4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
38 /* This check must be after config-host.h is included */
40 #include <sys/eventfd.h>
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
65 ram_addr_t memory_size
;
71 typedef struct kvm_dirty_log KVMDirtyLog
;
79 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
80 bool coalesced_flush_in_progress
;
81 int broken_set_mem_region
;
84 int robust_singlestep
;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl
;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing
*irq_routes
;
99 int nr_allocated_irq_routes
;
100 uint32_t *used_gsi_bitmap
;
101 unsigned int gsi_count
;
102 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
108 bool kvm_kernel_irqchip
;
109 bool kvm_async_interrupts_allowed
;
110 bool kvm_irqfds_allowed
;
111 bool kvm_msi_via_irqfd_allowed
;
112 bool kvm_gsi_routing_allowed
;
114 bool kvm_readonly_mem_allowed
;
116 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
117 KVM_CAP_INFO(USER_MEMORY
),
118 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
122 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
126 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
127 if (s
->slots
[i
].memory_size
== 0) {
132 fprintf(stderr
, "%s: no free slot available\n", __func__
);
136 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
142 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
143 KVMSlot
*mem
= &s
->slots
[i
];
145 if (start_addr
== mem
->start_addr
&&
146 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
155 * Find overlapping slot with lowest start address
157 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
161 KVMSlot
*found
= NULL
;
164 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
165 KVMSlot
*mem
= &s
->slots
[i
];
167 if (mem
->memory_size
== 0 ||
168 (found
&& found
->start_addr
< mem
->start_addr
)) {
172 if (end_addr
> mem
->start_addr
&&
173 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
181 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
186 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
187 KVMSlot
*mem
= &s
->slots
[i
];
189 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
190 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
198 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
200 struct kvm_userspace_memory_region mem
;
202 mem
.slot
= slot
->slot
;
203 mem
.guest_phys_addr
= slot
->start_addr
;
204 mem
.userspace_addr
= (unsigned long)slot
->ram
;
205 mem
.flags
= slot
->flags
;
206 if (s
->migration_log
) {
207 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
209 if (mem
.flags
& KVM_MEM_READONLY
) {
210 /* Set the slot size to 0 before setting the slot to the desired
211 * value. This is needed based on KVM commit 75d61fbc. */
213 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
215 mem
.memory_size
= slot
->memory_size
;
216 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
219 static void kvm_reset_vcpu(void *opaque
)
221 CPUState
*cpu
= opaque
;
223 kvm_arch_reset_vcpu(cpu
);
226 int kvm_init_vcpu(CPUState
*cpu
)
228 KVMState
*s
= kvm_state
;
232 DPRINTF("kvm_init_vcpu\n");
234 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
236 DPRINTF("kvm_create_vcpu failed\n");
242 cpu
->kvm_vcpu_dirty
= true;
244 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
247 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
251 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
253 if (cpu
->kvm_run
== MAP_FAILED
) {
255 DPRINTF("mmap'ing vcpu state failed\n");
259 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
260 s
->coalesced_mmio_ring
=
261 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
264 ret
= kvm_arch_init_vcpu(cpu
);
266 qemu_register_reset(kvm_reset_vcpu
, cpu
);
267 kvm_arch_reset_vcpu(cpu
);
274 * dirty pages logging control
277 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
280 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
281 if (readonly
&& kvm_readonly_mem_allowed
) {
282 flags
|= KVM_MEM_READONLY
;
287 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
289 KVMState
*s
= kvm_state
;
290 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
293 old_flags
= mem
->flags
;
295 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
298 /* If nothing changed effectively, no need to issue ioctl */
299 if (s
->migration_log
) {
300 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
303 if (flags
== old_flags
) {
307 return kvm_set_user_memory_region(s
, mem
);
310 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
311 ram_addr_t size
, bool log_dirty
)
313 KVMState
*s
= kvm_state
;
314 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
317 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
318 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
319 (hwaddr
)(phys_addr
+ size
- 1));
322 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
325 static void kvm_log_start(MemoryListener
*listener
,
326 MemoryRegionSection
*section
)
330 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
331 section
->size
, true);
337 static void kvm_log_stop(MemoryListener
*listener
,
338 MemoryRegionSection
*section
)
342 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
343 section
->size
, false);
349 static int kvm_set_migration_log(int enable
)
351 KVMState
*s
= kvm_state
;
355 s
->migration_log
= enable
;
357 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
360 if (!mem
->memory_size
) {
363 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
366 err
= kvm_set_user_memory_region(s
, mem
);
374 /* get kvm's dirty pages bitmap and update qemu's */
375 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
376 unsigned long *bitmap
)
379 unsigned long page_number
, c
;
381 unsigned int len
= ((section
->size
/ getpagesize()) + HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
382 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
385 * bitmap-traveling is faster than memory-traveling (for addr...)
386 * especially when most of the memory is not dirty.
388 for (i
= 0; i
< len
; i
++) {
389 if (bitmap
[i
] != 0) {
390 c
= leul_to_cpu(bitmap
[i
]);
394 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
395 addr1
= page_number
* TARGET_PAGE_SIZE
;
396 addr
= section
->offset_within_region
+ addr1
;
397 memory_region_set_dirty(section
->mr
, addr
,
398 TARGET_PAGE_SIZE
* hpratio
);
405 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
408 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
409 * This function updates qemu's dirty bitmap using
410 * memory_region_set_dirty(). This means all bits are set
413 * @start_add: start of logged region.
414 * @end_addr: end of logged region.
416 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
418 KVMState
*s
= kvm_state
;
419 unsigned long size
, allocated_size
= 0;
423 hwaddr start_addr
= section
->offset_within_address_space
;
424 hwaddr end_addr
= start_addr
+ section
->size
;
426 d
.dirty_bitmap
= NULL
;
427 while (start_addr
< end_addr
) {
428 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
433 /* XXX bad kernel interface alert
434 * For dirty bitmap, kernel allocates array of size aligned to
435 * bits-per-long. But for case when the kernel is 64bits and
436 * the userspace is 32bits, userspace can't align to the same
437 * bits-per-long, since sizeof(long) is different between kernel
438 * and user space. This way, userspace will provide buffer which
439 * may be 4 bytes less than the kernel will use, resulting in
440 * userspace memory corruption (which is not detectable by valgrind
441 * too, in most cases).
442 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
443 * a hope that sizeof(long) wont become >8 any time soon.
445 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
446 /*HOST_LONG_BITS*/ 64) / 8;
447 if (!d
.dirty_bitmap
) {
448 d
.dirty_bitmap
= g_malloc(size
);
449 } else if (size
> allocated_size
) {
450 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
452 allocated_size
= size
;
453 memset(d
.dirty_bitmap
, 0, allocated_size
);
457 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
458 DPRINTF("ioctl failed %d\n", errno
);
463 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
464 start_addr
= mem
->start_addr
+ mem
->memory_size
;
466 g_free(d
.dirty_bitmap
);
471 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
472 MemoryRegionSection
*secion
,
473 hwaddr start
, hwaddr size
)
475 KVMState
*s
= kvm_state
;
477 if (s
->coalesced_mmio
) {
478 struct kvm_coalesced_mmio_zone zone
;
484 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
488 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
489 MemoryRegionSection
*secion
,
490 hwaddr start
, hwaddr size
)
492 KVMState
*s
= kvm_state
;
494 if (s
->coalesced_mmio
) {
495 struct kvm_coalesced_mmio_zone zone
;
501 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
505 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
509 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
517 static int kvm_set_ioeventfd_mmio(int fd
, uint32_t addr
, uint32_t val
,
518 bool assign
, uint32_t size
, bool datamatch
)
521 struct kvm_ioeventfd iofd
;
523 iofd
.datamatch
= datamatch
? val
: 0;
529 if (!kvm_enabled()) {
534 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
537 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
540 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
549 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
550 bool assign
, uint32_t size
, bool datamatch
)
552 struct kvm_ioeventfd kick
= {
553 .datamatch
= datamatch
? val
: 0,
555 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
560 if (!kvm_enabled()) {
564 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
567 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
569 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
577 static int kvm_check_many_ioeventfds(void)
579 /* Userspace can use ioeventfd for io notification. This requires a host
580 * that supports eventfd(2) and an I/O thread; since eventfd does not
581 * support SIGIO it cannot interrupt the vcpu.
583 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
584 * can avoid creating too many ioeventfds.
586 #if defined(CONFIG_EVENTFD)
589 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
590 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
591 if (ioeventfds
[i
] < 0) {
594 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
596 close(ioeventfds
[i
]);
601 /* Decide whether many devices are supported or not */
602 ret
= i
== ARRAY_SIZE(ioeventfds
);
605 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
606 close(ioeventfds
[i
]);
614 static const KVMCapabilityInfo
*
615 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
618 if (!kvm_check_extension(s
, list
->value
)) {
626 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
628 KVMState
*s
= kvm_state
;
631 MemoryRegion
*mr
= section
->mr
;
632 bool log_dirty
= memory_region_is_logging(mr
);
633 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
634 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
635 hwaddr start_addr
= section
->offset_within_address_space
;
636 ram_addr_t size
= section
->size
;
640 /* kvm works in page size chunks, but the function may be called
641 with sub-page size and unaligned start address. */
642 delta
= TARGET_PAGE_ALIGN(size
) - size
;
648 size
&= TARGET_PAGE_MASK
;
649 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
653 if (!memory_region_is_ram(mr
)) {
654 if (writeable
|| !kvm_readonly_mem_allowed
) {
656 } else if (!mr
->romd_mode
) {
657 /* If the memory device is not in romd_mode, then we actually want
658 * to remove the kvm memory slot so all accesses will trap. */
663 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
666 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
671 if (add
&& start_addr
>= mem
->start_addr
&&
672 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
673 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
674 /* The new slot fits into the existing one and comes with
675 * identical parameters - update flags and done. */
676 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
682 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
683 kvm_physical_sync_dirty_bitmap(section
);
686 /* unregister the overlapping slot */
687 mem
->memory_size
= 0;
688 err
= kvm_set_user_memory_region(s
, mem
);
690 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
691 __func__
, strerror(-err
));
695 /* Workaround for older KVM versions: we can't join slots, even not by
696 * unregistering the previous ones and then registering the larger
697 * slot. We have to maintain the existing fragmentation. Sigh.
699 * This workaround assumes that the new slot starts at the same
700 * address as the first existing one. If not or if some overlapping
701 * slot comes around later, we will fail (not seen in practice so far)
702 * - and actually require a recent KVM version. */
703 if (s
->broken_set_mem_region
&&
704 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
705 mem
= kvm_alloc_slot(s
);
706 mem
->memory_size
= old
.memory_size
;
707 mem
->start_addr
= old
.start_addr
;
709 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
711 err
= kvm_set_user_memory_region(s
, mem
);
713 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
718 start_addr
+= old
.memory_size
;
719 ram
+= old
.memory_size
;
720 size
-= old
.memory_size
;
724 /* register prefix slot */
725 if (old
.start_addr
< start_addr
) {
726 mem
= kvm_alloc_slot(s
);
727 mem
->memory_size
= start_addr
- old
.start_addr
;
728 mem
->start_addr
= old
.start_addr
;
730 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
732 err
= kvm_set_user_memory_region(s
, mem
);
734 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
735 __func__
, strerror(-err
));
737 fprintf(stderr
, "%s: This is probably because your kernel's " \
738 "PAGE_SIZE is too big. Please try to use 4k " \
739 "PAGE_SIZE!\n", __func__
);
745 /* register suffix slot */
746 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
747 ram_addr_t size_delta
;
749 mem
= kvm_alloc_slot(s
);
750 mem
->start_addr
= start_addr
+ size
;
751 size_delta
= mem
->start_addr
- old
.start_addr
;
752 mem
->memory_size
= old
.memory_size
- size_delta
;
753 mem
->ram
= old
.ram
+ size_delta
;
754 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
756 err
= kvm_set_user_memory_region(s
, mem
);
758 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
759 __func__
, strerror(-err
));
765 /* in case the KVM bug workaround already "consumed" the new slot */
772 mem
= kvm_alloc_slot(s
);
773 mem
->memory_size
= size
;
774 mem
->start_addr
= start_addr
;
776 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
778 err
= kvm_set_user_memory_region(s
, mem
);
780 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
786 static void kvm_region_add(MemoryListener
*listener
,
787 MemoryRegionSection
*section
)
789 kvm_set_phys_mem(section
, true);
792 static void kvm_region_del(MemoryListener
*listener
,
793 MemoryRegionSection
*section
)
795 kvm_set_phys_mem(section
, false);
798 static void kvm_log_sync(MemoryListener
*listener
,
799 MemoryRegionSection
*section
)
803 r
= kvm_physical_sync_dirty_bitmap(section
);
809 static void kvm_log_global_start(struct MemoryListener
*listener
)
813 r
= kvm_set_migration_log(1);
817 static void kvm_log_global_stop(struct MemoryListener
*listener
)
821 r
= kvm_set_migration_log(0);
825 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
826 MemoryRegionSection
*section
,
827 bool match_data
, uint64_t data
,
830 int fd
= event_notifier_get_fd(e
);
833 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
834 data
, true, section
->size
, match_data
);
840 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
841 MemoryRegionSection
*section
,
842 bool match_data
, uint64_t data
,
845 int fd
= event_notifier_get_fd(e
);
848 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
849 data
, false, section
->size
, match_data
);
855 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
856 MemoryRegionSection
*section
,
857 bool match_data
, uint64_t data
,
860 int fd
= event_notifier_get_fd(e
);
863 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
864 data
, true, section
->size
, match_data
);
870 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
871 MemoryRegionSection
*section
,
872 bool match_data
, uint64_t data
,
876 int fd
= event_notifier_get_fd(e
);
879 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
880 data
, false, section
->size
, match_data
);
886 static MemoryListener kvm_memory_listener
= {
887 .region_add
= kvm_region_add
,
888 .region_del
= kvm_region_del
,
889 .log_start
= kvm_log_start
,
890 .log_stop
= kvm_log_stop
,
891 .log_sync
= kvm_log_sync
,
892 .log_global_start
= kvm_log_global_start
,
893 .log_global_stop
= kvm_log_global_stop
,
894 .eventfd_add
= kvm_mem_ioeventfd_add
,
895 .eventfd_del
= kvm_mem_ioeventfd_del
,
896 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
897 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
901 static MemoryListener kvm_io_listener
= {
902 .eventfd_add
= kvm_io_ioeventfd_add
,
903 .eventfd_del
= kvm_io_ioeventfd_del
,
907 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
909 cpu
->interrupt_request
|= mask
;
911 if (!qemu_cpu_is_self(cpu
)) {
916 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
918 struct kvm_irq_level event
;
921 assert(kvm_async_interrupts_enabled());
925 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
927 perror("kvm_set_irq");
931 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
934 #ifdef KVM_CAP_IRQ_ROUTING
935 typedef struct KVMMSIRoute
{
936 struct kvm_irq_routing_entry kroute
;
937 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
940 static void set_gsi(KVMState
*s
, unsigned int gsi
)
942 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
945 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
947 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
950 static void kvm_init_irq_routing(KVMState
*s
)
954 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
956 unsigned int gsi_bits
, i
;
958 /* Round up so we can search ints using ffs */
959 gsi_bits
= ALIGN(gsi_count
, 32);
960 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
961 s
->gsi_count
= gsi_count
;
963 /* Mark any over-allocated bits as already in use */
964 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
969 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
970 s
->nr_allocated_irq_routes
= 0;
972 if (!s
->direct_msi
) {
973 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
974 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
978 kvm_arch_init_irq_routing(s
);
981 static void kvm_irqchip_commit_routes(KVMState
*s
)
985 s
->irq_routes
->flags
= 0;
986 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
990 static void kvm_add_routing_entry(KVMState
*s
,
991 struct kvm_irq_routing_entry
*entry
)
993 struct kvm_irq_routing_entry
*new;
996 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
997 n
= s
->nr_allocated_irq_routes
* 2;
1001 size
= sizeof(struct kvm_irq_routing
);
1002 size
+= n
* sizeof(*new);
1003 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1004 s
->nr_allocated_irq_routes
= n
;
1006 n
= s
->irq_routes
->nr
++;
1007 new = &s
->irq_routes
->entries
[n
];
1008 memset(new, 0, sizeof(*new));
1009 new->gsi
= entry
->gsi
;
1010 new->type
= entry
->type
;
1011 new->flags
= entry
->flags
;
1014 set_gsi(s
, entry
->gsi
);
1016 kvm_irqchip_commit_routes(s
);
1019 static int kvm_update_routing_entry(KVMState
*s
,
1020 struct kvm_irq_routing_entry
*new_entry
)
1022 struct kvm_irq_routing_entry
*entry
;
1025 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1026 entry
= &s
->irq_routes
->entries
[n
];
1027 if (entry
->gsi
!= new_entry
->gsi
) {
1031 entry
->type
= new_entry
->type
;
1032 entry
->flags
= new_entry
->flags
;
1033 entry
->u
= new_entry
->u
;
1035 kvm_irqchip_commit_routes(s
);
1043 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1045 struct kvm_irq_routing_entry e
;
1047 assert(pin
< s
->gsi_count
);
1050 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1052 e
.u
.irqchip
.irqchip
= irqchip
;
1053 e
.u
.irqchip
.pin
= pin
;
1054 kvm_add_routing_entry(s
, &e
);
1057 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1059 struct kvm_irq_routing_entry
*e
;
1062 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1063 e
= &s
->irq_routes
->entries
[i
];
1064 if (e
->gsi
== virq
) {
1065 s
->irq_routes
->nr
--;
1066 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1072 static unsigned int kvm_hash_msi(uint32_t data
)
1074 /* This is optimized for IA32 MSI layout. However, no other arch shall
1075 * repeat the mistake of not providing a direct MSI injection API. */
1079 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1081 KVMMSIRoute
*route
, *next
;
1084 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1085 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1086 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1087 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1093 static int kvm_irqchip_get_virq(KVMState
*s
)
1095 uint32_t *word
= s
->used_gsi_bitmap
;
1096 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1101 /* Return the lowest unused GSI in the bitmap */
1102 for (i
= 0; i
< max_words
; i
++) {
1103 bit
= ffs(~word
[i
]);
1108 return bit
- 1 + i
* 32;
1110 if (!s
->direct_msi
&& retry
) {
1112 kvm_flush_dynamic_msi_routes(s
);
1119 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1121 unsigned int hash
= kvm_hash_msi(msg
.data
);
1124 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1125 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1126 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1127 route
->kroute
.u
.msi
.data
== msg
.data
) {
1134 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1139 if (s
->direct_msi
) {
1140 msi
.address_lo
= (uint32_t)msg
.address
;
1141 msi
.address_hi
= msg
.address
>> 32;
1142 msi
.data
= msg
.data
;
1144 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1146 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1149 route
= kvm_lookup_msi_route(s
, msg
);
1153 virq
= kvm_irqchip_get_virq(s
);
1158 route
= g_malloc(sizeof(KVMMSIRoute
));
1159 route
->kroute
.gsi
= virq
;
1160 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1161 route
->kroute
.flags
= 0;
1162 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1163 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1164 route
->kroute
.u
.msi
.data
= msg
.data
;
1166 kvm_add_routing_entry(s
, &route
->kroute
);
1168 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1172 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1174 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1177 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1179 struct kvm_irq_routing_entry kroute
;
1182 if (!kvm_gsi_routing_enabled()) {
1186 virq
= kvm_irqchip_get_virq(s
);
1192 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1194 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1195 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1196 kroute
.u
.msi
.data
= msg
.data
;
1198 kvm_add_routing_entry(s
, &kroute
);
1203 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1205 struct kvm_irq_routing_entry kroute
;
1207 if (!kvm_irqchip_in_kernel()) {
1212 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1214 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1215 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1216 kroute
.u
.msi
.data
= msg
.data
;
1218 return kvm_update_routing_entry(s
, &kroute
);
1221 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1223 struct kvm_irqfd irqfd
= {
1226 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1229 if (!kvm_irqfds_enabled()) {
1233 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1236 #else /* !KVM_CAP_IRQ_ROUTING */
1238 static void kvm_init_irq_routing(KVMState
*s
)
1242 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1246 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1251 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1256 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1261 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1265 #endif /* !KVM_CAP_IRQ_ROUTING */
1267 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1269 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), virq
, true);
1272 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1274 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), virq
, false);
1277 static int kvm_irqchip_create(KVMState
*s
)
1279 QemuOptsList
*list
= qemu_find_opts("machine");
1282 if (QTAILQ_EMPTY(&list
->head
) ||
1283 !qemu_opt_get_bool(QTAILQ_FIRST(&list
->head
),
1284 "kernel_irqchip", true) ||
1285 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1289 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1291 fprintf(stderr
, "Create kernel irqchip failed\n");
1295 kvm_kernel_irqchip
= true;
1296 /* If we have an in-kernel IRQ chip then we must have asynchronous
1297 * interrupt delivery (though the reverse is not necessarily true)
1299 kvm_async_interrupts_allowed
= true;
1301 kvm_init_irq_routing(s
);
1306 static int kvm_max_vcpus(KVMState
*s
)
1310 /* Find number of supported CPUs using the recommended
1311 * procedure from the kernel API documentation to cope with
1312 * older kernels that may be missing capabilities.
1314 ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1318 ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1328 static const char upgrade_note
[] =
1329 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1330 "(see http://sourceforge.net/projects/kvm).\n";
1332 const KVMCapabilityInfo
*missing_cap
;
1337 s
= g_malloc0(sizeof(KVMState
));
1340 * On systems where the kernel can support different base page
1341 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1342 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1343 * page size for the system though.
1345 assert(TARGET_PAGE_SIZE
<= getpagesize());
1347 #ifdef KVM_CAP_SET_GUEST_DEBUG
1348 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1350 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
1351 s
->slots
[i
].slot
= i
;
1354 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1356 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1361 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1362 if (ret
< KVM_API_VERSION
) {
1366 fprintf(stderr
, "kvm version too old\n");
1370 if (ret
> KVM_API_VERSION
) {
1372 fprintf(stderr
, "kvm version not supported\n");
1376 max_vcpus
= kvm_max_vcpus(s
);
1377 if (smp_cpus
> max_vcpus
) {
1379 fprintf(stderr
, "Number of SMP cpus requested (%d) exceeds max cpus "
1380 "supported by KVM (%d)\n", smp_cpus
, max_vcpus
);
1384 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1387 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1388 "your host kernel command line\n");
1394 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1397 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1401 fprintf(stderr
, "kvm does not support %s\n%s",
1402 missing_cap
->name
, upgrade_note
);
1406 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1408 s
->broken_set_mem_region
= 1;
1409 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1411 s
->broken_set_mem_region
= 0;
1414 #ifdef KVM_CAP_VCPU_EVENTS
1415 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1418 s
->robust_singlestep
=
1419 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1421 #ifdef KVM_CAP_DEBUGREGS
1422 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1425 #ifdef KVM_CAP_XSAVE
1426 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1430 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1433 #ifdef KVM_CAP_PIT_STATE2
1434 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1437 #ifdef KVM_CAP_IRQ_ROUTING
1438 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1441 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1443 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1444 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1445 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1448 #ifdef KVM_CAP_READONLY_MEM
1449 kvm_readonly_mem_allowed
=
1450 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1453 ret
= kvm_arch_init(s
);
1458 ret
= kvm_irqchip_create(s
);
1464 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1465 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1467 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1469 cpu_interrupt_handler
= kvm_handle_interrupt
;
1485 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1489 uint8_t *ptr
= data
;
1491 for (i
= 0; i
< count
; i
++) {
1492 if (direction
== KVM_EXIT_IO_IN
) {
1495 stb_p(ptr
, cpu_inb(port
));
1498 stw_p(ptr
, cpu_inw(port
));
1501 stl_p(ptr
, cpu_inl(port
));
1507 cpu_outb(port
, ldub_p(ptr
));
1510 cpu_outw(port
, lduw_p(ptr
));
1513 cpu_outl(port
, ldl_p(ptr
));
1522 static int kvm_handle_internal_error(CPUArchState
*env
, struct kvm_run
*run
)
1524 CPUState
*cpu
= ENV_GET_CPU(env
);
1526 fprintf(stderr
, "KVM internal error.");
1527 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1530 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1531 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1532 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1533 i
, (uint64_t)run
->internal
.data
[i
]);
1536 fprintf(stderr
, "\n");
1538 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1539 fprintf(stderr
, "emulation failure\n");
1540 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1541 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1542 return EXCP_INTERRUPT
;
1545 /* FIXME: Should trigger a qmp message to let management know
1546 * something went wrong.
1551 void kvm_flush_coalesced_mmio_buffer(void)
1553 KVMState
*s
= kvm_state
;
1555 if (s
->coalesced_flush_in_progress
) {
1559 s
->coalesced_flush_in_progress
= true;
1561 if (s
->coalesced_mmio_ring
) {
1562 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1563 while (ring
->first
!= ring
->last
) {
1564 struct kvm_coalesced_mmio
*ent
;
1566 ent
= &ring
->coalesced_mmio
[ring
->first
];
1568 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1570 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1574 s
->coalesced_flush_in_progress
= false;
1577 static void do_kvm_cpu_synchronize_state(void *arg
)
1579 CPUState
*cpu
= arg
;
1581 if (!cpu
->kvm_vcpu_dirty
) {
1582 kvm_arch_get_registers(cpu
);
1583 cpu
->kvm_vcpu_dirty
= true;
1587 void kvm_cpu_synchronize_state(CPUArchState
*env
)
1589 CPUState
*cpu
= ENV_GET_CPU(env
);
1591 if (!cpu
->kvm_vcpu_dirty
) {
1592 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1596 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1598 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1599 cpu
->kvm_vcpu_dirty
= false;
1602 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1604 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1605 cpu
->kvm_vcpu_dirty
= false;
1608 int kvm_cpu_exec(CPUArchState
*env
)
1610 CPUState
*cpu
= ENV_GET_CPU(env
);
1611 struct kvm_run
*run
= cpu
->kvm_run
;
1614 DPRINTF("kvm_cpu_exec()\n");
1616 if (kvm_arch_process_async_events(cpu
)) {
1617 cpu
->exit_request
= 0;
1622 if (cpu
->kvm_vcpu_dirty
) {
1623 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1624 cpu
->kvm_vcpu_dirty
= false;
1627 kvm_arch_pre_run(cpu
, run
);
1628 if (cpu
->exit_request
) {
1629 DPRINTF("interrupt exit requested\n");
1631 * KVM requires us to reenter the kernel after IO exits to complete
1632 * instruction emulation. This self-signal will ensure that we
1635 qemu_cpu_kick_self();
1637 qemu_mutex_unlock_iothread();
1639 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1641 qemu_mutex_lock_iothread();
1642 kvm_arch_post_run(cpu
, run
);
1645 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1646 DPRINTF("io window exit\n");
1647 ret
= EXCP_INTERRUPT
;
1650 fprintf(stderr
, "error: kvm run failed %s\n",
1651 strerror(-run_ret
));
1655 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1656 switch (run
->exit_reason
) {
1658 DPRINTF("handle_io\n");
1659 kvm_handle_io(run
->io
.port
,
1660 (uint8_t *)run
+ run
->io
.data_offset
,
1667 DPRINTF("handle_mmio\n");
1668 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1671 run
->mmio
.is_write
);
1674 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1675 DPRINTF("irq_window_open\n");
1676 ret
= EXCP_INTERRUPT
;
1678 case KVM_EXIT_SHUTDOWN
:
1679 DPRINTF("shutdown\n");
1680 qemu_system_reset_request();
1681 ret
= EXCP_INTERRUPT
;
1683 case KVM_EXIT_UNKNOWN
:
1684 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1685 (uint64_t)run
->hw
.hardware_exit_reason
);
1688 case KVM_EXIT_INTERNAL_ERROR
:
1689 ret
= kvm_handle_internal_error(env
, run
);
1692 DPRINTF("kvm_arch_handle_exit\n");
1693 ret
= kvm_arch_handle_exit(cpu
, run
);
1699 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1700 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1703 cpu
->exit_request
= 0;
1707 int kvm_ioctl(KVMState
*s
, int type
, ...)
1714 arg
= va_arg(ap
, void *);
1717 trace_kvm_ioctl(type
, arg
);
1718 ret
= ioctl(s
->fd
, type
, arg
);
1725 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1732 arg
= va_arg(ap
, void *);
1735 trace_kvm_vm_ioctl(type
, arg
);
1736 ret
= ioctl(s
->vmfd
, type
, arg
);
1743 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1750 arg
= va_arg(ap
, void *);
1753 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1754 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1761 int kvm_has_sync_mmu(void)
1763 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1766 int kvm_has_vcpu_events(void)
1768 return kvm_state
->vcpu_events
;
1771 int kvm_has_robust_singlestep(void)
1773 return kvm_state
->robust_singlestep
;
1776 int kvm_has_debugregs(void)
1778 return kvm_state
->debugregs
;
1781 int kvm_has_xsave(void)
1783 return kvm_state
->xsave
;
1786 int kvm_has_xcrs(void)
1788 return kvm_state
->xcrs
;
1791 int kvm_has_pit_state2(void)
1793 return kvm_state
->pit_state2
;
1796 int kvm_has_many_ioeventfds(void)
1798 if (!kvm_enabled()) {
1801 return kvm_state
->many_ioeventfds
;
1804 int kvm_has_gsi_routing(void)
1806 #ifdef KVM_CAP_IRQ_ROUTING
1807 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1813 int kvm_has_intx_set_mask(void)
1815 return kvm_state
->intx_set_mask
;
1818 void *kvm_ram_alloc(ram_addr_t size
)
1823 mem
= kvm_arch_ram_alloc(size
);
1828 return qemu_anon_ram_alloc(size
);
1831 void kvm_setup_guest_memory(void *start
, size_t size
)
1833 #ifdef CONFIG_VALGRIND_H
1834 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1836 if (!kvm_has_sync_mmu()) {
1837 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1840 perror("qemu_madvise");
1842 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1848 #ifdef KVM_CAP_SET_GUEST_DEBUG
1849 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1852 struct kvm_sw_breakpoint
*bp
;
1854 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1862 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1864 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1867 struct kvm_set_guest_debug_data
{
1868 struct kvm_guest_debug dbg
;
1873 static void kvm_invoke_set_guest_debug(void *data
)
1875 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1877 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
1881 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
1883 CPUState
*cpu
= ENV_GET_CPU(env
);
1884 struct kvm_set_guest_debug_data data
;
1886 data
.dbg
.control
= reinject_trap
;
1888 if (env
->singlestep_enabled
) {
1889 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1891 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
1894 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
1898 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1899 target_ulong len
, int type
)
1901 CPUState
*current_cpu
= ENV_GET_CPU(current_env
);
1902 struct kvm_sw_breakpoint
*bp
;
1906 if (type
== GDB_BREAKPOINT_SW
) {
1907 bp
= kvm_find_sw_breakpoint(current_cpu
, addr
);
1913 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1920 err
= kvm_arch_insert_sw_breakpoint(current_cpu
, bp
);
1926 QTAILQ_INSERT_HEAD(¤t_cpu
->kvm_state
->kvm_sw_breakpoints
,
1929 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1935 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1936 err
= kvm_update_guest_debug(env
, 0);
1944 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
1945 target_ulong len
, int type
)
1947 CPUState
*current_cpu
= ENV_GET_CPU(current_env
);
1948 struct kvm_sw_breakpoint
*bp
;
1952 if (type
== GDB_BREAKPOINT_SW
) {
1953 bp
= kvm_find_sw_breakpoint(current_cpu
, addr
);
1958 if (bp
->use_count
> 1) {
1963 err
= kvm_arch_remove_sw_breakpoint(current_cpu
, bp
);
1968 QTAILQ_REMOVE(¤t_cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1971 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1977 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1978 err
= kvm_update_guest_debug(env
, 0);
1986 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
1988 CPUState
*current_cpu
= ENV_GET_CPU(current_env
);
1989 struct kvm_sw_breakpoint
*bp
, *next
;
1990 KVMState
*s
= current_cpu
->kvm_state
;
1994 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1995 if (kvm_arch_remove_sw_breakpoint(current_cpu
, bp
) != 0) {
1996 /* Try harder to find a CPU that currently sees the breakpoint. */
1997 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1998 cpu
= ENV_GET_CPU(env
);
1999 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) == 0) {
2004 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2007 kvm_arch_remove_all_hw_breakpoints();
2009 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2010 kvm_update_guest_debug(env
, 0);
2014 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2016 int kvm_update_guest_debug(CPUArchState
*env
, unsigned long reinject_trap
)
2021 int kvm_insert_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
2022 target_ulong len
, int type
)
2027 int kvm_remove_breakpoint(CPUArchState
*current_env
, target_ulong addr
,
2028 target_ulong len
, int type
)
2033 void kvm_remove_all_breakpoints(CPUArchState
*current_env
)
2036 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2038 int kvm_set_signal_mask(CPUArchState
*env
, const sigset_t
*sigset
)
2040 CPUState
*cpu
= ENV_GET_CPU(env
);
2041 struct kvm_signal_mask
*sigmask
;
2045 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2048 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2051 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2052 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2057 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2059 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2062 int kvm_on_sigbus(int code
, void *addr
)
2064 return kvm_arch_on_sigbus(code
, addr
);