usb: don't use 'Yoda conditions'
[qemu/ar7.git] / cputlb.c
blobafd3705ff38f07bc3d3cb8fd758dde8614b53505
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "config.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "tcg/tcg.h"
33 //#define DEBUG_TLB
34 //#define DEBUG_TLB_CHECK
36 /* statistics */
37 int tlb_flush_count;
39 /* NOTE:
40 * If flush_global is true (the usual case), flush all tlb entries.
41 * If flush_global is false, flush (at least) all tlb entries not
42 * marked global.
44 * Since QEMU doesn't currently implement a global/not-global flag
45 * for tlb entries, at the moment tlb_flush() will also flush all
46 * tlb entries in the flush_global == false case. This is OK because
47 * CPU architectures generally permit an implementation to drop
48 * entries from the TLB at any time, so flushing more entries than
49 * required is only an efficiency issue, not a correctness issue.
51 void tlb_flush(CPUState *cpu, int flush_global)
53 CPUArchState *env = cpu->env_ptr;
55 #if defined(DEBUG_TLB)
56 printf("tlb_flush:\n");
57 #endif
58 /* must reset current TB so that interrupts cannot modify the
59 links while we are modifying them */
60 cpu->current_tb = NULL;
62 memset(env->tlb_table, -1, sizeof(env->tlb_table));
63 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
65 env->tlb_flush_addr = -1;
66 env->tlb_flush_mask = 0;
67 tlb_flush_count++;
70 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
72 if (addr == (tlb_entry->addr_read &
73 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
74 addr == (tlb_entry->addr_write &
75 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
76 addr == (tlb_entry->addr_code &
77 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
78 memset(tlb_entry, -1, sizeof(*tlb_entry));
82 void tlb_flush_page(CPUState *cpu, target_ulong addr)
84 CPUArchState *env = cpu->env_ptr;
85 int i;
86 int mmu_idx;
88 #if defined(DEBUG_TLB)
89 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
90 #endif
91 /* Check if we need to flush due to large pages. */
92 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
93 #if defined(DEBUG_TLB)
94 printf("tlb_flush_page: forced full flush ("
95 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
96 env->tlb_flush_addr, env->tlb_flush_mask);
97 #endif
98 tlb_flush(cpu, 1);
99 return;
101 /* must reset current TB so that interrupts cannot modify the
102 links while we are modifying them */
103 cpu->current_tb = NULL;
105 addr &= TARGET_PAGE_MASK;
106 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
107 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
108 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
111 tb_flush_jmp_cache(cpu, addr);
114 /* update the TLBs so that writes to code in the virtual page 'addr'
115 can be detected */
116 void tlb_protect_code(ram_addr_t ram_addr)
118 cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE,
119 DIRTY_MEMORY_CODE);
122 /* update the TLB so that writes in physical page 'phys_addr' are no longer
123 tested for self modifying code */
124 void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr,
125 target_ulong vaddr)
127 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
130 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
132 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
135 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
136 uintptr_t length)
138 uintptr_t addr;
140 if (tlb_is_dirty_ram(tlb_entry)) {
141 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
142 if ((addr - start) < length) {
143 tlb_entry->addr_write |= TLB_NOTDIRTY;
148 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
150 ram_addr_t ram_addr;
152 if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
153 fprintf(stderr, "Bad ram pointer %p\n", ptr);
154 abort();
156 return ram_addr;
159 void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
161 CPUState *cpu;
162 CPUArchState *env;
164 CPU_FOREACH(cpu) {
165 int mmu_idx;
167 env = cpu->env_ptr;
168 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
169 unsigned int i;
171 for (i = 0; i < CPU_TLB_SIZE; i++) {
172 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
173 start1, length);
179 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
181 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
182 tlb_entry->addr_write = vaddr;
186 /* update the TLB corresponding to virtual page vaddr
187 so that it is no longer dirty */
188 void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
190 int i;
191 int mmu_idx;
193 vaddr &= TARGET_PAGE_MASK;
194 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
195 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
196 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
200 /* Our TLB does not support large pages, so remember the area covered by
201 large pages and trigger a full TLB flush if these are invalidated. */
202 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
203 target_ulong size)
205 target_ulong mask = ~(size - 1);
207 if (env->tlb_flush_addr == (target_ulong)-1) {
208 env->tlb_flush_addr = vaddr & mask;
209 env->tlb_flush_mask = mask;
210 return;
212 /* Extend the existing region to include the new page.
213 This is a compromise between unnecessary flushes and the cost
214 of maintaining a full variable size TLB. */
215 mask &= env->tlb_flush_mask;
216 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
217 mask <<= 1;
219 env->tlb_flush_addr &= mask;
220 env->tlb_flush_mask = mask;
223 /* Add a new TLB entry. At most one entry for a given virtual address
224 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
225 supplied size is only used by tlb_flush_page. */
226 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
227 hwaddr paddr, int prot,
228 int mmu_idx, target_ulong size)
230 CPUArchState *env = cpu->env_ptr;
231 MemoryRegionSection *section;
232 unsigned int index;
233 target_ulong address;
234 target_ulong code_address;
235 uintptr_t addend;
236 CPUTLBEntry *te;
237 hwaddr iotlb, xlat, sz;
239 assert(size >= TARGET_PAGE_SIZE);
240 if (size != TARGET_PAGE_SIZE) {
241 tlb_add_large_page(env, vaddr, size);
244 sz = size;
245 section = address_space_translate_for_iotlb(cpu->as, paddr,
246 &xlat, &sz);
247 assert(sz >= TARGET_PAGE_SIZE);
249 #if defined(DEBUG_TLB)
250 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
251 " prot=%x idx=%d\n",
252 vaddr, paddr, prot, mmu_idx);
253 #endif
255 address = vaddr;
256 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
257 /* IO memory case */
258 address |= TLB_MMIO;
259 addend = 0;
260 } else {
261 /* TLB_MMIO for rom/romd handled below */
262 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
265 code_address = address;
266 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
267 prot, &address);
269 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
270 env->iotlb[mmu_idx][index] = iotlb - vaddr;
271 te = &env->tlb_table[mmu_idx][index];
272 te->addend = addend - vaddr;
273 if (prot & PAGE_READ) {
274 te->addr_read = address;
275 } else {
276 te->addr_read = -1;
279 if (prot & PAGE_EXEC) {
280 te->addr_code = code_address;
281 } else {
282 te->addr_code = -1;
284 if (prot & PAGE_WRITE) {
285 if ((memory_region_is_ram(section->mr) && section->readonly)
286 || memory_region_is_romd(section->mr)) {
287 /* Write access calls the I/O callback. */
288 te->addr_write = address | TLB_MMIO;
289 } else if (memory_region_is_ram(section->mr)
290 && cpu_physical_memory_is_clean(section->mr->ram_addr
291 + xlat)) {
292 te->addr_write = address | TLB_NOTDIRTY;
293 } else {
294 te->addr_write = address;
296 } else {
297 te->addr_write = -1;
301 /* NOTE: this function can trigger an exception */
302 /* NOTE2: the returned address is not exactly the physical address: it
303 * is actually a ram_addr_t (in system mode; the user mode emulation
304 * version of this function returns a guest virtual address).
306 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
308 int mmu_idx, page_index, pd;
309 void *p;
310 MemoryRegion *mr;
311 CPUState *cpu = ENV_GET_CPU(env1);
313 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
314 mmu_idx = cpu_mmu_index(env1);
315 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
316 (addr & TARGET_PAGE_MASK))) {
317 cpu_ldub_code(env1, addr);
319 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
320 mr = iotlb_to_region(cpu->as, pd);
321 if (memory_region_is_unassigned(mr)) {
322 CPUClass *cc = CPU_GET_CLASS(cpu);
324 if (cc->do_unassigned_access) {
325 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
326 } else {
327 cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
328 TARGET_FMT_lx "\n", addr);
331 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
332 return qemu_ram_addr_from_host_nofail(p);
335 #define MMUSUFFIX _mmu
337 #define SHIFT 0
338 #include "softmmu_template.h"
340 #define SHIFT 1
341 #include "softmmu_template.h"
343 #define SHIFT 2
344 #include "softmmu_template.h"
346 #define SHIFT 3
347 #include "softmmu_template.h"
348 #undef MMUSUFFIX
350 #define MMUSUFFIX _cmmu
351 #undef GETPC_ADJ
352 #define GETPC_ADJ 0
353 #undef GETRA
354 #define GETRA() ((uintptr_t)0)
355 #define SOFTMMU_CODE_ACCESS
357 #define SHIFT 0
358 #include "softmmu_template.h"
360 #define SHIFT 1
361 #include "softmmu_template.h"
363 #define SHIFT 2
364 #include "softmmu_template.h"
366 #define SHIFT 3
367 #include "softmmu_template.h"