 case EXCP_INTERRUPT:
632 /* just indicate that signals should be handled asap */
633 break;
634 case EXCP_DEBUG:
636 int sig;
638 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
639 #if 0
640 if (sig)
642 info.si_signo = sig;
643 info.si_errno = 0;
644 info.si_code = TARGET_TRAP_BRKPT;
645 //queue_signal(env, info.si_signo, &info);
647 #endif
649 break;
650 default:
651 #ifdef TARGET_SPARC64
652 badtrap:
653 #endif
654 printf ("Unhandled trap: 0x%x\n", trapnr);
655 cpu_dump_state(cs, stderr, fprintf, 0);
656 exit (1);
658 process_pending_signals (env);
662 #endif
664 static void usage(void)
666 printf("qemu-" TARGET_NAME " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
667 "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
668 "BSD CPU emulator (compiled for %s emulation)\n"
669 "\n"
670 "Standard options:\n"
671 "-h print this help\n"
672 "-g port wait gdb connection to port\n"
673 "-L path set the elf interpreter prefix (default=%s)\n"
674 "-s size set the stack size in bytes (default=%ld)\n"
675 "-cpu model select CPU (-cpu help for list)\n"
676 "-drop-ld-preload drop LD_PRELOAD for target process\n"
677 "-E var=value sets/modifies targets environment variable(s)\n"
678 "-U var unsets targets environment variable(s)\n"
679 "-B address set guest_base address to address\n"
680 "-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
681 "\n"
682 "Debug options:\n"
683 "-d item1[,...] enable logging of specified items\n"
684 " (use '-d help' for a list of log items)\n"
685 "-D logfile write logs to 'logfile' (default stderr)\n"
686 "-p pagesize set the host page size to 'pagesize'\n"
687 "-singlestep always run in singlestep mode\n"
688 "-strace log system calls\n"
689 "\n"
690 "Environment variables:\n"
691 "QEMU_STRACE Print system calls and arguments similar to the\n"
692 " 'strace' program. Enable by setting to any value.\n"
693 "You can use -E and -U options to set/unset environment variables\n"
694 "for target process. It is possible to provide several variables\n"
695 "by repeating the option. For example:\n"
696 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
697 "Note that if you provide several changes to single variable\n"
698 "last change will stay in effect.\n"
700 TARGET_NAME,
701 interp_prefix,
702 x86_stack_size);
703 exit(1);
706 THREAD CPUState *thread_cpu;
708 /* Assumes contents are already zeroed. */
709 void init_task_state(TaskState *ts)
711 int i;
713 ts->used = 1;
714 ts->first_free = ts->sigqueue_table;
715 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
716 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
718 ts->sigqueue_table[i].next = NULL;
721 int main(int argc, char **argv)
723 const char *filename;
724 const char *cpu_model;
725 const char *log_file = NULL;
726 const char *log_mask = NULL;
727 struct target_pt_regs regs1, *regs = &regs1;
728 struct image_info info1, *info = &info1;
729 TaskState ts1, *ts = &ts1;
730 CPUArchState *env;
731 CPUState *cpu;
732 int optind;
733 const char *r;
734 int gdbstub_port = 0;
735 char **target_environ, **wrk;
736 envlist_t *envlist = NULL;
737 bsd_type = target_openbsd;
739 if (argc <= 1)
740 usage();
742 module_call_init(MODULE_INIT_QOM);
744 if ((envlist = envlist_create()) == NULL) {
745 (void) fprintf(stderr, "Unable to allocate envlist\n");
746 exit(1);
749 /* add current environment into the list */
750 for (wrk = environ; *wrk != NULL; wrk++) {
751 (void) envlist_setenv(envlist, *wrk);
754 cpu_model = NULL;
755 #if defined(cpudef_setup)
756 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
757 #endif
759 optind = 1;
760 for(;;) {
761 if (optind >= argc)
762 break;
763 r = argv[optind];
764 if (r[0] != '-')
765 break;
766 optind++;
767 r++;
768 if (!strcmp(r, "-")) {
769 break;
770 } else if (!strcmp(r, "d")) {
771 if (optind >= argc) {
772 break;
774 log_mask = argv[optind++];
775 } else if (!strcmp(r, "D")) {
776 if (optind >= argc) {
777 break;
779 log_file = argv[optind++];
780 } else if (!strcmp(r, "E")) {
781 r = argv[optind++];
782 if (envlist_setenv(envlist, r) != 0)
783 usage();
784 } else if (!strcmp(r, "ignore-environment")) {
785 envlist_free(envlist);
786 if ((envlist = envlist_create()) == NULL) {
787 (void) fprintf(stderr, "Unable to allocate envlist\n");
788 exit(1);
790 } else if (!strcmp(r, "U")) {
791 r = argv[optind++];
792 if (envlist_unsetenv(envlist, r) != 0)
793 usage();
794 } else if (!strcmp(r, "s")) {
795 r = argv[optind++];
796 x86_stack_size = strtol(r, (char **)&r, 0);
797 if (x86_stack_size <= 0)
798 usage();
799 if (*r == 'M')
800 x86_stack_size *= 1024 * 1024;
801 else if (*r == 'k' || *r == 'K')
802 x86_stack_size *= 1024;
803 } else if (!strcmp(r, "L")) {
804 interp_prefix = argv[optind++];
805 } else if (!strcmp(r, "p")) {
806 qemu_host_page_size = atoi(argv[optind++]);
807 if (qemu_host_page_size == 0 ||
808 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
809 fprintf(stderr, "page size must be a power of two\n");
810 exit(1);
812 } else if (!strcmp(r, "g")) {
813 gdbstub_port = atoi(argv[optind++]);
814 } else if (!strcmp(r, "r")) {
815 qemu_uname_release = argv[optind++];
816 } else if (!strcmp(r, "cpu")) {
817 cpu_model = argv[optind++];
818 if (is_help_option(cpu_model)) {
819 /* XXX: implement xxx_cpu_list for targets that still miss it */
820 #if defined(cpu_list)
821 cpu_list(stdout, &fprintf);
822 #endif
823 exit(1);
825 } else if (!strcmp(r, "B")) {
826 guest_base = strtol(argv[optind++], NULL, 0);
827 have_guest_base = 1;
828 } else if (!strcmp(r, "drop-ld-preload")) {
829 (void) envlist_unsetenv(envlist, "LD_PRELOAD");
830 } else if (!strcmp(r, "bsd")) {
831 if (!strcasecmp(argv[optind], "freebsd")) {
832 bsd_type = target_freebsd;
833 } else if (!strcasecmp(argv[optind], "netbsd")) {
834 bsd_type = target_netbsd;
835 } else if (!strcasecmp(argv[optind], "openbsd")) {
836 bsd_type = target_openbsd;
837 } else {
838 usage();
840 optind++;
841 } else if (!strcmp(r, "singlestep")) {
842 singlestep = 1;
843 } else if (!strcmp(r, "strace")) {
844 do_strace = 1;
845 } else
847 usage();
851 /* init debug */
852 qemu_set_log_filename(log_file);
853 if (log_mask) {
854 int mask;
856 mask = qemu_str_to_log_mask(log_mask);
857 if (!mask) {
858 qemu_print_log_usage(stdout);
859 exit(1);
861 qemu_set_log(mask);
864 if (optind >= argc) {
865 usage();
867 filename = argv[optind];
869 /* Zero out regs */
870 memset(regs, 0, sizeof(struct target_pt_regs));
872 /* Zero out image_info */
873 memset(info, 0, sizeof(struct image_info));
875 /* Scan interp_prefix dir for replacement files. */
876 init_paths(interp_prefix);
878 if (cpu_model == NULL) {
879 #if defined(TARGET_I386)
880 #ifdef TARGET_X86_64
881 cpu_model = "qemu64";
882 #else
883 cpu_model = "qemu32";
884 #endif
885 #elif defined(TARGET_SPARC)
886 #ifdef TARGET_SPARC64
887 cpu_model = "TI UltraSparc II";
888 #else
889 cpu_model = "Fujitsu MB86904";
890 #endif
891 #else
892 cpu_model = "any";
893 #endif
895 tcg_exec_init(0);
896 /* NOTE: we need to init the CPU at this stage to get
897 qemu_host_page_size */
898 cpu = cpu_init(cpu_model);
899 if (!cpu) {
900 fprintf(stderr, "Unable to find CPU definition\n");
901 exit(1);
903 env = cpu->env_ptr;
904 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
905 cpu_reset(cpu);
906 #endif
907 thread_cpu = cpu;
909 if (getenv("QEMU_STRACE")) {
910 do_strace = 1;
913 target_environ = envlist_to_environ(envlist, NULL);
914 envlist_free(envlist);
917 * Now that page sizes are configured in cpu_init() we can do
918 * proper page alignment for guest_base.
920 guest_base = HOST_PAGE_ALIGN(guest_base);
923 * Read in mmap_min_addr kernel parameter. This value is used
924 * When loading the ELF image to determine whether guest_base
925 * is needed.
927 * When user has explicitly set the quest base, we skip this
928 * test.
930 if (!have_guest_base) {
931 FILE *fp;
933 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
934 unsigned long tmp;
935 if (fscanf(fp, "%lu", &tmp) == 1) {
936 mmap_min_addr = tmp;
937 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
939 fclose(fp);
943 if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
944 printf("Error loading %s\n", filename);
945 _exit(1);
948 for (wrk = target_environ; *wrk; wrk++) {
949 free(*wrk);
952 free(target_environ);
954 if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
955 qemu_log("guest_base 0x%lx\n", guest_base);
956 log_page_dump();
958 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
959 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
960 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
961 info->start_code);
962 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
963 info->start_data);
964 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
965 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
966 info->start_stack);
967 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
968 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
971 target_set_brk(info->brk);
972 syscall_init();
973 signal_init();
975 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
976 generating the prologue until now so that the prologue can take
977 the real value of GUEST_BASE into account. */
978 tcg_prologue_init(&tcg_ctx);
980 /* build Task State */
981 memset(ts, 0, sizeof(TaskState));
982 init_task_state(ts);
983 ts->info = info;
984 cpu->opaque = ts;
986 #if defined(TARGET_I386)
987 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
988 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
989 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
990 env->cr[4] |= CR4_OSFXSR_MASK;
991 env->hflags |= HF_OSFXSR_MASK;
993 #ifndef TARGET_ABI32
994 /* enable 64 bit mode if possible */
995 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
996 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
997 exit(1);
999 env->cr[4] |= CR4_PAE_MASK;
1000 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1001 env->hflags |= HF_LMA_MASK;
1002 #endif
1004 /* flags setup : we activate the IRQs by default as in user mode */
1005 env->eflags |= IF_MASK;
1007 /* linux register setup */
1008 #ifndef TARGET_ABI32
1009 env->regs[R_EAX] = regs->rax;
1010 env->regs[R_EBX] = regs->rbx;
1011 env->regs[R_ECX] = regs->rcx;
1012 env->regs[R_EDX] = regs->rdx;
1013 env->regs[R_ESI] = regs->rsi;
1014 env->regs[R_EDI] = regs->rdi;
1015 env->regs[R_EBP] = regs->rbp;
1016 env->regs[R_ESP] = regs->rsp;
1017 env->eip = regs->rip;
1018 #else
1019 env->regs[R_EAX] = regs->eax;
1020 env->regs[R_EBX] = regs->ebx;
1021 env->regs[R_ECX] = regs->ecx;
1022 env->regs[R_EDX] = regs->edx;
1023 env->regs[R_ESI] = regs->esi;
1024 env->regs[R_EDI] = regs->edi;
1025 env->regs[R_EBP] = regs->ebp;
1026 env->regs[R_ESP] = regs->esp;
1027 env->eip = regs->eip;
1028 #endif
1030 /* linux interrupt setup */
1031 #ifndef TARGET_ABI32
1032 env->idt.limit = 511;
1033 #else
1034 env->idt.limit = 255;
1035 #endif
1036 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1037 PROT_READ|PROT_WRITE,
1038 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1039 idt_table = g2h(env->idt.base);
1040 set_idt(0, 0);
1041 set_idt(1, 0);
1042 set_idt(2, 0);
1043 set_idt(3, 3);
1044 set_idt(4, 3);
1045 set_idt(5, 0);
1046 set_idt(6, 0);
1047 set_idt(7, 0);
1048 set_idt(8, 0);
1049 set_idt(9, 0);
1050 set_idt(10, 0);
1051 set_idt(11, 0);
1052 set_idt(12, 0);
1053 set_idt(13, 0);
1054 set_idt(14, 0);
1055 set_idt(15, 0);
1056 set_idt(16, 0);
1057 set_idt(17, 0);
1058 set_idt(18, 0);
1059 set_idt(19, 0);
1060 set_idt(0x80, 3);
1062 /* linux segment setup */
1064 uint64_t *gdt_table;
1065 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1066 PROT_READ|PROT_WRITE,
1067 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1068 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1069 gdt_table = g2h(env->gdt.base);
1070 #ifdef TARGET_ABI32
1071 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1072 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1073 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1074 #else
1075 /* 64 bit code segment */
1076 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1077 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1078 DESC_L_MASK |
1079 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1080 #endif
1081 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1082 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1083 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1086 cpu_x86_load_seg(env, R_CS, __USER_CS);
1087 cpu_x86_load_seg(env, R_SS, __USER_DS);
1088 #ifdef TARGET_ABI32
1089 cpu_x86_load_seg(env, R_DS, __USER_DS);
1090 cpu_x86_load_seg(env, R_ES, __USER_DS);
1091 cpu_x86_load_seg(env, R_FS, __USER_DS);
1092 cpu_x86_load_seg(env, R_GS, __USER_DS);
1093 /* This hack makes Wine work... */
1094 env->segs[R_FS].selector = 0;
1095 #else
1096 cpu_x86_load_seg(env, R_DS, 0);
1097 cpu_x86_load_seg(env, R_ES, 0);
1098 cpu_x86_load_seg(env, R_FS, 0);
1099 cpu_x86_load_seg(env, R_GS, 0);
1100 #endif
1101 #elif defined(TARGET_SPARC)
1103 int i;
1104 env->pc = regs->pc;
1105 env->npc = regs->npc;
1106 env->y = regs->y;
1107 for(i = 0; i < 8; i++)
1108 env->gregs[i] = regs->u_regs[i];
1109 for(i = 0; i < 8; i++)
1110 env->regwptr[i] = regs->u_regs[i + 8];
1112 #else
1113 #error unsupported target CPU
1114 #endif
1116 if (gdbstub_port) {
1117 gdbserver_start (gdbstub_port);
1118 gdb_handlesig(cpu, 0);
1120 cpu_loop(env);
1121 /* never exits */
1122 return 0;