2 * QEMU Crypto block device encryption LUKS format
4 * Copyright (c) 2015-2016 Red Hat, Inc.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu/bswap.h"
25 #include "block-luks.h"
27 #include "crypto/hash.h"
28 #include "crypto/afsplit.h"
29 #include "crypto/pbkdf.h"
30 #include "crypto/secret.h"
31 #include "crypto/random.h"
32 #include "qemu/uuid.h"
34 #include "qemu/coroutine.h"
37 * Reference for the LUKS format implemented here is
39 * docs/on-disk-format.pdf
41 * in 'cryptsetup' package source code
43 * This file implements the 1.2.1 specification, dated
47 typedef struct QCryptoBlockLUKS QCryptoBlockLUKS
;
48 typedef struct QCryptoBlockLUKSHeader QCryptoBlockLUKSHeader
;
49 typedef struct QCryptoBlockLUKSKeySlot QCryptoBlockLUKSKeySlot
;
52 /* The following constants are all defined by the LUKS spec */
53 #define QCRYPTO_BLOCK_LUKS_VERSION 1
55 #define QCRYPTO_BLOCK_LUKS_MAGIC_LEN 6
56 #define QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN 32
57 #define QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN 32
58 #define QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN 32
59 #define QCRYPTO_BLOCK_LUKS_DIGEST_LEN 20
60 #define QCRYPTO_BLOCK_LUKS_SALT_LEN 32
61 #define QCRYPTO_BLOCK_LUKS_UUID_LEN 40
62 #define QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS 8
63 #define QCRYPTO_BLOCK_LUKS_STRIPES 4000
64 #define QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS 1000
65 #define QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS 1000
66 #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET 4096
68 #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED 0x0000DEAD
69 #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED 0x00AC71F3
71 #define QCRYPTO_BLOCK_LUKS_SECTOR_SIZE 512LL
73 static const char qcrypto_block_luks_magic
[QCRYPTO_BLOCK_LUKS_MAGIC_LEN
] = {
74 'L', 'U', 'K', 'S', 0xBA, 0xBE
77 typedef struct QCryptoBlockLUKSNameMap QCryptoBlockLUKSNameMap
;
78 struct QCryptoBlockLUKSNameMap
{
83 typedef struct QCryptoBlockLUKSCipherSizeMap QCryptoBlockLUKSCipherSizeMap
;
84 struct QCryptoBlockLUKSCipherSizeMap
{
88 typedef struct QCryptoBlockLUKSCipherNameMap QCryptoBlockLUKSCipherNameMap
;
89 struct QCryptoBlockLUKSCipherNameMap
{
91 const QCryptoBlockLUKSCipherSizeMap
*sizes
;
95 static const QCryptoBlockLUKSCipherSizeMap
96 qcrypto_block_luks_cipher_size_map_aes
[] = {
97 { 16, QCRYPTO_CIPHER_ALG_AES_128
},
98 { 24, QCRYPTO_CIPHER_ALG_AES_192
},
99 { 32, QCRYPTO_CIPHER_ALG_AES_256
},
103 static const QCryptoBlockLUKSCipherSizeMap
104 qcrypto_block_luks_cipher_size_map_cast5
[] = {
105 { 16, QCRYPTO_CIPHER_ALG_CAST5_128
},
109 static const QCryptoBlockLUKSCipherSizeMap
110 qcrypto_block_luks_cipher_size_map_serpent
[] = {
111 { 16, QCRYPTO_CIPHER_ALG_SERPENT_128
},
112 { 24, QCRYPTO_CIPHER_ALG_SERPENT_192
},
113 { 32, QCRYPTO_CIPHER_ALG_SERPENT_256
},
117 static const QCryptoBlockLUKSCipherSizeMap
118 qcrypto_block_luks_cipher_size_map_twofish
[] = {
119 { 16, QCRYPTO_CIPHER_ALG_TWOFISH_128
},
120 { 24, QCRYPTO_CIPHER_ALG_TWOFISH_192
},
121 { 32, QCRYPTO_CIPHER_ALG_TWOFISH_256
},
125 static const QCryptoBlockLUKSCipherNameMap
126 qcrypto_block_luks_cipher_name_map
[] = {
127 { "aes", qcrypto_block_luks_cipher_size_map_aes
},
128 { "cast5", qcrypto_block_luks_cipher_size_map_cast5
},
129 { "serpent", qcrypto_block_luks_cipher_size_map_serpent
},
130 { "twofish", qcrypto_block_luks_cipher_size_map_twofish
},
135 * This struct is written to disk in big-endian format,
136 * but operated upon in native-endian format.
138 struct QCryptoBlockLUKSKeySlot
{
139 /* state of keyslot, enabled/disable */
141 /* iterations for PBKDF2 */
143 /* salt for PBKDF2 */
144 uint8_t salt
[QCRYPTO_BLOCK_LUKS_SALT_LEN
];
145 /* start sector of key material */
146 uint32_t key_offset_sector
;
147 /* number of anti-forensic stripes */
151 QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSKeySlot
) != 48);
155 * This struct is written to disk in big-endian format,
156 * but operated upon in native-endian format.
158 struct QCryptoBlockLUKSHeader
{
159 /* 'L', 'U', 'K', 'S', '0xBA', '0xBE' */
160 char magic
[QCRYPTO_BLOCK_LUKS_MAGIC_LEN
];
162 /* LUKS version, currently 1 */
165 /* cipher name specification (aes, etc) */
166 char cipher_name
[QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN
];
168 /* cipher mode specification (cbc-plain, xts-essiv:sha256, etc) */
169 char cipher_mode
[QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN
];
171 /* hash specification (sha256, etc) */
172 char hash_spec
[QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN
];
174 /* start offset of the volume data (in 512 byte sectors) */
175 uint32_t payload_offset_sector
;
177 /* Number of key bytes */
178 uint32_t master_key_len
;
180 /* master key checksum after PBKDF2 */
181 uint8_t master_key_digest
[QCRYPTO_BLOCK_LUKS_DIGEST_LEN
];
183 /* salt for master key PBKDF2 */
184 uint8_t master_key_salt
[QCRYPTO_BLOCK_LUKS_SALT_LEN
];
186 /* iterations for master key PBKDF2 */
187 uint32_t master_key_iterations
;
189 /* UUID of the partition in standard ASCII representation */
190 uint8_t uuid
[QCRYPTO_BLOCK_LUKS_UUID_LEN
];
193 QCryptoBlockLUKSKeySlot key_slots
[QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
];
196 QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSHeader
) != 592);
199 struct QCryptoBlockLUKS
{
200 QCryptoBlockLUKSHeader header
;
202 /* Main encryption algorithm used for encryption*/
203 QCryptoCipherAlgorithm cipher_alg
;
205 /* Mode of encryption for the selected encryption algorithm */
206 QCryptoCipherMode cipher_mode
;
208 /* Initialization vector generation algorithm */
209 QCryptoIVGenAlgorithm ivgen_alg
;
211 /* Hash algorithm used for IV generation*/
212 QCryptoHashAlgorithm ivgen_hash_alg
;
215 * Encryption algorithm used for IV generation.
216 * Usually the same as main encryption algorithm
218 QCryptoCipherAlgorithm ivgen_cipher_alg
;
220 /* Hash algorithm used in pbkdf2 function */
221 QCryptoHashAlgorithm hash_alg
;
225 static int qcrypto_block_luks_cipher_name_lookup(const char *name
,
226 QCryptoCipherMode mode
,
230 const QCryptoBlockLUKSCipherNameMap
*map
=
231 qcrypto_block_luks_cipher_name_map
;
232 size_t maplen
= G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map
);
235 if (mode
== QCRYPTO_CIPHER_MODE_XTS
) {
239 for (i
= 0; i
< maplen
; i
++) {
240 if (!g_str_equal(map
[i
].name
, name
)) {
243 for (j
= 0; j
< map
[i
].sizes
[j
].key_bytes
; j
++) {
244 if (map
[i
].sizes
[j
].key_bytes
== key_bytes
) {
245 return map
[i
].sizes
[j
].id
;
250 error_setg(errp
, "Algorithm %s with key size %d bytes not supported",
256 qcrypto_block_luks_cipher_alg_lookup(QCryptoCipherAlgorithm alg
,
259 const QCryptoBlockLUKSCipherNameMap
*map
=
260 qcrypto_block_luks_cipher_name_map
;
261 size_t maplen
= G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map
);
263 for (i
= 0; i
< maplen
; i
++) {
264 for (j
= 0; j
< map
[i
].sizes
[j
].key_bytes
; j
++) {
265 if (map
[i
].sizes
[j
].id
== alg
) {
271 error_setg(errp
, "Algorithm '%s' not supported",
272 QCryptoCipherAlgorithm_str(alg
));
276 /* XXX replace with qapi_enum_parse() in future, when we can
277 * make that function emit a more friendly error message */
278 static int qcrypto_block_luks_name_lookup(const char *name
,
279 const QEnumLookup
*map
,
283 int ret
= qapi_enum_parse(map
, name
, -1, NULL
);
286 error_setg(errp
, "%s %s not supported", type
, name
);
292 #define qcrypto_block_luks_cipher_mode_lookup(name, errp) \
293 qcrypto_block_luks_name_lookup(name, \
294 &QCryptoCipherMode_lookup, \
298 #define qcrypto_block_luks_hash_name_lookup(name, errp) \
299 qcrypto_block_luks_name_lookup(name, \
300 &QCryptoHashAlgorithm_lookup, \
304 #define qcrypto_block_luks_ivgen_name_lookup(name, errp) \
305 qcrypto_block_luks_name_lookup(name, \
306 &QCryptoIVGenAlgorithm_lookup, \
312 qcrypto_block_luks_has_format(const uint8_t *buf
,
315 const QCryptoBlockLUKSHeader
*luks_header
= (const void *)buf
;
317 if (buf_size
>= offsetof(QCryptoBlockLUKSHeader
, cipher_name
) &&
318 memcmp(luks_header
->magic
, qcrypto_block_luks_magic
,
319 QCRYPTO_BLOCK_LUKS_MAGIC_LEN
) == 0 &&
320 be16_to_cpu(luks_header
->version
) == QCRYPTO_BLOCK_LUKS_VERSION
) {
329 * Deal with a quirk of dm-crypt usage of ESSIV.
331 * When calculating ESSIV IVs, the cipher length used by ESSIV
332 * may be different from the cipher length used for the block
333 * encryption, becauses dm-crypt uses the hash digest length
334 * as the key size. ie, if you have AES 128 as the block cipher
335 * and SHA 256 as ESSIV hash, then ESSIV will use AES 256 as
336 * the cipher since that gets a key length matching the digest
337 * size, not AES 128 with truncated digest as might be imagined
339 static QCryptoCipherAlgorithm
340 qcrypto_block_luks_essiv_cipher(QCryptoCipherAlgorithm cipher
,
341 QCryptoHashAlgorithm hash
,
344 size_t digestlen
= qcrypto_hash_digest_len(hash
);
345 size_t keylen
= qcrypto_cipher_get_key_len(cipher
);
346 if (digestlen
== keylen
) {
351 case QCRYPTO_CIPHER_ALG_AES_128
:
352 case QCRYPTO_CIPHER_ALG_AES_192
:
353 case QCRYPTO_CIPHER_ALG_AES_256
:
354 if (digestlen
== qcrypto_cipher_get_key_len(
355 QCRYPTO_CIPHER_ALG_AES_128
)) {
356 return QCRYPTO_CIPHER_ALG_AES_128
;
357 } else if (digestlen
== qcrypto_cipher_get_key_len(
358 QCRYPTO_CIPHER_ALG_AES_192
)) {
359 return QCRYPTO_CIPHER_ALG_AES_192
;
360 } else if (digestlen
== qcrypto_cipher_get_key_len(
361 QCRYPTO_CIPHER_ALG_AES_256
)) {
362 return QCRYPTO_CIPHER_ALG_AES_256
;
364 error_setg(errp
, "No AES cipher with key size %zu available",
369 case QCRYPTO_CIPHER_ALG_SERPENT_128
:
370 case QCRYPTO_CIPHER_ALG_SERPENT_192
:
371 case QCRYPTO_CIPHER_ALG_SERPENT_256
:
372 if (digestlen
== qcrypto_cipher_get_key_len(
373 QCRYPTO_CIPHER_ALG_SERPENT_128
)) {
374 return QCRYPTO_CIPHER_ALG_SERPENT_128
;
375 } else if (digestlen
== qcrypto_cipher_get_key_len(
376 QCRYPTO_CIPHER_ALG_SERPENT_192
)) {
377 return QCRYPTO_CIPHER_ALG_SERPENT_192
;
378 } else if (digestlen
== qcrypto_cipher_get_key_len(
379 QCRYPTO_CIPHER_ALG_SERPENT_256
)) {
380 return QCRYPTO_CIPHER_ALG_SERPENT_256
;
382 error_setg(errp
, "No Serpent cipher with key size %zu available",
387 case QCRYPTO_CIPHER_ALG_TWOFISH_128
:
388 case QCRYPTO_CIPHER_ALG_TWOFISH_192
:
389 case QCRYPTO_CIPHER_ALG_TWOFISH_256
:
390 if (digestlen
== qcrypto_cipher_get_key_len(
391 QCRYPTO_CIPHER_ALG_TWOFISH_128
)) {
392 return QCRYPTO_CIPHER_ALG_TWOFISH_128
;
393 } else if (digestlen
== qcrypto_cipher_get_key_len(
394 QCRYPTO_CIPHER_ALG_TWOFISH_192
)) {
395 return QCRYPTO_CIPHER_ALG_TWOFISH_192
;
396 } else if (digestlen
== qcrypto_cipher_get_key_len(
397 QCRYPTO_CIPHER_ALG_TWOFISH_256
)) {
398 return QCRYPTO_CIPHER_ALG_TWOFISH_256
;
400 error_setg(errp
, "No Twofish cipher with key size %zu available",
406 error_setg(errp
, "Cipher %s not supported with essiv",
407 QCryptoCipherAlgorithm_str(cipher
));
413 * Returns number of sectors needed to store the key material
414 * given number of anti forensic stripes
417 qcrypto_block_luks_splitkeylen_sectors(const QCryptoBlockLUKS
*luks
,
418 unsigned int header_sectors
,
419 unsigned int stripes
)
422 * This calculation doesn't match that shown in the spec,
423 * but instead follows the cryptsetup implementation.
426 size_t splitkeylen
= luks
->header
.master_key_len
* stripes
;
428 /* First align the key material size to block size*/
429 size_t splitkeylen_sectors
=
430 DIV_ROUND_UP(splitkeylen
, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
);
432 /* Then also align the key material size to the size of the header */
433 return ROUND_UP(splitkeylen_sectors
, header_sectors
);
437 * Stores the main LUKS header, taking care of endianess
440 qcrypto_block_luks_store_header(QCryptoBlock
*block
,
441 QCryptoBlockWriteFunc writefunc
,
445 const QCryptoBlockLUKS
*luks
= block
->opaque
;
446 Error
*local_err
= NULL
;
448 g_autofree QCryptoBlockLUKSHeader
*hdr_copy
= NULL
;
450 /* Create a copy of the header */
451 hdr_copy
= g_new0(QCryptoBlockLUKSHeader
, 1);
452 memcpy(hdr_copy
, &luks
->header
, sizeof(QCryptoBlockLUKSHeader
));
455 * Everything on disk uses Big Endian (tm), so flip header fields
456 * before writing them
458 cpu_to_be16s(&hdr_copy
->version
);
459 cpu_to_be32s(&hdr_copy
->payload_offset_sector
);
460 cpu_to_be32s(&hdr_copy
->master_key_len
);
461 cpu_to_be32s(&hdr_copy
->master_key_iterations
);
463 for (i
= 0; i
< QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
; i
++) {
464 cpu_to_be32s(&hdr_copy
->key_slots
[i
].active
);
465 cpu_to_be32s(&hdr_copy
->key_slots
[i
].iterations
);
466 cpu_to_be32s(&hdr_copy
->key_slots
[i
].key_offset_sector
);
467 cpu_to_be32s(&hdr_copy
->key_slots
[i
].stripes
);
470 /* Write out the partition header and key slot headers */
471 writefunc(block
, 0, (const uint8_t *)hdr_copy
, sizeof(*hdr_copy
),
475 error_propagate(errp
, local_err
);
482 * Loads the main LUKS header,and byteswaps it to native endianess
483 * And run basic sanity checks on it
486 qcrypto_block_luks_load_header(QCryptoBlock
*block
,
487 QCryptoBlockReadFunc readfunc
,
493 QCryptoBlockLUKS
*luks
= block
->opaque
;
496 * Read the entire LUKS header, minus the key material from
497 * the underlying device
499 rv
= readfunc(block
, 0,
500 (uint8_t *)&luks
->header
,
501 sizeof(luks
->header
),
509 * The header is always stored in big-endian format, so
510 * convert everything to native
512 be16_to_cpus(&luks
->header
.version
);
513 be32_to_cpus(&luks
->header
.payload_offset_sector
);
514 be32_to_cpus(&luks
->header
.master_key_len
);
515 be32_to_cpus(&luks
->header
.master_key_iterations
);
517 for (i
= 0; i
< QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
; i
++) {
518 be32_to_cpus(&luks
->header
.key_slots
[i
].active
);
519 be32_to_cpus(&luks
->header
.key_slots
[i
].iterations
);
520 be32_to_cpus(&luks
->header
.key_slots
[i
].key_offset_sector
);
521 be32_to_cpus(&luks
->header
.key_slots
[i
].stripes
);
528 * Does basic sanity checks on the LUKS header
531 qcrypto_block_luks_check_header(const QCryptoBlockLUKS
*luks
, Error
**errp
)
535 unsigned int header_sectors
= QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET
/
536 QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
;
538 if (memcmp(luks
->header
.magic
, qcrypto_block_luks_magic
,
539 QCRYPTO_BLOCK_LUKS_MAGIC_LEN
) != 0) {
540 error_setg(errp
, "Volume is not in LUKS format");
544 if (luks
->header
.version
!= QCRYPTO_BLOCK_LUKS_VERSION
) {
545 error_setg(errp
, "LUKS version %" PRIu32
" is not supported",
546 luks
->header
.version
);
550 /* Check all keyslots for corruption */
551 for (i
= 0 ; i
< QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
; i
++) {
553 const QCryptoBlockLUKSKeySlot
*slot1
= &luks
->header
.key_slots
[i
];
554 unsigned int start1
= slot1
->key_offset_sector
;
556 qcrypto_block_luks_splitkeylen_sectors(luks
,
560 if (slot1
->stripes
== 0) {
561 error_setg(errp
, "Keyslot %zu is corrupted (stripes == 0)", i
);
565 if (slot1
->active
!= QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED
&&
566 slot1
->active
!= QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED
) {
568 "Keyslot %zu state (active/disable) is corrupted", i
);
572 if (start1
+ len1
> luks
->header
.payload_offset_sector
) {
574 "Keyslot %zu is overlapping with the encrypted payload",
579 for (j
= i
+ 1 ; j
< QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
; j
++) {
580 const QCryptoBlockLUKSKeySlot
*slot2
= &luks
->header
.key_slots
[j
];
581 unsigned int start2
= slot2
->key_offset_sector
;
583 qcrypto_block_luks_splitkeylen_sectors(luks
,
587 if (start1
+ len1
> start2
&& start2
+ len2
> start1
) {
589 "Keyslots %zu and %zu are overlapping in the header",
600 * Parses the crypto parameters that are stored in the LUKS header
604 qcrypto_block_luks_parse_header(QCryptoBlockLUKS
*luks
, Error
**errp
)
606 g_autofree
char *cipher_mode
= g_strdup(luks
->header
.cipher_mode
);
607 char *ivgen_name
, *ivhash_name
;
608 Error
*local_err
= NULL
;
611 * The cipher_mode header contains a string that we have
612 * to further parse, of the format
614 * <cipher-mode>-<iv-generator>[:<iv-hash>]
616 * eg cbc-essiv:sha256, cbc-plain64
618 ivgen_name
= strchr(cipher_mode
, '-');
620 error_setg(errp
, "Unexpected cipher mode string format %s",
621 luks
->header
.cipher_mode
);
627 ivhash_name
= strchr(ivgen_name
, ':');
629 luks
->ivgen_hash_alg
= 0;
634 luks
->ivgen_hash_alg
= qcrypto_block_luks_hash_name_lookup(ivhash_name
,
637 error_propagate(errp
, local_err
);
642 luks
->cipher_mode
= qcrypto_block_luks_cipher_mode_lookup(cipher_mode
,
645 error_propagate(errp
, local_err
);
650 qcrypto_block_luks_cipher_name_lookup(luks
->header
.cipher_name
,
652 luks
->header
.master_key_len
,
655 error_propagate(errp
, local_err
);
660 qcrypto_block_luks_hash_name_lookup(luks
->header
.hash_spec
,
663 error_propagate(errp
, local_err
);
667 luks
->ivgen_alg
= qcrypto_block_luks_ivgen_name_lookup(ivgen_name
,
670 error_propagate(errp
, local_err
);
674 if (luks
->ivgen_alg
== QCRYPTO_IVGEN_ALG_ESSIV
) {
676 error_setg(errp
, "Missing IV generator hash specification");
679 luks
->ivgen_cipher_alg
=
680 qcrypto_block_luks_essiv_cipher(luks
->cipher_alg
,
681 luks
->ivgen_hash_alg
,
684 error_propagate(errp
, local_err
);
690 * Note we parsed the ivhash_name earlier in the cipher_mode
691 * spec string even with plain/plain64 ivgens, but we
692 * will ignore it, since it is irrelevant for these ivgens.
693 * This is for compat with dm-crypt which will silently
694 * ignore hash names with these ivgens rather than report
695 * an error about the invalid usage
697 luks
->ivgen_cipher_alg
= luks
->cipher_alg
;
703 * Given a key slot, user password, and the master key,
704 * will store the encrypted master key there, and update the
705 * in-memory header. User must then write the in-memory header
708 * 0 if the keyslot was written successfully
709 * with the provided password
710 * -1 if a fatal error occurred while storing the key
713 qcrypto_block_luks_store_key(QCryptoBlock
*block
,
714 unsigned int slot_idx
,
715 const char *password
,
718 QCryptoBlockWriteFunc writefunc
,
722 QCryptoBlockLUKS
*luks
= block
->opaque
;
723 QCryptoBlockLUKSKeySlot
*slot
= &luks
->header
.key_slots
[slot_idx
];
724 g_autofree
uint8_t *splitkey
= NULL
;
726 g_autofree
uint8_t *slotkey
= NULL
;
727 g_autoptr(QCryptoCipher
) cipher
= NULL
;
728 g_autoptr(QCryptoIVGen
) ivgen
= NULL
;
729 Error
*local_err
= NULL
;
733 if (qcrypto_random_bytes(slot
->salt
,
734 QCRYPTO_BLOCK_LUKS_SALT_LEN
,
739 splitkeylen
= luks
->header
.master_key_len
* slot
->stripes
;
742 * Determine how many iterations are required to
743 * hash the user password while consuming 1 second of compute
746 iters
= qcrypto_pbkdf2_count_iters(luks
->hash_alg
,
747 (uint8_t *)password
, strlen(password
),
749 QCRYPTO_BLOCK_LUKS_SALT_LEN
,
750 luks
->header
.master_key_len
,
753 error_propagate(errp
, local_err
);
757 if (iters
> (ULLONG_MAX
/ iter_time
)) {
758 error_setg_errno(errp
, ERANGE
,
759 "PBKDF iterations %llu too large to scale",
760 (unsigned long long)iters
);
764 /* iter_time was in millis, but count_iters reported for secs */
765 iters
= iters
* iter_time
/ 1000;
767 if (iters
> UINT32_MAX
) {
768 error_setg_errno(errp
, ERANGE
,
769 "PBKDF iterations %llu larger than %u",
770 (unsigned long long)iters
, UINT32_MAX
);
775 MAX(iters
, QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS
);
779 * Generate a key that we'll use to encrypt the master
780 * key, from the user's password
782 slotkey
= g_new0(uint8_t, luks
->header
.master_key_len
);
783 if (qcrypto_pbkdf2(luks
->hash_alg
,
784 (uint8_t *)password
, strlen(password
),
786 QCRYPTO_BLOCK_LUKS_SALT_LEN
,
788 slotkey
, luks
->header
.master_key_len
,
795 * Setup the encryption objects needed to encrypt the
796 * master key material
798 cipher
= qcrypto_cipher_new(luks
->cipher_alg
,
800 slotkey
, luks
->header
.master_key_len
,
806 ivgen
= qcrypto_ivgen_new(luks
->ivgen_alg
,
807 luks
->ivgen_cipher_alg
,
808 luks
->ivgen_hash_alg
,
809 slotkey
, luks
->header
.master_key_len
,
816 * Before storing the master key, we need to vastly
817 * increase its size, as protection against forensic
820 splitkey
= g_new0(uint8_t, splitkeylen
);
822 if (qcrypto_afsplit_encode(luks
->hash_alg
,
823 luks
->header
.master_key_len
,
832 * Now we encrypt the split master key with the key generated
833 * from the user's password, before storing it
835 if (qcrypto_block_cipher_encrypt_helper(cipher
, block
->niv
, ivgen
,
836 QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
,
844 /* Write out the slot's master key material. */
846 slot
->key_offset_sector
*
847 QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
,
848 splitkey
, splitkeylen
,
850 errp
) != splitkeylen
) {
854 slot
->active
= QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED
;
856 if (qcrypto_block_luks_store_header(block
, writefunc
, opaque
, errp
) < 0) {
864 memset(slotkey
, 0, luks
->header
.master_key_len
);
867 memset(splitkey
, 0, splitkeylen
);
873 * Given a key slot, and user password, this will attempt to unlock
874 * the master encryption key from the key slot.
877 * 0 if the key slot is disabled, or key could not be decrypted
878 * with the provided password
879 * 1 if the key slot is enabled, and key decrypted successfully
880 * with the provided password
881 * -1 if a fatal error occurred loading the key
884 qcrypto_block_luks_load_key(QCryptoBlock
*block
,
886 const char *password
,
888 QCryptoBlockReadFunc readfunc
,
892 QCryptoBlockLUKS
*luks
= block
->opaque
;
893 const QCryptoBlockLUKSKeySlot
*slot
= &luks
->header
.key_slots
[slot_idx
];
894 g_autofree
uint8_t *splitkey
= NULL
;
896 g_autofree
uint8_t *possiblekey
= NULL
;
898 g_autoptr(QCryptoCipher
) cipher
= NULL
;
899 uint8_t keydigest
[QCRYPTO_BLOCK_LUKS_DIGEST_LEN
];
900 g_autoptr(QCryptoIVGen
) ivgen
= NULL
;
903 if (slot
->active
!= QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED
) {
907 splitkeylen
= luks
->header
.master_key_len
* slot
->stripes
;
908 splitkey
= g_new0(uint8_t, splitkeylen
);
909 possiblekey
= g_new0(uint8_t, luks
->header
.master_key_len
);
912 * The user password is used to generate a (possible)
913 * decryption key. This may or may not successfully
914 * decrypt the master key - we just blindly assume
915 * the key is correct and validate the results of
918 if (qcrypto_pbkdf2(luks
->hash_alg
,
919 (const uint8_t *)password
, strlen(password
),
920 slot
->salt
, QCRYPTO_BLOCK_LUKS_SALT_LEN
,
922 possiblekey
, luks
->header
.master_key_len
,
928 * We need to read the master key material from the
929 * LUKS key material header. What we're reading is
930 * not the raw master key, but rather the data after
931 * it has been passed through AFSplit and the result
935 slot
->key_offset_sector
* QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
,
936 splitkey
, splitkeylen
,
944 /* Setup the cipher/ivgen that we'll use to try to decrypt
945 * the split master key material */
946 cipher
= qcrypto_cipher_new(luks
->cipher_alg
,
949 luks
->header
.master_key_len
,
955 niv
= qcrypto_cipher_get_iv_len(luks
->cipher_alg
,
958 ivgen
= qcrypto_ivgen_new(luks
->ivgen_alg
,
959 luks
->ivgen_cipher_alg
,
960 luks
->ivgen_hash_alg
,
962 luks
->header
.master_key_len
,
970 * The master key needs to be decrypted in the same
971 * way that the block device payload will be decrypted
972 * later. In particular we'll be using the IV generator
973 * to reset the encryption cipher every time the master
974 * key crosses a sector boundary.
976 if (qcrypto_block_cipher_decrypt_helper(cipher
,
979 QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
,
988 * Now we've decrypted the split master key, join
989 * it back together to get the actual master key.
991 if (qcrypto_afsplit_decode(luks
->hash_alg
,
992 luks
->header
.master_key_len
,
1002 * We still don't know that the masterkey we got is valid,
1003 * because we just blindly assumed the user's password
1004 * was correct. This is where we now verify it. We are
1005 * creating a hash of the master key using PBKDF and
1006 * then comparing that to the hash stored in the key slot
1009 if (qcrypto_pbkdf2(luks
->hash_alg
,
1011 luks
->header
.master_key_len
,
1012 luks
->header
.master_key_salt
,
1013 QCRYPTO_BLOCK_LUKS_SALT_LEN
,
1014 luks
->header
.master_key_iterations
,
1016 G_N_ELEMENTS(keydigest
),
1021 if (memcmp(keydigest
, luks
->header
.master_key_digest
,
1022 QCRYPTO_BLOCK_LUKS_DIGEST_LEN
) == 0) {
1023 /* Success, we got the right master key */
1027 /* Fail, user's password was not valid for this key slot,
1028 * tell caller to try another slot */
1034 * Given a user password, this will iterate over all key
1035 * slots and try to unlock each active key slot using the
1036 * password until it successfully obtains a master key.
1038 * Returns 0 if a key was loaded, -1 if no keys could be loaded
1041 qcrypto_block_luks_find_key(QCryptoBlock
*block
,
1042 const char *password
,
1044 QCryptoBlockReadFunc readfunc
,
1051 for (i
= 0; i
< QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
; i
++) {
1052 rv
= qcrypto_block_luks_load_key(block
,
1067 error_setg(errp
, "Invalid password, cannot unlock any keyslot");
1074 qcrypto_block_luks_open(QCryptoBlock
*block
,
1075 QCryptoBlockOpenOptions
*options
,
1076 const char *optprefix
,
1077 QCryptoBlockReadFunc readfunc
,
1083 QCryptoBlockLUKS
*luks
= NULL
;
1084 g_autofree
uint8_t *masterkey
= NULL
;
1085 g_autofree
char *password
= NULL
;
1087 if (!(flags
& QCRYPTO_BLOCK_OPEN_NO_IO
)) {
1088 if (!options
->u
.luks
.key_secret
) {
1089 error_setg(errp
, "Parameter '%skey-secret' is required for cipher",
1090 optprefix
? optprefix
: "");
1093 password
= qcrypto_secret_lookup_as_utf8(
1094 options
->u
.luks
.key_secret
, errp
);
1100 luks
= g_new0(QCryptoBlockLUKS
, 1);
1101 block
->opaque
= luks
;
1103 if (qcrypto_block_luks_load_header(block
, readfunc
, opaque
, errp
) < 0) {
1107 if (qcrypto_block_luks_check_header(luks
, errp
) < 0) {
1111 if (qcrypto_block_luks_parse_header(luks
, errp
) < 0) {
1115 if (!(flags
& QCRYPTO_BLOCK_OPEN_NO_IO
)) {
1116 /* Try to find which key slot our password is valid for
1117 * and unlock the master key from that slot.
1120 masterkey
= g_new0(uint8_t, luks
->header
.master_key_len
);
1122 if (qcrypto_block_luks_find_key(block
,
1130 /* We have a valid master key now, so can setup the
1131 * block device payload decryption objects
1133 block
->kdfhash
= luks
->hash_alg
;
1134 block
->niv
= qcrypto_cipher_get_iv_len(luks
->cipher_alg
,
1137 block
->ivgen
= qcrypto_ivgen_new(luks
->ivgen_alg
,
1138 luks
->ivgen_cipher_alg
,
1139 luks
->ivgen_hash_alg
,
1141 luks
->header
.master_key_len
,
1143 if (!block
->ivgen
) {
1147 if (qcrypto_block_init_cipher(block
,
1151 luks
->header
.master_key_len
,
1158 block
->sector_size
= QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
;
1159 block
->payload_offset
= luks
->header
.payload_offset_sector
*
1165 qcrypto_block_free_cipher(block
);
1166 qcrypto_ivgen_free(block
->ivgen
);
1173 qcrypto_block_luks_uuid_gen(uint8_t *uuidstr
)
1176 qemu_uuid_generate(&uuid
);
1177 qemu_uuid_unparse(&uuid
, (char *)uuidstr
);
1181 qcrypto_block_luks_create(QCryptoBlock
*block
,
1182 QCryptoBlockCreateOptions
*options
,
1183 const char *optprefix
,
1184 QCryptoBlockInitFunc initfunc
,
1185 QCryptoBlockWriteFunc writefunc
,
1189 QCryptoBlockLUKS
*luks
;
1190 QCryptoBlockCreateOptionsLUKS luks_opts
;
1191 Error
*local_err
= NULL
;
1192 g_autofree
uint8_t *masterkey
= NULL
;
1193 size_t header_sectors
;
1194 size_t split_key_sectors
;
1196 g_autofree
char *password
= NULL
;
1197 const char *cipher_alg
;
1198 const char *cipher_mode
;
1199 const char *ivgen_alg
;
1200 const char *ivgen_hash_alg
= NULL
;
1201 const char *hash_alg
;
1202 g_autofree
char *cipher_mode_spec
= NULL
;
1205 memcpy(&luks_opts
, &options
->u
.luks
, sizeof(luks_opts
));
1206 if (!luks_opts
.has_iter_time
) {
1207 luks_opts
.iter_time
= 2000;
1209 if (!luks_opts
.has_cipher_alg
) {
1210 luks_opts
.cipher_alg
= QCRYPTO_CIPHER_ALG_AES_256
;
1212 if (!luks_opts
.has_cipher_mode
) {
1213 luks_opts
.cipher_mode
= QCRYPTO_CIPHER_MODE_XTS
;
1215 if (!luks_opts
.has_ivgen_alg
) {
1216 luks_opts
.ivgen_alg
= QCRYPTO_IVGEN_ALG_PLAIN64
;
1218 if (!luks_opts
.has_hash_alg
) {
1219 luks_opts
.hash_alg
= QCRYPTO_HASH_ALG_SHA256
;
1221 if (luks_opts
.ivgen_alg
== QCRYPTO_IVGEN_ALG_ESSIV
) {
1222 if (!luks_opts
.has_ivgen_hash_alg
) {
1223 luks_opts
.ivgen_hash_alg
= QCRYPTO_HASH_ALG_SHA256
;
1224 luks_opts
.has_ivgen_hash_alg
= true;
1228 luks
= g_new0(QCryptoBlockLUKS
, 1);
1229 block
->opaque
= luks
;
1231 luks
->cipher_alg
= luks_opts
.cipher_alg
;
1232 luks
->cipher_mode
= luks_opts
.cipher_mode
;
1233 luks
->ivgen_alg
= luks_opts
.ivgen_alg
;
1234 luks
->ivgen_hash_alg
= luks_opts
.ivgen_hash_alg
;
1235 luks
->hash_alg
= luks_opts
.hash_alg
;
1238 /* Note we're allowing ivgen_hash_alg to be set even for
1239 * non-essiv iv generators that don't need a hash. It will
1240 * be silently ignored, for compatibility with dm-crypt */
1242 if (!options
->u
.luks
.key_secret
) {
1243 error_setg(errp
, "Parameter '%skey-secret' is required for cipher",
1244 optprefix
? optprefix
: "");
1247 password
= qcrypto_secret_lookup_as_utf8(luks_opts
.key_secret
, errp
);
1253 memcpy(luks
->header
.magic
, qcrypto_block_luks_magic
,
1254 QCRYPTO_BLOCK_LUKS_MAGIC_LEN
);
1256 /* We populate the header in native endianness initially and
1257 * then convert everything to big endian just before writing
1260 luks
->header
.version
= QCRYPTO_BLOCK_LUKS_VERSION
;
1261 qcrypto_block_luks_uuid_gen(luks
->header
.uuid
);
1263 cipher_alg
= qcrypto_block_luks_cipher_alg_lookup(luks_opts
.cipher_alg
,
1269 cipher_mode
= QCryptoCipherMode_str(luks_opts
.cipher_mode
);
1270 ivgen_alg
= QCryptoIVGenAlgorithm_str(luks_opts
.ivgen_alg
);
1271 if (luks_opts
.has_ivgen_hash_alg
) {
1272 ivgen_hash_alg
= QCryptoHashAlgorithm_str(luks_opts
.ivgen_hash_alg
);
1273 cipher_mode_spec
= g_strdup_printf("%s-%s:%s", cipher_mode
, ivgen_alg
,
1276 cipher_mode_spec
= g_strdup_printf("%s-%s", cipher_mode
, ivgen_alg
);
1278 hash_alg
= QCryptoHashAlgorithm_str(luks_opts
.hash_alg
);
1281 if (strlen(cipher_alg
) >= QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN
) {
1282 error_setg(errp
, "Cipher name '%s' is too long for LUKS header",
1286 if (strlen(cipher_mode_spec
) >= QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN
) {
1287 error_setg(errp
, "Cipher mode '%s' is too long for LUKS header",
1291 if (strlen(hash_alg
) >= QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN
) {
1292 error_setg(errp
, "Hash name '%s' is too long for LUKS header",
1297 if (luks_opts
.ivgen_alg
== QCRYPTO_IVGEN_ALG_ESSIV
) {
1298 luks
->ivgen_cipher_alg
=
1299 qcrypto_block_luks_essiv_cipher(luks_opts
.cipher_alg
,
1300 luks_opts
.ivgen_hash_alg
,
1303 error_propagate(errp
, local_err
);
1307 luks
->ivgen_cipher_alg
= luks_opts
.cipher_alg
;
1310 strcpy(luks
->header
.cipher_name
, cipher_alg
);
1311 strcpy(luks
->header
.cipher_mode
, cipher_mode_spec
);
1312 strcpy(luks
->header
.hash_spec
, hash_alg
);
1314 luks
->header
.master_key_len
=
1315 qcrypto_cipher_get_key_len(luks_opts
.cipher_alg
);
1317 if (luks_opts
.cipher_mode
== QCRYPTO_CIPHER_MODE_XTS
) {
1318 luks
->header
.master_key_len
*= 2;
1321 /* Generate the salt used for hashing the master key
1324 if (qcrypto_random_bytes(luks
->header
.master_key_salt
,
1325 QCRYPTO_BLOCK_LUKS_SALT_LEN
,
1330 /* Generate random master key */
1331 masterkey
= g_new0(uint8_t, luks
->header
.master_key_len
);
1332 if (qcrypto_random_bytes(masterkey
,
1333 luks
->header
.master_key_len
, errp
) < 0) {
1338 /* Setup the block device payload encryption objects */
1339 if (qcrypto_block_init_cipher(block
, luks_opts
.cipher_alg
,
1340 luks_opts
.cipher_mode
, masterkey
,
1341 luks
->header
.master_key_len
, 1, errp
) < 0) {
1345 block
->kdfhash
= luks_opts
.hash_alg
;
1346 block
->niv
= qcrypto_cipher_get_iv_len(luks_opts
.cipher_alg
,
1347 luks_opts
.cipher_mode
);
1348 block
->ivgen
= qcrypto_ivgen_new(luks_opts
.ivgen_alg
,
1349 luks
->ivgen_cipher_alg
,
1350 luks_opts
.ivgen_hash_alg
,
1351 masterkey
, luks
->header
.master_key_len
,
1354 if (!block
->ivgen
) {
1359 /* Determine how many iterations we need to hash the master
1360 * key, in order to have 1 second of compute time used
1362 iters
= qcrypto_pbkdf2_count_iters(luks_opts
.hash_alg
,
1363 masterkey
, luks
->header
.master_key_len
,
1364 luks
->header
.master_key_salt
,
1365 QCRYPTO_BLOCK_LUKS_SALT_LEN
,
1366 QCRYPTO_BLOCK_LUKS_DIGEST_LEN
,
1369 error_propagate(errp
, local_err
);
1373 if (iters
> (ULLONG_MAX
/ luks_opts
.iter_time
)) {
1374 error_setg_errno(errp
, ERANGE
,
1375 "PBKDF iterations %llu too large to scale",
1376 (unsigned long long)iters
);
1380 /* iter_time was in millis, but count_iters reported for secs */
1381 iters
= iters
* luks_opts
.iter_time
/ 1000;
1383 /* Why /= 8 ? That matches cryptsetup, but there's no
1384 * explanation why they chose /= 8... Probably so that
1385 * if all 8 keyslots are active we only spend 1 second
1386 * in total time to check all keys */
1388 if (iters
> UINT32_MAX
) {
1389 error_setg_errno(errp
, ERANGE
,
1390 "PBKDF iterations %llu larger than %u",
1391 (unsigned long long)iters
, UINT32_MAX
);
1394 iters
= MAX(iters
, QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS
);
1395 luks
->header
.master_key_iterations
= iters
;
1397 /* Hash the master key, saving the result in the LUKS
1398 * header. This hash is used when opening the encrypted
1399 * device to verify that the user password unlocked a
1402 if (qcrypto_pbkdf2(luks_opts
.hash_alg
,
1403 masterkey
, luks
->header
.master_key_len
,
1404 luks
->header
.master_key_salt
,
1405 QCRYPTO_BLOCK_LUKS_SALT_LEN
,
1406 luks
->header
.master_key_iterations
,
1407 luks
->header
.master_key_digest
,
1408 QCRYPTO_BLOCK_LUKS_DIGEST_LEN
,
1413 /* start with the sector that follows the header*/
1414 header_sectors
= QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET
/
1415 QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
;
1418 qcrypto_block_luks_splitkeylen_sectors(luks
,
1420 QCRYPTO_BLOCK_LUKS_STRIPES
);
1422 for (i
= 0; i
< QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
; i
++) {
1423 QCryptoBlockLUKSKeySlot
*slot
= &luks
->header
.key_slots
[i
];
1424 slot
->active
= QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED
;
1426 slot
->key_offset_sector
= header_sectors
+ i
* split_key_sectors
;
1427 slot
->stripes
= QCRYPTO_BLOCK_LUKS_STRIPES
;
1430 /* The total size of the LUKS headers is the partition header + key
1431 * slot headers, rounded up to the nearest sector, combined with
1432 * the size of each master key material region, also rounded up
1433 * to the nearest sector */
1434 luks
->header
.payload_offset_sector
= header_sectors
+
1435 QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
* split_key_sectors
;
1437 block
->sector_size
= QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
;
1438 block
->payload_offset
= luks
->header
.payload_offset_sector
*
1441 /* Reserve header space to match payload offset */
1442 initfunc(block
, block
->payload_offset
, opaque
, &local_err
);
1444 error_propagate(errp
, local_err
);
1449 /* populate the slot 0 with the password encrypted master key*/
1450 /* This will also store the header */
1451 if (qcrypto_block_luks_store_key(block
,
1455 luks_opts
.iter_time
,
1462 memset(masterkey
, 0, luks
->header
.master_key_len
);
1468 memset(masterkey
, 0, luks
->header
.master_key_len
);
1471 qcrypto_block_free_cipher(block
);
1472 qcrypto_ivgen_free(block
->ivgen
);
1479 static int qcrypto_block_luks_get_info(QCryptoBlock
*block
,
1480 QCryptoBlockInfo
*info
,
1483 QCryptoBlockLUKS
*luks
= block
->opaque
;
1484 QCryptoBlockInfoLUKSSlot
*slot
;
1485 QCryptoBlockInfoLUKSSlotList
*slots
= NULL
, **prev
= &info
->u
.luks
.slots
;
1488 info
->u
.luks
.cipher_alg
= luks
->cipher_alg
;
1489 info
->u
.luks
.cipher_mode
= luks
->cipher_mode
;
1490 info
->u
.luks
.ivgen_alg
= luks
->ivgen_alg
;
1491 if (info
->u
.luks
.ivgen_alg
== QCRYPTO_IVGEN_ALG_ESSIV
) {
1492 info
->u
.luks
.has_ivgen_hash_alg
= true;
1493 info
->u
.luks
.ivgen_hash_alg
= luks
->ivgen_hash_alg
;
1495 info
->u
.luks
.hash_alg
= luks
->hash_alg
;
1496 info
->u
.luks
.payload_offset
= block
->payload_offset
;
1497 info
->u
.luks
.master_key_iters
= luks
->header
.master_key_iterations
;
1498 info
->u
.luks
.uuid
= g_strndup((const char *)luks
->header
.uuid
,
1499 sizeof(luks
->header
.uuid
));
1501 for (i
= 0; i
< QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS
; i
++) {
1502 slots
= g_new0(QCryptoBlockInfoLUKSSlotList
, 1);
1505 slots
->value
= slot
= g_new0(QCryptoBlockInfoLUKSSlot
, 1);
1506 slot
->active
= luks
->header
.key_slots
[i
].active
==
1507 QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED
;
1508 slot
->key_offset
= luks
->header
.key_slots
[i
].key_offset_sector
1509 * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
;
1511 slot
->has_iters
= true;
1512 slot
->iters
= luks
->header
.key_slots
[i
].iterations
;
1513 slot
->has_stripes
= true;
1514 slot
->stripes
= luks
->header
.key_slots
[i
].stripes
;
1517 prev
= &slots
->next
;
1524 static void qcrypto_block_luks_cleanup(QCryptoBlock
*block
)
1526 g_free(block
->opaque
);
1531 qcrypto_block_luks_decrypt(QCryptoBlock
*block
,
1537 assert(QEMU_IS_ALIGNED(offset
, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
));
1538 assert(QEMU_IS_ALIGNED(len
, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
));
1539 return qcrypto_block_decrypt_helper(block
,
1540 QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
,
1541 offset
, buf
, len
, errp
);
1546 qcrypto_block_luks_encrypt(QCryptoBlock
*block
,
1552 assert(QEMU_IS_ALIGNED(offset
, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
));
1553 assert(QEMU_IS_ALIGNED(len
, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
));
1554 return qcrypto_block_encrypt_helper(block
,
1555 QCRYPTO_BLOCK_LUKS_SECTOR_SIZE
,
1556 offset
, buf
, len
, errp
);
1560 const QCryptoBlockDriver qcrypto_block_driver_luks
= {
1561 .open
= qcrypto_block_luks_open
,
1562 .create
= qcrypto_block_luks_create
,
1563 .get_info
= qcrypto_block_luks_get_info
,
1564 .cleanup
= qcrypto_block_luks_cleanup
,
1565 .decrypt
= qcrypto_block_luks_decrypt
,
1566 .encrypt
= qcrypto_block_luks_encrypt
,
1567 .has_format
= qcrypto_block_luks_has_format
,