usb: don't use 'Yoda conditions'
[qemu/ar7.git] / target-i386 / kvm.c
blob097fe1188dd2b534a7987b084939b93745ecb967
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "hw/i386/apic_internal.h"
34 #include "hw/i386/apic-msidef.h"
35 #include "exec/ioport.h"
36 #include <asm/hyperv.h>
37 #include "hw/pci/pci.h"
38 #include "migration/migration.h"
39 #include "qapi/qmp/qerror.h"
41 //#define DEBUG_KVM
43 #ifdef DEBUG_KVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
51 #define MSR_KVM_WALL_CLOCK 0x11
52 #define MSR_KVM_SYSTEM_TIME 0x12
54 #ifndef BUS_MCEERR_AR
55 #define BUS_MCEERR_AR 4
56 #endif
57 #ifndef BUS_MCEERR_AO
58 #define BUS_MCEERR_AO 5
59 #endif
61 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
62 KVM_CAP_INFO(SET_TSS_ADDR),
63 KVM_CAP_INFO(EXT_CPUID),
64 KVM_CAP_INFO(MP_STATE),
65 KVM_CAP_LAST_INFO
68 static bool has_msr_star;
69 static bool has_msr_hsave_pa;
70 static bool has_msr_tsc_adjust;
71 static bool has_msr_tsc_deadline;
72 static bool has_msr_feature_control;
73 static bool has_msr_async_pf_en;
74 static bool has_msr_pv_eoi_en;
75 static bool has_msr_misc_enable;
76 static bool has_msr_bndcfgs;
77 static bool has_msr_kvm_steal_time;
78 static int lm_capable_kernel;
79 static bool has_msr_hv_hypercall;
80 static bool has_msr_hv_vapic;
81 static bool has_msr_hv_tsc;
83 static bool has_msr_architectural_pmu;
84 static uint32_t num_architectural_pmu_counters;
86 bool kvm_allows_irq0_override(void)
88 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
91 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
93 struct kvm_cpuid2 *cpuid;
94 int r, size;
96 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
97 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
98 cpuid->nent = max;
99 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
100 if (r == 0 && cpuid->nent >= max) {
101 r = -E2BIG;
103 if (r < 0) {
104 if (r == -E2BIG) {
105 g_free(cpuid);
106 return NULL;
107 } else {
108 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
109 strerror(-r));
110 exit(1);
113 return cpuid;
116 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
117 * for all entries.
119 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
121 struct kvm_cpuid2 *cpuid;
122 int max = 1;
123 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
124 max *= 2;
126 return cpuid;
129 static const struct kvm_para_features {
130 int cap;
131 int feature;
132 } para_features[] = {
133 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
134 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
135 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
136 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
139 static int get_para_features(KVMState *s)
141 int i, features = 0;
143 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
144 if (kvm_check_extension(s, para_features[i].cap)) {
145 features |= (1 << para_features[i].feature);
149 return features;
153 /* Returns the value for a specific register on the cpuid entry
155 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
157 uint32_t ret = 0;
158 switch (reg) {
159 case R_EAX:
160 ret = entry->eax;
161 break;
162 case R_EBX:
163 ret = entry->ebx;
164 break;
165 case R_ECX:
166 ret = entry->ecx;
167 break;
168 case R_EDX:
169 ret = entry->edx;
170 break;
172 return ret;
175 /* Find matching entry for function/index on kvm_cpuid2 struct
177 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
178 uint32_t function,
179 uint32_t index)
181 int i;
182 for (i = 0; i < cpuid->nent; ++i) {
183 if (cpuid->entries[i].function == function &&
184 cpuid->entries[i].index == index) {
185 return &cpuid->entries[i];
188 /* not found: */
189 return NULL;
192 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
193 uint32_t index, int reg)
195 struct kvm_cpuid2 *cpuid;
196 uint32_t ret = 0;
197 uint32_t cpuid_1_edx;
198 bool found = false;
200 cpuid = get_supported_cpuid(s);
202 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
203 if (entry) {
204 found = true;
205 ret = cpuid_entry_get_reg(entry, reg);
208 /* Fixups for the data returned by KVM, below */
210 if (function == 1 && reg == R_EDX) {
211 /* KVM before 2.6.30 misreports the following features */
212 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
213 } else if (function == 1 && reg == R_ECX) {
214 /* We can set the hypervisor flag, even if KVM does not return it on
215 * GET_SUPPORTED_CPUID
217 ret |= CPUID_EXT_HYPERVISOR;
218 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
219 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
220 * and the irqchip is in the kernel.
222 if (kvm_irqchip_in_kernel() &&
223 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
224 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
227 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
228 * without the in-kernel irqchip
230 if (!kvm_irqchip_in_kernel()) {
231 ret &= ~CPUID_EXT_X2APIC;
233 } else if (function == 0x80000001 && reg == R_EDX) {
234 /* On Intel, kvm returns cpuid according to the Intel spec,
235 * so add missing bits according to the AMD spec:
237 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
238 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
241 g_free(cpuid);
243 /* fallback for older kernels */
244 if ((function == KVM_CPUID_FEATURES) && !found) {
245 ret = get_para_features(s);
248 return ret;
251 typedef struct HWPoisonPage {
252 ram_addr_t ram_addr;
253 QLIST_ENTRY(HWPoisonPage) list;
254 } HWPoisonPage;
256 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
257 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
259 static void kvm_unpoison_all(void *param)
261 HWPoisonPage *page, *next_page;
263 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
264 QLIST_REMOVE(page, list);
265 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
266 g_free(page);
270 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
272 HWPoisonPage *page;
274 QLIST_FOREACH(page, &hwpoison_page_list, list) {
275 if (page->ram_addr == ram_addr) {
276 return;
279 page = g_malloc(sizeof(HWPoisonPage));
280 page->ram_addr = ram_addr;
281 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
284 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
285 int *max_banks)
287 int r;
289 r = kvm_check_extension(s, KVM_CAP_MCE);
290 if (r > 0) {
291 *max_banks = r;
292 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
294 return -ENOSYS;
297 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
299 CPUX86State *env = &cpu->env;
300 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
301 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
302 uint64_t mcg_status = MCG_STATUS_MCIP;
304 if (code == BUS_MCEERR_AR) {
305 status |= MCI_STATUS_AR | 0x134;
306 mcg_status |= MCG_STATUS_EIPV;
307 } else {
308 status |= 0xc0;
309 mcg_status |= MCG_STATUS_RIPV;
311 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
312 (MCM_ADDR_PHYS << 6) | 0xc,
313 cpu_x86_support_mca_broadcast(env) ?
314 MCE_INJECT_BROADCAST : 0);
317 static void hardware_memory_error(void)
319 fprintf(stderr, "Hardware memory error!\n");
320 exit(1);
323 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
325 X86CPU *cpu = X86_CPU(c);
326 CPUX86State *env = &cpu->env;
327 ram_addr_t ram_addr;
328 hwaddr paddr;
330 if ((env->mcg_cap & MCG_SER_P) && addr
331 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
332 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
333 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
334 fprintf(stderr, "Hardware memory error for memory used by "
335 "QEMU itself instead of guest system!\n");
336 /* Hope we are lucky for AO MCE */
337 if (code == BUS_MCEERR_AO) {
338 return 0;
339 } else {
340 hardware_memory_error();
343 kvm_hwpoison_page_add(ram_addr);
344 kvm_mce_inject(cpu, paddr, code);
345 } else {
346 if (code == BUS_MCEERR_AO) {
347 return 0;
348 } else if (code == BUS_MCEERR_AR) {
349 hardware_memory_error();
350 } else {
351 return 1;
354 return 0;
357 int kvm_arch_on_sigbus(int code, void *addr)
359 X86CPU *cpu = X86_CPU(first_cpu);
361 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
362 ram_addr_t ram_addr;
363 hwaddr paddr;
365 /* Hope we are lucky for AO MCE */
366 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
367 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
368 addr, &paddr)) {
369 fprintf(stderr, "Hardware memory error for memory used by "
370 "QEMU itself instead of guest system!: %p\n", addr);
371 return 0;
373 kvm_hwpoison_page_add(ram_addr);
374 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
375 } else {
376 if (code == BUS_MCEERR_AO) {
377 return 0;
378 } else if (code == BUS_MCEERR_AR) {
379 hardware_memory_error();
380 } else {
381 return 1;
384 return 0;
387 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
389 CPUX86State *env = &cpu->env;
391 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
392 unsigned int bank, bank_num = env->mcg_cap & 0xff;
393 struct kvm_x86_mce mce;
395 env->exception_injected = -1;
398 * There must be at least one bank in use if an MCE is pending.
399 * Find it and use its values for the event injection.
401 for (bank = 0; bank < bank_num; bank++) {
402 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
403 break;
406 assert(bank < bank_num);
408 mce.bank = bank;
409 mce.status = env->mce_banks[bank * 4 + 1];
410 mce.mcg_status = env->mcg_status;
411 mce.addr = env->mce_banks[bank * 4 + 2];
412 mce.misc = env->mce_banks[bank * 4 + 3];
414 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
416 return 0;
419 static void cpu_update_state(void *opaque, int running, RunState state)
421 CPUX86State *env = opaque;
423 if (running) {
424 env->tsc_valid = false;
428 unsigned long kvm_arch_vcpu_id(CPUState *cs)
430 X86CPU *cpu = X86_CPU(cs);
431 return cpu->env.cpuid_apic_id;
434 #ifndef KVM_CPUID_SIGNATURE_NEXT
435 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
436 #endif
438 static bool hyperv_hypercall_available(X86CPU *cpu)
440 return cpu->hyperv_vapic ||
441 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
444 static bool hyperv_enabled(X86CPU *cpu)
446 CPUState *cs = CPU(cpu);
447 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
448 (hyperv_hypercall_available(cpu) ||
449 cpu->hyperv_time ||
450 cpu->hyperv_relaxed_timing);
453 static Error *invtsc_mig_blocker;
455 #define KVM_MAX_CPUID_ENTRIES 100
457 int kvm_arch_init_vcpu(CPUState *cs)
459 struct {
460 struct kvm_cpuid2 cpuid;
461 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
462 } QEMU_PACKED cpuid_data;
463 X86CPU *cpu = X86_CPU(cs);
464 CPUX86State *env = &cpu->env;
465 uint32_t limit, i, j, cpuid_i;
466 uint32_t unused;
467 struct kvm_cpuid_entry2 *c;
468 uint32_t signature[3];
469 int kvm_base = KVM_CPUID_SIGNATURE;
470 int r;
472 memset(&cpuid_data, 0, sizeof(cpuid_data));
474 cpuid_i = 0;
476 /* Paravirtualization CPUIDs */
477 if (hyperv_enabled(cpu)) {
478 c = &cpuid_data.entries[cpuid_i++];
479 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
480 memcpy(signature, "Microsoft Hv", 12);
481 c->eax = HYPERV_CPUID_MIN;
482 c->ebx = signature[0];
483 c->ecx = signature[1];
484 c->edx = signature[2];
486 c = &cpuid_data.entries[cpuid_i++];
487 c->function = HYPERV_CPUID_INTERFACE;
488 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
489 c->eax = signature[0];
490 c->ebx = 0;
491 c->ecx = 0;
492 c->edx = 0;
494 c = &cpuid_data.entries[cpuid_i++];
495 c->function = HYPERV_CPUID_VERSION;
496 c->eax = 0x00001bbc;
497 c->ebx = 0x00060001;
499 c = &cpuid_data.entries[cpuid_i++];
500 c->function = HYPERV_CPUID_FEATURES;
501 if (cpu->hyperv_relaxed_timing) {
502 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
504 if (cpu->hyperv_vapic) {
505 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
506 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
507 has_msr_hv_vapic = true;
509 if (cpu->hyperv_time &&
510 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
511 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
512 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
513 c->eax |= 0x200;
514 has_msr_hv_tsc = true;
516 c = &cpuid_data.entries[cpuid_i++];
517 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
518 if (cpu->hyperv_relaxed_timing) {
519 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
521 if (has_msr_hv_vapic) {
522 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
524 c->ebx = cpu->hyperv_spinlock_attempts;
526 c = &cpuid_data.entries[cpuid_i++];
527 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
528 c->eax = 0x40;
529 c->ebx = 0x40;
531 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
532 has_msr_hv_hypercall = true;
535 if (cpu->expose_kvm) {
536 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
537 c = &cpuid_data.entries[cpuid_i++];
538 c->function = KVM_CPUID_SIGNATURE | kvm_base;
539 c->eax = KVM_CPUID_FEATURES | kvm_base;
540 c->ebx = signature[0];
541 c->ecx = signature[1];
542 c->edx = signature[2];
544 c = &cpuid_data.entries[cpuid_i++];
545 c->function = KVM_CPUID_FEATURES | kvm_base;
546 c->eax = env->features[FEAT_KVM];
548 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
550 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
552 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
555 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
557 for (i = 0; i <= limit; i++) {
558 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
559 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
560 abort();
562 c = &cpuid_data.entries[cpuid_i++];
564 switch (i) {
565 case 2: {
566 /* Keep reading function 2 till all the input is received */
567 int times;
569 c->function = i;
570 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
571 KVM_CPUID_FLAG_STATE_READ_NEXT;
572 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
573 times = c->eax & 0xff;
575 for (j = 1; j < times; ++j) {
576 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
577 fprintf(stderr, "cpuid_data is full, no space for "
578 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
579 abort();
581 c = &cpuid_data.entries[cpuid_i++];
582 c->function = i;
583 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
584 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
586 break;
588 case 4:
589 case 0xb:
590 case 0xd:
591 for (j = 0; ; j++) {
592 if (i == 0xd && j == 64) {
593 break;
595 c->function = i;
596 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
597 c->index = j;
598 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
600 if (i == 4 && c->eax == 0) {
601 break;
603 if (i == 0xb && !(c->ecx & 0xff00)) {
604 break;
606 if (i == 0xd && c->eax == 0) {
607 continue;
609 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
610 fprintf(stderr, "cpuid_data is full, no space for "
611 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
612 abort();
614 c = &cpuid_data.entries[cpuid_i++];
616 break;
617 default:
618 c->function = i;
619 c->flags = 0;
620 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
621 break;
625 if (limit >= 0x0a) {
626 uint32_t ver;
628 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
629 if ((ver & 0xff) > 0) {
630 has_msr_architectural_pmu = true;
631 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
633 /* Shouldn't be more than 32, since that's the number of bits
634 * available in EBX to tell us _which_ counters are available.
635 * Play it safe.
637 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
638 num_architectural_pmu_counters = MAX_GP_COUNTERS;
643 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
645 for (i = 0x80000000; i <= limit; i++) {
646 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
647 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
648 abort();
650 c = &cpuid_data.entries[cpuid_i++];
652 c->function = i;
653 c->flags = 0;
654 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
657 /* Call Centaur's CPUID instructions they are supported. */
658 if (env->cpuid_xlevel2 > 0) {
659 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
661 for (i = 0xC0000000; i <= limit; i++) {
662 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
663 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
664 abort();
666 c = &cpuid_data.entries[cpuid_i++];
668 c->function = i;
669 c->flags = 0;
670 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
674 cpuid_data.cpuid.nent = cpuid_i;
676 if (((env->cpuid_version >> 8)&0xF) >= 6
677 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
678 (CPUID_MCE | CPUID_MCA)
679 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
680 uint64_t mcg_cap;
681 int banks;
682 int ret;
684 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
685 if (ret < 0) {
686 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
687 return ret;
690 if (banks > MCE_BANKS_DEF) {
691 banks = MCE_BANKS_DEF;
693 mcg_cap &= MCE_CAP_DEF;
694 mcg_cap |= banks;
695 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
696 if (ret < 0) {
697 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
698 return ret;
701 env->mcg_cap = mcg_cap;
704 qemu_add_vm_change_state_handler(cpu_update_state, env);
706 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
707 if (c) {
708 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
709 !!(c->ecx & CPUID_EXT_SMX);
712 c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
713 if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
714 /* for migration */
715 error_setg(&invtsc_mig_blocker,
716 "State blocked by non-migratable CPU device"
717 " (invtsc flag)");
718 migrate_add_blocker(invtsc_mig_blocker);
719 /* for savevm */
720 vmstate_x86_cpu.unmigratable = 1;
723 cpuid_data.cpuid.padding = 0;
724 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
725 if (r) {
726 return r;
729 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
730 if (r && env->tsc_khz) {
731 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
732 if (r < 0) {
733 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
734 return r;
738 if (kvm_has_xsave()) {
739 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
742 return 0;
745 void kvm_arch_reset_vcpu(X86CPU *cpu)
747 CPUX86State *env = &cpu->env;
749 env->exception_injected = -1;
750 env->interrupt_injected = -1;
751 env->xcr0 = 1;
752 if (kvm_irqchip_in_kernel()) {
753 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
754 KVM_MP_STATE_UNINITIALIZED;
755 } else {
756 env->mp_state = KVM_MP_STATE_RUNNABLE;
760 void kvm_arch_do_init_vcpu(X86CPU *cpu)
762 CPUX86State *env = &cpu->env;
764 /* APs get directly into wait-for-SIPI state. */
765 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
766 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
770 static int kvm_get_supported_msrs(KVMState *s)
772 static int kvm_supported_msrs;
773 int ret = 0;
775 /* first time */
776 if (kvm_supported_msrs == 0) {
777 struct kvm_msr_list msr_list, *kvm_msr_list;
779 kvm_supported_msrs = -1;
781 /* Obtain MSR list from KVM. These are the MSRs that we must
782 * save/restore */
783 msr_list.nmsrs = 0;
784 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
785 if (ret < 0 && ret != -E2BIG) {
786 return ret;
788 /* Old kernel modules had a bug and could write beyond the provided
789 memory. Allocate at least a safe amount of 1K. */
790 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
791 msr_list.nmsrs *
792 sizeof(msr_list.indices[0])));
794 kvm_msr_list->nmsrs = msr_list.nmsrs;
795 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
796 if (ret >= 0) {
797 int i;
799 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
800 if (kvm_msr_list->indices[i] == MSR_STAR) {
801 has_msr_star = true;
802 continue;
804 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
805 has_msr_hsave_pa = true;
806 continue;
808 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
809 has_msr_tsc_adjust = true;
810 continue;
812 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
813 has_msr_tsc_deadline = true;
814 continue;
816 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
817 has_msr_misc_enable = true;
818 continue;
820 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
821 has_msr_bndcfgs = true;
822 continue;
827 g_free(kvm_msr_list);
830 return ret;
833 int kvm_arch_init(KVMState *s)
835 uint64_t identity_base = 0xfffbc000;
836 uint64_t shadow_mem;
837 int ret;
838 struct utsname utsname;
840 ret = kvm_get_supported_msrs(s);
841 if (ret < 0) {
842 return ret;
845 uname(&utsname);
846 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
849 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
850 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
851 * Since these must be part of guest physical memory, we need to allocate
852 * them, both by setting their start addresses in the kernel and by
853 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
855 * Older KVM versions may not support setting the identity map base. In
856 * that case we need to stick with the default, i.e. a 256K maximum BIOS
857 * size.
859 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
860 /* Allows up to 16M BIOSes. */
861 identity_base = 0xfeffc000;
863 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
864 if (ret < 0) {
865 return ret;
869 /* Set TSS base one page after EPT identity map. */
870 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
871 if (ret < 0) {
872 return ret;
875 /* Tell fw_cfg to notify the BIOS to reserve the range. */
876 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
877 if (ret < 0) {
878 fprintf(stderr, "e820_add_entry() table is full\n");
879 return ret;
881 qemu_register_reset(kvm_unpoison_all, NULL);
883 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
884 "kvm_shadow_mem", -1);
885 if (shadow_mem != -1) {
886 shadow_mem /= 4096;
887 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
888 if (ret < 0) {
889 return ret;
892 return 0;
895 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
897 lhs->selector = rhs->selector;
898 lhs->base = rhs->base;
899 lhs->limit = rhs->limit;
900 lhs->type = 3;
901 lhs->present = 1;
902 lhs->dpl = 3;
903 lhs->db = 0;
904 lhs->s = 1;
905 lhs->l = 0;
906 lhs->g = 0;
907 lhs->avl = 0;
908 lhs->unusable = 0;
911 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
913 unsigned flags = rhs->flags;
914 lhs->selector = rhs->selector;
915 lhs->base = rhs->base;
916 lhs->limit = rhs->limit;
917 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
918 lhs->present = (flags & DESC_P_MASK) != 0;
919 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
920 lhs->db = (flags >> DESC_B_SHIFT) & 1;
921 lhs->s = (flags & DESC_S_MASK) != 0;
922 lhs->l = (flags >> DESC_L_SHIFT) & 1;
923 lhs->g = (flags & DESC_G_MASK) != 0;
924 lhs->avl = (flags & DESC_AVL_MASK) != 0;
925 lhs->unusable = 0;
926 lhs->padding = 0;
929 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
931 lhs->selector = rhs->selector;
932 lhs->base = rhs->base;
933 lhs->limit = rhs->limit;
934 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
935 (rhs->present * DESC_P_MASK) |
936 (rhs->dpl << DESC_DPL_SHIFT) |
937 (rhs->db << DESC_B_SHIFT) |
938 (rhs->s * DESC_S_MASK) |
939 (rhs->l << DESC_L_SHIFT) |
940 (rhs->g * DESC_G_MASK) |
941 (rhs->avl * DESC_AVL_MASK);
944 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
946 if (set) {
947 *kvm_reg = *qemu_reg;
948 } else {
949 *qemu_reg = *kvm_reg;
953 static int kvm_getput_regs(X86CPU *cpu, int set)
955 CPUX86State *env = &cpu->env;
956 struct kvm_regs regs;
957 int ret = 0;
959 if (!set) {
960 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
961 if (ret < 0) {
962 return ret;
966 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
967 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
968 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
969 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
970 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
971 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
972 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
973 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
974 #ifdef TARGET_X86_64
975 kvm_getput_reg(&regs.r8, &env->regs[8], set);
976 kvm_getput_reg(&regs.r9, &env->regs[9], set);
977 kvm_getput_reg(&regs.r10, &env->regs[10], set);
978 kvm_getput_reg(&regs.r11, &env->regs[11], set);
979 kvm_getput_reg(&regs.r12, &env->regs[12], set);
980 kvm_getput_reg(&regs.r13, &env->regs[13], set);
981 kvm_getput_reg(&regs.r14, &env->regs[14], set);
982 kvm_getput_reg(&regs.r15, &env->regs[15], set);
983 #endif
985 kvm_getput_reg(&regs.rflags, &env->eflags, set);
986 kvm_getput_reg(&regs.rip, &env->eip, set);
988 if (set) {
989 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
992 return ret;
995 static int kvm_put_fpu(X86CPU *cpu)
997 CPUX86State *env = &cpu->env;
998 struct kvm_fpu fpu;
999 int i;
1001 memset(&fpu, 0, sizeof fpu);
1002 fpu.fsw = env->fpus & ~(7 << 11);
1003 fpu.fsw |= (env->fpstt & 7) << 11;
1004 fpu.fcw = env->fpuc;
1005 fpu.last_opcode = env->fpop;
1006 fpu.last_ip = env->fpip;
1007 fpu.last_dp = env->fpdp;
1008 for (i = 0; i < 8; ++i) {
1009 fpu.ftwx |= (!env->fptags[i]) << i;
1011 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1012 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
1013 fpu.mxcsr = env->mxcsr;
1015 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1018 #define XSAVE_FCW_FSW 0
1019 #define XSAVE_FTW_FOP 1
1020 #define XSAVE_CWD_RIP 2
1021 #define XSAVE_CWD_RDP 4
1022 #define XSAVE_MXCSR 6
1023 #define XSAVE_ST_SPACE 8
1024 #define XSAVE_XMM_SPACE 40
1025 #define XSAVE_XSTATE_BV 128
1026 #define XSAVE_YMMH_SPACE 144
1027 #define XSAVE_BNDREGS 240
1028 #define XSAVE_BNDCSR 256
1030 static int kvm_put_xsave(X86CPU *cpu)
1032 CPUX86State *env = &cpu->env;
1033 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1034 uint16_t cwd, swd, twd;
1035 int i, r;
1037 if (!kvm_has_xsave()) {
1038 return kvm_put_fpu(cpu);
1041 memset(xsave, 0, sizeof(struct kvm_xsave));
1042 twd = 0;
1043 swd = env->fpus & ~(7 << 11);
1044 swd |= (env->fpstt & 7) << 11;
1045 cwd = env->fpuc;
1046 for (i = 0; i < 8; ++i) {
1047 twd |= (!env->fptags[i]) << i;
1049 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1050 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
1051 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1052 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
1053 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1054 sizeof env->fpregs);
1055 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1056 sizeof env->xmm_regs);
1057 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1058 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1059 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1060 sizeof env->ymmh_regs);
1061 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1062 sizeof env->bnd_regs);
1063 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1064 sizeof(env->bndcs_regs));
1065 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1066 return r;
1069 static int kvm_put_xcrs(X86CPU *cpu)
1071 CPUX86State *env = &cpu->env;
1072 struct kvm_xcrs xcrs;
1074 if (!kvm_has_xcrs()) {
1075 return 0;
1078 xcrs.nr_xcrs = 1;
1079 xcrs.flags = 0;
1080 xcrs.xcrs[0].xcr = 0;
1081 xcrs.xcrs[0].value = env->xcr0;
1082 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1085 static int kvm_put_sregs(X86CPU *cpu)
1087 CPUX86State *env = &cpu->env;
1088 struct kvm_sregs sregs;
1090 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1091 if (env->interrupt_injected >= 0) {
1092 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1093 (uint64_t)1 << (env->interrupt_injected % 64);
1096 if ((env->eflags & VM_MASK)) {
1097 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1098 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1099 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1100 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1101 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1102 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1103 } else {
1104 set_seg(&sregs.cs, &env->segs[R_CS]);
1105 set_seg(&sregs.ds, &env->segs[R_DS]);
1106 set_seg(&sregs.es, &env->segs[R_ES]);
1107 set_seg(&sregs.fs, &env->segs[R_FS]);
1108 set_seg(&sregs.gs, &env->segs[R_GS]);
1109 set_seg(&sregs.ss, &env->segs[R_SS]);
1112 set_seg(&sregs.tr, &env->tr);
1113 set_seg(&sregs.ldt, &env->ldt);
1115 sregs.idt.limit = env->idt.limit;
1116 sregs.idt.base = env->idt.base;
1117 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1118 sregs.gdt.limit = env->gdt.limit;
1119 sregs.gdt.base = env->gdt.base;
1120 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1122 sregs.cr0 = env->cr[0];
1123 sregs.cr2 = env->cr[2];
1124 sregs.cr3 = env->cr[3];
1125 sregs.cr4 = env->cr[4];
1127 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1128 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1130 sregs.efer = env->efer;
1132 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1135 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1136 uint32_t index, uint64_t value)
1138 entry->index = index;
1139 entry->data = value;
1142 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1144 CPUX86State *env = &cpu->env;
1145 struct {
1146 struct kvm_msrs info;
1147 struct kvm_msr_entry entries[1];
1148 } msr_data;
1149 struct kvm_msr_entry *msrs = msr_data.entries;
1151 if (!has_msr_tsc_deadline) {
1152 return 0;
1155 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1157 msr_data.info.nmsrs = 1;
1159 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1163 * Provide a separate write service for the feature control MSR in order to
1164 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1165 * before writing any other state because forcibly leaving nested mode
1166 * invalidates the VCPU state.
1168 static int kvm_put_msr_feature_control(X86CPU *cpu)
1170 struct {
1171 struct kvm_msrs info;
1172 struct kvm_msr_entry entry;
1173 } msr_data;
1175 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1176 cpu->env.msr_ia32_feature_control);
1177 msr_data.info.nmsrs = 1;
1178 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1181 static int kvm_put_msrs(X86CPU *cpu, int level)
1183 CPUX86State *env = &cpu->env;
1184 struct {
1185 struct kvm_msrs info;
1186 struct kvm_msr_entry entries[100];
1187 } msr_data;
1188 struct kvm_msr_entry *msrs = msr_data.entries;
1189 int n = 0, i;
1191 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1192 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1193 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1194 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1195 if (has_msr_star) {
1196 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1198 if (has_msr_hsave_pa) {
1199 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1201 if (has_msr_tsc_adjust) {
1202 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1204 if (has_msr_misc_enable) {
1205 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1206 env->msr_ia32_misc_enable);
1208 if (has_msr_bndcfgs) {
1209 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1211 #ifdef TARGET_X86_64
1212 if (lm_capable_kernel) {
1213 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1214 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1215 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1216 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1218 #endif
1220 * The following MSRs have side effects on the guest or are too heavy
1221 * for normal writeback. Limit them to reset or full state updates.
1223 if (level >= KVM_PUT_RESET_STATE) {
1224 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1225 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1226 env->system_time_msr);
1227 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1228 if (has_msr_async_pf_en) {
1229 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1230 env->async_pf_en_msr);
1232 if (has_msr_pv_eoi_en) {
1233 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1234 env->pv_eoi_en_msr);
1236 if (has_msr_kvm_steal_time) {
1237 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1238 env->steal_time_msr);
1240 if (has_msr_architectural_pmu) {
1241 /* Stop the counter. */
1242 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1243 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1245 /* Set the counter values. */
1246 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1247 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1248 env->msr_fixed_counters[i]);
1250 for (i = 0; i < num_architectural_pmu_counters; i++) {
1251 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1252 env->msr_gp_counters[i]);
1253 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1254 env->msr_gp_evtsel[i]);
1256 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1257 env->msr_global_status);
1258 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1259 env->msr_global_ovf_ctrl);
1261 /* Now start the PMU. */
1262 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1263 env->msr_fixed_ctr_ctrl);
1264 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1265 env->msr_global_ctrl);
1267 if (has_msr_hv_hypercall) {
1268 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1269 env->msr_hv_guest_os_id);
1270 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1271 env->msr_hv_hypercall);
1273 if (has_msr_hv_vapic) {
1274 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1275 env->msr_hv_vapic);
1277 if (has_msr_hv_tsc) {
1278 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1279 env->msr_hv_tsc);
1282 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1283 * kvm_put_msr_feature_control. */
1285 if (env->mcg_cap) {
1286 int i;
1288 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1289 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1290 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1291 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1295 msr_data.info.nmsrs = n;
1297 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1302 static int kvm_get_fpu(X86CPU *cpu)
1304 CPUX86State *env = &cpu->env;
1305 struct kvm_fpu fpu;
1306 int i, ret;
1308 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1309 if (ret < 0) {
1310 return ret;
1313 env->fpstt = (fpu.fsw >> 11) & 7;
1314 env->fpus = fpu.fsw;
1315 env->fpuc = fpu.fcw;
1316 env->fpop = fpu.last_opcode;
1317 env->fpip = fpu.last_ip;
1318 env->fpdp = fpu.last_dp;
1319 for (i = 0; i < 8; ++i) {
1320 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1322 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1323 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1324 env->mxcsr = fpu.mxcsr;
1326 return 0;
1329 static int kvm_get_xsave(X86CPU *cpu)
1331 CPUX86State *env = &cpu->env;
1332 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1333 int ret, i;
1334 uint16_t cwd, swd, twd;
1336 if (!kvm_has_xsave()) {
1337 return kvm_get_fpu(cpu);
1340 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1341 if (ret < 0) {
1342 return ret;
1345 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1346 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1347 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1348 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1349 env->fpstt = (swd >> 11) & 7;
1350 env->fpus = swd;
1351 env->fpuc = cwd;
1352 for (i = 0; i < 8; ++i) {
1353 env->fptags[i] = !((twd >> i) & 1);
1355 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1356 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1357 env->mxcsr = xsave->region[XSAVE_MXCSR];
1358 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1359 sizeof env->fpregs);
1360 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1361 sizeof env->xmm_regs);
1362 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1363 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1364 sizeof env->ymmh_regs);
1365 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1366 sizeof env->bnd_regs);
1367 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1368 sizeof(env->bndcs_regs));
1369 return 0;
1372 static int kvm_get_xcrs(X86CPU *cpu)
1374 CPUX86State *env = &cpu->env;
1375 int i, ret;
1376 struct kvm_xcrs xcrs;
1378 if (!kvm_has_xcrs()) {
1379 return 0;
1382 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1383 if (ret < 0) {
1384 return ret;
1387 for (i = 0; i < xcrs.nr_xcrs; i++) {
1388 /* Only support xcr0 now */
1389 if (xcrs.xcrs[i].xcr == 0) {
1390 env->xcr0 = xcrs.xcrs[i].value;
1391 break;
1394 return 0;
1397 static int kvm_get_sregs(X86CPU *cpu)
1399 CPUX86State *env = &cpu->env;
1400 struct kvm_sregs sregs;
1401 uint32_t hflags;
1402 int bit, i, ret;
1404 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1405 if (ret < 0) {
1406 return ret;
1409 /* There can only be one pending IRQ set in the bitmap at a time, so try
1410 to find it and save its number instead (-1 for none). */
1411 env->interrupt_injected = -1;
1412 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1413 if (sregs.interrupt_bitmap[i]) {
1414 bit = ctz64(sregs.interrupt_bitmap[i]);
1415 env->interrupt_injected = i * 64 + bit;
1416 break;
1420 get_seg(&env->segs[R_CS], &sregs.cs);
1421 get_seg(&env->segs[R_DS], &sregs.ds);
1422 get_seg(&env->segs[R_ES], &sregs.es);
1423 get_seg(&env->segs[R_FS], &sregs.fs);
1424 get_seg(&env->segs[R_GS], &sregs.gs);
1425 get_seg(&env->segs[R_SS], &sregs.ss);
1427 get_seg(&env->tr, &sregs.tr);
1428 get_seg(&env->ldt, &sregs.ldt);
1430 env->idt.limit = sregs.idt.limit;
1431 env->idt.base = sregs.idt.base;
1432 env->gdt.limit = sregs.gdt.limit;
1433 env->gdt.base = sregs.gdt.base;
1435 env->cr[0] = sregs.cr0;
1436 env->cr[2] = sregs.cr2;
1437 env->cr[3] = sregs.cr3;
1438 env->cr[4] = sregs.cr4;
1440 env->efer = sregs.efer;
1442 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1444 #define HFLAG_COPY_MASK \
1445 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1446 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1447 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1448 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1450 hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1451 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1452 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1453 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1454 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1455 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1456 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1458 if (env->efer & MSR_EFER_LMA) {
1459 hflags |= HF_LMA_MASK;
1462 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1463 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1464 } else {
1465 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1466 (DESC_B_SHIFT - HF_CS32_SHIFT);
1467 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1468 (DESC_B_SHIFT - HF_SS32_SHIFT);
1469 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1470 !(hflags & HF_CS32_MASK)) {
1471 hflags |= HF_ADDSEG_MASK;
1472 } else {
1473 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1474 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1477 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1479 return 0;
1482 static int kvm_get_msrs(X86CPU *cpu)
1484 CPUX86State *env = &cpu->env;
1485 struct {
1486 struct kvm_msrs info;
1487 struct kvm_msr_entry entries[100];
1488 } msr_data;
1489 struct kvm_msr_entry *msrs = msr_data.entries;
1490 int ret, i, n;
1492 n = 0;
1493 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1494 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1495 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1496 msrs[n++].index = MSR_PAT;
1497 if (has_msr_star) {
1498 msrs[n++].index = MSR_STAR;
1500 if (has_msr_hsave_pa) {
1501 msrs[n++].index = MSR_VM_HSAVE_PA;
1503 if (has_msr_tsc_adjust) {
1504 msrs[n++].index = MSR_TSC_ADJUST;
1506 if (has_msr_tsc_deadline) {
1507 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1509 if (has_msr_misc_enable) {
1510 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1512 if (has_msr_feature_control) {
1513 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1515 if (has_msr_bndcfgs) {
1516 msrs[n++].index = MSR_IA32_BNDCFGS;
1519 if (!env->tsc_valid) {
1520 msrs[n++].index = MSR_IA32_TSC;
1521 env->tsc_valid = !runstate_is_running();
1524 #ifdef TARGET_X86_64
1525 if (lm_capable_kernel) {
1526 msrs[n++].index = MSR_CSTAR;
1527 msrs[n++].index = MSR_KERNELGSBASE;
1528 msrs[n++].index = MSR_FMASK;
1529 msrs[n++].index = MSR_LSTAR;
1531 #endif
1532 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1533 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1534 if (has_msr_async_pf_en) {
1535 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1537 if (has_msr_pv_eoi_en) {
1538 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1540 if (has_msr_kvm_steal_time) {
1541 msrs[n++].index = MSR_KVM_STEAL_TIME;
1543 if (has_msr_architectural_pmu) {
1544 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1545 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1546 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1547 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1548 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1549 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1551 for (i = 0; i < num_architectural_pmu_counters; i++) {
1552 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1553 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1557 if (env->mcg_cap) {
1558 msrs[n++].index = MSR_MCG_STATUS;
1559 msrs[n++].index = MSR_MCG_CTL;
1560 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1561 msrs[n++].index = MSR_MC0_CTL + i;
1565 if (has_msr_hv_hypercall) {
1566 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1567 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1569 if (has_msr_hv_vapic) {
1570 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1572 if (has_msr_hv_tsc) {
1573 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1576 msr_data.info.nmsrs = n;
1577 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1578 if (ret < 0) {
1579 return ret;
1582 for (i = 0; i < ret; i++) {
1583 uint32_t index = msrs[i].index;
1584 switch (index) {
1585 case MSR_IA32_SYSENTER_CS:
1586 env->sysenter_cs = msrs[i].data;
1587 break;
1588 case MSR_IA32_SYSENTER_ESP:
1589 env->sysenter_esp = msrs[i].data;
1590 break;
1591 case MSR_IA32_SYSENTER_EIP:
1592 env->sysenter_eip = msrs[i].data;
1593 break;
1594 case MSR_PAT:
1595 env->pat = msrs[i].data;
1596 break;
1597 case MSR_STAR:
1598 env->star = msrs[i].data;
1599 break;
1600 #ifdef TARGET_X86_64
1601 case MSR_CSTAR:
1602 env->cstar = msrs[i].data;
1603 break;
1604 case MSR_KERNELGSBASE:
1605 env->kernelgsbase = msrs[i].data;
1606 break;
1607 case MSR_FMASK:
1608 env->fmask = msrs[i].data;
1609 break;
1610 case MSR_LSTAR:
1611 env->lstar = msrs[i].data;
1612 break;
1613 #endif
1614 case MSR_IA32_TSC:
1615 env->tsc = msrs[i].data;
1616 break;
1617 case MSR_TSC_ADJUST:
1618 env->tsc_adjust = msrs[i].data;
1619 break;
1620 case MSR_IA32_TSCDEADLINE:
1621 env->tsc_deadline = msrs[i].data;
1622 break;
1623 case MSR_VM_HSAVE_PA:
1624 env->vm_hsave = msrs[i].data;
1625 break;
1626 case MSR_KVM_SYSTEM_TIME:
1627 env->system_time_msr = msrs[i].data;
1628 break;
1629 case MSR_KVM_WALL_CLOCK:
1630 env->wall_clock_msr = msrs[i].data;
1631 break;
1632 case MSR_MCG_STATUS:
1633 env->mcg_status = msrs[i].data;
1634 break;
1635 case MSR_MCG_CTL:
1636 env->mcg_ctl = msrs[i].data;
1637 break;
1638 case MSR_IA32_MISC_ENABLE:
1639 env->msr_ia32_misc_enable = msrs[i].data;
1640 break;
1641 case MSR_IA32_FEATURE_CONTROL:
1642 env->msr_ia32_feature_control = msrs[i].data;
1643 break;
1644 case MSR_IA32_BNDCFGS:
1645 env->msr_bndcfgs = msrs[i].data;
1646 break;
1647 default:
1648 if (msrs[i].index >= MSR_MC0_CTL &&
1649 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1650 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1652 break;
1653 case MSR_KVM_ASYNC_PF_EN:
1654 env->async_pf_en_msr = msrs[i].data;
1655 break;
1656 case MSR_KVM_PV_EOI_EN:
1657 env->pv_eoi_en_msr = msrs[i].data;
1658 break;
1659 case MSR_KVM_STEAL_TIME:
1660 env->steal_time_msr = msrs[i].data;
1661 break;
1662 case MSR_CORE_PERF_FIXED_CTR_CTRL:
1663 env->msr_fixed_ctr_ctrl = msrs[i].data;
1664 break;
1665 case MSR_CORE_PERF_GLOBAL_CTRL:
1666 env->msr_global_ctrl = msrs[i].data;
1667 break;
1668 case MSR_CORE_PERF_GLOBAL_STATUS:
1669 env->msr_global_status = msrs[i].data;
1670 break;
1671 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1672 env->msr_global_ovf_ctrl = msrs[i].data;
1673 break;
1674 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1675 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1676 break;
1677 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1678 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1679 break;
1680 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1681 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1682 break;
1683 case HV_X64_MSR_HYPERCALL:
1684 env->msr_hv_hypercall = msrs[i].data;
1685 break;
1686 case HV_X64_MSR_GUEST_OS_ID:
1687 env->msr_hv_guest_os_id = msrs[i].data;
1688 break;
1689 case HV_X64_MSR_APIC_ASSIST_PAGE:
1690 env->msr_hv_vapic = msrs[i].data;
1691 break;
1692 case HV_X64_MSR_REFERENCE_TSC:
1693 env->msr_hv_tsc = msrs[i].data;
1694 break;
1698 return 0;
1701 static int kvm_put_mp_state(X86CPU *cpu)
1703 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1705 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1708 static int kvm_get_mp_state(X86CPU *cpu)
1710 CPUState *cs = CPU(cpu);
1711 CPUX86State *env = &cpu->env;
1712 struct kvm_mp_state mp_state;
1713 int ret;
1715 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1716 if (ret < 0) {
1717 return ret;
1719 env->mp_state = mp_state.mp_state;
1720 if (kvm_irqchip_in_kernel()) {
1721 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1723 return 0;
1726 static int kvm_get_apic(X86CPU *cpu)
1728 DeviceState *apic = cpu->apic_state;
1729 struct kvm_lapic_state kapic;
1730 int ret;
1732 if (apic && kvm_irqchip_in_kernel()) {
1733 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1734 if (ret < 0) {
1735 return ret;
1738 kvm_get_apic_state(apic, &kapic);
1740 return 0;
1743 static int kvm_put_apic(X86CPU *cpu)
1745 DeviceState *apic = cpu->apic_state;
1746 struct kvm_lapic_state kapic;
1748 if (apic && kvm_irqchip_in_kernel()) {
1749 kvm_put_apic_state(apic, &kapic);
1751 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1753 return 0;
1756 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1758 CPUX86State *env = &cpu->env;
1759 struct kvm_vcpu_events events;
1761 if (!kvm_has_vcpu_events()) {
1762 return 0;
1765 events.exception.injected = (env->exception_injected >= 0);
1766 events.exception.nr = env->exception_injected;
1767 events.exception.has_error_code = env->has_error_code;
1768 events.exception.error_code = env->error_code;
1769 events.exception.pad = 0;
1771 events.interrupt.injected = (env->interrupt_injected >= 0);
1772 events.interrupt.nr = env->interrupt_injected;
1773 events.interrupt.soft = env->soft_interrupt;
1775 events.nmi.injected = env->nmi_injected;
1776 events.nmi.pending = env->nmi_pending;
1777 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1778 events.nmi.pad = 0;
1780 events.sipi_vector = env->sipi_vector;
1782 events.flags = 0;
1783 if (level >= KVM_PUT_RESET_STATE) {
1784 events.flags |=
1785 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1788 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1791 static int kvm_get_vcpu_events(X86CPU *cpu)
1793 CPUX86State *env = &cpu->env;
1794 struct kvm_vcpu_events events;
1795 int ret;
1797 if (!kvm_has_vcpu_events()) {
1798 return 0;
1801 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1802 if (ret < 0) {
1803 return ret;
1805 env->exception_injected =
1806 events.exception.injected ? events.exception.nr : -1;
1807 env->has_error_code = events.exception.has_error_code;
1808 env->error_code = events.exception.error_code;
1810 env->interrupt_injected =
1811 events.interrupt.injected ? events.interrupt.nr : -1;
1812 env->soft_interrupt = events.interrupt.soft;
1814 env->nmi_injected = events.nmi.injected;
1815 env->nmi_pending = events.nmi.pending;
1816 if (events.nmi.masked) {
1817 env->hflags2 |= HF2_NMI_MASK;
1818 } else {
1819 env->hflags2 &= ~HF2_NMI_MASK;
1822 env->sipi_vector = events.sipi_vector;
1824 return 0;
1827 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1829 CPUState *cs = CPU(cpu);
1830 CPUX86State *env = &cpu->env;
1831 int ret = 0;
1832 unsigned long reinject_trap = 0;
1834 if (!kvm_has_vcpu_events()) {
1835 if (env->exception_injected == 1) {
1836 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1837 } else if (env->exception_injected == 3) {
1838 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1840 env->exception_injected = -1;
1844 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1845 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1846 * by updating the debug state once again if single-stepping is on.
1847 * Another reason to call kvm_update_guest_debug here is a pending debug
1848 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1849 * reinject them via SET_GUEST_DEBUG.
1851 if (reinject_trap ||
1852 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
1853 ret = kvm_update_guest_debug(cs, reinject_trap);
1855 return ret;
1858 static int kvm_put_debugregs(X86CPU *cpu)
1860 CPUX86State *env = &cpu->env;
1861 struct kvm_debugregs dbgregs;
1862 int i;
1864 if (!kvm_has_debugregs()) {
1865 return 0;
1868 for (i = 0; i < 4; i++) {
1869 dbgregs.db[i] = env->dr[i];
1871 dbgregs.dr6 = env->dr[6];
1872 dbgregs.dr7 = env->dr[7];
1873 dbgregs.flags = 0;
1875 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1878 static int kvm_get_debugregs(X86CPU *cpu)
1880 CPUX86State *env = &cpu->env;
1881 struct kvm_debugregs dbgregs;
1882 int i, ret;
1884 if (!kvm_has_debugregs()) {
1885 return 0;
1888 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1889 if (ret < 0) {
1890 return ret;
1892 for (i = 0; i < 4; i++) {
1893 env->dr[i] = dbgregs.db[i];
1895 env->dr[4] = env->dr[6] = dbgregs.dr6;
1896 env->dr[5] = env->dr[7] = dbgregs.dr7;
1898 return 0;
1901 int kvm_arch_put_registers(CPUState *cpu, int level)
1903 X86CPU *x86_cpu = X86_CPU(cpu);
1904 int ret;
1906 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1908 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
1909 ret = kvm_put_msr_feature_control(x86_cpu);
1910 if (ret < 0) {
1911 return ret;
1915 ret = kvm_getput_regs(x86_cpu, 1);
1916 if (ret < 0) {
1917 return ret;
1919 ret = kvm_put_xsave(x86_cpu);
1920 if (ret < 0) {
1921 return ret;
1923 ret = kvm_put_xcrs(x86_cpu);
1924 if (ret < 0) {
1925 return ret;
1927 ret = kvm_put_sregs(x86_cpu);
1928 if (ret < 0) {
1929 return ret;
1931 /* must be before kvm_put_msrs */
1932 ret = kvm_inject_mce_oldstyle(x86_cpu);
1933 if (ret < 0) {
1934 return ret;
1936 ret = kvm_put_msrs(x86_cpu, level);
1937 if (ret < 0) {
1938 return ret;
1940 if (level >= KVM_PUT_RESET_STATE) {
1941 ret = kvm_put_mp_state(x86_cpu);
1942 if (ret < 0) {
1943 return ret;
1945 ret = kvm_put_apic(x86_cpu);
1946 if (ret < 0) {
1947 return ret;
1951 ret = kvm_put_tscdeadline_msr(x86_cpu);
1952 if (ret < 0) {
1953 return ret;
1956 ret = kvm_put_vcpu_events(x86_cpu, level);
1957 if (ret < 0) {
1958 return ret;
1960 ret = kvm_put_debugregs(x86_cpu);
1961 if (ret < 0) {
1962 return ret;
1964 /* must be last */
1965 ret = kvm_guest_debug_workarounds(x86_cpu);
1966 if (ret < 0) {
1967 return ret;
1969 return 0;
1972 int kvm_arch_get_registers(CPUState *cs)
1974 X86CPU *cpu = X86_CPU(cs);
1975 int ret;
1977 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1979 ret = kvm_getput_regs(cpu, 0);
1980 if (ret < 0) {
1981 return ret;
1983 ret = kvm_get_xsave(cpu);
1984 if (ret < 0) {
1985 return ret;
1987 ret = kvm_get_xcrs(cpu);
1988 if (ret < 0) {
1989 return ret;
1991 ret = kvm_get_sregs(cpu);
1992 if (ret < 0) {
1993 return ret;
1995 ret = kvm_get_msrs(cpu);
1996 if (ret < 0) {
1997 return ret;
1999 ret = kvm_get_mp_state(cpu);
2000 if (ret < 0) {
2001 return ret;
2003 ret = kvm_get_apic(cpu);
2004 if (ret < 0) {
2005 return ret;
2007 ret = kvm_get_vcpu_events(cpu);
2008 if (ret < 0) {
2009 return ret;
2011 ret = kvm_get_debugregs(cpu);
2012 if (ret < 0) {
2013 return ret;
2015 return 0;
2018 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
2020 X86CPU *x86_cpu = X86_CPU(cpu);
2021 CPUX86State *env = &x86_cpu->env;
2022 int ret;
2024 /* Inject NMI */
2025 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2026 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2027 DPRINTF("injected NMI\n");
2028 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2029 if (ret < 0) {
2030 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2031 strerror(-ret));
2035 /* Force the VCPU out of its inner loop to process any INIT requests
2036 * or (for userspace APIC, but it is cheap to combine the checks here)
2037 * pending TPR access reports.
2039 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2040 cpu->exit_request = 1;
2043 if (!kvm_irqchip_in_kernel()) {
2044 /* Try to inject an interrupt if the guest can accept it */
2045 if (run->ready_for_interrupt_injection &&
2046 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
2047 (env->eflags & IF_MASK)) {
2048 int irq;
2050 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
2051 irq = cpu_get_pic_interrupt(env);
2052 if (irq >= 0) {
2053 struct kvm_interrupt intr;
2055 intr.irq = irq;
2056 DPRINTF("injected interrupt %d\n", irq);
2057 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
2058 if (ret < 0) {
2059 fprintf(stderr,
2060 "KVM: injection failed, interrupt lost (%s)\n",
2061 strerror(-ret));
2066 /* If we have an interrupt but the guest is not ready to receive an
2067 * interrupt, request an interrupt window exit. This will
2068 * cause a return to userspace as soon as the guest is ready to
2069 * receive interrupts. */
2070 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
2071 run->request_interrupt_window = 1;
2072 } else {
2073 run->request_interrupt_window = 0;
2076 DPRINTF("setting tpr\n");
2077 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
2081 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
2083 X86CPU *x86_cpu = X86_CPU(cpu);
2084 CPUX86State *env = &x86_cpu->env;
2086 if (run->if_flag) {
2087 env->eflags |= IF_MASK;
2088 } else {
2089 env->eflags &= ~IF_MASK;
2091 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2092 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
2095 int kvm_arch_process_async_events(CPUState *cs)
2097 X86CPU *cpu = X86_CPU(cs);
2098 CPUX86State *env = &cpu->env;
2100 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
2101 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2102 assert(env->mcg_cap);
2104 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
2106 kvm_cpu_synchronize_state(cs);
2108 if (env->exception_injected == EXCP08_DBLE) {
2109 /* this means triple fault */
2110 qemu_system_reset_request();
2111 cs->exit_request = 1;
2112 return 0;
2114 env->exception_injected = EXCP12_MCHK;
2115 env->has_error_code = 0;
2117 cs->halted = 0;
2118 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2119 env->mp_state = KVM_MP_STATE_RUNNABLE;
2123 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
2124 kvm_cpu_synchronize_state(cs);
2125 do_cpu_init(cpu);
2128 if (kvm_irqchip_in_kernel()) {
2129 return 0;
2132 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2133 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2134 apic_poll_irq(cpu->apic_state);
2136 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2137 (env->eflags & IF_MASK)) ||
2138 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2139 cs->halted = 0;
2141 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2142 kvm_cpu_synchronize_state(cs);
2143 do_cpu_sipi(cpu);
2145 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2146 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2147 kvm_cpu_synchronize_state(cs);
2148 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
2149 env->tpr_access_type);
2152 return cs->halted;
2155 static int kvm_handle_halt(X86CPU *cpu)
2157 CPUState *cs = CPU(cpu);
2158 CPUX86State *env = &cpu->env;
2160 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2161 (env->eflags & IF_MASK)) &&
2162 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2163 cs->halted = 1;
2164 return EXCP_HLT;
2167 return 0;
2170 static int kvm_handle_tpr_access(X86CPU *cpu)
2172 CPUState *cs = CPU(cpu);
2173 struct kvm_run *run = cs->kvm_run;
2175 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
2176 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2177 : TPR_ACCESS_READ);
2178 return 1;
2181 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2183 static const uint8_t int3 = 0xcc;
2185 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2186 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2187 return -EINVAL;
2189 return 0;
2192 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2194 uint8_t int3;
2196 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2197 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2198 return -EINVAL;
2200 return 0;
2203 static struct {
2204 target_ulong addr;
2205 int len;
2206 int type;
2207 } hw_breakpoint[4];
2209 static int nb_hw_breakpoint;
2211 static int find_hw_breakpoint(target_ulong addr, int len, int type)
2213 int n;
2215 for (n = 0; n < nb_hw_breakpoint; n++) {
2216 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2217 (hw_breakpoint[n].len == len || len == -1)) {
2218 return n;
2221 return -1;
2224 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2225 target_ulong len, int type)
2227 switch (type) {
2228 case GDB_BREAKPOINT_HW:
2229 len = 1;
2230 break;
2231 case GDB_WATCHPOINT_WRITE:
2232 case GDB_WATCHPOINT_ACCESS:
2233 switch (len) {
2234 case 1:
2235 break;
2236 case 2:
2237 case 4:
2238 case 8:
2239 if (addr & (len - 1)) {
2240 return -EINVAL;
2242 break;
2243 default:
2244 return -EINVAL;
2246 break;
2247 default:
2248 return -ENOSYS;
2251 if (nb_hw_breakpoint == 4) {
2252 return -ENOBUFS;
2254 if (find_hw_breakpoint(addr, len, type) >= 0) {
2255 return -EEXIST;
2257 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2258 hw_breakpoint[nb_hw_breakpoint].len = len;
2259 hw_breakpoint[nb_hw_breakpoint].type = type;
2260 nb_hw_breakpoint++;
2262 return 0;
2265 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2266 target_ulong len, int type)
2268 int n;
2270 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2271 if (n < 0) {
2272 return -ENOENT;
2274 nb_hw_breakpoint--;
2275 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2277 return 0;
2280 void kvm_arch_remove_all_hw_breakpoints(void)
2282 nb_hw_breakpoint = 0;
2285 static CPUWatchpoint hw_watchpoint;
2287 static int kvm_handle_debug(X86CPU *cpu,
2288 struct kvm_debug_exit_arch *arch_info)
2290 CPUState *cs = CPU(cpu);
2291 CPUX86State *env = &cpu->env;
2292 int ret = 0;
2293 int n;
2295 if (arch_info->exception == 1) {
2296 if (arch_info->dr6 & (1 << 14)) {
2297 if (cs->singlestep_enabled) {
2298 ret = EXCP_DEBUG;
2300 } else {
2301 for (n = 0; n < 4; n++) {
2302 if (arch_info->dr6 & (1 << n)) {
2303 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2304 case 0x0:
2305 ret = EXCP_DEBUG;
2306 break;
2307 case 0x1:
2308 ret = EXCP_DEBUG;
2309 cs->watchpoint_hit = &hw_watchpoint;
2310 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2311 hw_watchpoint.flags = BP_MEM_WRITE;
2312 break;
2313 case 0x3:
2314 ret = EXCP_DEBUG;
2315 cs->watchpoint_hit = &hw_watchpoint;
2316 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2317 hw_watchpoint.flags = BP_MEM_ACCESS;
2318 break;
2323 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
2324 ret = EXCP_DEBUG;
2326 if (ret == 0) {
2327 cpu_synchronize_state(cs);
2328 assert(env->exception_injected == -1);
2330 /* pass to guest */
2331 env->exception_injected = arch_info->exception;
2332 env->has_error_code = 0;
2335 return ret;
2338 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2340 const uint8_t type_code[] = {
2341 [GDB_BREAKPOINT_HW] = 0x0,
2342 [GDB_WATCHPOINT_WRITE] = 0x1,
2343 [GDB_WATCHPOINT_ACCESS] = 0x3
2345 const uint8_t len_code[] = {
2346 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2348 int n;
2350 if (kvm_sw_breakpoints_active(cpu)) {
2351 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2353 if (nb_hw_breakpoint > 0) {
2354 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2355 dbg->arch.debugreg[7] = 0x0600;
2356 for (n = 0; n < nb_hw_breakpoint; n++) {
2357 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2358 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2359 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2360 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2365 static bool host_supports_vmx(void)
2367 uint32_t ecx, unused;
2369 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2370 return ecx & CPUID_EXT_VMX;
2373 #define VMX_INVALID_GUEST_STATE 0x80000021
2375 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2377 X86CPU *cpu = X86_CPU(cs);
2378 uint64_t code;
2379 int ret;
2381 switch (run->exit_reason) {
2382 case KVM_EXIT_HLT:
2383 DPRINTF("handle_hlt\n");
2384 ret = kvm_handle_halt(cpu);
2385 break;
2386 case KVM_EXIT_SET_TPR:
2387 ret = 0;
2388 break;
2389 case KVM_EXIT_TPR_ACCESS:
2390 ret = kvm_handle_tpr_access(cpu);
2391 break;
2392 case KVM_EXIT_FAIL_ENTRY:
2393 code = run->fail_entry.hardware_entry_failure_reason;
2394 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2395 code);
2396 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2397 fprintf(stderr,
2398 "\nIf you're running a guest on an Intel machine without "
2399 "unrestricted mode\n"
2400 "support, the failure can be most likely due to the guest "
2401 "entering an invalid\n"
2402 "state for Intel VT. For example, the guest maybe running "
2403 "in big real mode\n"
2404 "which is not supported on less recent Intel processors."
2405 "\n\n");
2407 ret = -1;
2408 break;
2409 case KVM_EXIT_EXCEPTION:
2410 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2411 run->ex.exception, run->ex.error_code);
2412 ret = -1;
2413 break;
2414 case KVM_EXIT_DEBUG:
2415 DPRINTF("kvm_exit_debug\n");
2416 ret = kvm_handle_debug(cpu, &run->debug.arch);
2417 break;
2418 default:
2419 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2420 ret = -1;
2421 break;
2424 return ret;
2427 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2429 X86CPU *cpu = X86_CPU(cs);
2430 CPUX86State *env = &cpu->env;
2432 kvm_cpu_synchronize_state(cs);
2433 return !(env->cr[0] & CR0_PE_MASK) ||
2434 ((env->segs[R_CS].selector & 3) != 3);
2437 void kvm_arch_init_irq_routing(KVMState *s)
2439 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2440 /* If kernel can't do irq routing, interrupt source
2441 * override 0->2 cannot be set up as required by HPET.
2442 * So we have to disable it.
2444 no_hpet = 1;
2446 /* We know at this point that we're using the in-kernel
2447 * irqchip, so we can use irqfds, and on x86 we know
2448 * we can use msi via irqfd and GSI routing.
2450 kvm_irqfds_allowed = true;
2451 kvm_msi_via_irqfd_allowed = true;
2452 kvm_gsi_routing_allowed = true;
2455 /* Classic KVM device assignment interface. Will remain x86 only. */
2456 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2457 uint32_t flags, uint32_t *dev_id)
2459 struct kvm_assigned_pci_dev dev_data = {
2460 .segnr = dev_addr->domain,
2461 .busnr = dev_addr->bus,
2462 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2463 .flags = flags,
2465 int ret;
2467 dev_data.assigned_dev_id =
2468 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2470 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2471 if (ret < 0) {
2472 return ret;
2475 *dev_id = dev_data.assigned_dev_id;
2477 return 0;
2480 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2482 struct kvm_assigned_pci_dev dev_data = {
2483 .assigned_dev_id = dev_id,
2486 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2489 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2490 uint32_t irq_type, uint32_t guest_irq)
2492 struct kvm_assigned_irq assigned_irq = {
2493 .assigned_dev_id = dev_id,
2494 .guest_irq = guest_irq,
2495 .flags = irq_type,
2498 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2499 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2500 } else {
2501 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2505 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2506 uint32_t guest_irq)
2508 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2509 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2511 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2514 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2516 struct kvm_assigned_pci_dev dev_data = {
2517 .assigned_dev_id = dev_id,
2518 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2521 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2524 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2525 uint32_t type)
2527 struct kvm_assigned_irq assigned_irq = {
2528 .assigned_dev_id = dev_id,
2529 .flags = type,
2532 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2535 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2537 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2538 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2541 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2543 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2544 KVM_DEV_IRQ_GUEST_MSI, virq);
2547 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2549 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2550 KVM_DEV_IRQ_HOST_MSI);
2553 bool kvm_device_msix_supported(KVMState *s)
2555 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2556 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2557 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2560 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2561 uint32_t nr_vectors)
2563 struct kvm_assigned_msix_nr msix_nr = {
2564 .assigned_dev_id = dev_id,
2565 .entry_nr = nr_vectors,
2568 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2571 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2572 int virq)
2574 struct kvm_assigned_msix_entry msix_entry = {
2575 .assigned_dev_id = dev_id,
2576 .gsi = virq,
2577 .entry = vector,
2580 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2583 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2585 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2586 KVM_DEV_IRQ_GUEST_MSIX, 0);
2589 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2591 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2592 KVM_DEV_IRQ_HOST_MSIX);