2 * TriCore emulation for qemu: fpu helper.
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
24 #define QUIET_NAN 0x7fc00000
25 #define ADD_NAN 0x7fc00001
26 #define DIV_NAN 0x7fc00008
27 #define MUL_NAN 0x7fc00002
28 #define FPU_FS PSW_USB_C
29 #define FPU_FI PSW_USB_V
30 #define FPU_FV PSW_USB_SV
31 #define FPU_FZ PSW_USB_AV
32 #define FPU_FU PSW_USB_SAV
34 /* we don't care about input_denormal */
35 static inline uint8_t f_get_excp_flags(CPUTriCoreState
*env
)
37 return get_float_exception_flags(&env
->fp_status
)
40 | float_flag_underflow
41 | float_flag_output_denormal
42 | float_flag_divbyzero
43 | float_flag_inexact
);
46 static inline bool f_is_denormal(float32 arg
)
48 return float32_is_zero_or_denormal(arg
) && !float32_is_zero(arg
);
51 static inline float32
f_maddsub_nan_result(float32 arg1
, float32 arg2
,
52 float32 arg3
, float32 result
,
53 uint32_t muladd_negate_c
)
55 uint32_t aSign
, bSign
, cSign
;
56 uint32_t aExp
, bExp
, cExp
;
58 if (float32_is_any_nan(arg1
) || float32_is_any_nan(arg2
) ||
59 float32_is_any_nan(arg3
)) {
61 } else if (float32_is_infinity(arg1
) && float32_is_zero(arg2
)) {
63 } else if (float32_is_zero(arg1
) && float32_is_infinity(arg2
)) {
70 aExp
= (arg1
>> 23) & 0xff;
71 bExp
= (arg2
>> 23) & 0xff;
72 cExp
= (arg3
>> 23) & 0xff;
74 if (muladd_negate_c
) {
77 if (((aExp
== 0xff) || (bExp
== 0xff)) && (cExp
== 0xff)) {
78 if (aSign
^ bSign
^ cSign
) {
87 static void f_update_psw_flags(CPUTriCoreState
*env
, uint8_t flags
)
89 uint8_t some_excp
= 0;
90 set_float_exception_flags(0, &env
->fp_status
);
92 if (flags
& float_flag_invalid
) {
93 env
->FPU_FI
= 1 << 31;
97 if (flags
& float_flag_overflow
) {
98 env
->FPU_FV
= 1 << 31;
102 if (flags
& float_flag_underflow
|| flags
& float_flag_output_denormal
) {
103 env
->FPU_FU
= 1 << 31;
107 if (flags
& float_flag_divbyzero
) {
108 env
->FPU_FZ
= 1 << 31;
112 if (flags
& float_flag_inexact
|| flags
& float_flag_output_denormal
) {
117 env
->FPU_FS
= some_excp
;
120 #define FADD_SUB(op) \
121 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
123 float32 arg1 = make_float32(r1); \
124 float32 arg2 = make_float32(r2); \
128 f_result = float32_##op(arg2, arg1, &env->fp_status); \
129 flags = f_get_excp_flags(env); \
131 /* If the output is a NaN, but the inputs aren't, \
132 we return a unique value. */ \
133 if ((flags & float_flag_invalid) \
134 && !float32_is_any_nan(arg1) \
135 && !float32_is_any_nan(arg2)) { \
136 f_result = ADD_NAN; \
138 f_update_psw_flags(env, flags); \
142 return (uint32_t)f_result; \
147 uint32_t helper_fmul(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
150 float32 arg1
= make_float32(r1
);
151 float32 arg2
= make_float32(r2
);
154 f_result
= float32_mul(arg1
, arg2
, &env
->fp_status
);
156 flags
= f_get_excp_flags(env
);
158 /* If the output is a NaN, but the inputs aren't,
159 we return a unique value. */
160 if ((flags
& float_flag_invalid
)
161 && !float32_is_any_nan(arg1
)
162 && !float32_is_any_nan(arg2
)) {
165 f_update_psw_flags(env
, flags
);
169 return (uint32_t)f_result
;
173 uint32_t helper_fdiv(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
176 float32 arg1
= make_float32(r1
);
177 float32 arg2
= make_float32(r2
);
180 f_result
= float32_div(arg1
, arg2
, &env
->fp_status
);
182 flags
= f_get_excp_flags(env
);
184 /* If the output is a NaN, but the inputs aren't,
185 we return a unique value. */
186 if ((flags
& float_flag_invalid
)
187 && !float32_is_any_nan(arg1
)
188 && !float32_is_any_nan(arg2
)) {
191 f_update_psw_flags(env
, flags
);
196 return (uint32_t)f_result
;
199 uint32_t helper_fmadd(CPUTriCoreState
*env
, uint32_t r1
,
200 uint32_t r2
, uint32_t r3
)
203 float32 arg1
= make_float32(r1
);
204 float32 arg2
= make_float32(r2
);
205 float32 arg3
= make_float32(r3
);
208 f_result
= float32_muladd(arg1
, arg2
, arg3
, 0, &env
->fp_status
);
210 flags
= f_get_excp_flags(env
);
212 if (flags
& float_flag_invalid
) {
213 arg1
= float32_squash_input_denormal(arg1
, &env
->fp_status
);
214 arg2
= float32_squash_input_denormal(arg2
, &env
->fp_status
);
215 arg3
= float32_squash_input_denormal(arg3
, &env
->fp_status
);
216 f_result
= f_maddsub_nan_result(arg1
, arg2
, arg3
, f_result
, 0);
218 f_update_psw_flags(env
, flags
);
222 return (uint32_t)f_result
;
225 uint32_t helper_fmsub(CPUTriCoreState
*env
, uint32_t r1
,
226 uint32_t r2
, uint32_t r3
)
229 float32 arg1
= make_float32(r1
);
230 float32 arg2
= make_float32(r2
);
231 float32 arg3
= make_float32(r3
);
234 f_result
= float32_muladd(arg1
, arg2
, arg3
, float_muladd_negate_product
,
237 flags
= f_get_excp_flags(env
);
239 if (flags
& float_flag_invalid
) {
240 arg1
= float32_squash_input_denormal(arg1
, &env
->fp_status
);
241 arg2
= float32_squash_input_denormal(arg2
, &env
->fp_status
);
242 arg3
= float32_squash_input_denormal(arg3
, &env
->fp_status
);
244 f_result
= f_maddsub_nan_result(arg1
, arg2
, arg3
, f_result
, 1);
246 f_update_psw_flags(env
, flags
);
250 return (uint32_t)f_result
;
253 uint32_t helper_fcmp(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
255 uint32_t result
, flags
;
256 float32 arg1
= make_float32(r1
);
257 float32 arg2
= make_float32(r2
);
259 set_flush_inputs_to_zero(0, &env
->fp_status
);
261 result
= 1 << (float32_compare_quiet(arg1
, arg2
, &env
->fp_status
) + 1);
262 result
|= f_is_denormal(arg1
) << 4;
263 result
|= f_is_denormal(arg2
) << 5;
265 flags
= f_get_excp_flags(env
);
267 f_update_psw_flags(env
, flags
);
272 set_flush_inputs_to_zero(1, &env
->fp_status
);
276 uint32_t helper_ftoi(CPUTriCoreState
*env
, uint32_t arg
)
278 float32 f_arg
= make_float32(arg
);
279 int32_t result
, flags
;
281 result
= float32_to_int32(f_arg
, &env
->fp_status
);
283 flags
= f_get_excp_flags(env
);
285 if (float32_is_any_nan(f_arg
)) {
288 f_update_psw_flags(env
, flags
);
292 return (uint32_t)result
;
295 uint32_t helper_itof(CPUTriCoreState
*env
, uint32_t arg
)
299 f_result
= int32_to_float32(arg
, &env
->fp_status
);
301 flags
= f_get_excp_flags(env
);
303 f_update_psw_flags(env
, flags
);
307 return (uint32_t)f_result
;
310 uint32_t helper_ftouz(CPUTriCoreState
*env
, uint32_t arg
)
312 float32 f_arg
= make_float32(arg
);
316 result
= float32_to_uint32_round_to_zero(f_arg
, &env
->fp_status
);
318 flags
= f_get_excp_flags(env
);
319 if (flags
& float_flag_invalid
) {
320 flags
&= ~float_flag_inexact
;
321 if (float32_is_any_nan(f_arg
)) {
324 } else if (float32_lt_quiet(f_arg
, 0, &env
->fp_status
)) {
325 flags
= float_flag_invalid
;
330 f_update_psw_flags(env
, flags
);
337 void helper_updfl(CPUTriCoreState
*env
, uint32_t arg
)
339 env
->FPU_FS
= extract32(arg
, 7, 1) & extract32(arg
, 15, 1);
340 env
->FPU_FI
= (extract32(arg
, 6, 1) & extract32(arg
, 14, 1)) << 31;
341 env
->FPU_FV
= (extract32(arg
, 5, 1) & extract32(arg
, 13, 1)) << 31;
342 env
->FPU_FZ
= (extract32(arg
, 4, 1) & extract32(arg
, 12, 1)) << 31;
343 env
->FPU_FU
= (extract32(arg
, 3, 1) & extract32(arg
, 11, 1)) << 31;
344 /* clear FX and RM */
345 env
->PSW
&= ~(extract32(arg
, 10, 1) << 26);
346 env
->PSW
|= (extract32(arg
, 2, 1) & extract32(arg
, 10, 1)) << 26;