lm32_timer: convert to memory API
[qemu/ar7.git] / kvm-all.c
blob4c466d6aba4cacfe927b5a442e55cc111bdb106e
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
58 typedef struct kvm_dirty_log KVMDirtyLog;
60 struct KVMState
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 bool coalesced_flush_in_progress;
68 int broken_set_mem_region;
69 int migration_log;
70 int vcpu_events;
71 int robust_singlestep;
72 int debugregs;
73 #ifdef KVM_CAP_SET_GUEST_DEBUG
74 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
75 #endif
76 int irqchip_in_kernel;
77 int pit_in_kernel;
78 int xsave, xcrs;
79 int many_ioeventfds;
82 KVMState *kvm_state;
84 static const KVMCapabilityInfo kvm_required_capabilites[] = {
85 KVM_CAP_INFO(USER_MEMORY),
86 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
87 KVM_CAP_LAST_INFO
90 static KVMSlot *kvm_alloc_slot(KVMState *s)
92 int i;
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 if (s->slots[i].memory_size == 0) {
96 return &s->slots[i];
100 fprintf(stderr, "%s: no free slot available\n", __func__);
101 abort();
104 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
105 target_phys_addr_t start_addr,
106 target_phys_addr_t end_addr)
108 int i;
110 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
111 KVMSlot *mem = &s->slots[i];
113 if (start_addr == mem->start_addr &&
114 end_addr == mem->start_addr + mem->memory_size) {
115 return mem;
119 return NULL;
123 * Find overlapping slot with lowest start address
125 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
126 target_phys_addr_t start_addr,
127 target_phys_addr_t end_addr)
129 KVMSlot *found = NULL;
130 int i;
132 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
133 KVMSlot *mem = &s->slots[i];
135 if (mem->memory_size == 0 ||
136 (found && found->start_addr < mem->start_addr)) {
137 continue;
140 if (end_addr > mem->start_addr &&
141 start_addr < mem->start_addr + mem->memory_size) {
142 found = mem;
146 return found;
149 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
150 target_phys_addr_t *phys_addr)
152 int i;
154 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
155 KVMSlot *mem = &s->slots[i];
157 if (ram_addr >= mem->phys_offset &&
158 ram_addr < mem->phys_offset + mem->memory_size) {
159 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
160 return 1;
164 return 0;
167 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
169 struct kvm_userspace_memory_region mem;
171 mem.slot = slot->slot;
172 mem.guest_phys_addr = slot->start_addr;
173 mem.memory_size = slot->memory_size;
174 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
175 mem.flags = slot->flags;
176 if (s->migration_log) {
177 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
179 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
182 static void kvm_reset_vcpu(void *opaque)
184 CPUState *env = opaque;
186 kvm_arch_reset_vcpu(env);
189 int kvm_irqchip_in_kernel(void)
191 return kvm_state->irqchip_in_kernel;
194 int kvm_pit_in_kernel(void)
196 return kvm_state->pit_in_kernel;
199 int kvm_init_vcpu(CPUState *env)
201 KVMState *s = kvm_state;
202 long mmap_size;
203 int ret;
205 DPRINTF("kvm_init_vcpu\n");
207 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
208 if (ret < 0) {
209 DPRINTF("kvm_create_vcpu failed\n");
210 goto err;
213 env->kvm_fd = ret;
214 env->kvm_state = s;
215 env->kvm_vcpu_dirty = 1;
217 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
218 if (mmap_size < 0) {
219 ret = mmap_size;
220 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
221 goto err;
224 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
225 env->kvm_fd, 0);
226 if (env->kvm_run == MAP_FAILED) {
227 ret = -errno;
228 DPRINTF("mmap'ing vcpu state failed\n");
229 goto err;
232 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
233 s->coalesced_mmio_ring =
234 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
237 ret = kvm_arch_init_vcpu(env);
238 if (ret == 0) {
239 qemu_register_reset(kvm_reset_vcpu, env);
240 kvm_arch_reset_vcpu(env);
242 err:
243 return ret;
247 * dirty pages logging control
250 static int kvm_mem_flags(KVMState *s, bool log_dirty)
252 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
255 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
257 KVMState *s = kvm_state;
258 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
259 int old_flags;
261 old_flags = mem->flags;
263 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
264 mem->flags = flags;
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s->migration_log) {
268 flags |= KVM_MEM_LOG_DIRTY_PAGES;
271 if (flags == old_flags) {
272 return 0;
275 return kvm_set_user_memory_region(s, mem);
278 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
279 ram_addr_t size, bool log_dirty)
281 KVMState *s = kvm_state;
282 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
284 if (mem == NULL) {
285 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
286 TARGET_FMT_plx "\n", __func__, phys_addr,
287 (target_phys_addr_t)(phys_addr + size - 1));
288 return -EINVAL;
290 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
293 static int kvm_log_start(CPUPhysMemoryClient *client,
294 target_phys_addr_t phys_addr, ram_addr_t size)
296 return kvm_dirty_pages_log_change(phys_addr, size, true);
299 static int kvm_log_stop(CPUPhysMemoryClient *client,
300 target_phys_addr_t phys_addr, ram_addr_t size)
302 return kvm_dirty_pages_log_change(phys_addr, size, false);
305 static int kvm_set_migration_log(int enable)
307 KVMState *s = kvm_state;
308 KVMSlot *mem;
309 int i, err;
311 s->migration_log = enable;
313 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
314 mem = &s->slots[i];
316 if (!mem->memory_size) {
317 continue;
319 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
320 continue;
322 err = kvm_set_user_memory_region(s, mem);
323 if (err) {
324 return err;
327 return 0;
330 /* get kvm's dirty pages bitmap and update qemu's */
331 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
332 unsigned long *bitmap,
333 unsigned long offset,
334 unsigned long mem_size)
336 unsigned int i, j;
337 unsigned long page_number, addr, addr1, c;
338 ram_addr_t ram_addr;
339 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
340 HOST_LONG_BITS;
343 * bitmap-traveling is faster than memory-traveling (for addr...)
344 * especially when most of the memory is not dirty.
346 for (i = 0; i < len; i++) {
347 if (bitmap[i] != 0) {
348 c = leul_to_cpu(bitmap[i]);
349 do {
350 j = ffsl(c) - 1;
351 c &= ~(1ul << j);
352 page_number = i * HOST_LONG_BITS + j;
353 addr1 = page_number * TARGET_PAGE_SIZE;
354 addr = offset + addr1;
355 ram_addr = cpu_get_physical_page_desc(addr);
356 cpu_physical_memory_set_dirty(ram_addr);
357 } while (c != 0);
360 return 0;
363 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
366 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
367 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
368 * This means all bits are set to dirty.
370 * @start_add: start of logged region.
371 * @end_addr: end of logged region.
373 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
374 target_phys_addr_t end_addr)
376 KVMState *s = kvm_state;
377 unsigned long size, allocated_size = 0;
378 KVMDirtyLog d;
379 KVMSlot *mem;
380 int ret = 0;
382 d.dirty_bitmap = NULL;
383 while (start_addr < end_addr) {
384 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
385 if (mem == NULL) {
386 break;
389 /* XXX bad kernel interface alert
390 * For dirty bitmap, kernel allocates array of size aligned to
391 * bits-per-long. But for case when the kernel is 64bits and
392 * the userspace is 32bits, userspace can't align to the same
393 * bits-per-long, since sizeof(long) is different between kernel
394 * and user space. This way, userspace will provide buffer which
395 * may be 4 bytes less than the kernel will use, resulting in
396 * userspace memory corruption (which is not detectable by valgrind
397 * too, in most cases).
398 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
399 * a hope that sizeof(long) wont become >8 any time soon.
401 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
402 /*HOST_LONG_BITS*/ 64) / 8;
403 if (!d.dirty_bitmap) {
404 d.dirty_bitmap = g_malloc(size);
405 } else if (size > allocated_size) {
406 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
408 allocated_size = size;
409 memset(d.dirty_bitmap, 0, allocated_size);
411 d.slot = mem->slot;
413 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
414 DPRINTF("ioctl failed %d\n", errno);
415 ret = -1;
416 break;
419 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
420 mem->start_addr, mem->memory_size);
421 start_addr = mem->start_addr + mem->memory_size;
423 g_free(d.dirty_bitmap);
425 return ret;
428 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
430 int ret = -ENOSYS;
431 KVMState *s = kvm_state;
433 if (s->coalesced_mmio) {
434 struct kvm_coalesced_mmio_zone zone;
436 zone.addr = start;
437 zone.size = size;
439 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
442 return ret;
445 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
447 int ret = -ENOSYS;
448 KVMState *s = kvm_state;
450 if (s->coalesced_mmio) {
451 struct kvm_coalesced_mmio_zone zone;
453 zone.addr = start;
454 zone.size = size;
456 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
459 return ret;
462 int kvm_check_extension(KVMState *s, unsigned int extension)
464 int ret;
466 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
467 if (ret < 0) {
468 ret = 0;
471 return ret;
474 static int kvm_check_many_ioeventfds(void)
476 /* Userspace can use ioeventfd for io notification. This requires a host
477 * that supports eventfd(2) and an I/O thread; since eventfd does not
478 * support SIGIO it cannot interrupt the vcpu.
480 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
481 * can avoid creating too many ioeventfds.
483 #if defined(CONFIG_EVENTFD)
484 int ioeventfds[7];
485 int i, ret = 0;
486 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
487 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
488 if (ioeventfds[i] < 0) {
489 break;
491 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
492 if (ret < 0) {
493 close(ioeventfds[i]);
494 break;
498 /* Decide whether many devices are supported or not */
499 ret = i == ARRAY_SIZE(ioeventfds);
501 while (i-- > 0) {
502 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
503 close(ioeventfds[i]);
505 return ret;
506 #else
507 return 0;
508 #endif
511 static const KVMCapabilityInfo *
512 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
514 while (list->name) {
515 if (!kvm_check_extension(s, list->value)) {
516 return list;
518 list++;
520 return NULL;
523 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
524 ram_addr_t phys_offset, bool log_dirty)
526 KVMState *s = kvm_state;
527 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
528 KVMSlot *mem, old;
529 int err;
531 /* kvm works in page size chunks, but the function may be called
532 with sub-page size and unaligned start address. */
533 size = TARGET_PAGE_ALIGN(size);
534 start_addr = TARGET_PAGE_ALIGN(start_addr);
536 /* KVM does not support read-only slots */
537 phys_offset &= ~IO_MEM_ROM;
539 while (1) {
540 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
541 if (!mem) {
542 break;
545 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
546 (start_addr + size <= mem->start_addr + mem->memory_size) &&
547 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
548 /* The new slot fits into the existing one and comes with
549 * identical parameters - update flags and done. */
550 kvm_slot_dirty_pages_log_change(mem, log_dirty);
551 return;
554 old = *mem;
556 /* unregister the overlapping slot */
557 mem->memory_size = 0;
558 err = kvm_set_user_memory_region(s, mem);
559 if (err) {
560 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
561 __func__, strerror(-err));
562 abort();
565 /* Workaround for older KVM versions: we can't join slots, even not by
566 * unregistering the previous ones and then registering the larger
567 * slot. We have to maintain the existing fragmentation. Sigh.
569 * This workaround assumes that the new slot starts at the same
570 * address as the first existing one. If not or if some overlapping
571 * slot comes around later, we will fail (not seen in practice so far)
572 * - and actually require a recent KVM version. */
573 if (s->broken_set_mem_region &&
574 old.start_addr == start_addr && old.memory_size < size &&
575 flags < IO_MEM_UNASSIGNED) {
576 mem = kvm_alloc_slot(s);
577 mem->memory_size = old.memory_size;
578 mem->start_addr = old.start_addr;
579 mem->phys_offset = old.phys_offset;
580 mem->flags = kvm_mem_flags(s, log_dirty);
582 err = kvm_set_user_memory_region(s, mem);
583 if (err) {
584 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
585 strerror(-err));
586 abort();
589 start_addr += old.memory_size;
590 phys_offset += old.memory_size;
591 size -= old.memory_size;
592 continue;
595 /* register prefix slot */
596 if (old.start_addr < start_addr) {
597 mem = kvm_alloc_slot(s);
598 mem->memory_size = start_addr - old.start_addr;
599 mem->start_addr = old.start_addr;
600 mem->phys_offset = old.phys_offset;
601 mem->flags = kvm_mem_flags(s, log_dirty);
603 err = kvm_set_user_memory_region(s, mem);
604 if (err) {
605 fprintf(stderr, "%s: error registering prefix slot: %s\n",
606 __func__, strerror(-err));
607 #ifdef TARGET_PPC
608 fprintf(stderr, "%s: This is probably because your kernel's " \
609 "PAGE_SIZE is too big. Please try to use 4k " \
610 "PAGE_SIZE!\n", __func__);
611 #endif
612 abort();
616 /* register suffix slot */
617 if (old.start_addr + old.memory_size > start_addr + size) {
618 ram_addr_t size_delta;
620 mem = kvm_alloc_slot(s);
621 mem->start_addr = start_addr + size;
622 size_delta = mem->start_addr - old.start_addr;
623 mem->memory_size = old.memory_size - size_delta;
624 mem->phys_offset = old.phys_offset + size_delta;
625 mem->flags = kvm_mem_flags(s, log_dirty);
627 err = kvm_set_user_memory_region(s, mem);
628 if (err) {
629 fprintf(stderr, "%s: error registering suffix slot: %s\n",
630 __func__, strerror(-err));
631 abort();
636 /* in case the KVM bug workaround already "consumed" the new slot */
637 if (!size) {
638 return;
640 /* KVM does not need to know about this memory */
641 if (flags >= IO_MEM_UNASSIGNED) {
642 return;
644 mem = kvm_alloc_slot(s);
645 mem->memory_size = size;
646 mem->start_addr = start_addr;
647 mem->phys_offset = phys_offset;
648 mem->flags = kvm_mem_flags(s, log_dirty);
650 err = kvm_set_user_memory_region(s, mem);
651 if (err) {
652 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
653 strerror(-err));
654 abort();
658 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
659 target_phys_addr_t start_addr,
660 ram_addr_t size, ram_addr_t phys_offset,
661 bool log_dirty)
663 kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
666 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
667 target_phys_addr_t start_addr,
668 target_phys_addr_t end_addr)
670 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
673 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
674 int enable)
676 return kvm_set_migration_log(enable);
679 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
680 .set_memory = kvm_client_set_memory,
681 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
682 .migration_log = kvm_client_migration_log,
683 .log_start = kvm_log_start,
684 .log_stop = kvm_log_stop,
687 static void kvm_handle_interrupt(CPUState *env, int mask)
689 env->interrupt_request |= mask;
691 if (!qemu_cpu_is_self(env)) {
692 qemu_cpu_kick(env);
696 int kvm_init(void)
698 static const char upgrade_note[] =
699 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
700 "(see http://sourceforge.net/projects/kvm).\n";
701 KVMState *s;
702 const KVMCapabilityInfo *missing_cap;
703 int ret;
704 int i;
706 s = g_malloc0(sizeof(KVMState));
708 #ifdef KVM_CAP_SET_GUEST_DEBUG
709 QTAILQ_INIT(&s->kvm_sw_breakpoints);
710 #endif
711 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
712 s->slots[i].slot = i;
714 s->vmfd = -1;
715 s->fd = qemu_open("/dev/kvm", O_RDWR);
716 if (s->fd == -1) {
717 fprintf(stderr, "Could not access KVM kernel module: %m\n");
718 ret = -errno;
719 goto err;
722 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
723 if (ret < KVM_API_VERSION) {
724 if (ret > 0) {
725 ret = -EINVAL;
727 fprintf(stderr, "kvm version too old\n");
728 goto err;
731 if (ret > KVM_API_VERSION) {
732 ret = -EINVAL;
733 fprintf(stderr, "kvm version not supported\n");
734 goto err;
737 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
738 if (s->vmfd < 0) {
739 #ifdef TARGET_S390X
740 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
741 "your host kernel command line\n");
742 #endif
743 ret = s->vmfd;
744 goto err;
747 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
748 if (!missing_cap) {
749 missing_cap =
750 kvm_check_extension_list(s, kvm_arch_required_capabilities);
752 if (missing_cap) {
753 ret = -EINVAL;
754 fprintf(stderr, "kvm does not support %s\n%s",
755 missing_cap->name, upgrade_note);
756 goto err;
759 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
761 s->broken_set_mem_region = 1;
762 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
763 if (ret > 0) {
764 s->broken_set_mem_region = 0;
767 #ifdef KVM_CAP_VCPU_EVENTS
768 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
769 #endif
771 s->robust_singlestep =
772 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
774 #ifdef KVM_CAP_DEBUGREGS
775 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
776 #endif
778 #ifdef KVM_CAP_XSAVE
779 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
780 #endif
782 #ifdef KVM_CAP_XCRS
783 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
784 #endif
786 ret = kvm_arch_init(s);
787 if (ret < 0) {
788 goto err;
791 kvm_state = s;
792 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
794 s->many_ioeventfds = kvm_check_many_ioeventfds();
796 cpu_interrupt_handler = kvm_handle_interrupt;
798 return 0;
800 err:
801 if (s) {
802 if (s->vmfd >= 0) {
803 close(s->vmfd);
805 if (s->fd != -1) {
806 close(s->fd);
809 g_free(s);
811 return ret;
814 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
815 uint32_t count)
817 int i;
818 uint8_t *ptr = data;
820 for (i = 0; i < count; i++) {
821 if (direction == KVM_EXIT_IO_IN) {
822 switch (size) {
823 case 1:
824 stb_p(ptr, cpu_inb(port));
825 break;
826 case 2:
827 stw_p(ptr, cpu_inw(port));
828 break;
829 case 4:
830 stl_p(ptr, cpu_inl(port));
831 break;
833 } else {
834 switch (size) {
835 case 1:
836 cpu_outb(port, ldub_p(ptr));
837 break;
838 case 2:
839 cpu_outw(port, lduw_p(ptr));
840 break;
841 case 4:
842 cpu_outl(port, ldl_p(ptr));
843 break;
847 ptr += size;
851 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
853 fprintf(stderr, "KVM internal error.");
854 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
855 int i;
857 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
858 for (i = 0; i < run->internal.ndata; ++i) {
859 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
860 i, (uint64_t)run->internal.data[i]);
862 } else {
863 fprintf(stderr, "\n");
865 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
866 fprintf(stderr, "emulation failure\n");
867 if (!kvm_arch_stop_on_emulation_error(env)) {
868 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
869 return EXCP_INTERRUPT;
872 /* FIXME: Should trigger a qmp message to let management know
873 * something went wrong.
875 return -1;
878 void kvm_flush_coalesced_mmio_buffer(void)
880 KVMState *s = kvm_state;
882 if (s->coalesced_flush_in_progress) {
883 return;
886 s->coalesced_flush_in_progress = true;
888 if (s->coalesced_mmio_ring) {
889 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
890 while (ring->first != ring->last) {
891 struct kvm_coalesced_mmio *ent;
893 ent = &ring->coalesced_mmio[ring->first];
895 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
896 smp_wmb();
897 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
901 s->coalesced_flush_in_progress = false;
904 static void do_kvm_cpu_synchronize_state(void *_env)
906 CPUState *env = _env;
908 if (!env->kvm_vcpu_dirty) {
909 kvm_arch_get_registers(env);
910 env->kvm_vcpu_dirty = 1;
914 void kvm_cpu_synchronize_state(CPUState *env)
916 if (!env->kvm_vcpu_dirty) {
917 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
921 void kvm_cpu_synchronize_post_reset(CPUState *env)
923 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
924 env->kvm_vcpu_dirty = 0;
927 void kvm_cpu_synchronize_post_init(CPUState *env)
929 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
930 env->kvm_vcpu_dirty = 0;
933 int kvm_cpu_exec(CPUState *env)
935 struct kvm_run *run = env->kvm_run;
936 int ret, run_ret;
938 DPRINTF("kvm_cpu_exec()\n");
940 if (kvm_arch_process_async_events(env)) {
941 env->exit_request = 0;
942 return EXCP_HLT;
945 cpu_single_env = env;
947 do {
948 if (env->kvm_vcpu_dirty) {
949 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
950 env->kvm_vcpu_dirty = 0;
953 kvm_arch_pre_run(env, run);
954 if (env->exit_request) {
955 DPRINTF("interrupt exit requested\n");
957 * KVM requires us to reenter the kernel after IO exits to complete
958 * instruction emulation. This self-signal will ensure that we
959 * leave ASAP again.
961 qemu_cpu_kick_self();
963 cpu_single_env = NULL;
964 qemu_mutex_unlock_iothread();
966 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
968 qemu_mutex_lock_iothread();
969 cpu_single_env = env;
970 kvm_arch_post_run(env, run);
972 kvm_flush_coalesced_mmio_buffer();
974 if (run_ret < 0) {
975 if (run_ret == -EINTR || run_ret == -EAGAIN) {
976 DPRINTF("io window exit\n");
977 ret = EXCP_INTERRUPT;
978 break;
980 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
981 abort();
984 switch (run->exit_reason) {
985 case KVM_EXIT_IO:
986 DPRINTF("handle_io\n");
987 kvm_handle_io(run->io.port,
988 (uint8_t *)run + run->io.data_offset,
989 run->io.direction,
990 run->io.size,
991 run->io.count);
992 ret = 0;
993 break;
994 case KVM_EXIT_MMIO:
995 DPRINTF("handle_mmio\n");
996 cpu_physical_memory_rw(run->mmio.phys_addr,
997 run->mmio.data,
998 run->mmio.len,
999 run->mmio.is_write);
1000 ret = 0;
1001 break;
1002 case KVM_EXIT_IRQ_WINDOW_OPEN:
1003 DPRINTF("irq_window_open\n");
1004 ret = EXCP_INTERRUPT;
1005 break;
1006 case KVM_EXIT_SHUTDOWN:
1007 DPRINTF("shutdown\n");
1008 qemu_system_reset_request();
1009 ret = EXCP_INTERRUPT;
1010 break;
1011 case KVM_EXIT_UNKNOWN:
1012 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1013 (uint64_t)run->hw.hardware_exit_reason);
1014 ret = -1;
1015 break;
1016 case KVM_EXIT_INTERNAL_ERROR:
1017 ret = kvm_handle_internal_error(env, run);
1018 break;
1019 default:
1020 DPRINTF("kvm_arch_handle_exit\n");
1021 ret = kvm_arch_handle_exit(env, run);
1022 break;
1024 } while (ret == 0);
1026 if (ret < 0) {
1027 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1028 vm_stop(RUN_STATE_INTERNAL_ERROR);
1031 env->exit_request = 0;
1032 cpu_single_env = NULL;
1033 return ret;
1036 int kvm_ioctl(KVMState *s, int type, ...)
1038 int ret;
1039 void *arg;
1040 va_list ap;
1042 va_start(ap, type);
1043 arg = va_arg(ap, void *);
1044 va_end(ap);
1046 ret = ioctl(s->fd, type, arg);
1047 if (ret == -1) {
1048 ret = -errno;
1050 return ret;
1053 int kvm_vm_ioctl(KVMState *s, int type, ...)
1055 int ret;
1056 void *arg;
1057 va_list ap;
1059 va_start(ap, type);
1060 arg = va_arg(ap, void *);
1061 va_end(ap);
1063 ret = ioctl(s->vmfd, type, arg);
1064 if (ret == -1) {
1065 ret = -errno;
1067 return ret;
1070 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1072 int ret;
1073 void *arg;
1074 va_list ap;
1076 va_start(ap, type);
1077 arg = va_arg(ap, void *);
1078 va_end(ap);
1080 ret = ioctl(env->kvm_fd, type, arg);
1081 if (ret == -1) {
1082 ret = -errno;
1084 return ret;
1087 int kvm_has_sync_mmu(void)
1089 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1092 int kvm_has_vcpu_events(void)
1094 return kvm_state->vcpu_events;
1097 int kvm_has_robust_singlestep(void)
1099 return kvm_state->robust_singlestep;
1102 int kvm_has_debugregs(void)
1104 return kvm_state->debugregs;
1107 int kvm_has_xsave(void)
1109 return kvm_state->xsave;
1112 int kvm_has_xcrs(void)
1114 return kvm_state->xcrs;
1117 int kvm_has_many_ioeventfds(void)
1119 if (!kvm_enabled()) {
1120 return 0;
1122 return kvm_state->many_ioeventfds;
1125 void kvm_setup_guest_memory(void *start, size_t size)
1127 if (!kvm_has_sync_mmu()) {
1128 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1130 if (ret) {
1131 perror("qemu_madvise");
1132 fprintf(stderr,
1133 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1134 exit(1);
1139 #ifdef KVM_CAP_SET_GUEST_DEBUG
1140 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1141 target_ulong pc)
1143 struct kvm_sw_breakpoint *bp;
1145 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1146 if (bp->pc == pc) {
1147 return bp;
1150 return NULL;
1153 int kvm_sw_breakpoints_active(CPUState *env)
1155 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1158 struct kvm_set_guest_debug_data {
1159 struct kvm_guest_debug dbg;
1160 CPUState *env;
1161 int err;
1164 static void kvm_invoke_set_guest_debug(void *data)
1166 struct kvm_set_guest_debug_data *dbg_data = data;
1167 CPUState *env = dbg_data->env;
1169 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1172 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1174 struct kvm_set_guest_debug_data data;
1176 data.dbg.control = reinject_trap;
1178 if (env->singlestep_enabled) {
1179 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1181 kvm_arch_update_guest_debug(env, &data.dbg);
1182 data.env = env;
1184 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1185 return data.err;
1188 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1189 target_ulong len, int type)
1191 struct kvm_sw_breakpoint *bp;
1192 CPUState *env;
1193 int err;
1195 if (type == GDB_BREAKPOINT_SW) {
1196 bp = kvm_find_sw_breakpoint(current_env, addr);
1197 if (bp) {
1198 bp->use_count++;
1199 return 0;
1202 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1203 if (!bp) {
1204 return -ENOMEM;
1207 bp->pc = addr;
1208 bp->use_count = 1;
1209 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1210 if (err) {
1211 g_free(bp);
1212 return err;
1215 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1216 bp, entry);
1217 } else {
1218 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1219 if (err) {
1220 return err;
1224 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1225 err = kvm_update_guest_debug(env, 0);
1226 if (err) {
1227 return err;
1230 return 0;
1233 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1234 target_ulong len, int type)
1236 struct kvm_sw_breakpoint *bp;
1237 CPUState *env;
1238 int err;
1240 if (type == GDB_BREAKPOINT_SW) {
1241 bp = kvm_find_sw_breakpoint(current_env, addr);
1242 if (!bp) {
1243 return -ENOENT;
1246 if (bp->use_count > 1) {
1247 bp->use_count--;
1248 return 0;
1251 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1252 if (err) {
1253 return err;
1256 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1257 g_free(bp);
1258 } else {
1259 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1260 if (err) {
1261 return err;
1265 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1266 err = kvm_update_guest_debug(env, 0);
1267 if (err) {
1268 return err;
1271 return 0;
1274 void kvm_remove_all_breakpoints(CPUState *current_env)
1276 struct kvm_sw_breakpoint *bp, *next;
1277 KVMState *s = current_env->kvm_state;
1278 CPUState *env;
1280 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1281 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1282 /* Try harder to find a CPU that currently sees the breakpoint. */
1283 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1284 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1285 break;
1290 kvm_arch_remove_all_hw_breakpoints();
1292 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1293 kvm_update_guest_debug(env, 0);
1297 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1299 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1301 return -EINVAL;
1304 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1305 target_ulong len, int type)
1307 return -EINVAL;
1310 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1311 target_ulong len, int type)
1313 return -EINVAL;
1316 void kvm_remove_all_breakpoints(CPUState *current_env)
1319 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1321 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1323 struct kvm_signal_mask *sigmask;
1324 int r;
1326 if (!sigset) {
1327 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1330 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1332 sigmask->len = 8;
1333 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1334 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1335 g_free(sigmask);
1337 return r;
1340 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1342 int ret;
1343 struct kvm_ioeventfd iofd;
1345 iofd.datamatch = val;
1346 iofd.addr = addr;
1347 iofd.len = 4;
1348 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1349 iofd.fd = fd;
1351 if (!kvm_enabled()) {
1352 return -ENOSYS;
1355 if (!assign) {
1356 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1359 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1361 if (ret < 0) {
1362 return -errno;
1365 return 0;
1368 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1370 struct kvm_ioeventfd kick = {
1371 .datamatch = val,
1372 .addr = addr,
1373 .len = 2,
1374 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1375 .fd = fd,
1377 int r;
1378 if (!kvm_enabled()) {
1379 return -ENOSYS;
1381 if (!assign) {
1382 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1384 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1385 if (r < 0) {
1386 return r;
1388 return 0;
1391 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1393 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1396 int kvm_on_sigbus(int code, void *addr)
1398 return kvm_arch_on_sigbus(code, addr);