vga: replace debug printf with trace points
[qemu/ar7.git] / target / tricore / fpu_helper.c
blob7979bb66920e09d92041d0e8b1c2565296bf9ccb
1 /*
2 * TriCore emulation for qemu: fpu helper.
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
24 #define QUIET_NAN 0x7fc00000
25 #define ADD_NAN 0x7fc00001
26 #define DIV_NAN 0x7fc00008
27 #define MUL_NAN 0x7fc00002
28 #define FPU_FS PSW_USB_C
29 #define FPU_FI PSW_USB_V
30 #define FPU_FV PSW_USB_SV
31 #define FPU_FZ PSW_USB_AV
32 #define FPU_FU PSW_USB_SAV
34 /* we don't care about input_denormal */
35 static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
37 return get_float_exception_flags(&env->fp_status)
38 & (float_flag_invalid
39 | float_flag_overflow
40 | float_flag_underflow
41 | float_flag_output_denormal
42 | float_flag_divbyzero
43 | float_flag_inexact);
46 static inline bool f_is_denormal(float32 arg)
48 return float32_is_zero_or_denormal(arg) && !float32_is_zero(arg);
51 static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
52 float32 arg3, float32 result,
53 uint32_t muladd_negate_c)
55 uint32_t aSign, bSign, cSign;
56 uint32_t aExp, bExp, cExp;
58 if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
59 float32_is_any_nan(arg3)) {
60 return QUIET_NAN;
61 } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
62 return MUL_NAN;
63 } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
64 return MUL_NAN;
65 } else {
66 aSign = arg1 >> 31;
67 bSign = arg2 >> 31;
68 cSign = arg3 >> 31;
70 aExp = (arg1 >> 23) & 0xff;
71 bExp = (arg2 >> 23) & 0xff;
72 cExp = (arg3 >> 23) & 0xff;
74 if (muladd_negate_c) {
75 cSign ^= 1;
77 if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
78 if (aSign ^ bSign ^ cSign) {
79 return ADD_NAN;
84 return result;
87 static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
89 uint8_t some_excp = 0;
90 set_float_exception_flags(0, &env->fp_status);
92 if (flags & float_flag_invalid) {
93 env->FPU_FI = 1 << 31;
94 some_excp = 1;
97 if (flags & float_flag_overflow) {
98 env->FPU_FV = 1 << 31;
99 some_excp = 1;
102 if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
103 env->FPU_FU = 1 << 31;
104 some_excp = 1;
107 if (flags & float_flag_divbyzero) {
108 env->FPU_FZ = 1 << 31;
109 some_excp = 1;
112 if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
113 env->PSW |= 1 << 26;
114 some_excp = 1;
117 env->FPU_FS = some_excp;
120 #define FADD_SUB(op) \
121 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
123 float32 arg1 = make_float32(r1); \
124 float32 arg2 = make_float32(r2); \
125 uint32_t flags; \
126 float32 f_result; \
128 f_result = float32_##op(arg2, arg1, &env->fp_status); \
129 flags = f_get_excp_flags(env); \
130 if (flags) { \
131 /* If the output is a NaN, but the inputs aren't, \
132 we return a unique value. */ \
133 if ((flags & float_flag_invalid) \
134 && !float32_is_any_nan(arg1) \
135 && !float32_is_any_nan(arg2)) { \
136 f_result = ADD_NAN; \
138 f_update_psw_flags(env, flags); \
139 } else { \
140 env->FPU_FS = 0; \
142 return (uint32_t)f_result; \
144 FADD_SUB(add)
145 FADD_SUB(sub)
147 uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
149 uint32_t flags;
150 float32 arg1 = make_float32(r1);
151 float32 arg2 = make_float32(r2);
152 float32 f_result;
154 f_result = float32_mul(arg1, arg2, &env->fp_status);
156 flags = f_get_excp_flags(env);
157 if (flags) {
158 /* If the output is a NaN, but the inputs aren't,
159 we return a unique value. */
160 if ((flags & float_flag_invalid)
161 && !float32_is_any_nan(arg1)
162 && !float32_is_any_nan(arg2)) {
163 f_result = MUL_NAN;
165 f_update_psw_flags(env, flags);
166 } else {
167 env->FPU_FS = 0;
169 return (uint32_t)f_result;
173 uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
175 uint32_t flags;
176 float32 arg1 = make_float32(r1);
177 float32 arg2 = make_float32(r2);
178 float32 f_result;
180 f_result = float32_div(arg1, arg2 , &env->fp_status);
182 flags = f_get_excp_flags(env);
183 if (flags) {
184 /* If the output is a NaN, but the inputs aren't,
185 we return a unique value. */
186 if ((flags & float_flag_invalid)
187 && !float32_is_any_nan(arg1)
188 && !float32_is_any_nan(arg2)) {
189 f_result = DIV_NAN;
191 f_update_psw_flags(env, flags);
192 } else {
193 env->FPU_FS = 0;
196 return (uint32_t)f_result;
199 uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
200 uint32_t r2, uint32_t r3)
202 uint32_t flags;
203 float32 arg1 = make_float32(r1);
204 float32 arg2 = make_float32(r2);
205 float32 arg3 = make_float32(r3);
206 float32 f_result;
208 f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);
210 flags = f_get_excp_flags(env);
211 if (flags) {
212 if (flags & float_flag_invalid) {
213 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
214 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
215 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
216 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
218 f_update_psw_flags(env, flags);
219 } else {
220 env->FPU_FS = 0;
222 return (uint32_t)f_result;
225 uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
226 uint32_t r2, uint32_t r3)
228 uint32_t flags;
229 float32 arg1 = make_float32(r1);
230 float32 arg2 = make_float32(r2);
231 float32 arg3 = make_float32(r3);
232 float32 f_result;
234 f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
235 &env->fp_status);
237 flags = f_get_excp_flags(env);
238 if (flags) {
239 if (flags & float_flag_invalid) {
240 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
241 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
242 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
244 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
246 f_update_psw_flags(env, flags);
247 } else {
248 env->FPU_FS = 0;
250 return (uint32_t)f_result;
253 uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
255 uint32_t result, flags;
256 float32 arg1 = make_float32(r1);
257 float32 arg2 = make_float32(r2);
259 set_flush_inputs_to_zero(0, &env->fp_status);
261 result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
262 result |= f_is_denormal(arg1) << 4;
263 result |= f_is_denormal(arg2) << 5;
265 flags = f_get_excp_flags(env);
266 if (flags) {
267 f_update_psw_flags(env, flags);
268 } else {
269 env->FPU_FS = 0;
272 set_flush_inputs_to_zero(1, &env->fp_status);
273 return result;
276 uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
278 float32 f_arg = make_float32(arg);
279 int32_t result, flags;
281 result = float32_to_int32(f_arg, &env->fp_status);
283 flags = f_get_excp_flags(env);
284 if (flags) {
285 if (float32_is_any_nan(f_arg)) {
286 result = 0;
288 f_update_psw_flags(env, flags);
289 } else {
290 env->FPU_FS = 0;
292 return (uint32_t)result;
295 uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
297 float32 f_result;
298 uint32_t flags;
299 f_result = int32_to_float32(arg, &env->fp_status);
301 flags = f_get_excp_flags(env);
302 if (flags) {
303 f_update_psw_flags(env, flags);
304 } else {
305 env->FPU_FS = 0;
307 return (uint32_t)f_result;
310 uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
312 float32 f_arg = make_float32(arg);
313 uint32_t result;
314 int32_t flags;
316 result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);
318 flags = f_get_excp_flags(env);
319 if (flags & float_flag_invalid) {
320 flags &= ~float_flag_inexact;
321 if (float32_is_any_nan(f_arg)) {
322 result = 0;
324 } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
325 flags = float_flag_invalid;
326 result = 0;
329 if (flags) {
330 f_update_psw_flags(env, flags);
331 } else {
332 env->FPU_FS = 0;
334 return result;
337 void helper_updfl(CPUTriCoreState *env, uint32_t arg)
339 env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1);
340 env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
341 env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
342 env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
343 env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
344 /* clear FX and RM */
345 env->PSW &= ~(extract32(arg, 10, 1) << 26);
346 env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;
348 fpu_set_state(env);