vga: replace debug printf with trace points
[qemu/ar7.git] / target / arm / translate-a64.c
blobe61bbd6b3b1fd34d2170fe120152908c17ddf1a1
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "translate.h"
27 #include "internals.h"
28 #include "qemu/host-utils.h"
30 #include "exec/semihost.h"
31 #include "exec/gen-icount.h"
33 #include "exec/helper-proto.h"
34 #include "exec/helper-gen.h"
35 #include "exec/log.h"
37 #include "trace-tcg.h"
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
46 static const char *regnames[] = {
47 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
48 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
49 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
50 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 enum a64_shift_type {
54 A64_SHIFT_TYPE_LSL = 0,
55 A64_SHIFT_TYPE_LSR = 1,
56 A64_SHIFT_TYPE_ASR = 2,
57 A64_SHIFT_TYPE_ROR = 3
60 /* Table based decoder typedefs - used when the relevant bits for decode
61 * are too awkwardly scattered across the instruction (eg SIMD).
63 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
65 typedef struct AArch64DecodeTable {
66 uint32_t pattern;
67 uint32_t mask;
68 AArch64DecodeFn *disas_fn;
69 } AArch64DecodeTable;
71 /* Function prototype for gen_ functions for calling Neon helpers */
72 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
73 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
74 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
76 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
77 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
78 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
79 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
80 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
81 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
82 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
83 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
84 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
86 /* initialize TCG globals. */
87 void a64_translate_init(void)
89 int i;
91 cpu_pc = tcg_global_mem_new_i64(cpu_env,
92 offsetof(CPUARMState, pc),
93 "pc");
94 for (i = 0; i < 32; i++) {
95 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, xregs[i]),
97 regnames[i]);
100 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, exclusive_high), "exclusive_high");
104 static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s)
106 /* Return the mmu_idx to use for A64 "unprivileged load/store" insns:
107 * if EL1, access as if EL0; otherwise access at current EL
109 switch (s->mmu_idx) {
110 case ARMMMUIdx_S12NSE1:
111 return ARMMMUIdx_S12NSE0;
112 case ARMMMUIdx_S1SE1:
113 return ARMMMUIdx_S1SE0;
114 case ARMMMUIdx_S2NS:
115 g_assert_not_reached();
116 default:
117 return s->mmu_idx;
121 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
122 fprintf_function cpu_fprintf, int flags)
124 ARMCPU *cpu = ARM_CPU(cs);
125 CPUARMState *env = &cpu->env;
126 uint32_t psr = pstate_read(env);
127 int i;
128 int el = arm_current_el(env);
129 const char *ns_status;
131 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
132 env->pc, env->xregs[31]);
133 for (i = 0; i < 31; i++) {
134 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
135 if ((i % 4) == 3) {
136 cpu_fprintf(f, "\n");
137 } else {
138 cpu_fprintf(f, " ");
142 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
143 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
144 } else {
145 ns_status = "";
148 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
149 psr,
150 psr & PSTATE_N ? 'N' : '-',
151 psr & PSTATE_Z ? 'Z' : '-',
152 psr & PSTATE_C ? 'C' : '-',
153 psr & PSTATE_V ? 'V' : '-',
154 ns_status,
156 psr & PSTATE_SP ? 'h' : 't');
158 if (flags & CPU_DUMP_FPU) {
159 int numvfpregs = 32;
160 for (i = 0; i < numvfpregs; i += 2) {
161 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
162 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
163 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
164 i, vhi, vlo);
165 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
166 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
167 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
168 i + 1, vhi, vlo);
170 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
171 vfp_get_fpcr(env), vfp_get_fpsr(env));
175 void gen_a64_set_pc_im(uint64_t val)
177 tcg_gen_movi_i64(cpu_pc, val);
180 /* Load the PC from a generic TCG variable.
182 * If address tagging is enabled via the TCR TBI bits, then loading
183 * an address into the PC will clear out any tag in the it:
184 * + for EL2 and EL3 there is only one TBI bit, and if it is set
185 * then the address is zero-extended, clearing bits [63:56]
186 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
187 * and TBI1 controls addressses with bit 55 == 1.
188 * If the appropriate TBI bit is set for the address then
189 * the address is sign-extended from bit 55 into bits [63:56]
191 * We can avoid doing this for relative-branches, because the
192 * PC + offset can never overflow into the tag bits (assuming
193 * that virtual addresses are less than 56 bits wide, as they
194 * are currently), but we must handle it for branch-to-register.
196 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
199 if (s->current_el <= 1) {
200 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
201 * examine bit 55 of address, can just generate code.
202 * If mixed, then test via generated code
204 if (s->tbi0 && s->tbi1) {
205 TCGv_i64 tmp_reg = tcg_temp_new_i64();
206 /* Both bits set, sign extension from bit 55 into [63:56] will
207 * cover both cases
209 tcg_gen_shli_i64(tmp_reg, src, 8);
210 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
211 tcg_temp_free_i64(tmp_reg);
212 } else if (!s->tbi0 && !s->tbi1) {
213 /* Neither bit set, just load it as-is */
214 tcg_gen_mov_i64(cpu_pc, src);
215 } else {
216 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
217 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
218 TCGv_i64 tcg_zero = tcg_const_i64(0);
220 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
222 if (s->tbi0) {
223 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
224 tcg_gen_andi_i64(tcg_tmpval, src,
225 0x00FFFFFFFFFFFFFFull);
226 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
227 tcg_tmpval, src);
228 } else {
229 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
230 tcg_gen_ori_i64(tcg_tmpval, src,
231 0xFF00000000000000ull);
232 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
233 tcg_tmpval, src);
235 tcg_temp_free_i64(tcg_zero);
236 tcg_temp_free_i64(tcg_bit55);
237 tcg_temp_free_i64(tcg_tmpval);
239 } else { /* EL > 1 */
240 if (s->tbi0) {
241 /* Force tag byte to all zero */
242 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
243 } else {
244 /* Load unmodified address */
245 tcg_gen_mov_i64(cpu_pc, src);
250 typedef struct DisasCompare64 {
251 TCGCond cond;
252 TCGv_i64 value;
253 } DisasCompare64;
255 static void a64_test_cc(DisasCompare64 *c64, int cc)
257 DisasCompare c32;
259 arm_test_cc(&c32, cc);
261 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
262 * properly. The NE/EQ comparisons are also fine with this choice. */
263 c64->cond = c32.cond;
264 c64->value = tcg_temp_new_i64();
265 tcg_gen_ext_i32_i64(c64->value, c32.value);
267 arm_free_cc(&c32);
270 static void a64_free_cc(DisasCompare64 *c64)
272 tcg_temp_free_i64(c64->value);
275 static void gen_exception_internal(int excp)
277 TCGv_i32 tcg_excp = tcg_const_i32(excp);
279 assert(excp_is_internal(excp));
280 gen_helper_exception_internal(cpu_env, tcg_excp);
281 tcg_temp_free_i32(tcg_excp);
284 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
286 TCGv_i32 tcg_excp = tcg_const_i32(excp);
287 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
288 TCGv_i32 tcg_el = tcg_const_i32(target_el);
290 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
291 tcg_syn, tcg_el);
292 tcg_temp_free_i32(tcg_el);
293 tcg_temp_free_i32(tcg_syn);
294 tcg_temp_free_i32(tcg_excp);
297 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
299 gen_a64_set_pc_im(s->pc - offset);
300 gen_exception_internal(excp);
301 s->is_jmp = DISAS_EXC;
304 static void gen_exception_insn(DisasContext *s, int offset, int excp,
305 uint32_t syndrome, uint32_t target_el)
307 gen_a64_set_pc_im(s->pc - offset);
308 gen_exception(excp, syndrome, target_el);
309 s->is_jmp = DISAS_EXC;
312 static void gen_ss_advance(DisasContext *s)
314 /* If the singlestep state is Active-not-pending, advance to
315 * Active-pending.
317 if (s->ss_active) {
318 s->pstate_ss = 0;
319 gen_helper_clear_pstate_ss(cpu_env);
323 static void gen_step_complete_exception(DisasContext *s)
325 /* We just completed step of an insn. Move from Active-not-pending
326 * to Active-pending, and then also take the swstep exception.
327 * This corresponds to making the (IMPDEF) choice to prioritize
328 * swstep exceptions over asynchronous exceptions taken to an exception
329 * level where debug is disabled. This choice has the advantage that
330 * we do not need to maintain internal state corresponding to the
331 * ISV/EX syndrome bits between completion of the step and generation
332 * of the exception, and our syndrome information is always correct.
334 gen_ss_advance(s);
335 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
336 default_exception_el(s));
337 s->is_jmp = DISAS_EXC;
340 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
342 /* No direct tb linking with singlestep (either QEMU's or the ARM
343 * debug architecture kind) or deterministic io
345 if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
346 return false;
349 #ifndef CONFIG_USER_ONLY
350 /* Only link tbs from inside the same guest page */
351 if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
352 return false;
354 #endif
356 return true;
359 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
361 TranslationBlock *tb;
363 tb = s->tb;
364 if (use_goto_tb(s, n, dest)) {
365 tcg_gen_goto_tb(n);
366 gen_a64_set_pc_im(dest);
367 tcg_gen_exit_tb((intptr_t)tb + n);
368 s->is_jmp = DISAS_TB_JUMP;
369 } else {
370 gen_a64_set_pc_im(dest);
371 if (s->ss_active) {
372 gen_step_complete_exception(s);
373 } else if (s->singlestep_enabled) {
374 gen_exception_internal(EXCP_DEBUG);
375 } else {
376 tcg_gen_exit_tb(0);
377 s->is_jmp = DISAS_TB_JUMP;
382 static void unallocated_encoding(DisasContext *s)
384 /* Unallocated and reserved encodings are uncategorized */
385 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
386 default_exception_el(s));
389 #define unsupported_encoding(s, insn) \
390 do { \
391 qemu_log_mask(LOG_UNIMP, \
392 "%s:%d: unsupported instruction encoding 0x%08x " \
393 "at pc=%016" PRIx64 "\n", \
394 __FILE__, __LINE__, insn, s->pc - 4); \
395 unallocated_encoding(s); \
396 } while (0);
398 static void init_tmp_a64_array(DisasContext *s)
400 #ifdef CONFIG_DEBUG_TCG
401 int i;
402 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
403 TCGV_UNUSED_I64(s->tmp_a64[i]);
405 #endif
406 s->tmp_a64_count = 0;
409 static void free_tmp_a64(DisasContext *s)
411 int i;
412 for (i = 0; i < s->tmp_a64_count; i++) {
413 tcg_temp_free_i64(s->tmp_a64[i]);
415 init_tmp_a64_array(s);
418 static TCGv_i64 new_tmp_a64(DisasContext *s)
420 assert(s->tmp_a64_count < TMP_A64_MAX);
421 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
424 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
426 TCGv_i64 t = new_tmp_a64(s);
427 tcg_gen_movi_i64(t, 0);
428 return t;
432 * Register access functions
434 * These functions are used for directly accessing a register in where
435 * changes to the final register value are likely to be made. If you
436 * need to use a register for temporary calculation (e.g. index type
437 * operations) use the read_* form.
439 * B1.2.1 Register mappings
441 * In instruction register encoding 31 can refer to ZR (zero register) or
442 * the SP (stack pointer) depending on context. In QEMU's case we map SP
443 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
444 * This is the point of the _sp forms.
446 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
448 if (reg == 31) {
449 return new_tmp_a64_zero(s);
450 } else {
451 return cpu_X[reg];
455 /* register access for when 31 == SP */
456 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
458 return cpu_X[reg];
461 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
462 * representing the register contents. This TCGv is an auto-freed
463 * temporary so it need not be explicitly freed, and may be modified.
465 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
467 TCGv_i64 v = new_tmp_a64(s);
468 if (reg != 31) {
469 if (sf) {
470 tcg_gen_mov_i64(v, cpu_X[reg]);
471 } else {
472 tcg_gen_ext32u_i64(v, cpu_X[reg]);
474 } else {
475 tcg_gen_movi_i64(v, 0);
477 return v;
480 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
482 TCGv_i64 v = new_tmp_a64(s);
483 if (sf) {
484 tcg_gen_mov_i64(v, cpu_X[reg]);
485 } else {
486 tcg_gen_ext32u_i64(v, cpu_X[reg]);
488 return v;
491 /* We should have at some point before trying to access an FP register
492 * done the necessary access check, so assert that
493 * (a) we did the check and
494 * (b) we didn't then just plough ahead anyway if it failed.
495 * Print the instruction pattern in the abort message so we can figure
496 * out what we need to fix if a user encounters this problem in the wild.
498 static inline void assert_fp_access_checked(DisasContext *s)
500 #ifdef CONFIG_DEBUG_TCG
501 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
502 fprintf(stderr, "target-arm: FP access check missing for "
503 "instruction 0x%08x\n", s->insn);
504 abort();
506 #endif
509 /* Return the offset into CPUARMState of an element of specified
510 * size, 'element' places in from the least significant end of
511 * the FP/vector register Qn.
513 static inline int vec_reg_offset(DisasContext *s, int regno,
514 int element, TCGMemOp size)
516 int offs = 0;
517 #ifdef HOST_WORDS_BIGENDIAN
518 /* This is complicated slightly because vfp.regs[2n] is
519 * still the low half and vfp.regs[2n+1] the high half
520 * of the 128 bit vector, even on big endian systems.
521 * Calculate the offset assuming a fully bigendian 128 bits,
522 * then XOR to account for the order of the two 64 bit halves.
524 offs += (16 - ((element + 1) * (1 << size)));
525 offs ^= 8;
526 #else
527 offs += element * (1 << size);
528 #endif
529 offs += offsetof(CPUARMState, vfp.regs[regno * 2]);
530 assert_fp_access_checked(s);
531 return offs;
534 /* Return the offset into CPUARMState of a slice (from
535 * the least significant end) of FP register Qn (ie
536 * Dn, Sn, Hn or Bn).
537 * (Note that this is not the same mapping as for A32; see cpu.h)
539 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
541 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
542 #ifdef HOST_WORDS_BIGENDIAN
543 offs += (8 - (1 << size));
544 #endif
545 assert_fp_access_checked(s);
546 return offs;
549 /* Offset of the high half of the 128 bit vector Qn */
550 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
552 assert_fp_access_checked(s);
553 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
556 /* Convenience accessors for reading and writing single and double
557 * FP registers. Writing clears the upper parts of the associated
558 * 128 bit vector register, as required by the architecture.
559 * Note that unlike the GP register accessors, the values returned
560 * by the read functions must be manually freed.
562 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
564 TCGv_i64 v = tcg_temp_new_i64();
566 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
567 return v;
570 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
572 TCGv_i32 v = tcg_temp_new_i32();
574 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
575 return v;
578 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
580 TCGv_i64 tcg_zero = tcg_const_i64(0);
582 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
583 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
584 tcg_temp_free_i64(tcg_zero);
587 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
589 TCGv_i64 tmp = tcg_temp_new_i64();
591 tcg_gen_extu_i32_i64(tmp, v);
592 write_fp_dreg(s, reg, tmp);
593 tcg_temp_free_i64(tmp);
596 static TCGv_ptr get_fpstatus_ptr(void)
598 TCGv_ptr statusptr = tcg_temp_new_ptr();
599 int offset;
601 /* In A64 all instructions (both FP and Neon) use the FPCR;
602 * there is no equivalent of the A32 Neon "standard FPSCR value"
603 * and all operations use vfp.fp_status.
605 offset = offsetof(CPUARMState, vfp.fp_status);
606 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
607 return statusptr;
610 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
611 * than the 32 bit equivalent.
613 static inline void gen_set_NZ64(TCGv_i64 result)
615 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
616 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
619 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
620 static inline void gen_logic_CC(int sf, TCGv_i64 result)
622 if (sf) {
623 gen_set_NZ64(result);
624 } else {
625 tcg_gen_extrl_i64_i32(cpu_ZF, result);
626 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
628 tcg_gen_movi_i32(cpu_CF, 0);
629 tcg_gen_movi_i32(cpu_VF, 0);
632 /* dest = T0 + T1; compute C, N, V and Z flags */
633 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
635 if (sf) {
636 TCGv_i64 result, flag, tmp;
637 result = tcg_temp_new_i64();
638 flag = tcg_temp_new_i64();
639 tmp = tcg_temp_new_i64();
641 tcg_gen_movi_i64(tmp, 0);
642 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
644 tcg_gen_extrl_i64_i32(cpu_CF, flag);
646 gen_set_NZ64(result);
648 tcg_gen_xor_i64(flag, result, t0);
649 tcg_gen_xor_i64(tmp, t0, t1);
650 tcg_gen_andc_i64(flag, flag, tmp);
651 tcg_temp_free_i64(tmp);
652 tcg_gen_extrh_i64_i32(cpu_VF, flag);
654 tcg_gen_mov_i64(dest, result);
655 tcg_temp_free_i64(result);
656 tcg_temp_free_i64(flag);
657 } else {
658 /* 32 bit arithmetic */
659 TCGv_i32 t0_32 = tcg_temp_new_i32();
660 TCGv_i32 t1_32 = tcg_temp_new_i32();
661 TCGv_i32 tmp = tcg_temp_new_i32();
663 tcg_gen_movi_i32(tmp, 0);
664 tcg_gen_extrl_i64_i32(t0_32, t0);
665 tcg_gen_extrl_i64_i32(t1_32, t1);
666 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
667 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
668 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
669 tcg_gen_xor_i32(tmp, t0_32, t1_32);
670 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
671 tcg_gen_extu_i32_i64(dest, cpu_NF);
673 tcg_temp_free_i32(tmp);
674 tcg_temp_free_i32(t0_32);
675 tcg_temp_free_i32(t1_32);
679 /* dest = T0 - T1; compute C, N, V and Z flags */
680 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
682 if (sf) {
683 /* 64 bit arithmetic */
684 TCGv_i64 result, flag, tmp;
686 result = tcg_temp_new_i64();
687 flag = tcg_temp_new_i64();
688 tcg_gen_sub_i64(result, t0, t1);
690 gen_set_NZ64(result);
692 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
693 tcg_gen_extrl_i64_i32(cpu_CF, flag);
695 tcg_gen_xor_i64(flag, result, t0);
696 tmp = tcg_temp_new_i64();
697 tcg_gen_xor_i64(tmp, t0, t1);
698 tcg_gen_and_i64(flag, flag, tmp);
699 tcg_temp_free_i64(tmp);
700 tcg_gen_extrh_i64_i32(cpu_VF, flag);
701 tcg_gen_mov_i64(dest, result);
702 tcg_temp_free_i64(flag);
703 tcg_temp_free_i64(result);
704 } else {
705 /* 32 bit arithmetic */
706 TCGv_i32 t0_32 = tcg_temp_new_i32();
707 TCGv_i32 t1_32 = tcg_temp_new_i32();
708 TCGv_i32 tmp;
710 tcg_gen_extrl_i64_i32(t0_32, t0);
711 tcg_gen_extrl_i64_i32(t1_32, t1);
712 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
713 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
714 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
715 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
716 tmp = tcg_temp_new_i32();
717 tcg_gen_xor_i32(tmp, t0_32, t1_32);
718 tcg_temp_free_i32(t0_32);
719 tcg_temp_free_i32(t1_32);
720 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
721 tcg_temp_free_i32(tmp);
722 tcg_gen_extu_i32_i64(dest, cpu_NF);
726 /* dest = T0 + T1 + CF; do not compute flags. */
727 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
729 TCGv_i64 flag = tcg_temp_new_i64();
730 tcg_gen_extu_i32_i64(flag, cpu_CF);
731 tcg_gen_add_i64(dest, t0, t1);
732 tcg_gen_add_i64(dest, dest, flag);
733 tcg_temp_free_i64(flag);
735 if (!sf) {
736 tcg_gen_ext32u_i64(dest, dest);
740 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
741 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
743 if (sf) {
744 TCGv_i64 result, cf_64, vf_64, tmp;
745 result = tcg_temp_new_i64();
746 cf_64 = tcg_temp_new_i64();
747 vf_64 = tcg_temp_new_i64();
748 tmp = tcg_const_i64(0);
750 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
751 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
752 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
753 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
754 gen_set_NZ64(result);
756 tcg_gen_xor_i64(vf_64, result, t0);
757 tcg_gen_xor_i64(tmp, t0, t1);
758 tcg_gen_andc_i64(vf_64, vf_64, tmp);
759 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
761 tcg_gen_mov_i64(dest, result);
763 tcg_temp_free_i64(tmp);
764 tcg_temp_free_i64(vf_64);
765 tcg_temp_free_i64(cf_64);
766 tcg_temp_free_i64(result);
767 } else {
768 TCGv_i32 t0_32, t1_32, tmp;
769 t0_32 = tcg_temp_new_i32();
770 t1_32 = tcg_temp_new_i32();
771 tmp = tcg_const_i32(0);
773 tcg_gen_extrl_i64_i32(t0_32, t0);
774 tcg_gen_extrl_i64_i32(t1_32, t1);
775 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
776 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
778 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
779 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
780 tcg_gen_xor_i32(tmp, t0_32, t1_32);
781 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
782 tcg_gen_extu_i32_i64(dest, cpu_NF);
784 tcg_temp_free_i32(tmp);
785 tcg_temp_free_i32(t1_32);
786 tcg_temp_free_i32(t0_32);
791 * Load/Store generators
795 * Store from GPR register to memory.
797 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
798 TCGv_i64 tcg_addr, int size, int memidx,
799 bool iss_valid,
800 unsigned int iss_srt,
801 bool iss_sf, bool iss_ar)
803 g_assert(size <= 3);
804 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
806 if (iss_valid) {
807 uint32_t syn;
809 syn = syn_data_abort_with_iss(0,
810 size,
811 false,
812 iss_srt,
813 iss_sf,
814 iss_ar,
815 0, 0, 0, 0, 0, false);
816 disas_set_insn_syndrome(s, syn);
820 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
821 TCGv_i64 tcg_addr, int size,
822 bool iss_valid,
823 unsigned int iss_srt,
824 bool iss_sf, bool iss_ar)
826 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
827 iss_valid, iss_srt, iss_sf, iss_ar);
831 * Load from memory to GPR register
833 static void do_gpr_ld_memidx(DisasContext *s,
834 TCGv_i64 dest, TCGv_i64 tcg_addr,
835 int size, bool is_signed,
836 bool extend, int memidx,
837 bool iss_valid, unsigned int iss_srt,
838 bool iss_sf, bool iss_ar)
840 TCGMemOp memop = s->be_data + size;
842 g_assert(size <= 3);
844 if (is_signed) {
845 memop += MO_SIGN;
848 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
850 if (extend && is_signed) {
851 g_assert(size < 3);
852 tcg_gen_ext32u_i64(dest, dest);
855 if (iss_valid) {
856 uint32_t syn;
858 syn = syn_data_abort_with_iss(0,
859 size,
860 is_signed,
861 iss_srt,
862 iss_sf,
863 iss_ar,
864 0, 0, 0, 0, 0, false);
865 disas_set_insn_syndrome(s, syn);
869 static void do_gpr_ld(DisasContext *s,
870 TCGv_i64 dest, TCGv_i64 tcg_addr,
871 int size, bool is_signed, bool extend,
872 bool iss_valid, unsigned int iss_srt,
873 bool iss_sf, bool iss_ar)
875 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
876 get_mem_index(s),
877 iss_valid, iss_srt, iss_sf, iss_ar);
881 * Store from FP register to memory
883 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
885 /* This writes the bottom N bits of a 128 bit wide vector to memory */
886 TCGv_i64 tmp = tcg_temp_new_i64();
887 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
888 if (size < 4) {
889 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
890 s->be_data + size);
891 } else {
892 bool be = s->be_data == MO_BE;
893 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
895 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
896 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
897 s->be_data | MO_Q);
898 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
899 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
900 s->be_data | MO_Q);
901 tcg_temp_free_i64(tcg_hiaddr);
904 tcg_temp_free_i64(tmp);
908 * Load from memory to FP register
910 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
912 /* This always zero-extends and writes to a full 128 bit wide vector */
913 TCGv_i64 tmplo = tcg_temp_new_i64();
914 TCGv_i64 tmphi;
916 if (size < 4) {
917 TCGMemOp memop = s->be_data + size;
918 tmphi = tcg_const_i64(0);
919 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
920 } else {
921 bool be = s->be_data == MO_BE;
922 TCGv_i64 tcg_hiaddr;
924 tmphi = tcg_temp_new_i64();
925 tcg_hiaddr = tcg_temp_new_i64();
927 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
928 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
929 s->be_data | MO_Q);
930 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
931 s->be_data | MO_Q);
932 tcg_temp_free_i64(tcg_hiaddr);
935 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
936 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
938 tcg_temp_free_i64(tmplo);
939 tcg_temp_free_i64(tmphi);
943 * Vector load/store helpers.
945 * The principal difference between this and a FP load is that we don't
946 * zero extend as we are filling a partial chunk of the vector register.
947 * These functions don't support 128 bit loads/stores, which would be
948 * normal load/store operations.
950 * The _i32 versions are useful when operating on 32 bit quantities
951 * (eg for floating point single or using Neon helper functions).
954 /* Get value of an element within a vector register */
955 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
956 int element, TCGMemOp memop)
958 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
959 switch (memop) {
960 case MO_8:
961 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
962 break;
963 case MO_16:
964 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
965 break;
966 case MO_32:
967 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
968 break;
969 case MO_8|MO_SIGN:
970 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
971 break;
972 case MO_16|MO_SIGN:
973 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
974 break;
975 case MO_32|MO_SIGN:
976 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
977 break;
978 case MO_64:
979 case MO_64|MO_SIGN:
980 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
981 break;
982 default:
983 g_assert_not_reached();
987 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
988 int element, TCGMemOp memop)
990 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
991 switch (memop) {
992 case MO_8:
993 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
994 break;
995 case MO_16:
996 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
997 break;
998 case MO_8|MO_SIGN:
999 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1000 break;
1001 case MO_16|MO_SIGN:
1002 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1003 break;
1004 case MO_32:
1005 case MO_32|MO_SIGN:
1006 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1007 break;
1008 default:
1009 g_assert_not_reached();
1013 /* Set value of an element within a vector register */
1014 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1015 int element, TCGMemOp memop)
1017 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1018 switch (memop) {
1019 case MO_8:
1020 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1021 break;
1022 case MO_16:
1023 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1024 break;
1025 case MO_32:
1026 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1027 break;
1028 case MO_64:
1029 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1030 break;
1031 default:
1032 g_assert_not_reached();
1036 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1037 int destidx, int element, TCGMemOp memop)
1039 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1040 switch (memop) {
1041 case MO_8:
1042 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1043 break;
1044 case MO_16:
1045 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1046 break;
1047 case MO_32:
1048 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1049 break;
1050 default:
1051 g_assert_not_reached();
1055 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
1056 * vector ops all need to do this).
1058 static void clear_vec_high(DisasContext *s, int rd)
1060 TCGv_i64 tcg_zero = tcg_const_i64(0);
1062 write_vec_element(s, tcg_zero, rd, 1, MO_64);
1063 tcg_temp_free_i64(tcg_zero);
1066 /* Store from vector register to memory */
1067 static void do_vec_st(DisasContext *s, int srcidx, int element,
1068 TCGv_i64 tcg_addr, int size)
1070 TCGMemOp memop = s->be_data + size;
1071 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1073 read_vec_element(s, tcg_tmp, srcidx, element, size);
1074 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1076 tcg_temp_free_i64(tcg_tmp);
1079 /* Load from memory to vector register */
1080 static void do_vec_ld(DisasContext *s, int destidx, int element,
1081 TCGv_i64 tcg_addr, int size)
1083 TCGMemOp memop = s->be_data + size;
1084 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1086 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1087 write_vec_element(s, tcg_tmp, destidx, element, size);
1089 tcg_temp_free_i64(tcg_tmp);
1092 /* Check that FP/Neon access is enabled. If it is, return
1093 * true. If not, emit code to generate an appropriate exception,
1094 * and return false; the caller should not emit any code for
1095 * the instruction. Note that this check must happen after all
1096 * unallocated-encoding checks (otherwise the syndrome information
1097 * for the resulting exception will be incorrect).
1099 static inline bool fp_access_check(DisasContext *s)
1101 assert(!s->fp_access_checked);
1102 s->fp_access_checked = true;
1104 if (!s->fp_excp_el) {
1105 return true;
1108 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1109 s->fp_excp_el);
1110 return false;
1114 * This utility function is for doing register extension with an
1115 * optional shift. You will likely want to pass a temporary for the
1116 * destination register. See DecodeRegExtend() in the ARM ARM.
1118 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1119 int option, unsigned int shift)
1121 int extsize = extract32(option, 0, 2);
1122 bool is_signed = extract32(option, 2, 1);
1124 if (is_signed) {
1125 switch (extsize) {
1126 case 0:
1127 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1128 break;
1129 case 1:
1130 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1131 break;
1132 case 2:
1133 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1134 break;
1135 case 3:
1136 tcg_gen_mov_i64(tcg_out, tcg_in);
1137 break;
1139 } else {
1140 switch (extsize) {
1141 case 0:
1142 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1143 break;
1144 case 1:
1145 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1146 break;
1147 case 2:
1148 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1149 break;
1150 case 3:
1151 tcg_gen_mov_i64(tcg_out, tcg_in);
1152 break;
1156 if (shift) {
1157 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1161 static inline void gen_check_sp_alignment(DisasContext *s)
1163 /* The AArch64 architecture mandates that (if enabled via PSTATE
1164 * or SCTLR bits) there is a check that SP is 16-aligned on every
1165 * SP-relative load or store (with an exception generated if it is not).
1166 * In line with general QEMU practice regarding misaligned accesses,
1167 * we omit these checks for the sake of guest program performance.
1168 * This function is provided as a hook so we can more easily add these
1169 * checks in future (possibly as a "favour catching guest program bugs
1170 * over speed" user selectable option).
1175 * This provides a simple table based table lookup decoder. It is
1176 * intended to be used when the relevant bits for decode are too
1177 * awkwardly placed and switch/if based logic would be confusing and
1178 * deeply nested. Since it's a linear search through the table, tables
1179 * should be kept small.
1181 * It returns the first handler where insn & mask == pattern, or
1182 * NULL if there is no match.
1183 * The table is terminated by an empty mask (i.e. 0)
1185 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1186 uint32_t insn)
1188 const AArch64DecodeTable *tptr = table;
1190 while (tptr->mask) {
1191 if ((insn & tptr->mask) == tptr->pattern) {
1192 return tptr->disas_fn;
1194 tptr++;
1196 return NULL;
1200 * the instruction disassembly implemented here matches
1201 * the instruction encoding classifications in chapter 3 (C3)
1202 * of the ARM Architecture Reference Manual (DDI0487A_a)
1205 /* C3.2.7 Unconditional branch (immediate)
1206 * 31 30 26 25 0
1207 * +----+-----------+-------------------------------------+
1208 * | op | 0 0 1 0 1 | imm26 |
1209 * +----+-----------+-------------------------------------+
1211 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1213 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1215 if (insn & (1U << 31)) {
1216 /* C5.6.26 BL Branch with link */
1217 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1220 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1221 gen_goto_tb(s, 0, addr);
1224 /* C3.2.1 Compare & branch (immediate)
1225 * 31 30 25 24 23 5 4 0
1226 * +----+-------------+----+---------------------+--------+
1227 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1228 * +----+-------------+----+---------------------+--------+
1230 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1232 unsigned int sf, op, rt;
1233 uint64_t addr;
1234 TCGLabel *label_match;
1235 TCGv_i64 tcg_cmp;
1237 sf = extract32(insn, 31, 1);
1238 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1239 rt = extract32(insn, 0, 5);
1240 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1242 tcg_cmp = read_cpu_reg(s, rt, sf);
1243 label_match = gen_new_label();
1245 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1246 tcg_cmp, 0, label_match);
1248 gen_goto_tb(s, 0, s->pc);
1249 gen_set_label(label_match);
1250 gen_goto_tb(s, 1, addr);
1253 /* C3.2.5 Test & branch (immediate)
1254 * 31 30 25 24 23 19 18 5 4 0
1255 * +----+-------------+----+-------+-------------+------+
1256 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1257 * +----+-------------+----+-------+-------------+------+
1259 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1261 unsigned int bit_pos, op, rt;
1262 uint64_t addr;
1263 TCGLabel *label_match;
1264 TCGv_i64 tcg_cmp;
1266 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1267 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1268 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1269 rt = extract32(insn, 0, 5);
1271 tcg_cmp = tcg_temp_new_i64();
1272 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1273 label_match = gen_new_label();
1274 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1275 tcg_cmp, 0, label_match);
1276 tcg_temp_free_i64(tcg_cmp);
1277 gen_goto_tb(s, 0, s->pc);
1278 gen_set_label(label_match);
1279 gen_goto_tb(s, 1, addr);
1282 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1283 * 31 25 24 23 5 4 3 0
1284 * +---------------+----+---------------------+----+------+
1285 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1286 * +---------------+----+---------------------+----+------+
1288 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1290 unsigned int cond;
1291 uint64_t addr;
1293 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1294 unallocated_encoding(s);
1295 return;
1297 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1298 cond = extract32(insn, 0, 4);
1300 if (cond < 0x0e) {
1301 /* genuinely conditional branches */
1302 TCGLabel *label_match = gen_new_label();
1303 arm_gen_test_cc(cond, label_match);
1304 gen_goto_tb(s, 0, s->pc);
1305 gen_set_label(label_match);
1306 gen_goto_tb(s, 1, addr);
1307 } else {
1308 /* 0xe and 0xf are both "always" conditions */
1309 gen_goto_tb(s, 0, addr);
1313 /* C5.6.68 HINT */
1314 static void handle_hint(DisasContext *s, uint32_t insn,
1315 unsigned int op1, unsigned int op2, unsigned int crm)
1317 unsigned int selector = crm << 3 | op2;
1319 if (op1 != 3) {
1320 unallocated_encoding(s);
1321 return;
1324 switch (selector) {
1325 case 0: /* NOP */
1326 return;
1327 case 3: /* WFI */
1328 s->is_jmp = DISAS_WFI;
1329 return;
1330 case 1: /* YIELD */
1331 s->is_jmp = DISAS_YIELD;
1332 return;
1333 case 2: /* WFE */
1334 s->is_jmp = DISAS_WFE;
1335 return;
1336 case 4: /* SEV */
1337 case 5: /* SEVL */
1338 /* we treat all as NOP at least for now */
1339 return;
1340 default:
1341 /* default specified as NOP equivalent */
1342 return;
1346 static void gen_clrex(DisasContext *s, uint32_t insn)
1348 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1351 /* CLREX, DSB, DMB, ISB */
1352 static void handle_sync(DisasContext *s, uint32_t insn,
1353 unsigned int op1, unsigned int op2, unsigned int crm)
1355 TCGBar bar;
1357 if (op1 != 3) {
1358 unallocated_encoding(s);
1359 return;
1362 switch (op2) {
1363 case 2: /* CLREX */
1364 gen_clrex(s, insn);
1365 return;
1366 case 4: /* DSB */
1367 case 5: /* DMB */
1368 switch (crm & 3) {
1369 case 1: /* MBReqTypes_Reads */
1370 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1371 break;
1372 case 2: /* MBReqTypes_Writes */
1373 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1374 break;
1375 default: /* MBReqTypes_All */
1376 bar = TCG_BAR_SC | TCG_MO_ALL;
1377 break;
1379 tcg_gen_mb(bar);
1380 return;
1381 case 6: /* ISB */
1382 /* We need to break the TB after this insn to execute
1383 * a self-modified code correctly and also to take
1384 * any pending interrupts immediately.
1386 s->is_jmp = DISAS_UPDATE;
1387 return;
1388 default:
1389 unallocated_encoding(s);
1390 return;
1394 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1395 static void handle_msr_i(DisasContext *s, uint32_t insn,
1396 unsigned int op1, unsigned int op2, unsigned int crm)
1398 int op = op1 << 3 | op2;
1399 switch (op) {
1400 case 0x05: /* SPSel */
1401 if (s->current_el == 0) {
1402 unallocated_encoding(s);
1403 return;
1405 /* fall through */
1406 case 0x1e: /* DAIFSet */
1407 case 0x1f: /* DAIFClear */
1409 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1410 TCGv_i32 tcg_op = tcg_const_i32(op);
1411 gen_a64_set_pc_im(s->pc - 4);
1412 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1413 tcg_temp_free_i32(tcg_imm);
1414 tcg_temp_free_i32(tcg_op);
1415 s->is_jmp = DISAS_UPDATE;
1416 break;
1418 default:
1419 unallocated_encoding(s);
1420 return;
1424 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1426 TCGv_i32 tmp = tcg_temp_new_i32();
1427 TCGv_i32 nzcv = tcg_temp_new_i32();
1429 /* build bit 31, N */
1430 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1431 /* build bit 30, Z */
1432 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1433 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1434 /* build bit 29, C */
1435 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1436 /* build bit 28, V */
1437 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1438 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1439 /* generate result */
1440 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1442 tcg_temp_free_i32(nzcv);
1443 tcg_temp_free_i32(tmp);
1446 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1449 TCGv_i32 nzcv = tcg_temp_new_i32();
1451 /* take NZCV from R[t] */
1452 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1454 /* bit 31, N */
1455 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1456 /* bit 30, Z */
1457 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1458 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1459 /* bit 29, C */
1460 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1461 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1462 /* bit 28, V */
1463 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1464 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1465 tcg_temp_free_i32(nzcv);
1468 /* C5.6.129 MRS - move from system register
1469 * C5.6.131 MSR (register) - move to system register
1470 * C5.6.204 SYS
1471 * C5.6.205 SYSL
1472 * These are all essentially the same insn in 'read' and 'write'
1473 * versions, with varying op0 fields.
1475 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1476 unsigned int op0, unsigned int op1, unsigned int op2,
1477 unsigned int crn, unsigned int crm, unsigned int rt)
1479 const ARMCPRegInfo *ri;
1480 TCGv_i64 tcg_rt;
1482 ri = get_arm_cp_reginfo(s->cp_regs,
1483 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1484 crn, crm, op0, op1, op2));
1486 if (!ri) {
1487 /* Unknown register; this might be a guest error or a QEMU
1488 * unimplemented feature.
1490 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1491 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1492 isread ? "read" : "write", op0, op1, crn, crm, op2);
1493 unallocated_encoding(s);
1494 return;
1497 /* Check access permissions */
1498 if (!cp_access_ok(s->current_el, ri, isread)) {
1499 unallocated_encoding(s);
1500 return;
1503 if (ri->accessfn) {
1504 /* Emit code to perform further access permissions checks at
1505 * runtime; this may result in an exception.
1507 TCGv_ptr tmpptr;
1508 TCGv_i32 tcg_syn, tcg_isread;
1509 uint32_t syndrome;
1511 gen_a64_set_pc_im(s->pc - 4);
1512 tmpptr = tcg_const_ptr(ri);
1513 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1514 tcg_syn = tcg_const_i32(syndrome);
1515 tcg_isread = tcg_const_i32(isread);
1516 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1517 tcg_temp_free_ptr(tmpptr);
1518 tcg_temp_free_i32(tcg_syn);
1519 tcg_temp_free_i32(tcg_isread);
1522 /* Handle special cases first */
1523 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1524 case ARM_CP_NOP:
1525 return;
1526 case ARM_CP_NZCV:
1527 tcg_rt = cpu_reg(s, rt);
1528 if (isread) {
1529 gen_get_nzcv(tcg_rt);
1530 } else {
1531 gen_set_nzcv(tcg_rt);
1533 return;
1534 case ARM_CP_CURRENTEL:
1535 /* Reads as current EL value from pstate, which is
1536 * guaranteed to be constant by the tb flags.
1538 tcg_rt = cpu_reg(s, rt);
1539 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1540 return;
1541 case ARM_CP_DC_ZVA:
1542 /* Writes clear the aligned block of memory which rt points into. */
1543 tcg_rt = cpu_reg(s, rt);
1544 gen_helper_dc_zva(cpu_env, tcg_rt);
1545 return;
1546 default:
1547 break;
1550 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1551 gen_io_start();
1554 tcg_rt = cpu_reg(s, rt);
1556 if (isread) {
1557 if (ri->type & ARM_CP_CONST) {
1558 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1559 } else if (ri->readfn) {
1560 TCGv_ptr tmpptr;
1561 tmpptr = tcg_const_ptr(ri);
1562 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1563 tcg_temp_free_ptr(tmpptr);
1564 } else {
1565 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1567 } else {
1568 if (ri->type & ARM_CP_CONST) {
1569 /* If not forbidden by access permissions, treat as WI */
1570 return;
1571 } else if (ri->writefn) {
1572 TCGv_ptr tmpptr;
1573 tmpptr = tcg_const_ptr(ri);
1574 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1575 tcg_temp_free_ptr(tmpptr);
1576 } else {
1577 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1581 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1582 /* I/O operations must end the TB here (whether read or write) */
1583 gen_io_end();
1584 s->is_jmp = DISAS_UPDATE;
1585 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1586 /* We default to ending the TB on a coprocessor register write,
1587 * but allow this to be suppressed by the register definition
1588 * (usually only necessary to work around guest bugs).
1590 s->is_jmp = DISAS_UPDATE;
1594 /* C3.2.4 System
1595 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1596 * +---------------------+---+-----+-----+-------+-------+-----+------+
1597 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1598 * +---------------------+---+-----+-----+-------+-------+-----+------+
1600 static void disas_system(DisasContext *s, uint32_t insn)
1602 unsigned int l, op0, op1, crn, crm, op2, rt;
1603 l = extract32(insn, 21, 1);
1604 op0 = extract32(insn, 19, 2);
1605 op1 = extract32(insn, 16, 3);
1606 crn = extract32(insn, 12, 4);
1607 crm = extract32(insn, 8, 4);
1608 op2 = extract32(insn, 5, 3);
1609 rt = extract32(insn, 0, 5);
1611 if (op0 == 0) {
1612 if (l || rt != 31) {
1613 unallocated_encoding(s);
1614 return;
1616 switch (crn) {
1617 case 2: /* C5.6.68 HINT */
1618 handle_hint(s, insn, op1, op2, crm);
1619 break;
1620 case 3: /* CLREX, DSB, DMB, ISB */
1621 handle_sync(s, insn, op1, op2, crm);
1622 break;
1623 case 4: /* C5.6.130 MSR (immediate) */
1624 handle_msr_i(s, insn, op1, op2, crm);
1625 break;
1626 default:
1627 unallocated_encoding(s);
1628 break;
1630 return;
1632 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1635 /* C3.2.3 Exception generation
1637 * 31 24 23 21 20 5 4 2 1 0
1638 * +-----------------+-----+------------------------+-----+----+
1639 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1640 * +-----------------------+------------------------+----------+
1642 static void disas_exc(DisasContext *s, uint32_t insn)
1644 int opc = extract32(insn, 21, 3);
1645 int op2_ll = extract32(insn, 0, 5);
1646 int imm16 = extract32(insn, 5, 16);
1647 TCGv_i32 tmp;
1649 switch (opc) {
1650 case 0:
1651 /* For SVC, HVC and SMC we advance the single-step state
1652 * machine before taking the exception. This is architecturally
1653 * mandated, to ensure that single-stepping a system call
1654 * instruction works properly.
1656 switch (op2_ll) {
1657 case 1: /* SVC */
1658 gen_ss_advance(s);
1659 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1660 default_exception_el(s));
1661 break;
1662 case 2: /* HVC */
1663 if (s->current_el == 0) {
1664 unallocated_encoding(s);
1665 break;
1667 /* The pre HVC helper handles cases when HVC gets trapped
1668 * as an undefined insn by runtime configuration.
1670 gen_a64_set_pc_im(s->pc - 4);
1671 gen_helper_pre_hvc(cpu_env);
1672 gen_ss_advance(s);
1673 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1674 break;
1675 case 3: /* SMC */
1676 if (s->current_el == 0) {
1677 unallocated_encoding(s);
1678 break;
1680 gen_a64_set_pc_im(s->pc - 4);
1681 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1682 gen_helper_pre_smc(cpu_env, tmp);
1683 tcg_temp_free_i32(tmp);
1684 gen_ss_advance(s);
1685 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1686 break;
1687 default:
1688 unallocated_encoding(s);
1689 break;
1691 break;
1692 case 1:
1693 if (op2_ll != 0) {
1694 unallocated_encoding(s);
1695 break;
1697 /* BRK */
1698 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1699 default_exception_el(s));
1700 break;
1701 case 2:
1702 if (op2_ll != 0) {
1703 unallocated_encoding(s);
1704 break;
1706 /* HLT. This has two purposes.
1707 * Architecturally, it is an external halting debug instruction.
1708 * Since QEMU doesn't implement external debug, we treat this as
1709 * it is required for halting debug disabled: it will UNDEF.
1710 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1712 if (semihosting_enabled() && imm16 == 0xf000) {
1713 #ifndef CONFIG_USER_ONLY
1714 /* In system mode, don't allow userspace access to semihosting,
1715 * to provide some semblance of security (and for consistency
1716 * with our 32-bit semihosting).
1718 if (s->current_el == 0) {
1719 unsupported_encoding(s, insn);
1720 break;
1722 #endif
1723 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1724 } else {
1725 unsupported_encoding(s, insn);
1727 break;
1728 case 5:
1729 if (op2_ll < 1 || op2_ll > 3) {
1730 unallocated_encoding(s);
1731 break;
1733 /* DCPS1, DCPS2, DCPS3 */
1734 unsupported_encoding(s, insn);
1735 break;
1736 default:
1737 unallocated_encoding(s);
1738 break;
1742 /* C3.2.7 Unconditional branch (register)
1743 * 31 25 24 21 20 16 15 10 9 5 4 0
1744 * +---------------+-------+-------+-------+------+-------+
1745 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1746 * +---------------+-------+-------+-------+------+-------+
1748 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1750 unsigned int opc, op2, op3, rn, op4;
1752 opc = extract32(insn, 21, 4);
1753 op2 = extract32(insn, 16, 5);
1754 op3 = extract32(insn, 10, 6);
1755 rn = extract32(insn, 5, 5);
1756 op4 = extract32(insn, 0, 5);
1758 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1759 unallocated_encoding(s);
1760 return;
1763 switch (opc) {
1764 case 0: /* BR */
1765 case 1: /* BLR */
1766 case 2: /* RET */
1767 gen_a64_set_pc(s, cpu_reg(s, rn));
1768 /* BLR also needs to load return address */
1769 if (opc == 1) {
1770 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1772 break;
1773 case 4: /* ERET */
1774 if (s->current_el == 0) {
1775 unallocated_encoding(s);
1776 return;
1778 gen_helper_exception_return(cpu_env);
1779 s->is_jmp = DISAS_JUMP;
1780 return;
1781 case 5: /* DRPS */
1782 if (rn != 0x1f) {
1783 unallocated_encoding(s);
1784 } else {
1785 unsupported_encoding(s, insn);
1787 return;
1788 default:
1789 unallocated_encoding(s);
1790 return;
1793 s->is_jmp = DISAS_JUMP;
1796 /* C3.2 Branches, exception generating and system instructions */
1797 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1799 switch (extract32(insn, 25, 7)) {
1800 case 0x0a: case 0x0b:
1801 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1802 disas_uncond_b_imm(s, insn);
1803 break;
1804 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1805 disas_comp_b_imm(s, insn);
1806 break;
1807 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1808 disas_test_b_imm(s, insn);
1809 break;
1810 case 0x2a: /* Conditional branch (immediate) */
1811 disas_cond_b_imm(s, insn);
1812 break;
1813 case 0x6a: /* Exception generation / System */
1814 if (insn & (1 << 24)) {
1815 disas_system(s, insn);
1816 } else {
1817 disas_exc(s, insn);
1819 break;
1820 case 0x6b: /* Unconditional branch (register) */
1821 disas_uncond_b_reg(s, insn);
1822 break;
1823 default:
1824 unallocated_encoding(s);
1825 break;
1830 * Load/Store exclusive instructions are implemented by remembering
1831 * the value/address loaded, and seeing if these are the same
1832 * when the store is performed. This is not actually the architecturally
1833 * mandated semantics, but it works for typical guest code sequences
1834 * and avoids having to monitor regular stores.
1836 * The store exclusive uses the atomic cmpxchg primitives to avoid
1837 * races in multi-threaded linux-user and when MTTCG softmmu is
1838 * enabled.
1840 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1841 TCGv_i64 addr, int size, bool is_pair)
1843 TCGv_i64 tmp = tcg_temp_new_i64();
1844 TCGMemOp memop = s->be_data + size;
1846 g_assert(size <= 3);
1847 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
1849 if (is_pair) {
1850 TCGv_i64 addr2 = tcg_temp_new_i64();
1851 TCGv_i64 hitmp = tcg_temp_new_i64();
1853 g_assert(size >= 2);
1854 tcg_gen_addi_i64(addr2, addr, 1 << size);
1855 tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
1856 tcg_temp_free_i64(addr2);
1857 tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
1858 tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
1859 tcg_temp_free_i64(hitmp);
1862 tcg_gen_mov_i64(cpu_exclusive_val, tmp);
1863 tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
1865 tcg_temp_free_i64(tmp);
1866 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1869 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1870 TCGv_i64 inaddr, int size, int is_pair)
1872 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1873 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1874 * [addr] = {Rt};
1875 * if (is_pair) {
1876 * [addr + datasize] = {Rt2};
1878 * {Rd} = 0;
1879 * } else {
1880 * {Rd} = 1;
1882 * env->exclusive_addr = -1;
1884 TCGLabel *fail_label = gen_new_label();
1885 TCGLabel *done_label = gen_new_label();
1886 TCGv_i64 addr = tcg_temp_local_new_i64();
1887 TCGv_i64 tmp;
1889 /* Copy input into a local temp so it is not trashed when the
1890 * basic block ends at the branch insn.
1892 tcg_gen_mov_i64(addr, inaddr);
1893 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1895 tmp = tcg_temp_new_i64();
1896 if (is_pair) {
1897 if (size == 2) {
1898 TCGv_i64 val = tcg_temp_new_i64();
1899 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
1900 tcg_gen_concat32_i64(val, cpu_exclusive_val, cpu_exclusive_high);
1901 tcg_gen_atomic_cmpxchg_i64(tmp, addr, val, tmp,
1902 get_mem_index(s),
1903 size | MO_ALIGN | s->be_data);
1904 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, val);
1905 tcg_temp_free_i64(val);
1906 } else if (s->be_data == MO_LE) {
1907 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, addr, cpu_reg(s, rt),
1908 cpu_reg(s, rt2));
1909 } else {
1910 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, addr, cpu_reg(s, rt),
1911 cpu_reg(s, rt2));
1913 } else {
1914 TCGv_i64 val = cpu_reg(s, rt);
1915 tcg_gen_atomic_cmpxchg_i64(tmp, addr, cpu_exclusive_val, val,
1916 get_mem_index(s),
1917 size | MO_ALIGN | s->be_data);
1918 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
1921 tcg_temp_free_i64(addr);
1923 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
1924 tcg_temp_free_i64(tmp);
1925 tcg_gen_br(done_label);
1927 gen_set_label(fail_label);
1928 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1929 gen_set_label(done_label);
1930 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1933 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
1934 * from the ARMv8 specs for LDR (Shared decode for all encodings).
1936 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
1938 int opc0 = extract32(opc, 0, 1);
1939 int regsize;
1941 if (is_signed) {
1942 regsize = opc0 ? 32 : 64;
1943 } else {
1944 regsize = size == 3 ? 64 : 32;
1946 return regsize == 64;
1949 /* C3.3.6 Load/store exclusive
1951 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1952 * +-----+-------------+----+---+----+------+----+-------+------+------+
1953 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1954 * +-----+-------------+----+---+----+------+----+-------+------+------+
1956 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1957 * L: 0 -> store, 1 -> load
1958 * o2: 0 -> exclusive, 1 -> not
1959 * o1: 0 -> single register, 1 -> register pair
1960 * o0: 1 -> load-acquire/store-release, 0 -> not
1962 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1964 int rt = extract32(insn, 0, 5);
1965 int rn = extract32(insn, 5, 5);
1966 int rt2 = extract32(insn, 10, 5);
1967 int is_lasr = extract32(insn, 15, 1);
1968 int rs = extract32(insn, 16, 5);
1969 int is_pair = extract32(insn, 21, 1);
1970 int is_store = !extract32(insn, 22, 1);
1971 int is_excl = !extract32(insn, 23, 1);
1972 int size = extract32(insn, 30, 2);
1973 TCGv_i64 tcg_addr;
1975 if ((!is_excl && !is_pair && !is_lasr) ||
1976 (!is_excl && is_pair) ||
1977 (is_pair && size < 2)) {
1978 unallocated_encoding(s);
1979 return;
1982 if (rn == 31) {
1983 gen_check_sp_alignment(s);
1985 tcg_addr = read_cpu_reg_sp(s, rn, 1);
1987 /* Note that since TCG is single threaded load-acquire/store-release
1988 * semantics require no extra if (is_lasr) { ... } handling.
1991 if (is_excl) {
1992 if (!is_store) {
1993 s->is_ldex = true;
1994 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
1995 if (is_lasr) {
1996 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
1998 } else {
1999 if (is_lasr) {
2000 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2002 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
2004 } else {
2005 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2006 bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
2008 /* Generate ISS for non-exclusive accesses including LASR. */
2009 if (is_store) {
2010 if (is_lasr) {
2011 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2013 do_gpr_st(s, tcg_rt, tcg_addr, size,
2014 true, rt, iss_sf, is_lasr);
2015 } else {
2016 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
2017 true, rt, iss_sf, is_lasr);
2018 if (is_lasr) {
2019 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2026 * C3.3.5 Load register (literal)
2028 * 31 30 29 27 26 25 24 23 5 4 0
2029 * +-----+-------+---+-----+-------------------+-------+
2030 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2031 * +-----+-------+---+-----+-------------------+-------+
2033 * V: 1 -> vector (simd/fp)
2034 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2035 * 10-> 32 bit signed, 11 -> prefetch
2036 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2038 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2040 int rt = extract32(insn, 0, 5);
2041 int64_t imm = sextract32(insn, 5, 19) << 2;
2042 bool is_vector = extract32(insn, 26, 1);
2043 int opc = extract32(insn, 30, 2);
2044 bool is_signed = false;
2045 int size = 2;
2046 TCGv_i64 tcg_rt, tcg_addr;
2048 if (is_vector) {
2049 if (opc == 3) {
2050 unallocated_encoding(s);
2051 return;
2053 size = 2 + opc;
2054 if (!fp_access_check(s)) {
2055 return;
2057 } else {
2058 if (opc == 3) {
2059 /* PRFM (literal) : prefetch */
2060 return;
2062 size = 2 + extract32(opc, 0, 1);
2063 is_signed = extract32(opc, 1, 1);
2066 tcg_rt = cpu_reg(s, rt);
2068 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2069 if (is_vector) {
2070 do_fp_ld(s, rt, tcg_addr, size);
2071 } else {
2072 /* Only unsigned 32bit loads target 32bit registers. */
2073 bool iss_sf = opc != 0;
2075 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2076 true, rt, iss_sf, false);
2078 tcg_temp_free_i64(tcg_addr);
2082 * C5.6.80 LDNP (Load Pair - non-temporal hint)
2083 * C5.6.81 LDP (Load Pair - non vector)
2084 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
2085 * C5.6.176 STNP (Store Pair - non-temporal hint)
2086 * C5.6.177 STP (Store Pair - non vector)
2087 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
2088 * C6.3.165 LDP (Load Pair of SIMD&FP)
2089 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
2090 * C6.3.284 STP (Store Pair of SIMD&FP)
2092 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2093 * +-----+-------+---+---+-------+---+-----------------------------+
2094 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2095 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2097 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2098 * LDPSW 01
2099 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2100 * V: 0 -> GPR, 1 -> Vector
2101 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2102 * 10 -> signed offset, 11 -> pre-index
2103 * L: 0 -> Store 1 -> Load
2105 * Rt, Rt2 = GPR or SIMD registers to be stored
2106 * Rn = general purpose register containing address
2107 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2109 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2111 int rt = extract32(insn, 0, 5);
2112 int rn = extract32(insn, 5, 5);
2113 int rt2 = extract32(insn, 10, 5);
2114 uint64_t offset = sextract64(insn, 15, 7);
2115 int index = extract32(insn, 23, 2);
2116 bool is_vector = extract32(insn, 26, 1);
2117 bool is_load = extract32(insn, 22, 1);
2118 int opc = extract32(insn, 30, 2);
2120 bool is_signed = false;
2121 bool postindex = false;
2122 bool wback = false;
2124 TCGv_i64 tcg_addr; /* calculated address */
2125 int size;
2127 if (opc == 3) {
2128 unallocated_encoding(s);
2129 return;
2132 if (is_vector) {
2133 size = 2 + opc;
2134 } else {
2135 size = 2 + extract32(opc, 1, 1);
2136 is_signed = extract32(opc, 0, 1);
2137 if (!is_load && is_signed) {
2138 unallocated_encoding(s);
2139 return;
2143 switch (index) {
2144 case 1: /* post-index */
2145 postindex = true;
2146 wback = true;
2147 break;
2148 case 0:
2149 /* signed offset with "non-temporal" hint. Since we don't emulate
2150 * caches we don't care about hints to the cache system about
2151 * data access patterns, and handle this identically to plain
2152 * signed offset.
2154 if (is_signed) {
2155 /* There is no non-temporal-hint version of LDPSW */
2156 unallocated_encoding(s);
2157 return;
2159 postindex = false;
2160 break;
2161 case 2: /* signed offset, rn not updated */
2162 postindex = false;
2163 break;
2164 case 3: /* pre-index */
2165 postindex = false;
2166 wback = true;
2167 break;
2170 if (is_vector && !fp_access_check(s)) {
2171 return;
2174 offset <<= size;
2176 if (rn == 31) {
2177 gen_check_sp_alignment(s);
2180 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2182 if (!postindex) {
2183 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2186 if (is_vector) {
2187 if (is_load) {
2188 do_fp_ld(s, rt, tcg_addr, size);
2189 } else {
2190 do_fp_st(s, rt, tcg_addr, size);
2192 } else {
2193 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2194 if (is_load) {
2195 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2196 false, 0, false, false);
2197 } else {
2198 do_gpr_st(s, tcg_rt, tcg_addr, size,
2199 false, 0, false, false);
2202 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2203 if (is_vector) {
2204 if (is_load) {
2205 do_fp_ld(s, rt2, tcg_addr, size);
2206 } else {
2207 do_fp_st(s, rt2, tcg_addr, size);
2209 } else {
2210 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2211 if (is_load) {
2212 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2213 false, 0, false, false);
2214 } else {
2215 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2216 false, 0, false, false);
2220 if (wback) {
2221 if (postindex) {
2222 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2223 } else {
2224 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2226 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2231 * C3.3.8 Load/store (immediate post-indexed)
2232 * C3.3.9 Load/store (immediate pre-indexed)
2233 * C3.3.12 Load/store (unscaled immediate)
2235 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2236 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2237 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2238 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2240 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2241 10 -> unprivileged
2242 * V = 0 -> non-vector
2243 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2244 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2246 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2247 int opc,
2248 int size,
2249 int rt,
2250 bool is_vector)
2252 int rn = extract32(insn, 5, 5);
2253 int imm9 = sextract32(insn, 12, 9);
2254 int idx = extract32(insn, 10, 2);
2255 bool is_signed = false;
2256 bool is_store = false;
2257 bool is_extended = false;
2258 bool is_unpriv = (idx == 2);
2259 bool iss_valid = !is_vector;
2260 bool post_index;
2261 bool writeback;
2263 TCGv_i64 tcg_addr;
2265 if (is_vector) {
2266 size |= (opc & 2) << 1;
2267 if (size > 4 || is_unpriv) {
2268 unallocated_encoding(s);
2269 return;
2271 is_store = ((opc & 1) == 0);
2272 if (!fp_access_check(s)) {
2273 return;
2275 } else {
2276 if (size == 3 && opc == 2) {
2277 /* PRFM - prefetch */
2278 if (is_unpriv) {
2279 unallocated_encoding(s);
2280 return;
2282 return;
2284 if (opc == 3 && size > 1) {
2285 unallocated_encoding(s);
2286 return;
2288 is_store = (opc == 0);
2289 is_signed = extract32(opc, 1, 1);
2290 is_extended = (size < 3) && extract32(opc, 0, 1);
2293 switch (idx) {
2294 case 0:
2295 case 2:
2296 post_index = false;
2297 writeback = false;
2298 break;
2299 case 1:
2300 post_index = true;
2301 writeback = true;
2302 break;
2303 case 3:
2304 post_index = false;
2305 writeback = true;
2306 break;
2309 if (rn == 31) {
2310 gen_check_sp_alignment(s);
2312 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2314 if (!post_index) {
2315 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2318 if (is_vector) {
2319 if (is_store) {
2320 do_fp_st(s, rt, tcg_addr, size);
2321 } else {
2322 do_fp_ld(s, rt, tcg_addr, size);
2324 } else {
2325 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2326 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2327 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2329 if (is_store) {
2330 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2331 iss_valid, rt, iss_sf, false);
2332 } else {
2333 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2334 is_signed, is_extended, memidx,
2335 iss_valid, rt, iss_sf, false);
2339 if (writeback) {
2340 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2341 if (post_index) {
2342 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2344 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2349 * C3.3.10 Load/store (register offset)
2351 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2352 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2353 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2354 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2356 * For non-vector:
2357 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2358 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2359 * For vector:
2360 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2361 * opc<0>: 0 -> store, 1 -> load
2362 * V: 1 -> vector/simd
2363 * opt: extend encoding (see DecodeRegExtend)
2364 * S: if S=1 then scale (essentially index by sizeof(size))
2365 * Rt: register to transfer into/out of
2366 * Rn: address register or SP for base
2367 * Rm: offset register or ZR for offset
2369 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2370 int opc,
2371 int size,
2372 int rt,
2373 bool is_vector)
2375 int rn = extract32(insn, 5, 5);
2376 int shift = extract32(insn, 12, 1);
2377 int rm = extract32(insn, 16, 5);
2378 int opt = extract32(insn, 13, 3);
2379 bool is_signed = false;
2380 bool is_store = false;
2381 bool is_extended = false;
2383 TCGv_i64 tcg_rm;
2384 TCGv_i64 tcg_addr;
2386 if (extract32(opt, 1, 1) == 0) {
2387 unallocated_encoding(s);
2388 return;
2391 if (is_vector) {
2392 size |= (opc & 2) << 1;
2393 if (size > 4) {
2394 unallocated_encoding(s);
2395 return;
2397 is_store = !extract32(opc, 0, 1);
2398 if (!fp_access_check(s)) {
2399 return;
2401 } else {
2402 if (size == 3 && opc == 2) {
2403 /* PRFM - prefetch */
2404 return;
2406 if (opc == 3 && size > 1) {
2407 unallocated_encoding(s);
2408 return;
2410 is_store = (opc == 0);
2411 is_signed = extract32(opc, 1, 1);
2412 is_extended = (size < 3) && extract32(opc, 0, 1);
2415 if (rn == 31) {
2416 gen_check_sp_alignment(s);
2418 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2420 tcg_rm = read_cpu_reg(s, rm, 1);
2421 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2423 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2425 if (is_vector) {
2426 if (is_store) {
2427 do_fp_st(s, rt, tcg_addr, size);
2428 } else {
2429 do_fp_ld(s, rt, tcg_addr, size);
2431 } else {
2432 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2433 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2434 if (is_store) {
2435 do_gpr_st(s, tcg_rt, tcg_addr, size,
2436 true, rt, iss_sf, false);
2437 } else {
2438 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2439 is_signed, is_extended,
2440 true, rt, iss_sf, false);
2446 * C3.3.13 Load/store (unsigned immediate)
2448 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2449 * +----+-------+---+-----+-----+------------+-------+------+
2450 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2451 * +----+-------+---+-----+-----+------------+-------+------+
2453 * For non-vector:
2454 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2455 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2456 * For vector:
2457 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2458 * opc<0>: 0 -> store, 1 -> load
2459 * Rn: base address register (inc SP)
2460 * Rt: target register
2462 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2463 int opc,
2464 int size,
2465 int rt,
2466 bool is_vector)
2468 int rn = extract32(insn, 5, 5);
2469 unsigned int imm12 = extract32(insn, 10, 12);
2470 unsigned int offset;
2472 TCGv_i64 tcg_addr;
2474 bool is_store;
2475 bool is_signed = false;
2476 bool is_extended = false;
2478 if (is_vector) {
2479 size |= (opc & 2) << 1;
2480 if (size > 4) {
2481 unallocated_encoding(s);
2482 return;
2484 is_store = !extract32(opc, 0, 1);
2485 if (!fp_access_check(s)) {
2486 return;
2488 } else {
2489 if (size == 3 && opc == 2) {
2490 /* PRFM - prefetch */
2491 return;
2493 if (opc == 3 && size > 1) {
2494 unallocated_encoding(s);
2495 return;
2497 is_store = (opc == 0);
2498 is_signed = extract32(opc, 1, 1);
2499 is_extended = (size < 3) && extract32(opc, 0, 1);
2502 if (rn == 31) {
2503 gen_check_sp_alignment(s);
2505 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2506 offset = imm12 << size;
2507 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2509 if (is_vector) {
2510 if (is_store) {
2511 do_fp_st(s, rt, tcg_addr, size);
2512 } else {
2513 do_fp_ld(s, rt, tcg_addr, size);
2515 } else {
2516 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2517 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2518 if (is_store) {
2519 do_gpr_st(s, tcg_rt, tcg_addr, size,
2520 true, rt, iss_sf, false);
2521 } else {
2522 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2523 true, rt, iss_sf, false);
2528 /* Load/store register (all forms) */
2529 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2531 int rt = extract32(insn, 0, 5);
2532 int opc = extract32(insn, 22, 2);
2533 bool is_vector = extract32(insn, 26, 1);
2534 int size = extract32(insn, 30, 2);
2536 switch (extract32(insn, 24, 2)) {
2537 case 0:
2538 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2539 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2540 } else {
2541 /* Load/store register (unscaled immediate)
2542 * Load/store immediate pre/post-indexed
2543 * Load/store register unprivileged
2545 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2547 break;
2548 case 1:
2549 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2550 break;
2551 default:
2552 unallocated_encoding(s);
2553 break;
2557 /* C3.3.1 AdvSIMD load/store multiple structures
2559 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2560 * +---+---+---------------+---+-------------+--------+------+------+------+
2561 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2562 * +---+---+---------------+---+-------------+--------+------+------+------+
2564 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2566 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2567 * +---+---+---------------+---+---+---------+--------+------+------+------+
2568 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2569 * +---+---+---------------+---+---+---------+--------+------+------+------+
2571 * Rt: first (or only) SIMD&FP register to be transferred
2572 * Rn: base address or SP
2573 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2575 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2577 int rt = extract32(insn, 0, 5);
2578 int rn = extract32(insn, 5, 5);
2579 int size = extract32(insn, 10, 2);
2580 int opcode = extract32(insn, 12, 4);
2581 bool is_store = !extract32(insn, 22, 1);
2582 bool is_postidx = extract32(insn, 23, 1);
2583 bool is_q = extract32(insn, 30, 1);
2584 TCGv_i64 tcg_addr, tcg_rn;
2586 int ebytes = 1 << size;
2587 int elements = (is_q ? 128 : 64) / (8 << size);
2588 int rpt; /* num iterations */
2589 int selem; /* structure elements */
2590 int r;
2592 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2593 unallocated_encoding(s);
2594 return;
2597 /* From the shared decode logic */
2598 switch (opcode) {
2599 case 0x0:
2600 rpt = 1;
2601 selem = 4;
2602 break;
2603 case 0x2:
2604 rpt = 4;
2605 selem = 1;
2606 break;
2607 case 0x4:
2608 rpt = 1;
2609 selem = 3;
2610 break;
2611 case 0x6:
2612 rpt = 3;
2613 selem = 1;
2614 break;
2615 case 0x7:
2616 rpt = 1;
2617 selem = 1;
2618 break;
2619 case 0x8:
2620 rpt = 1;
2621 selem = 2;
2622 break;
2623 case 0xa:
2624 rpt = 2;
2625 selem = 1;
2626 break;
2627 default:
2628 unallocated_encoding(s);
2629 return;
2632 if (size == 3 && !is_q && selem != 1) {
2633 /* reserved */
2634 unallocated_encoding(s);
2635 return;
2638 if (!fp_access_check(s)) {
2639 return;
2642 if (rn == 31) {
2643 gen_check_sp_alignment(s);
2646 tcg_rn = cpu_reg_sp(s, rn);
2647 tcg_addr = tcg_temp_new_i64();
2648 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2650 for (r = 0; r < rpt; r++) {
2651 int e;
2652 for (e = 0; e < elements; e++) {
2653 int tt = (rt + r) % 32;
2654 int xs;
2655 for (xs = 0; xs < selem; xs++) {
2656 if (is_store) {
2657 do_vec_st(s, tt, e, tcg_addr, size);
2658 } else {
2659 do_vec_ld(s, tt, e, tcg_addr, size);
2661 /* For non-quad operations, setting a slice of the low
2662 * 64 bits of the register clears the high 64 bits (in
2663 * the ARM ARM pseudocode this is implicit in the fact
2664 * that 'rval' is a 64 bit wide variable). We optimize
2665 * by noticing that we only need to do this the first
2666 * time we touch a register.
2668 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2669 clear_vec_high(s, tt);
2672 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2673 tt = (tt + 1) % 32;
2678 if (is_postidx) {
2679 int rm = extract32(insn, 16, 5);
2680 if (rm == 31) {
2681 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2682 } else {
2683 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2686 tcg_temp_free_i64(tcg_addr);
2689 /* C3.3.3 AdvSIMD load/store single structure
2691 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2692 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2693 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2694 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2696 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2698 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2699 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2700 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2701 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2703 * Rt: first (or only) SIMD&FP register to be transferred
2704 * Rn: base address or SP
2705 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2706 * index = encoded in Q:S:size dependent on size
2708 * lane_size = encoded in R, opc
2709 * transfer width = encoded in opc, S, size
2711 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2713 int rt = extract32(insn, 0, 5);
2714 int rn = extract32(insn, 5, 5);
2715 int size = extract32(insn, 10, 2);
2716 int S = extract32(insn, 12, 1);
2717 int opc = extract32(insn, 13, 3);
2718 int R = extract32(insn, 21, 1);
2719 int is_load = extract32(insn, 22, 1);
2720 int is_postidx = extract32(insn, 23, 1);
2721 int is_q = extract32(insn, 30, 1);
2723 int scale = extract32(opc, 1, 2);
2724 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2725 bool replicate = false;
2726 int index = is_q << 3 | S << 2 | size;
2727 int ebytes, xs;
2728 TCGv_i64 tcg_addr, tcg_rn;
2730 switch (scale) {
2731 case 3:
2732 if (!is_load || S) {
2733 unallocated_encoding(s);
2734 return;
2736 scale = size;
2737 replicate = true;
2738 break;
2739 case 0:
2740 break;
2741 case 1:
2742 if (extract32(size, 0, 1)) {
2743 unallocated_encoding(s);
2744 return;
2746 index >>= 1;
2747 break;
2748 case 2:
2749 if (extract32(size, 1, 1)) {
2750 unallocated_encoding(s);
2751 return;
2753 if (!extract32(size, 0, 1)) {
2754 index >>= 2;
2755 } else {
2756 if (S) {
2757 unallocated_encoding(s);
2758 return;
2760 index >>= 3;
2761 scale = 3;
2763 break;
2764 default:
2765 g_assert_not_reached();
2768 if (!fp_access_check(s)) {
2769 return;
2772 ebytes = 1 << scale;
2774 if (rn == 31) {
2775 gen_check_sp_alignment(s);
2778 tcg_rn = cpu_reg_sp(s, rn);
2779 tcg_addr = tcg_temp_new_i64();
2780 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2782 for (xs = 0; xs < selem; xs++) {
2783 if (replicate) {
2784 /* Load and replicate to all elements */
2785 uint64_t mulconst;
2786 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2788 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2789 get_mem_index(s), s->be_data + scale);
2790 switch (scale) {
2791 case 0:
2792 mulconst = 0x0101010101010101ULL;
2793 break;
2794 case 1:
2795 mulconst = 0x0001000100010001ULL;
2796 break;
2797 case 2:
2798 mulconst = 0x0000000100000001ULL;
2799 break;
2800 case 3:
2801 mulconst = 0;
2802 break;
2803 default:
2804 g_assert_not_reached();
2806 if (mulconst) {
2807 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2809 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2810 if (is_q) {
2811 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2812 } else {
2813 clear_vec_high(s, rt);
2815 tcg_temp_free_i64(tcg_tmp);
2816 } else {
2817 /* Load/store one element per register */
2818 if (is_load) {
2819 do_vec_ld(s, rt, index, tcg_addr, scale);
2820 } else {
2821 do_vec_st(s, rt, index, tcg_addr, scale);
2824 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2825 rt = (rt + 1) % 32;
2828 if (is_postidx) {
2829 int rm = extract32(insn, 16, 5);
2830 if (rm == 31) {
2831 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2832 } else {
2833 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2836 tcg_temp_free_i64(tcg_addr);
2839 /* C3.3 Loads and stores */
2840 static void disas_ldst(DisasContext *s, uint32_t insn)
2842 switch (extract32(insn, 24, 6)) {
2843 case 0x08: /* Load/store exclusive */
2844 disas_ldst_excl(s, insn);
2845 break;
2846 case 0x18: case 0x1c: /* Load register (literal) */
2847 disas_ld_lit(s, insn);
2848 break;
2849 case 0x28: case 0x29:
2850 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2851 disas_ldst_pair(s, insn);
2852 break;
2853 case 0x38: case 0x39:
2854 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2855 disas_ldst_reg(s, insn);
2856 break;
2857 case 0x0c: /* AdvSIMD load/store multiple structures */
2858 disas_ldst_multiple_struct(s, insn);
2859 break;
2860 case 0x0d: /* AdvSIMD load/store single structure */
2861 disas_ldst_single_struct(s, insn);
2862 break;
2863 default:
2864 unallocated_encoding(s);
2865 break;
2869 /* C3.4.6 PC-rel. addressing
2870 * 31 30 29 28 24 23 5 4 0
2871 * +----+-------+-----------+-------------------+------+
2872 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2873 * +----+-------+-----------+-------------------+------+
2875 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2877 unsigned int page, rd;
2878 uint64_t base;
2879 uint64_t offset;
2881 page = extract32(insn, 31, 1);
2882 /* SignExtend(immhi:immlo) -> offset */
2883 offset = sextract64(insn, 5, 19);
2884 offset = offset << 2 | extract32(insn, 29, 2);
2885 rd = extract32(insn, 0, 5);
2886 base = s->pc - 4;
2888 if (page) {
2889 /* ADRP (page based) */
2890 base &= ~0xfff;
2891 offset <<= 12;
2894 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2898 * C3.4.1 Add/subtract (immediate)
2900 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2901 * +--+--+--+-----------+-----+-------------+-----+-----+
2902 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2903 * +--+--+--+-----------+-----+-------------+-----+-----+
2905 * sf: 0 -> 32bit, 1 -> 64bit
2906 * op: 0 -> add , 1 -> sub
2907 * S: 1 -> set flags
2908 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2910 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2912 int rd = extract32(insn, 0, 5);
2913 int rn = extract32(insn, 5, 5);
2914 uint64_t imm = extract32(insn, 10, 12);
2915 int shift = extract32(insn, 22, 2);
2916 bool setflags = extract32(insn, 29, 1);
2917 bool sub_op = extract32(insn, 30, 1);
2918 bool is_64bit = extract32(insn, 31, 1);
2920 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2921 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2922 TCGv_i64 tcg_result;
2924 switch (shift) {
2925 case 0x0:
2926 break;
2927 case 0x1:
2928 imm <<= 12;
2929 break;
2930 default:
2931 unallocated_encoding(s);
2932 return;
2935 tcg_result = tcg_temp_new_i64();
2936 if (!setflags) {
2937 if (sub_op) {
2938 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2939 } else {
2940 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2942 } else {
2943 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2944 if (sub_op) {
2945 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2946 } else {
2947 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2949 tcg_temp_free_i64(tcg_imm);
2952 if (is_64bit) {
2953 tcg_gen_mov_i64(tcg_rd, tcg_result);
2954 } else {
2955 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2958 tcg_temp_free_i64(tcg_result);
2961 /* The input should be a value in the bottom e bits (with higher
2962 * bits zero); returns that value replicated into every element
2963 * of size e in a 64 bit integer.
2965 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
2967 assert(e != 0);
2968 while (e < 64) {
2969 mask |= mask << e;
2970 e *= 2;
2972 return mask;
2975 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
2976 static inline uint64_t bitmask64(unsigned int length)
2978 assert(length > 0 && length <= 64);
2979 return ~0ULL >> (64 - length);
2982 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
2983 * only require the wmask. Returns false if the imms/immr/immn are a reserved
2984 * value (ie should cause a guest UNDEF exception), and true if they are
2985 * valid, in which case the decoded bit pattern is written to result.
2987 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
2988 unsigned int imms, unsigned int immr)
2990 uint64_t mask;
2991 unsigned e, levels, s, r;
2992 int len;
2994 assert(immn < 2 && imms < 64 && immr < 64);
2996 /* The bit patterns we create here are 64 bit patterns which
2997 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
2998 * 64 bits each. Each element contains the same value: a run
2999 * of between 1 and e-1 non-zero bits, rotated within the
3000 * element by between 0 and e-1 bits.
3002 * The element size and run length are encoded into immn (1 bit)
3003 * and imms (6 bits) as follows:
3004 * 64 bit elements: immn = 1, imms = <length of run - 1>
3005 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3006 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3007 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3008 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3009 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3010 * Notice that immn = 0, imms = 11111x is the only combination
3011 * not covered by one of the above options; this is reserved.
3012 * Further, <length of run - 1> all-ones is a reserved pattern.
3014 * In all cases the rotation is by immr % e (and immr is 6 bits).
3017 /* First determine the element size */
3018 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3019 if (len < 1) {
3020 /* This is the immn == 0, imms == 0x11111x case */
3021 return false;
3023 e = 1 << len;
3025 levels = e - 1;
3026 s = imms & levels;
3027 r = immr & levels;
3029 if (s == levels) {
3030 /* <length of run - 1> mustn't be all-ones. */
3031 return false;
3034 /* Create the value of one element: s+1 set bits rotated
3035 * by r within the element (which is e bits wide)...
3037 mask = bitmask64(s + 1);
3038 if (r) {
3039 mask = (mask >> r) | (mask << (e - r));
3040 mask &= bitmask64(e);
3042 /* ...then replicate the element over the whole 64 bit value */
3043 mask = bitfield_replicate(mask, e);
3044 *result = mask;
3045 return true;
3048 /* C3.4.4 Logical (immediate)
3049 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3050 * +----+-----+-------------+---+------+------+------+------+
3051 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3052 * +----+-----+-------------+---+------+------+------+------+
3054 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3056 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3057 TCGv_i64 tcg_rd, tcg_rn;
3058 uint64_t wmask;
3059 bool is_and = false;
3061 sf = extract32(insn, 31, 1);
3062 opc = extract32(insn, 29, 2);
3063 is_n = extract32(insn, 22, 1);
3064 immr = extract32(insn, 16, 6);
3065 imms = extract32(insn, 10, 6);
3066 rn = extract32(insn, 5, 5);
3067 rd = extract32(insn, 0, 5);
3069 if (!sf && is_n) {
3070 unallocated_encoding(s);
3071 return;
3074 if (opc == 0x3) { /* ANDS */
3075 tcg_rd = cpu_reg(s, rd);
3076 } else {
3077 tcg_rd = cpu_reg_sp(s, rd);
3079 tcg_rn = cpu_reg(s, rn);
3081 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3082 /* some immediate field values are reserved */
3083 unallocated_encoding(s);
3084 return;
3087 if (!sf) {
3088 wmask &= 0xffffffff;
3091 switch (opc) {
3092 case 0x3: /* ANDS */
3093 case 0x0: /* AND */
3094 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3095 is_and = true;
3096 break;
3097 case 0x1: /* ORR */
3098 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3099 break;
3100 case 0x2: /* EOR */
3101 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3102 break;
3103 default:
3104 assert(FALSE); /* must handle all above */
3105 break;
3108 if (!sf && !is_and) {
3109 /* zero extend final result; we know we can skip this for AND
3110 * since the immediate had the high 32 bits clear.
3112 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3115 if (opc == 3) { /* ANDS */
3116 gen_logic_CC(sf, tcg_rd);
3121 * C3.4.5 Move wide (immediate)
3123 * 31 30 29 28 23 22 21 20 5 4 0
3124 * +--+-----+-------------+-----+----------------+------+
3125 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3126 * +--+-----+-------------+-----+----------------+------+
3128 * sf: 0 -> 32 bit, 1 -> 64 bit
3129 * opc: 00 -> N, 10 -> Z, 11 -> K
3130 * hw: shift/16 (0,16, and sf only 32, 48)
3132 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3134 int rd = extract32(insn, 0, 5);
3135 uint64_t imm = extract32(insn, 5, 16);
3136 int sf = extract32(insn, 31, 1);
3137 int opc = extract32(insn, 29, 2);
3138 int pos = extract32(insn, 21, 2) << 4;
3139 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3140 TCGv_i64 tcg_imm;
3142 if (!sf && (pos >= 32)) {
3143 unallocated_encoding(s);
3144 return;
3147 switch (opc) {
3148 case 0: /* MOVN */
3149 case 2: /* MOVZ */
3150 imm <<= pos;
3151 if (opc == 0) {
3152 imm = ~imm;
3154 if (!sf) {
3155 imm &= 0xffffffffu;
3157 tcg_gen_movi_i64(tcg_rd, imm);
3158 break;
3159 case 3: /* MOVK */
3160 tcg_imm = tcg_const_i64(imm);
3161 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3162 tcg_temp_free_i64(tcg_imm);
3163 if (!sf) {
3164 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3166 break;
3167 default:
3168 unallocated_encoding(s);
3169 break;
3173 /* C3.4.2 Bitfield
3174 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3175 * +----+-----+-------------+---+------+------+------+------+
3176 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3177 * +----+-----+-------------+---+------+------+------+------+
3179 static void disas_bitfield(DisasContext *s, uint32_t insn)
3181 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3182 TCGv_i64 tcg_rd, tcg_tmp;
3184 sf = extract32(insn, 31, 1);
3185 opc = extract32(insn, 29, 2);
3186 n = extract32(insn, 22, 1);
3187 ri = extract32(insn, 16, 6);
3188 si = extract32(insn, 10, 6);
3189 rn = extract32(insn, 5, 5);
3190 rd = extract32(insn, 0, 5);
3191 bitsize = sf ? 64 : 32;
3193 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3194 unallocated_encoding(s);
3195 return;
3198 tcg_rd = cpu_reg(s, rd);
3200 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3201 to be smaller than bitsize, we'll never reference data outside the
3202 low 32-bits anyway. */
3203 tcg_tmp = read_cpu_reg(s, rn, 1);
3205 /* Recognize simple(r) extractions. */
3206 if (si >= ri) {
3207 /* Wd<s-r:0> = Wn<s:r> */
3208 len = (si - ri) + 1;
3209 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3210 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3211 goto done;
3212 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3213 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3214 return;
3216 /* opc == 1, BXFIL fall through to deposit */
3217 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3218 pos = 0;
3219 } else {
3220 /* Handle the ri > si case with a deposit
3221 * Wd<32+s-r,32-r> = Wn<s:0>
3223 len = si + 1;
3224 pos = (bitsize - ri) & (bitsize - 1);
3227 if (opc == 0 && len < ri) {
3228 /* SBFM: sign extend the destination field from len to fill
3229 the balance of the word. Let the deposit below insert all
3230 of those sign bits. */
3231 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3232 len = ri;
3235 if (opc == 1) { /* BFM, BXFIL */
3236 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3237 } else {
3238 /* SBFM or UBFM: We start with zero, and we haven't modified
3239 any bits outside bitsize, therefore the zero-extension
3240 below is unneeded. */
3241 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3242 return;
3245 done:
3246 if (!sf) { /* zero extend final result */
3247 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3251 /* C3.4.3 Extract
3252 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3253 * +----+------+-------------+---+----+------+--------+------+------+
3254 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3255 * +----+------+-------------+---+----+------+--------+------+------+
3257 static void disas_extract(DisasContext *s, uint32_t insn)
3259 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3261 sf = extract32(insn, 31, 1);
3262 n = extract32(insn, 22, 1);
3263 rm = extract32(insn, 16, 5);
3264 imm = extract32(insn, 10, 6);
3265 rn = extract32(insn, 5, 5);
3266 rd = extract32(insn, 0, 5);
3267 op21 = extract32(insn, 29, 2);
3268 op0 = extract32(insn, 21, 1);
3269 bitsize = sf ? 64 : 32;
3271 if (sf != n || op21 || op0 || imm >= bitsize) {
3272 unallocated_encoding(s);
3273 } else {
3274 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3276 tcg_rd = cpu_reg(s, rd);
3278 if (unlikely(imm == 0)) {
3279 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3280 * so an extract from bit 0 is a special case.
3282 if (sf) {
3283 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3284 } else {
3285 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3287 } else if (rm == rn) { /* ROR */
3288 tcg_rm = cpu_reg(s, rm);
3289 if (sf) {
3290 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3291 } else {
3292 TCGv_i32 tmp = tcg_temp_new_i32();
3293 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3294 tcg_gen_rotri_i32(tmp, tmp, imm);
3295 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3296 tcg_temp_free_i32(tmp);
3298 } else {
3299 tcg_rm = read_cpu_reg(s, rm, sf);
3300 tcg_rn = read_cpu_reg(s, rn, sf);
3301 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3302 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3303 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3304 if (!sf) {
3305 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3311 /* C3.4 Data processing - immediate */
3312 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3314 switch (extract32(insn, 23, 6)) {
3315 case 0x20: case 0x21: /* PC-rel. addressing */
3316 disas_pc_rel_adr(s, insn);
3317 break;
3318 case 0x22: case 0x23: /* Add/subtract (immediate) */
3319 disas_add_sub_imm(s, insn);
3320 break;
3321 case 0x24: /* Logical (immediate) */
3322 disas_logic_imm(s, insn);
3323 break;
3324 case 0x25: /* Move wide (immediate) */
3325 disas_movw_imm(s, insn);
3326 break;
3327 case 0x26: /* Bitfield */
3328 disas_bitfield(s, insn);
3329 break;
3330 case 0x27: /* Extract */
3331 disas_extract(s, insn);
3332 break;
3333 default:
3334 unallocated_encoding(s);
3335 break;
3339 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3340 * Note that it is the caller's responsibility to ensure that the
3341 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3342 * mandated semantics for out of range shifts.
3344 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3345 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3347 switch (shift_type) {
3348 case A64_SHIFT_TYPE_LSL:
3349 tcg_gen_shl_i64(dst, src, shift_amount);
3350 break;
3351 case A64_SHIFT_TYPE_LSR:
3352 tcg_gen_shr_i64(dst, src, shift_amount);
3353 break;
3354 case A64_SHIFT_TYPE_ASR:
3355 if (!sf) {
3356 tcg_gen_ext32s_i64(dst, src);
3358 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3359 break;
3360 case A64_SHIFT_TYPE_ROR:
3361 if (sf) {
3362 tcg_gen_rotr_i64(dst, src, shift_amount);
3363 } else {
3364 TCGv_i32 t0, t1;
3365 t0 = tcg_temp_new_i32();
3366 t1 = tcg_temp_new_i32();
3367 tcg_gen_extrl_i64_i32(t0, src);
3368 tcg_gen_extrl_i64_i32(t1, shift_amount);
3369 tcg_gen_rotr_i32(t0, t0, t1);
3370 tcg_gen_extu_i32_i64(dst, t0);
3371 tcg_temp_free_i32(t0);
3372 tcg_temp_free_i32(t1);
3374 break;
3375 default:
3376 assert(FALSE); /* all shift types should be handled */
3377 break;
3380 if (!sf) { /* zero extend final result */
3381 tcg_gen_ext32u_i64(dst, dst);
3385 /* Shift a TCGv src by immediate, put result in dst.
3386 * The shift amount must be in range (this should always be true as the
3387 * relevant instructions will UNDEF on bad shift immediates).
3389 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3390 enum a64_shift_type shift_type, unsigned int shift_i)
3392 assert(shift_i < (sf ? 64 : 32));
3394 if (shift_i == 0) {
3395 tcg_gen_mov_i64(dst, src);
3396 } else {
3397 TCGv_i64 shift_const;
3399 shift_const = tcg_const_i64(shift_i);
3400 shift_reg(dst, src, sf, shift_type, shift_const);
3401 tcg_temp_free_i64(shift_const);
3405 /* C3.5.10 Logical (shifted register)
3406 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3407 * +----+-----+-----------+-------+---+------+--------+------+------+
3408 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3409 * +----+-----+-----------+-------+---+------+--------+------+------+
3411 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3413 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3414 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3416 sf = extract32(insn, 31, 1);
3417 opc = extract32(insn, 29, 2);
3418 shift_type = extract32(insn, 22, 2);
3419 invert = extract32(insn, 21, 1);
3420 rm = extract32(insn, 16, 5);
3421 shift_amount = extract32(insn, 10, 6);
3422 rn = extract32(insn, 5, 5);
3423 rd = extract32(insn, 0, 5);
3425 if (!sf && (shift_amount & (1 << 5))) {
3426 unallocated_encoding(s);
3427 return;
3430 tcg_rd = cpu_reg(s, rd);
3432 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3433 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3434 * register-register MOV and MVN, so it is worth special casing.
3436 tcg_rm = cpu_reg(s, rm);
3437 if (invert) {
3438 tcg_gen_not_i64(tcg_rd, tcg_rm);
3439 if (!sf) {
3440 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3442 } else {
3443 if (sf) {
3444 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3445 } else {
3446 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3449 return;
3452 tcg_rm = read_cpu_reg(s, rm, sf);
3454 if (shift_amount) {
3455 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3458 tcg_rn = cpu_reg(s, rn);
3460 switch (opc | (invert << 2)) {
3461 case 0: /* AND */
3462 case 3: /* ANDS */
3463 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3464 break;
3465 case 1: /* ORR */
3466 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3467 break;
3468 case 2: /* EOR */
3469 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3470 break;
3471 case 4: /* BIC */
3472 case 7: /* BICS */
3473 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3474 break;
3475 case 5: /* ORN */
3476 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3477 break;
3478 case 6: /* EON */
3479 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3480 break;
3481 default:
3482 assert(FALSE);
3483 break;
3486 if (!sf) {
3487 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3490 if (opc == 3) {
3491 gen_logic_CC(sf, tcg_rd);
3496 * C3.5.1 Add/subtract (extended register)
3498 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3499 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3500 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3501 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3503 * sf: 0 -> 32bit, 1 -> 64bit
3504 * op: 0 -> add , 1 -> sub
3505 * S: 1 -> set flags
3506 * opt: 00
3507 * option: extension type (see DecodeRegExtend)
3508 * imm3: optional shift to Rm
3510 * Rd = Rn + LSL(extend(Rm), amount)
3512 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3514 int rd = extract32(insn, 0, 5);
3515 int rn = extract32(insn, 5, 5);
3516 int imm3 = extract32(insn, 10, 3);
3517 int option = extract32(insn, 13, 3);
3518 int rm = extract32(insn, 16, 5);
3519 bool setflags = extract32(insn, 29, 1);
3520 bool sub_op = extract32(insn, 30, 1);
3521 bool sf = extract32(insn, 31, 1);
3523 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3524 TCGv_i64 tcg_rd;
3525 TCGv_i64 tcg_result;
3527 if (imm3 > 4) {
3528 unallocated_encoding(s);
3529 return;
3532 /* non-flag setting ops may use SP */
3533 if (!setflags) {
3534 tcg_rd = cpu_reg_sp(s, rd);
3535 } else {
3536 tcg_rd = cpu_reg(s, rd);
3538 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3540 tcg_rm = read_cpu_reg(s, rm, sf);
3541 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3543 tcg_result = tcg_temp_new_i64();
3545 if (!setflags) {
3546 if (sub_op) {
3547 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3548 } else {
3549 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3551 } else {
3552 if (sub_op) {
3553 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3554 } else {
3555 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3559 if (sf) {
3560 tcg_gen_mov_i64(tcg_rd, tcg_result);
3561 } else {
3562 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3565 tcg_temp_free_i64(tcg_result);
3569 * C3.5.2 Add/subtract (shifted register)
3571 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3572 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3573 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3574 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3576 * sf: 0 -> 32bit, 1 -> 64bit
3577 * op: 0 -> add , 1 -> sub
3578 * S: 1 -> set flags
3579 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3580 * imm6: Shift amount to apply to Rm before the add/sub
3582 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3584 int rd = extract32(insn, 0, 5);
3585 int rn = extract32(insn, 5, 5);
3586 int imm6 = extract32(insn, 10, 6);
3587 int rm = extract32(insn, 16, 5);
3588 int shift_type = extract32(insn, 22, 2);
3589 bool setflags = extract32(insn, 29, 1);
3590 bool sub_op = extract32(insn, 30, 1);
3591 bool sf = extract32(insn, 31, 1);
3593 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3594 TCGv_i64 tcg_rn, tcg_rm;
3595 TCGv_i64 tcg_result;
3597 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3598 unallocated_encoding(s);
3599 return;
3602 tcg_rn = read_cpu_reg(s, rn, sf);
3603 tcg_rm = read_cpu_reg(s, rm, sf);
3605 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3607 tcg_result = tcg_temp_new_i64();
3609 if (!setflags) {
3610 if (sub_op) {
3611 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3612 } else {
3613 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3615 } else {
3616 if (sub_op) {
3617 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3618 } else {
3619 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3623 if (sf) {
3624 tcg_gen_mov_i64(tcg_rd, tcg_result);
3625 } else {
3626 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3629 tcg_temp_free_i64(tcg_result);
3632 /* C3.5.9 Data-processing (3 source)
3634 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3635 +--+------+-----------+------+------+----+------+------+------+
3636 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3637 +--+------+-----------+------+------+----+------+------+------+
3640 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3642 int rd = extract32(insn, 0, 5);
3643 int rn = extract32(insn, 5, 5);
3644 int ra = extract32(insn, 10, 5);
3645 int rm = extract32(insn, 16, 5);
3646 int op_id = (extract32(insn, 29, 3) << 4) |
3647 (extract32(insn, 21, 3) << 1) |
3648 extract32(insn, 15, 1);
3649 bool sf = extract32(insn, 31, 1);
3650 bool is_sub = extract32(op_id, 0, 1);
3651 bool is_high = extract32(op_id, 2, 1);
3652 bool is_signed = false;
3653 TCGv_i64 tcg_op1;
3654 TCGv_i64 tcg_op2;
3655 TCGv_i64 tcg_tmp;
3657 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3658 switch (op_id) {
3659 case 0x42: /* SMADDL */
3660 case 0x43: /* SMSUBL */
3661 case 0x44: /* SMULH */
3662 is_signed = true;
3663 break;
3664 case 0x0: /* MADD (32bit) */
3665 case 0x1: /* MSUB (32bit) */
3666 case 0x40: /* MADD (64bit) */
3667 case 0x41: /* MSUB (64bit) */
3668 case 0x4a: /* UMADDL */
3669 case 0x4b: /* UMSUBL */
3670 case 0x4c: /* UMULH */
3671 break;
3672 default:
3673 unallocated_encoding(s);
3674 return;
3677 if (is_high) {
3678 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3679 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3680 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3681 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3683 if (is_signed) {
3684 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3685 } else {
3686 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3689 tcg_temp_free_i64(low_bits);
3690 return;
3693 tcg_op1 = tcg_temp_new_i64();
3694 tcg_op2 = tcg_temp_new_i64();
3695 tcg_tmp = tcg_temp_new_i64();
3697 if (op_id < 0x42) {
3698 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3699 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3700 } else {
3701 if (is_signed) {
3702 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3703 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3704 } else {
3705 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3706 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3710 if (ra == 31 && !is_sub) {
3711 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3712 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3713 } else {
3714 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3715 if (is_sub) {
3716 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3717 } else {
3718 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3722 if (!sf) {
3723 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3726 tcg_temp_free_i64(tcg_op1);
3727 tcg_temp_free_i64(tcg_op2);
3728 tcg_temp_free_i64(tcg_tmp);
3731 /* C3.5.3 - Add/subtract (with carry)
3732 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3733 * +--+--+--+------------------------+------+---------+------+-----+
3734 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3735 * +--+--+--+------------------------+------+---------+------+-----+
3736 * [000000]
3739 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3741 unsigned int sf, op, setflags, rm, rn, rd;
3742 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3744 if (extract32(insn, 10, 6) != 0) {
3745 unallocated_encoding(s);
3746 return;
3749 sf = extract32(insn, 31, 1);
3750 op = extract32(insn, 30, 1);
3751 setflags = extract32(insn, 29, 1);
3752 rm = extract32(insn, 16, 5);
3753 rn = extract32(insn, 5, 5);
3754 rd = extract32(insn, 0, 5);
3756 tcg_rd = cpu_reg(s, rd);
3757 tcg_rn = cpu_reg(s, rn);
3759 if (op) {
3760 tcg_y = new_tmp_a64(s);
3761 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3762 } else {
3763 tcg_y = cpu_reg(s, rm);
3766 if (setflags) {
3767 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3768 } else {
3769 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3773 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3774 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3775 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3776 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3777 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3778 * [1] y [0] [0]
3780 static void disas_cc(DisasContext *s, uint32_t insn)
3782 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3783 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3784 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3785 DisasCompare c;
3787 if (!extract32(insn, 29, 1)) {
3788 unallocated_encoding(s);
3789 return;
3791 if (insn & (1 << 10 | 1 << 4)) {
3792 unallocated_encoding(s);
3793 return;
3795 sf = extract32(insn, 31, 1);
3796 op = extract32(insn, 30, 1);
3797 is_imm = extract32(insn, 11, 1);
3798 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3799 cond = extract32(insn, 12, 4);
3800 rn = extract32(insn, 5, 5);
3801 nzcv = extract32(insn, 0, 4);
3803 /* Set T0 = !COND. */
3804 tcg_t0 = tcg_temp_new_i32();
3805 arm_test_cc(&c, cond);
3806 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3807 arm_free_cc(&c);
3809 /* Load the arguments for the new comparison. */
3810 if (is_imm) {
3811 tcg_y = new_tmp_a64(s);
3812 tcg_gen_movi_i64(tcg_y, y);
3813 } else {
3814 tcg_y = cpu_reg(s, y);
3816 tcg_rn = cpu_reg(s, rn);
3818 /* Set the flags for the new comparison. */
3819 tcg_tmp = tcg_temp_new_i64();
3820 if (op) {
3821 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3822 } else {
3823 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3825 tcg_temp_free_i64(tcg_tmp);
3827 /* If COND was false, force the flags to #nzcv. Compute two masks
3828 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3829 * For tcg hosts that support ANDC, we can make do with just T1.
3830 * In either case, allow the tcg optimizer to delete any unused mask.
3832 tcg_t1 = tcg_temp_new_i32();
3833 tcg_t2 = tcg_temp_new_i32();
3834 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3835 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3837 if (nzcv & 8) { /* N */
3838 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3839 } else {
3840 if (TCG_TARGET_HAS_andc_i32) {
3841 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3842 } else {
3843 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3846 if (nzcv & 4) { /* Z */
3847 if (TCG_TARGET_HAS_andc_i32) {
3848 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3849 } else {
3850 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3852 } else {
3853 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3855 if (nzcv & 2) { /* C */
3856 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3857 } else {
3858 if (TCG_TARGET_HAS_andc_i32) {
3859 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3860 } else {
3861 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3864 if (nzcv & 1) { /* V */
3865 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3866 } else {
3867 if (TCG_TARGET_HAS_andc_i32) {
3868 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3869 } else {
3870 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3873 tcg_temp_free_i32(tcg_t0);
3874 tcg_temp_free_i32(tcg_t1);
3875 tcg_temp_free_i32(tcg_t2);
3878 /* C3.5.6 Conditional select
3879 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3880 * +----+----+---+-----------------+------+------+-----+------+------+
3881 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3882 * +----+----+---+-----------------+------+------+-----+------+------+
3884 static void disas_cond_select(DisasContext *s, uint32_t insn)
3886 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3887 TCGv_i64 tcg_rd, zero;
3888 DisasCompare64 c;
3890 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3891 /* S == 1 or op2<1> == 1 */
3892 unallocated_encoding(s);
3893 return;
3895 sf = extract32(insn, 31, 1);
3896 else_inv = extract32(insn, 30, 1);
3897 rm = extract32(insn, 16, 5);
3898 cond = extract32(insn, 12, 4);
3899 else_inc = extract32(insn, 10, 1);
3900 rn = extract32(insn, 5, 5);
3901 rd = extract32(insn, 0, 5);
3903 tcg_rd = cpu_reg(s, rd);
3905 a64_test_cc(&c, cond);
3906 zero = tcg_const_i64(0);
3908 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3909 /* CSET & CSETM. */
3910 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3911 if (else_inv) {
3912 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3914 } else {
3915 TCGv_i64 t_true = cpu_reg(s, rn);
3916 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3917 if (else_inv && else_inc) {
3918 tcg_gen_neg_i64(t_false, t_false);
3919 } else if (else_inv) {
3920 tcg_gen_not_i64(t_false, t_false);
3921 } else if (else_inc) {
3922 tcg_gen_addi_i64(t_false, t_false, 1);
3924 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3927 tcg_temp_free_i64(zero);
3928 a64_free_cc(&c);
3930 if (!sf) {
3931 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3935 static void handle_clz(DisasContext *s, unsigned int sf,
3936 unsigned int rn, unsigned int rd)
3938 TCGv_i64 tcg_rd, tcg_rn;
3939 tcg_rd = cpu_reg(s, rd);
3940 tcg_rn = cpu_reg(s, rn);
3942 if (sf) {
3943 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
3944 } else {
3945 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3946 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3947 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
3948 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3949 tcg_temp_free_i32(tcg_tmp32);
3953 static void handle_cls(DisasContext *s, unsigned int sf,
3954 unsigned int rn, unsigned int rd)
3956 TCGv_i64 tcg_rd, tcg_rn;
3957 tcg_rd = cpu_reg(s, rd);
3958 tcg_rn = cpu_reg(s, rn);
3960 if (sf) {
3961 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
3962 } else {
3963 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3964 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3965 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
3966 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3967 tcg_temp_free_i32(tcg_tmp32);
3971 static void handle_rbit(DisasContext *s, unsigned int sf,
3972 unsigned int rn, unsigned int rd)
3974 TCGv_i64 tcg_rd, tcg_rn;
3975 tcg_rd = cpu_reg(s, rd);
3976 tcg_rn = cpu_reg(s, rn);
3978 if (sf) {
3979 gen_helper_rbit64(tcg_rd, tcg_rn);
3980 } else {
3981 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3982 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3983 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
3984 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3985 tcg_temp_free_i32(tcg_tmp32);
3989 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
3990 static void handle_rev64(DisasContext *s, unsigned int sf,
3991 unsigned int rn, unsigned int rd)
3993 if (!sf) {
3994 unallocated_encoding(s);
3995 return;
3997 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4000 /* C5.6.149 REV with sf==0, opcode==2
4001 * C5.6.151 REV32 (sf==1, opcode==2)
4003 static void handle_rev32(DisasContext *s, unsigned int sf,
4004 unsigned int rn, unsigned int rd)
4006 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4008 if (sf) {
4009 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4010 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4012 /* bswap32_i64 requires zero high word */
4013 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4014 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4015 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4016 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4017 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4019 tcg_temp_free_i64(tcg_tmp);
4020 } else {
4021 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4022 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4026 /* C5.6.150 REV16 (opcode==1) */
4027 static void handle_rev16(DisasContext *s, unsigned int sf,
4028 unsigned int rn, unsigned int rd)
4030 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4031 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4032 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4034 tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
4035 tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
4037 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
4038 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
4039 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
4040 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
4042 if (sf) {
4043 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4044 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
4045 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
4046 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
4048 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
4049 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
4050 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
4053 tcg_temp_free_i64(tcg_tmp);
4056 /* C3.5.7 Data-processing (1 source)
4057 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4058 * +----+---+---+-----------------+---------+--------+------+------+
4059 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4060 * +----+---+---+-----------------+---------+--------+------+------+
4062 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4064 unsigned int sf, opcode, rn, rd;
4066 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4067 unallocated_encoding(s);
4068 return;
4071 sf = extract32(insn, 31, 1);
4072 opcode = extract32(insn, 10, 6);
4073 rn = extract32(insn, 5, 5);
4074 rd = extract32(insn, 0, 5);
4076 switch (opcode) {
4077 case 0: /* RBIT */
4078 handle_rbit(s, sf, rn, rd);
4079 break;
4080 case 1: /* REV16 */
4081 handle_rev16(s, sf, rn, rd);
4082 break;
4083 case 2: /* REV32 */
4084 handle_rev32(s, sf, rn, rd);
4085 break;
4086 case 3: /* REV64 */
4087 handle_rev64(s, sf, rn, rd);
4088 break;
4089 case 4: /* CLZ */
4090 handle_clz(s, sf, rn, rd);
4091 break;
4092 case 5: /* CLS */
4093 handle_cls(s, sf, rn, rd);
4094 break;
4098 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4099 unsigned int rm, unsigned int rn, unsigned int rd)
4101 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4102 tcg_rd = cpu_reg(s, rd);
4104 if (!sf && is_signed) {
4105 tcg_n = new_tmp_a64(s);
4106 tcg_m = new_tmp_a64(s);
4107 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4108 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4109 } else {
4110 tcg_n = read_cpu_reg(s, rn, sf);
4111 tcg_m = read_cpu_reg(s, rm, sf);
4114 if (is_signed) {
4115 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4116 } else {
4117 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4120 if (!sf) { /* zero extend final result */
4121 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4125 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
4126 static void handle_shift_reg(DisasContext *s,
4127 enum a64_shift_type shift_type, unsigned int sf,
4128 unsigned int rm, unsigned int rn, unsigned int rd)
4130 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4131 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4132 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4134 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4135 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4136 tcg_temp_free_i64(tcg_shift);
4139 /* CRC32[BHWX], CRC32C[BHWX] */
4140 static void handle_crc32(DisasContext *s,
4141 unsigned int sf, unsigned int sz, bool crc32c,
4142 unsigned int rm, unsigned int rn, unsigned int rd)
4144 TCGv_i64 tcg_acc, tcg_val;
4145 TCGv_i32 tcg_bytes;
4147 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4148 || (sf == 1 && sz != 3)
4149 || (sf == 0 && sz == 3)) {
4150 unallocated_encoding(s);
4151 return;
4154 if (sz == 3) {
4155 tcg_val = cpu_reg(s, rm);
4156 } else {
4157 uint64_t mask;
4158 switch (sz) {
4159 case 0:
4160 mask = 0xFF;
4161 break;
4162 case 1:
4163 mask = 0xFFFF;
4164 break;
4165 case 2:
4166 mask = 0xFFFFFFFF;
4167 break;
4168 default:
4169 g_assert_not_reached();
4171 tcg_val = new_tmp_a64(s);
4172 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4175 tcg_acc = cpu_reg(s, rn);
4176 tcg_bytes = tcg_const_i32(1 << sz);
4178 if (crc32c) {
4179 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4180 } else {
4181 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4184 tcg_temp_free_i32(tcg_bytes);
4187 /* C3.5.8 Data-processing (2 source)
4188 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4189 * +----+---+---+-----------------+------+--------+------+------+
4190 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4191 * +----+---+---+-----------------+------+--------+------+------+
4193 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4195 unsigned int sf, rm, opcode, rn, rd;
4196 sf = extract32(insn, 31, 1);
4197 rm = extract32(insn, 16, 5);
4198 opcode = extract32(insn, 10, 6);
4199 rn = extract32(insn, 5, 5);
4200 rd = extract32(insn, 0, 5);
4202 if (extract32(insn, 29, 1)) {
4203 unallocated_encoding(s);
4204 return;
4207 switch (opcode) {
4208 case 2: /* UDIV */
4209 handle_div(s, false, sf, rm, rn, rd);
4210 break;
4211 case 3: /* SDIV */
4212 handle_div(s, true, sf, rm, rn, rd);
4213 break;
4214 case 8: /* LSLV */
4215 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4216 break;
4217 case 9: /* LSRV */
4218 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4219 break;
4220 case 10: /* ASRV */
4221 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4222 break;
4223 case 11: /* RORV */
4224 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4225 break;
4226 case 16:
4227 case 17:
4228 case 18:
4229 case 19:
4230 case 20:
4231 case 21:
4232 case 22:
4233 case 23: /* CRC32 */
4235 int sz = extract32(opcode, 0, 2);
4236 bool crc32c = extract32(opcode, 2, 1);
4237 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4238 break;
4240 default:
4241 unallocated_encoding(s);
4242 break;
4246 /* C3.5 Data processing - register */
4247 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4249 switch (extract32(insn, 24, 5)) {
4250 case 0x0a: /* Logical (shifted register) */
4251 disas_logic_reg(s, insn);
4252 break;
4253 case 0x0b: /* Add/subtract */
4254 if (insn & (1 << 21)) { /* (extended register) */
4255 disas_add_sub_ext_reg(s, insn);
4256 } else {
4257 disas_add_sub_reg(s, insn);
4259 break;
4260 case 0x1b: /* Data-processing (3 source) */
4261 disas_data_proc_3src(s, insn);
4262 break;
4263 case 0x1a:
4264 switch (extract32(insn, 21, 3)) {
4265 case 0x0: /* Add/subtract (with carry) */
4266 disas_adc_sbc(s, insn);
4267 break;
4268 case 0x2: /* Conditional compare */
4269 disas_cc(s, insn); /* both imm and reg forms */
4270 break;
4271 case 0x4: /* Conditional select */
4272 disas_cond_select(s, insn);
4273 break;
4274 case 0x6: /* Data-processing */
4275 if (insn & (1 << 30)) { /* (1 source) */
4276 disas_data_proc_1src(s, insn);
4277 } else { /* (2 source) */
4278 disas_data_proc_2src(s, insn);
4280 break;
4281 default:
4282 unallocated_encoding(s);
4283 break;
4285 break;
4286 default:
4287 unallocated_encoding(s);
4288 break;
4292 static void handle_fp_compare(DisasContext *s, bool is_double,
4293 unsigned int rn, unsigned int rm,
4294 bool cmp_with_zero, bool signal_all_nans)
4296 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4297 TCGv_ptr fpst = get_fpstatus_ptr();
4299 if (is_double) {
4300 TCGv_i64 tcg_vn, tcg_vm;
4302 tcg_vn = read_fp_dreg(s, rn);
4303 if (cmp_with_zero) {
4304 tcg_vm = tcg_const_i64(0);
4305 } else {
4306 tcg_vm = read_fp_dreg(s, rm);
4308 if (signal_all_nans) {
4309 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4310 } else {
4311 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4313 tcg_temp_free_i64(tcg_vn);
4314 tcg_temp_free_i64(tcg_vm);
4315 } else {
4316 TCGv_i32 tcg_vn, tcg_vm;
4318 tcg_vn = read_fp_sreg(s, rn);
4319 if (cmp_with_zero) {
4320 tcg_vm = tcg_const_i32(0);
4321 } else {
4322 tcg_vm = read_fp_sreg(s, rm);
4324 if (signal_all_nans) {
4325 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4326 } else {
4327 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4329 tcg_temp_free_i32(tcg_vn);
4330 tcg_temp_free_i32(tcg_vm);
4333 tcg_temp_free_ptr(fpst);
4335 gen_set_nzcv(tcg_flags);
4337 tcg_temp_free_i64(tcg_flags);
4340 /* C3.6.22 Floating point compare
4341 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4342 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4343 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4344 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4346 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4348 unsigned int mos, type, rm, op, rn, opc, op2r;
4350 mos = extract32(insn, 29, 3);
4351 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4352 rm = extract32(insn, 16, 5);
4353 op = extract32(insn, 14, 2);
4354 rn = extract32(insn, 5, 5);
4355 opc = extract32(insn, 3, 2);
4356 op2r = extract32(insn, 0, 3);
4358 if (mos || op || op2r || type > 1) {
4359 unallocated_encoding(s);
4360 return;
4363 if (!fp_access_check(s)) {
4364 return;
4367 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4370 /* C3.6.23 Floating point conditional compare
4371 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4372 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4373 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4374 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4376 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4378 unsigned int mos, type, rm, cond, rn, op, nzcv;
4379 TCGv_i64 tcg_flags;
4380 TCGLabel *label_continue = NULL;
4382 mos = extract32(insn, 29, 3);
4383 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4384 rm = extract32(insn, 16, 5);
4385 cond = extract32(insn, 12, 4);
4386 rn = extract32(insn, 5, 5);
4387 op = extract32(insn, 4, 1);
4388 nzcv = extract32(insn, 0, 4);
4390 if (mos || type > 1) {
4391 unallocated_encoding(s);
4392 return;
4395 if (!fp_access_check(s)) {
4396 return;
4399 if (cond < 0x0e) { /* not always */
4400 TCGLabel *label_match = gen_new_label();
4401 label_continue = gen_new_label();
4402 arm_gen_test_cc(cond, label_match);
4403 /* nomatch: */
4404 tcg_flags = tcg_const_i64(nzcv << 28);
4405 gen_set_nzcv(tcg_flags);
4406 tcg_temp_free_i64(tcg_flags);
4407 tcg_gen_br(label_continue);
4408 gen_set_label(label_match);
4411 handle_fp_compare(s, type, rn, rm, false, op);
4413 if (cond < 0x0e) {
4414 gen_set_label(label_continue);
4418 /* C3.6.24 Floating point conditional select
4419 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4420 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4421 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4422 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4424 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4426 unsigned int mos, type, rm, cond, rn, rd;
4427 TCGv_i64 t_true, t_false, t_zero;
4428 DisasCompare64 c;
4430 mos = extract32(insn, 29, 3);
4431 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4432 rm = extract32(insn, 16, 5);
4433 cond = extract32(insn, 12, 4);
4434 rn = extract32(insn, 5, 5);
4435 rd = extract32(insn, 0, 5);
4437 if (mos || type > 1) {
4438 unallocated_encoding(s);
4439 return;
4442 if (!fp_access_check(s)) {
4443 return;
4446 /* Zero extend sreg inputs to 64 bits now. */
4447 t_true = tcg_temp_new_i64();
4448 t_false = tcg_temp_new_i64();
4449 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4450 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4452 a64_test_cc(&c, cond);
4453 t_zero = tcg_const_i64(0);
4454 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4455 tcg_temp_free_i64(t_zero);
4456 tcg_temp_free_i64(t_false);
4457 a64_free_cc(&c);
4459 /* Note that sregs write back zeros to the high bits,
4460 and we've already done the zero-extension. */
4461 write_fp_dreg(s, rd, t_true);
4462 tcg_temp_free_i64(t_true);
4465 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4466 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4468 TCGv_ptr fpst;
4469 TCGv_i32 tcg_op;
4470 TCGv_i32 tcg_res;
4472 fpst = get_fpstatus_ptr();
4473 tcg_op = read_fp_sreg(s, rn);
4474 tcg_res = tcg_temp_new_i32();
4476 switch (opcode) {
4477 case 0x0: /* FMOV */
4478 tcg_gen_mov_i32(tcg_res, tcg_op);
4479 break;
4480 case 0x1: /* FABS */
4481 gen_helper_vfp_abss(tcg_res, tcg_op);
4482 break;
4483 case 0x2: /* FNEG */
4484 gen_helper_vfp_negs(tcg_res, tcg_op);
4485 break;
4486 case 0x3: /* FSQRT */
4487 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4488 break;
4489 case 0x8: /* FRINTN */
4490 case 0x9: /* FRINTP */
4491 case 0xa: /* FRINTM */
4492 case 0xb: /* FRINTZ */
4493 case 0xc: /* FRINTA */
4495 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4497 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4498 gen_helper_rints(tcg_res, tcg_op, fpst);
4500 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4501 tcg_temp_free_i32(tcg_rmode);
4502 break;
4504 case 0xe: /* FRINTX */
4505 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4506 break;
4507 case 0xf: /* FRINTI */
4508 gen_helper_rints(tcg_res, tcg_op, fpst);
4509 break;
4510 default:
4511 abort();
4514 write_fp_sreg(s, rd, tcg_res);
4516 tcg_temp_free_ptr(fpst);
4517 tcg_temp_free_i32(tcg_op);
4518 tcg_temp_free_i32(tcg_res);
4521 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4522 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4524 TCGv_ptr fpst;
4525 TCGv_i64 tcg_op;
4526 TCGv_i64 tcg_res;
4528 fpst = get_fpstatus_ptr();
4529 tcg_op = read_fp_dreg(s, rn);
4530 tcg_res = tcg_temp_new_i64();
4532 switch (opcode) {
4533 case 0x0: /* FMOV */
4534 tcg_gen_mov_i64(tcg_res, tcg_op);
4535 break;
4536 case 0x1: /* FABS */
4537 gen_helper_vfp_absd(tcg_res, tcg_op);
4538 break;
4539 case 0x2: /* FNEG */
4540 gen_helper_vfp_negd(tcg_res, tcg_op);
4541 break;
4542 case 0x3: /* FSQRT */
4543 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4544 break;
4545 case 0x8: /* FRINTN */
4546 case 0x9: /* FRINTP */
4547 case 0xa: /* FRINTM */
4548 case 0xb: /* FRINTZ */
4549 case 0xc: /* FRINTA */
4551 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4553 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4554 gen_helper_rintd(tcg_res, tcg_op, fpst);
4556 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4557 tcg_temp_free_i32(tcg_rmode);
4558 break;
4560 case 0xe: /* FRINTX */
4561 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4562 break;
4563 case 0xf: /* FRINTI */
4564 gen_helper_rintd(tcg_res, tcg_op, fpst);
4565 break;
4566 default:
4567 abort();
4570 write_fp_dreg(s, rd, tcg_res);
4572 tcg_temp_free_ptr(fpst);
4573 tcg_temp_free_i64(tcg_op);
4574 tcg_temp_free_i64(tcg_res);
4577 static void handle_fp_fcvt(DisasContext *s, int opcode,
4578 int rd, int rn, int dtype, int ntype)
4580 switch (ntype) {
4581 case 0x0:
4583 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4584 if (dtype == 1) {
4585 /* Single to double */
4586 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4587 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4588 write_fp_dreg(s, rd, tcg_rd);
4589 tcg_temp_free_i64(tcg_rd);
4590 } else {
4591 /* Single to half */
4592 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4593 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4594 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4595 write_fp_sreg(s, rd, tcg_rd);
4596 tcg_temp_free_i32(tcg_rd);
4598 tcg_temp_free_i32(tcg_rn);
4599 break;
4601 case 0x1:
4603 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4604 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4605 if (dtype == 0) {
4606 /* Double to single */
4607 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4608 } else {
4609 /* Double to half */
4610 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4611 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4613 write_fp_sreg(s, rd, tcg_rd);
4614 tcg_temp_free_i32(tcg_rd);
4615 tcg_temp_free_i64(tcg_rn);
4616 break;
4618 case 0x3:
4620 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4621 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4622 if (dtype == 0) {
4623 /* Half to single */
4624 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4625 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4626 write_fp_sreg(s, rd, tcg_rd);
4627 tcg_temp_free_i32(tcg_rd);
4628 } else {
4629 /* Half to double */
4630 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4631 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4632 write_fp_dreg(s, rd, tcg_rd);
4633 tcg_temp_free_i64(tcg_rd);
4635 tcg_temp_free_i32(tcg_rn);
4636 break;
4638 default:
4639 abort();
4643 /* C3.6.25 Floating point data-processing (1 source)
4644 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4645 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4646 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4647 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4649 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4651 int type = extract32(insn, 22, 2);
4652 int opcode = extract32(insn, 15, 6);
4653 int rn = extract32(insn, 5, 5);
4654 int rd = extract32(insn, 0, 5);
4656 switch (opcode) {
4657 case 0x4: case 0x5: case 0x7:
4659 /* FCVT between half, single and double precision */
4660 int dtype = extract32(opcode, 0, 2);
4661 if (type == 2 || dtype == type) {
4662 unallocated_encoding(s);
4663 return;
4665 if (!fp_access_check(s)) {
4666 return;
4669 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4670 break;
4672 case 0x0 ... 0x3:
4673 case 0x8 ... 0xc:
4674 case 0xe ... 0xf:
4675 /* 32-to-32 and 64-to-64 ops */
4676 switch (type) {
4677 case 0:
4678 if (!fp_access_check(s)) {
4679 return;
4682 handle_fp_1src_single(s, opcode, rd, rn);
4683 break;
4684 case 1:
4685 if (!fp_access_check(s)) {
4686 return;
4689 handle_fp_1src_double(s, opcode, rd, rn);
4690 break;
4691 default:
4692 unallocated_encoding(s);
4694 break;
4695 default:
4696 unallocated_encoding(s);
4697 break;
4701 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4702 static void handle_fp_2src_single(DisasContext *s, int opcode,
4703 int rd, int rn, int rm)
4705 TCGv_i32 tcg_op1;
4706 TCGv_i32 tcg_op2;
4707 TCGv_i32 tcg_res;
4708 TCGv_ptr fpst;
4710 tcg_res = tcg_temp_new_i32();
4711 fpst = get_fpstatus_ptr();
4712 tcg_op1 = read_fp_sreg(s, rn);
4713 tcg_op2 = read_fp_sreg(s, rm);
4715 switch (opcode) {
4716 case 0x0: /* FMUL */
4717 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4718 break;
4719 case 0x1: /* FDIV */
4720 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4721 break;
4722 case 0x2: /* FADD */
4723 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4724 break;
4725 case 0x3: /* FSUB */
4726 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4727 break;
4728 case 0x4: /* FMAX */
4729 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4730 break;
4731 case 0x5: /* FMIN */
4732 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4733 break;
4734 case 0x6: /* FMAXNM */
4735 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4736 break;
4737 case 0x7: /* FMINNM */
4738 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4739 break;
4740 case 0x8: /* FNMUL */
4741 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4742 gen_helper_vfp_negs(tcg_res, tcg_res);
4743 break;
4746 write_fp_sreg(s, rd, tcg_res);
4748 tcg_temp_free_ptr(fpst);
4749 tcg_temp_free_i32(tcg_op1);
4750 tcg_temp_free_i32(tcg_op2);
4751 tcg_temp_free_i32(tcg_res);
4754 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4755 static void handle_fp_2src_double(DisasContext *s, int opcode,
4756 int rd, int rn, int rm)
4758 TCGv_i64 tcg_op1;
4759 TCGv_i64 tcg_op2;
4760 TCGv_i64 tcg_res;
4761 TCGv_ptr fpst;
4763 tcg_res = tcg_temp_new_i64();
4764 fpst = get_fpstatus_ptr();
4765 tcg_op1 = read_fp_dreg(s, rn);
4766 tcg_op2 = read_fp_dreg(s, rm);
4768 switch (opcode) {
4769 case 0x0: /* FMUL */
4770 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4771 break;
4772 case 0x1: /* FDIV */
4773 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4774 break;
4775 case 0x2: /* FADD */
4776 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4777 break;
4778 case 0x3: /* FSUB */
4779 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4780 break;
4781 case 0x4: /* FMAX */
4782 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4783 break;
4784 case 0x5: /* FMIN */
4785 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4786 break;
4787 case 0x6: /* FMAXNM */
4788 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4789 break;
4790 case 0x7: /* FMINNM */
4791 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4792 break;
4793 case 0x8: /* FNMUL */
4794 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4795 gen_helper_vfp_negd(tcg_res, tcg_res);
4796 break;
4799 write_fp_dreg(s, rd, tcg_res);
4801 tcg_temp_free_ptr(fpst);
4802 tcg_temp_free_i64(tcg_op1);
4803 tcg_temp_free_i64(tcg_op2);
4804 tcg_temp_free_i64(tcg_res);
4807 /* C3.6.26 Floating point data-processing (2 source)
4808 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4809 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4810 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4811 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4813 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4815 int type = extract32(insn, 22, 2);
4816 int rd = extract32(insn, 0, 5);
4817 int rn = extract32(insn, 5, 5);
4818 int rm = extract32(insn, 16, 5);
4819 int opcode = extract32(insn, 12, 4);
4821 if (opcode > 8) {
4822 unallocated_encoding(s);
4823 return;
4826 switch (type) {
4827 case 0:
4828 if (!fp_access_check(s)) {
4829 return;
4831 handle_fp_2src_single(s, opcode, rd, rn, rm);
4832 break;
4833 case 1:
4834 if (!fp_access_check(s)) {
4835 return;
4837 handle_fp_2src_double(s, opcode, rd, rn, rm);
4838 break;
4839 default:
4840 unallocated_encoding(s);
4844 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4845 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4846 int rd, int rn, int rm, int ra)
4848 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4849 TCGv_i32 tcg_res = tcg_temp_new_i32();
4850 TCGv_ptr fpst = get_fpstatus_ptr();
4852 tcg_op1 = read_fp_sreg(s, rn);
4853 tcg_op2 = read_fp_sreg(s, rm);
4854 tcg_op3 = read_fp_sreg(s, ra);
4856 /* These are fused multiply-add, and must be done as one
4857 * floating point operation with no rounding between the
4858 * multiplication and addition steps.
4859 * NB that doing the negations here as separate steps is
4860 * correct : an input NaN should come out with its sign bit
4861 * flipped if it is a negated-input.
4863 if (o1 == true) {
4864 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4867 if (o0 != o1) {
4868 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4871 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4873 write_fp_sreg(s, rd, tcg_res);
4875 tcg_temp_free_ptr(fpst);
4876 tcg_temp_free_i32(tcg_op1);
4877 tcg_temp_free_i32(tcg_op2);
4878 tcg_temp_free_i32(tcg_op3);
4879 tcg_temp_free_i32(tcg_res);
4882 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4883 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4884 int rd, int rn, int rm, int ra)
4886 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4887 TCGv_i64 tcg_res = tcg_temp_new_i64();
4888 TCGv_ptr fpst = get_fpstatus_ptr();
4890 tcg_op1 = read_fp_dreg(s, rn);
4891 tcg_op2 = read_fp_dreg(s, rm);
4892 tcg_op3 = read_fp_dreg(s, ra);
4894 /* These are fused multiply-add, and must be done as one
4895 * floating point operation with no rounding between the
4896 * multiplication and addition steps.
4897 * NB that doing the negations here as separate steps is
4898 * correct : an input NaN should come out with its sign bit
4899 * flipped if it is a negated-input.
4901 if (o1 == true) {
4902 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4905 if (o0 != o1) {
4906 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4909 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4911 write_fp_dreg(s, rd, tcg_res);
4913 tcg_temp_free_ptr(fpst);
4914 tcg_temp_free_i64(tcg_op1);
4915 tcg_temp_free_i64(tcg_op2);
4916 tcg_temp_free_i64(tcg_op3);
4917 tcg_temp_free_i64(tcg_res);
4920 /* C3.6.27 Floating point data-processing (3 source)
4921 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4922 * +---+---+---+-----------+------+----+------+----+------+------+------+
4923 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4924 * +---+---+---+-----------+------+----+------+----+------+------+------+
4926 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4928 int type = extract32(insn, 22, 2);
4929 int rd = extract32(insn, 0, 5);
4930 int rn = extract32(insn, 5, 5);
4931 int ra = extract32(insn, 10, 5);
4932 int rm = extract32(insn, 16, 5);
4933 bool o0 = extract32(insn, 15, 1);
4934 bool o1 = extract32(insn, 21, 1);
4936 switch (type) {
4937 case 0:
4938 if (!fp_access_check(s)) {
4939 return;
4941 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4942 break;
4943 case 1:
4944 if (!fp_access_check(s)) {
4945 return;
4947 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4948 break;
4949 default:
4950 unallocated_encoding(s);
4954 /* C3.6.28 Floating point immediate
4955 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4956 * +---+---+---+-----------+------+---+------------+-------+------+------+
4957 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4958 * +---+---+---+-----------+------+---+------------+-------+------+------+
4960 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4962 int rd = extract32(insn, 0, 5);
4963 int imm8 = extract32(insn, 13, 8);
4964 int is_double = extract32(insn, 22, 2);
4965 uint64_t imm;
4966 TCGv_i64 tcg_res;
4968 if (is_double > 1) {
4969 unallocated_encoding(s);
4970 return;
4973 if (!fp_access_check(s)) {
4974 return;
4977 /* The imm8 encodes the sign bit, enough bits to represent
4978 * an exponent in the range 01....1xx to 10....0xx,
4979 * and the most significant 4 bits of the mantissa; see
4980 * VFPExpandImm() in the v8 ARM ARM.
4982 if (is_double) {
4983 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4984 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
4985 extract32(imm8, 0, 6);
4986 imm <<= 48;
4987 } else {
4988 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4989 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
4990 (extract32(imm8, 0, 6) << 3);
4991 imm <<= 16;
4994 tcg_res = tcg_const_i64(imm);
4995 write_fp_dreg(s, rd, tcg_res);
4996 tcg_temp_free_i64(tcg_res);
4999 /* Handle floating point <=> fixed point conversions. Note that we can
5000 * also deal with fp <=> integer conversions as a special case (scale == 64)
5001 * OPTME: consider handling that special case specially or at least skipping
5002 * the call to scalbn in the helpers for zero shifts.
5004 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5005 bool itof, int rmode, int scale, int sf, int type)
5007 bool is_signed = !(opcode & 1);
5008 bool is_double = type;
5009 TCGv_ptr tcg_fpstatus;
5010 TCGv_i32 tcg_shift;
5012 tcg_fpstatus = get_fpstatus_ptr();
5014 tcg_shift = tcg_const_i32(64 - scale);
5016 if (itof) {
5017 TCGv_i64 tcg_int = cpu_reg(s, rn);
5018 if (!sf) {
5019 TCGv_i64 tcg_extend = new_tmp_a64(s);
5021 if (is_signed) {
5022 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5023 } else {
5024 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5027 tcg_int = tcg_extend;
5030 if (is_double) {
5031 TCGv_i64 tcg_double = tcg_temp_new_i64();
5032 if (is_signed) {
5033 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5034 tcg_shift, tcg_fpstatus);
5035 } else {
5036 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5037 tcg_shift, tcg_fpstatus);
5039 write_fp_dreg(s, rd, tcg_double);
5040 tcg_temp_free_i64(tcg_double);
5041 } else {
5042 TCGv_i32 tcg_single = tcg_temp_new_i32();
5043 if (is_signed) {
5044 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5045 tcg_shift, tcg_fpstatus);
5046 } else {
5047 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5048 tcg_shift, tcg_fpstatus);
5050 write_fp_sreg(s, rd, tcg_single);
5051 tcg_temp_free_i32(tcg_single);
5053 } else {
5054 TCGv_i64 tcg_int = cpu_reg(s, rd);
5055 TCGv_i32 tcg_rmode;
5057 if (extract32(opcode, 2, 1)) {
5058 /* There are too many rounding modes to all fit into rmode,
5059 * so FCVTA[US] is a special case.
5061 rmode = FPROUNDING_TIEAWAY;
5064 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5066 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5068 if (is_double) {
5069 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
5070 if (is_signed) {
5071 if (!sf) {
5072 gen_helper_vfp_tosld(tcg_int, tcg_double,
5073 tcg_shift, tcg_fpstatus);
5074 } else {
5075 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5076 tcg_shift, tcg_fpstatus);
5078 } else {
5079 if (!sf) {
5080 gen_helper_vfp_tould(tcg_int, tcg_double,
5081 tcg_shift, tcg_fpstatus);
5082 } else {
5083 gen_helper_vfp_touqd(tcg_int, tcg_double,
5084 tcg_shift, tcg_fpstatus);
5087 tcg_temp_free_i64(tcg_double);
5088 } else {
5089 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
5090 if (sf) {
5091 if (is_signed) {
5092 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5093 tcg_shift, tcg_fpstatus);
5094 } else {
5095 gen_helper_vfp_touqs(tcg_int, tcg_single,
5096 tcg_shift, tcg_fpstatus);
5098 } else {
5099 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5100 if (is_signed) {
5101 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5102 tcg_shift, tcg_fpstatus);
5103 } else {
5104 gen_helper_vfp_touls(tcg_dest, tcg_single,
5105 tcg_shift, tcg_fpstatus);
5107 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5108 tcg_temp_free_i32(tcg_dest);
5110 tcg_temp_free_i32(tcg_single);
5113 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5114 tcg_temp_free_i32(tcg_rmode);
5116 if (!sf) {
5117 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5121 tcg_temp_free_ptr(tcg_fpstatus);
5122 tcg_temp_free_i32(tcg_shift);
5125 /* C3.6.29 Floating point <-> fixed point conversions
5126 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5127 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5128 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5129 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5131 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5133 int rd = extract32(insn, 0, 5);
5134 int rn = extract32(insn, 5, 5);
5135 int scale = extract32(insn, 10, 6);
5136 int opcode = extract32(insn, 16, 3);
5137 int rmode = extract32(insn, 19, 2);
5138 int type = extract32(insn, 22, 2);
5139 bool sbit = extract32(insn, 29, 1);
5140 bool sf = extract32(insn, 31, 1);
5141 bool itof;
5143 if (sbit || (type > 1)
5144 || (!sf && scale < 32)) {
5145 unallocated_encoding(s);
5146 return;
5149 switch ((rmode << 3) | opcode) {
5150 case 0x2: /* SCVTF */
5151 case 0x3: /* UCVTF */
5152 itof = true;
5153 break;
5154 case 0x18: /* FCVTZS */
5155 case 0x19: /* FCVTZU */
5156 itof = false;
5157 break;
5158 default:
5159 unallocated_encoding(s);
5160 return;
5163 if (!fp_access_check(s)) {
5164 return;
5167 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5170 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5172 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5173 * without conversion.
5176 if (itof) {
5177 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5179 switch (type) {
5180 case 0:
5182 /* 32 bit */
5183 TCGv_i64 tmp = tcg_temp_new_i64();
5184 tcg_gen_ext32u_i64(tmp, tcg_rn);
5185 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5186 tcg_gen_movi_i64(tmp, 0);
5187 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5188 tcg_temp_free_i64(tmp);
5189 break;
5191 case 1:
5193 /* 64 bit */
5194 TCGv_i64 tmp = tcg_const_i64(0);
5195 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5196 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5197 tcg_temp_free_i64(tmp);
5198 break;
5200 case 2:
5201 /* 64 bit to top half. */
5202 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5203 break;
5205 } else {
5206 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5208 switch (type) {
5209 case 0:
5210 /* 32 bit */
5211 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5212 break;
5213 case 1:
5214 /* 64 bit */
5215 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5216 break;
5217 case 2:
5218 /* 64 bits from top half */
5219 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5220 break;
5225 /* C3.6.30 Floating point <-> integer conversions
5226 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5227 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5228 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5229 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5231 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5233 int rd = extract32(insn, 0, 5);
5234 int rn = extract32(insn, 5, 5);
5235 int opcode = extract32(insn, 16, 3);
5236 int rmode = extract32(insn, 19, 2);
5237 int type = extract32(insn, 22, 2);
5238 bool sbit = extract32(insn, 29, 1);
5239 bool sf = extract32(insn, 31, 1);
5241 if (sbit) {
5242 unallocated_encoding(s);
5243 return;
5246 if (opcode > 5) {
5247 /* FMOV */
5248 bool itof = opcode & 1;
5250 if (rmode >= 2) {
5251 unallocated_encoding(s);
5252 return;
5255 switch (sf << 3 | type << 1 | rmode) {
5256 case 0x0: /* 32 bit */
5257 case 0xa: /* 64 bit */
5258 case 0xd: /* 64 bit to top half of quad */
5259 break;
5260 default:
5261 /* all other sf/type/rmode combinations are invalid */
5262 unallocated_encoding(s);
5263 break;
5266 if (!fp_access_check(s)) {
5267 return;
5269 handle_fmov(s, rd, rn, type, itof);
5270 } else {
5271 /* actual FP conversions */
5272 bool itof = extract32(opcode, 1, 1);
5274 if (type > 1 || (rmode != 0 && opcode > 1)) {
5275 unallocated_encoding(s);
5276 return;
5279 if (!fp_access_check(s)) {
5280 return;
5282 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5286 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5287 * 31 30 29 28 25 24 0
5288 * +---+---+---+---------+-----------------------------+
5289 * | | 0 | | 1 1 1 1 | |
5290 * +---+---+---+---------+-----------------------------+
5292 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5294 if (extract32(insn, 24, 1)) {
5295 /* Floating point data-processing (3 source) */
5296 disas_fp_3src(s, insn);
5297 } else if (extract32(insn, 21, 1) == 0) {
5298 /* Floating point to fixed point conversions */
5299 disas_fp_fixed_conv(s, insn);
5300 } else {
5301 switch (extract32(insn, 10, 2)) {
5302 case 1:
5303 /* Floating point conditional compare */
5304 disas_fp_ccomp(s, insn);
5305 break;
5306 case 2:
5307 /* Floating point data-processing (2 source) */
5308 disas_fp_2src(s, insn);
5309 break;
5310 case 3:
5311 /* Floating point conditional select */
5312 disas_fp_csel(s, insn);
5313 break;
5314 case 0:
5315 switch (ctz32(extract32(insn, 12, 4))) {
5316 case 0: /* [15:12] == xxx1 */
5317 /* Floating point immediate */
5318 disas_fp_imm(s, insn);
5319 break;
5320 case 1: /* [15:12] == xx10 */
5321 /* Floating point compare */
5322 disas_fp_compare(s, insn);
5323 break;
5324 case 2: /* [15:12] == x100 */
5325 /* Floating point data-processing (1 source) */
5326 disas_fp_1src(s, insn);
5327 break;
5328 case 3: /* [15:12] == 1000 */
5329 unallocated_encoding(s);
5330 break;
5331 default: /* [15:12] == 0000 */
5332 /* Floating point <-> integer conversions */
5333 disas_fp_int_conv(s, insn);
5334 break;
5336 break;
5341 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5342 int pos)
5344 /* Extract 64 bits from the middle of two concatenated 64 bit
5345 * vector register slices left:right. The extracted bits start
5346 * at 'pos' bits into the right (least significant) side.
5347 * We return the result in tcg_right, and guarantee not to
5348 * trash tcg_left.
5350 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5351 assert(pos > 0 && pos < 64);
5353 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5354 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5355 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5357 tcg_temp_free_i64(tcg_tmp);
5360 /* C3.6.1 EXT
5361 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5362 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5363 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5364 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5366 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5368 int is_q = extract32(insn, 30, 1);
5369 int op2 = extract32(insn, 22, 2);
5370 int imm4 = extract32(insn, 11, 4);
5371 int rm = extract32(insn, 16, 5);
5372 int rn = extract32(insn, 5, 5);
5373 int rd = extract32(insn, 0, 5);
5374 int pos = imm4 << 3;
5375 TCGv_i64 tcg_resl, tcg_resh;
5377 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5378 unallocated_encoding(s);
5379 return;
5382 if (!fp_access_check(s)) {
5383 return;
5386 tcg_resh = tcg_temp_new_i64();
5387 tcg_resl = tcg_temp_new_i64();
5389 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5390 * either extracting 128 bits from a 128:128 concatenation, or
5391 * extracting 64 bits from a 64:64 concatenation.
5393 if (!is_q) {
5394 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5395 if (pos != 0) {
5396 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5397 do_ext64(s, tcg_resh, tcg_resl, pos);
5399 tcg_gen_movi_i64(tcg_resh, 0);
5400 } else {
5401 TCGv_i64 tcg_hh;
5402 typedef struct {
5403 int reg;
5404 int elt;
5405 } EltPosns;
5406 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5407 EltPosns *elt = eltposns;
5409 if (pos >= 64) {
5410 elt++;
5411 pos -= 64;
5414 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5415 elt++;
5416 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5417 elt++;
5418 if (pos != 0) {
5419 do_ext64(s, tcg_resh, tcg_resl, pos);
5420 tcg_hh = tcg_temp_new_i64();
5421 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5422 do_ext64(s, tcg_hh, tcg_resh, pos);
5423 tcg_temp_free_i64(tcg_hh);
5427 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5428 tcg_temp_free_i64(tcg_resl);
5429 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5430 tcg_temp_free_i64(tcg_resh);
5433 /* C3.6.2 TBL/TBX
5434 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5435 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5436 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5437 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5439 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5441 int op2 = extract32(insn, 22, 2);
5442 int is_q = extract32(insn, 30, 1);
5443 int rm = extract32(insn, 16, 5);
5444 int rn = extract32(insn, 5, 5);
5445 int rd = extract32(insn, 0, 5);
5446 int is_tblx = extract32(insn, 12, 1);
5447 int len = extract32(insn, 13, 2);
5448 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5449 TCGv_i32 tcg_regno, tcg_numregs;
5451 if (op2 != 0) {
5452 unallocated_encoding(s);
5453 return;
5456 if (!fp_access_check(s)) {
5457 return;
5460 /* This does a table lookup: for every byte element in the input
5461 * we index into a table formed from up to four vector registers,
5462 * and then the output is the result of the lookups. Our helper
5463 * function does the lookup operation for a single 64 bit part of
5464 * the input.
5466 tcg_resl = tcg_temp_new_i64();
5467 tcg_resh = tcg_temp_new_i64();
5469 if (is_tblx) {
5470 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5471 } else {
5472 tcg_gen_movi_i64(tcg_resl, 0);
5474 if (is_tblx && is_q) {
5475 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5476 } else {
5477 tcg_gen_movi_i64(tcg_resh, 0);
5480 tcg_idx = tcg_temp_new_i64();
5481 tcg_regno = tcg_const_i32(rn);
5482 tcg_numregs = tcg_const_i32(len + 1);
5483 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5484 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5485 tcg_regno, tcg_numregs);
5486 if (is_q) {
5487 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5488 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5489 tcg_regno, tcg_numregs);
5491 tcg_temp_free_i64(tcg_idx);
5492 tcg_temp_free_i32(tcg_regno);
5493 tcg_temp_free_i32(tcg_numregs);
5495 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5496 tcg_temp_free_i64(tcg_resl);
5497 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5498 tcg_temp_free_i64(tcg_resh);
5501 /* C3.6.3 ZIP/UZP/TRN
5502 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5503 * +---+---+-------------+------+---+------+---+------------------+------+
5504 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5505 * +---+---+-------------+------+---+------+---+------------------+------+
5507 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5509 int rd = extract32(insn, 0, 5);
5510 int rn = extract32(insn, 5, 5);
5511 int rm = extract32(insn, 16, 5);
5512 int size = extract32(insn, 22, 2);
5513 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5514 * bit 2 indicates 1 vs 2 variant of the insn.
5516 int opcode = extract32(insn, 12, 2);
5517 bool part = extract32(insn, 14, 1);
5518 bool is_q = extract32(insn, 30, 1);
5519 int esize = 8 << size;
5520 int i, ofs;
5521 int datasize = is_q ? 128 : 64;
5522 int elements = datasize / esize;
5523 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5525 if (opcode == 0 || (size == 3 && !is_q)) {
5526 unallocated_encoding(s);
5527 return;
5530 if (!fp_access_check(s)) {
5531 return;
5534 tcg_resl = tcg_const_i64(0);
5535 tcg_resh = tcg_const_i64(0);
5536 tcg_res = tcg_temp_new_i64();
5538 for (i = 0; i < elements; i++) {
5539 switch (opcode) {
5540 case 1: /* UZP1/2 */
5542 int midpoint = elements / 2;
5543 if (i < midpoint) {
5544 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5545 } else {
5546 read_vec_element(s, tcg_res, rm,
5547 2 * (i - midpoint) + part, size);
5549 break;
5551 case 2: /* TRN1/2 */
5552 if (i & 1) {
5553 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5554 } else {
5555 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5557 break;
5558 case 3: /* ZIP1/2 */
5560 int base = part * elements / 2;
5561 if (i & 1) {
5562 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5563 } else {
5564 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5566 break;
5568 default:
5569 g_assert_not_reached();
5572 ofs = i * esize;
5573 if (ofs < 64) {
5574 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5575 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5576 } else {
5577 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5578 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5582 tcg_temp_free_i64(tcg_res);
5584 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5585 tcg_temp_free_i64(tcg_resl);
5586 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5587 tcg_temp_free_i64(tcg_resh);
5590 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5591 int opc, bool is_min, TCGv_ptr fpst)
5593 /* Helper function for disas_simd_across_lanes: do a single precision
5594 * min/max operation on the specified two inputs,
5595 * and return the result in tcg_elt1.
5597 if (opc == 0xc) {
5598 if (is_min) {
5599 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5600 } else {
5601 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5603 } else {
5604 assert(opc == 0xf);
5605 if (is_min) {
5606 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5607 } else {
5608 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5613 /* C3.6.4 AdvSIMD across lanes
5614 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5615 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5616 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5617 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5619 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5621 int rd = extract32(insn, 0, 5);
5622 int rn = extract32(insn, 5, 5);
5623 int size = extract32(insn, 22, 2);
5624 int opcode = extract32(insn, 12, 5);
5625 bool is_q = extract32(insn, 30, 1);
5626 bool is_u = extract32(insn, 29, 1);
5627 bool is_fp = false;
5628 bool is_min = false;
5629 int esize;
5630 int elements;
5631 int i;
5632 TCGv_i64 tcg_res, tcg_elt;
5634 switch (opcode) {
5635 case 0x1b: /* ADDV */
5636 if (is_u) {
5637 unallocated_encoding(s);
5638 return;
5640 /* fall through */
5641 case 0x3: /* SADDLV, UADDLV */
5642 case 0xa: /* SMAXV, UMAXV */
5643 case 0x1a: /* SMINV, UMINV */
5644 if (size == 3 || (size == 2 && !is_q)) {
5645 unallocated_encoding(s);
5646 return;
5648 break;
5649 case 0xc: /* FMAXNMV, FMINNMV */
5650 case 0xf: /* FMAXV, FMINV */
5651 if (!is_u || !is_q || extract32(size, 0, 1)) {
5652 unallocated_encoding(s);
5653 return;
5655 /* Bit 1 of size field encodes min vs max, and actual size is always
5656 * 32 bits: adjust the size variable so following code can rely on it
5658 is_min = extract32(size, 1, 1);
5659 is_fp = true;
5660 size = 2;
5661 break;
5662 default:
5663 unallocated_encoding(s);
5664 return;
5667 if (!fp_access_check(s)) {
5668 return;
5671 esize = 8 << size;
5672 elements = (is_q ? 128 : 64) / esize;
5674 tcg_res = tcg_temp_new_i64();
5675 tcg_elt = tcg_temp_new_i64();
5677 /* These instructions operate across all lanes of a vector
5678 * to produce a single result. We can guarantee that a 64
5679 * bit intermediate is sufficient:
5680 * + for [US]ADDLV the maximum element size is 32 bits, and
5681 * the result type is 64 bits
5682 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5683 * same as the element size, which is 32 bits at most
5684 * For the integer operations we can choose to work at 64
5685 * or 32 bits and truncate at the end; for simplicity
5686 * we use 64 bits always. The floating point
5687 * ops do require 32 bit intermediates, though.
5689 if (!is_fp) {
5690 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5692 for (i = 1; i < elements; i++) {
5693 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5695 switch (opcode) {
5696 case 0x03: /* SADDLV / UADDLV */
5697 case 0x1b: /* ADDV */
5698 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5699 break;
5700 case 0x0a: /* SMAXV / UMAXV */
5701 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5702 tcg_res,
5703 tcg_res, tcg_elt, tcg_res, tcg_elt);
5704 break;
5705 case 0x1a: /* SMINV / UMINV */
5706 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5707 tcg_res,
5708 tcg_res, tcg_elt, tcg_res, tcg_elt);
5709 break;
5710 break;
5711 default:
5712 g_assert_not_reached();
5716 } else {
5717 /* Floating point ops which work on 32 bit (single) intermediates.
5718 * Note that correct NaN propagation requires that we do these
5719 * operations in exactly the order specified by the pseudocode.
5721 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5722 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5723 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5724 TCGv_ptr fpst = get_fpstatus_ptr();
5726 assert(esize == 32);
5727 assert(elements == 4);
5729 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5730 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5731 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5732 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5734 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5736 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5737 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5738 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5739 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5741 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5743 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5745 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5746 tcg_temp_free_i32(tcg_elt1);
5747 tcg_temp_free_i32(tcg_elt2);
5748 tcg_temp_free_i32(tcg_elt3);
5749 tcg_temp_free_ptr(fpst);
5752 tcg_temp_free_i64(tcg_elt);
5754 /* Now truncate the result to the width required for the final output */
5755 if (opcode == 0x03) {
5756 /* SADDLV, UADDLV: result is 2*esize */
5757 size++;
5760 switch (size) {
5761 case 0:
5762 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5763 break;
5764 case 1:
5765 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5766 break;
5767 case 2:
5768 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5769 break;
5770 case 3:
5771 break;
5772 default:
5773 g_assert_not_reached();
5776 write_fp_dreg(s, rd, tcg_res);
5777 tcg_temp_free_i64(tcg_res);
5780 /* C6.3.31 DUP (Element, Vector)
5782 * 31 30 29 21 20 16 15 10 9 5 4 0
5783 * +---+---+-------------------+--------+-------------+------+------+
5784 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5785 * +---+---+-------------------+--------+-------------+------+------+
5787 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5789 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5790 int imm5)
5792 int size = ctz32(imm5);
5793 int esize = 8 << size;
5794 int elements = (is_q ? 128 : 64) / esize;
5795 int index, i;
5796 TCGv_i64 tmp;
5798 if (size > 3 || (size == 3 && !is_q)) {
5799 unallocated_encoding(s);
5800 return;
5803 if (!fp_access_check(s)) {
5804 return;
5807 index = imm5 >> (size + 1);
5809 tmp = tcg_temp_new_i64();
5810 read_vec_element(s, tmp, rn, index, size);
5812 for (i = 0; i < elements; i++) {
5813 write_vec_element(s, tmp, rd, i, size);
5816 if (!is_q) {
5817 clear_vec_high(s, rd);
5820 tcg_temp_free_i64(tmp);
5823 /* C6.3.31 DUP (element, scalar)
5824 * 31 21 20 16 15 10 9 5 4 0
5825 * +-----------------------+--------+-------------+------+------+
5826 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5827 * +-----------------------+--------+-------------+------+------+
5829 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5830 int imm5)
5832 int size = ctz32(imm5);
5833 int index;
5834 TCGv_i64 tmp;
5836 if (size > 3) {
5837 unallocated_encoding(s);
5838 return;
5841 if (!fp_access_check(s)) {
5842 return;
5845 index = imm5 >> (size + 1);
5847 /* This instruction just extracts the specified element and
5848 * zero-extends it into the bottom of the destination register.
5850 tmp = tcg_temp_new_i64();
5851 read_vec_element(s, tmp, rn, index, size);
5852 write_fp_dreg(s, rd, tmp);
5853 tcg_temp_free_i64(tmp);
5856 /* C6.3.32 DUP (General)
5858 * 31 30 29 21 20 16 15 10 9 5 4 0
5859 * +---+---+-------------------+--------+-------------+------+------+
5860 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5861 * +---+---+-------------------+--------+-------------+------+------+
5863 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5865 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5866 int imm5)
5868 int size = ctz32(imm5);
5869 int esize = 8 << size;
5870 int elements = (is_q ? 128 : 64)/esize;
5871 int i = 0;
5873 if (size > 3 || ((size == 3) && !is_q)) {
5874 unallocated_encoding(s);
5875 return;
5878 if (!fp_access_check(s)) {
5879 return;
5882 for (i = 0; i < elements; i++) {
5883 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5885 if (!is_q) {
5886 clear_vec_high(s, rd);
5890 /* C6.3.150 INS (Element)
5892 * 31 21 20 16 15 14 11 10 9 5 4 0
5893 * +-----------------------+--------+------------+---+------+------+
5894 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5895 * +-----------------------+--------+------------+---+------+------+
5897 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5898 * index: encoded in imm5<4:size+1>
5900 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5901 int imm4, int imm5)
5903 int size = ctz32(imm5);
5904 int src_index, dst_index;
5905 TCGv_i64 tmp;
5907 if (size > 3) {
5908 unallocated_encoding(s);
5909 return;
5912 if (!fp_access_check(s)) {
5913 return;
5916 dst_index = extract32(imm5, 1+size, 5);
5917 src_index = extract32(imm4, size, 4);
5919 tmp = tcg_temp_new_i64();
5921 read_vec_element(s, tmp, rn, src_index, size);
5922 write_vec_element(s, tmp, rd, dst_index, size);
5924 tcg_temp_free_i64(tmp);
5928 /* C6.3.151 INS (General)
5930 * 31 21 20 16 15 10 9 5 4 0
5931 * +-----------------------+--------+-------------+------+------+
5932 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5933 * +-----------------------+--------+-------------+------+------+
5935 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5936 * index: encoded in imm5<4:size+1>
5938 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5940 int size = ctz32(imm5);
5941 int idx;
5943 if (size > 3) {
5944 unallocated_encoding(s);
5945 return;
5948 if (!fp_access_check(s)) {
5949 return;
5952 idx = extract32(imm5, 1 + size, 4 - size);
5953 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5957 * C6.3.321 UMOV (General)
5958 * C6.3.237 SMOV (General)
5960 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5961 * +---+---+-------------------+--------+-------------+------+------+
5962 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
5963 * +---+---+-------------------+--------+-------------+------+------+
5965 * U: unsigned when set
5966 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5968 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
5969 int rn, int rd, int imm5)
5971 int size = ctz32(imm5);
5972 int element;
5973 TCGv_i64 tcg_rd;
5975 /* Check for UnallocatedEncodings */
5976 if (is_signed) {
5977 if (size > 2 || (size == 2 && !is_q)) {
5978 unallocated_encoding(s);
5979 return;
5981 } else {
5982 if (size > 3
5983 || (size < 3 && is_q)
5984 || (size == 3 && !is_q)) {
5985 unallocated_encoding(s);
5986 return;
5990 if (!fp_access_check(s)) {
5991 return;
5994 element = extract32(imm5, 1+size, 4);
5996 tcg_rd = cpu_reg(s, rd);
5997 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
5998 if (is_signed && !is_q) {
5999 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6003 /* C3.6.5 AdvSIMD copy
6004 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6005 * +---+---+----+-----------------+------+---+------+---+------+------+
6006 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6007 * +---+---+----+-----------------+------+---+------+---+------+------+
6009 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6011 int rd = extract32(insn, 0, 5);
6012 int rn = extract32(insn, 5, 5);
6013 int imm4 = extract32(insn, 11, 4);
6014 int op = extract32(insn, 29, 1);
6015 int is_q = extract32(insn, 30, 1);
6016 int imm5 = extract32(insn, 16, 5);
6018 if (op) {
6019 if (is_q) {
6020 /* INS (element) */
6021 handle_simd_inse(s, rd, rn, imm4, imm5);
6022 } else {
6023 unallocated_encoding(s);
6025 } else {
6026 switch (imm4) {
6027 case 0:
6028 /* DUP (element - vector) */
6029 handle_simd_dupe(s, is_q, rd, rn, imm5);
6030 break;
6031 case 1:
6032 /* DUP (general) */
6033 handle_simd_dupg(s, is_q, rd, rn, imm5);
6034 break;
6035 case 3:
6036 if (is_q) {
6037 /* INS (general) */
6038 handle_simd_insg(s, rd, rn, imm5);
6039 } else {
6040 unallocated_encoding(s);
6042 break;
6043 case 5:
6044 case 7:
6045 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6046 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6047 break;
6048 default:
6049 unallocated_encoding(s);
6050 break;
6055 /* C3.6.6 AdvSIMD modified immediate
6056 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6057 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6058 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6059 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6061 * There are a number of operations that can be carried out here:
6062 * MOVI - move (shifted) imm into register
6063 * MVNI - move inverted (shifted) imm into register
6064 * ORR - bitwise OR of (shifted) imm with register
6065 * BIC - bitwise clear of (shifted) imm with register
6067 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6069 int rd = extract32(insn, 0, 5);
6070 int cmode = extract32(insn, 12, 4);
6071 int cmode_3_1 = extract32(cmode, 1, 3);
6072 int cmode_0 = extract32(cmode, 0, 1);
6073 int o2 = extract32(insn, 11, 1);
6074 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6075 bool is_neg = extract32(insn, 29, 1);
6076 bool is_q = extract32(insn, 30, 1);
6077 uint64_t imm = 0;
6078 TCGv_i64 tcg_rd, tcg_imm;
6079 int i;
6081 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6082 unallocated_encoding(s);
6083 return;
6086 if (!fp_access_check(s)) {
6087 return;
6090 /* See AdvSIMDExpandImm() in ARM ARM */
6091 switch (cmode_3_1) {
6092 case 0: /* Replicate(Zeros(24):imm8, 2) */
6093 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6094 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6095 case 3: /* Replicate(imm8:Zeros(24), 2) */
6097 int shift = cmode_3_1 * 8;
6098 imm = bitfield_replicate(abcdefgh << shift, 32);
6099 break;
6101 case 4: /* Replicate(Zeros(8):imm8, 4) */
6102 case 5: /* Replicate(imm8:Zeros(8), 4) */
6104 int shift = (cmode_3_1 & 0x1) * 8;
6105 imm = bitfield_replicate(abcdefgh << shift, 16);
6106 break;
6108 case 6:
6109 if (cmode_0) {
6110 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6111 imm = (abcdefgh << 16) | 0xffff;
6112 } else {
6113 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6114 imm = (abcdefgh << 8) | 0xff;
6116 imm = bitfield_replicate(imm, 32);
6117 break;
6118 case 7:
6119 if (!cmode_0 && !is_neg) {
6120 imm = bitfield_replicate(abcdefgh, 8);
6121 } else if (!cmode_0 && is_neg) {
6122 int i;
6123 imm = 0;
6124 for (i = 0; i < 8; i++) {
6125 if ((abcdefgh) & (1 << i)) {
6126 imm |= 0xffULL << (i * 8);
6129 } else if (cmode_0) {
6130 if (is_neg) {
6131 imm = (abcdefgh & 0x3f) << 48;
6132 if (abcdefgh & 0x80) {
6133 imm |= 0x8000000000000000ULL;
6135 if (abcdefgh & 0x40) {
6136 imm |= 0x3fc0000000000000ULL;
6137 } else {
6138 imm |= 0x4000000000000000ULL;
6140 } else {
6141 imm = (abcdefgh & 0x3f) << 19;
6142 if (abcdefgh & 0x80) {
6143 imm |= 0x80000000;
6145 if (abcdefgh & 0x40) {
6146 imm |= 0x3e000000;
6147 } else {
6148 imm |= 0x40000000;
6150 imm |= (imm << 32);
6153 break;
6156 if (cmode_3_1 != 7 && is_neg) {
6157 imm = ~imm;
6160 tcg_imm = tcg_const_i64(imm);
6161 tcg_rd = new_tmp_a64(s);
6163 for (i = 0; i < 2; i++) {
6164 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6166 if (i == 1 && !is_q) {
6167 /* non-quad ops clear high half of vector */
6168 tcg_gen_movi_i64(tcg_rd, 0);
6169 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6170 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6171 if (is_neg) {
6172 /* AND (BIC) */
6173 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6174 } else {
6175 /* ORR */
6176 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6178 } else {
6179 /* MOVI */
6180 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6182 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6185 tcg_temp_free_i64(tcg_imm);
6188 /* C3.6.7 AdvSIMD scalar copy
6189 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6190 * +-----+----+-----------------+------+---+------+---+------+------+
6191 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6192 * +-----+----+-----------------+------+---+------+---+------+------+
6194 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6196 int rd = extract32(insn, 0, 5);
6197 int rn = extract32(insn, 5, 5);
6198 int imm4 = extract32(insn, 11, 4);
6199 int imm5 = extract32(insn, 16, 5);
6200 int op = extract32(insn, 29, 1);
6202 if (op != 0 || imm4 != 0) {
6203 unallocated_encoding(s);
6204 return;
6207 /* DUP (element, scalar) */
6208 handle_simd_dupes(s, rd, rn, imm5);
6211 /* C3.6.8 AdvSIMD scalar pairwise
6212 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6213 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6214 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6215 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6217 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6219 int u = extract32(insn, 29, 1);
6220 int size = extract32(insn, 22, 2);
6221 int opcode = extract32(insn, 12, 5);
6222 int rn = extract32(insn, 5, 5);
6223 int rd = extract32(insn, 0, 5);
6224 TCGv_ptr fpst;
6226 /* For some ops (the FP ones), size[1] is part of the encoding.
6227 * For ADDP strictly it is not but size[1] is always 1 for valid
6228 * encodings.
6230 opcode |= (extract32(size, 1, 1) << 5);
6232 switch (opcode) {
6233 case 0x3b: /* ADDP */
6234 if (u || size != 3) {
6235 unallocated_encoding(s);
6236 return;
6238 if (!fp_access_check(s)) {
6239 return;
6242 TCGV_UNUSED_PTR(fpst);
6243 break;
6244 case 0xc: /* FMAXNMP */
6245 case 0xd: /* FADDP */
6246 case 0xf: /* FMAXP */
6247 case 0x2c: /* FMINNMP */
6248 case 0x2f: /* FMINP */
6249 /* FP op, size[0] is 32 or 64 bit */
6250 if (!u) {
6251 unallocated_encoding(s);
6252 return;
6254 if (!fp_access_check(s)) {
6255 return;
6258 size = extract32(size, 0, 1) ? 3 : 2;
6259 fpst = get_fpstatus_ptr();
6260 break;
6261 default:
6262 unallocated_encoding(s);
6263 return;
6266 if (size == 3) {
6267 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6268 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6269 TCGv_i64 tcg_res = tcg_temp_new_i64();
6271 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6272 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6274 switch (opcode) {
6275 case 0x3b: /* ADDP */
6276 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6277 break;
6278 case 0xc: /* FMAXNMP */
6279 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6280 break;
6281 case 0xd: /* FADDP */
6282 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6283 break;
6284 case 0xf: /* FMAXP */
6285 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6286 break;
6287 case 0x2c: /* FMINNMP */
6288 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6289 break;
6290 case 0x2f: /* FMINP */
6291 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6292 break;
6293 default:
6294 g_assert_not_reached();
6297 write_fp_dreg(s, rd, tcg_res);
6299 tcg_temp_free_i64(tcg_op1);
6300 tcg_temp_free_i64(tcg_op2);
6301 tcg_temp_free_i64(tcg_res);
6302 } else {
6303 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6304 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6305 TCGv_i32 tcg_res = tcg_temp_new_i32();
6307 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6308 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6310 switch (opcode) {
6311 case 0xc: /* FMAXNMP */
6312 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6313 break;
6314 case 0xd: /* FADDP */
6315 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6316 break;
6317 case 0xf: /* FMAXP */
6318 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6319 break;
6320 case 0x2c: /* FMINNMP */
6321 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6322 break;
6323 case 0x2f: /* FMINP */
6324 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6325 break;
6326 default:
6327 g_assert_not_reached();
6330 write_fp_sreg(s, rd, tcg_res);
6332 tcg_temp_free_i32(tcg_op1);
6333 tcg_temp_free_i32(tcg_op2);
6334 tcg_temp_free_i32(tcg_res);
6337 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6338 tcg_temp_free_ptr(fpst);
6343 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6345 * This code is handles the common shifting code and is used by both
6346 * the vector and scalar code.
6348 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6349 TCGv_i64 tcg_rnd, bool accumulate,
6350 bool is_u, int size, int shift)
6352 bool extended_result = false;
6353 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6354 int ext_lshift = 0;
6355 TCGv_i64 tcg_src_hi;
6357 if (round && size == 3) {
6358 extended_result = true;
6359 ext_lshift = 64 - shift;
6360 tcg_src_hi = tcg_temp_new_i64();
6361 } else if (shift == 64) {
6362 if (!accumulate && is_u) {
6363 /* result is zero */
6364 tcg_gen_movi_i64(tcg_res, 0);
6365 return;
6369 /* Deal with the rounding step */
6370 if (round) {
6371 if (extended_result) {
6372 TCGv_i64 tcg_zero = tcg_const_i64(0);
6373 if (!is_u) {
6374 /* take care of sign extending tcg_res */
6375 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6376 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6377 tcg_src, tcg_src_hi,
6378 tcg_rnd, tcg_zero);
6379 } else {
6380 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6381 tcg_src, tcg_zero,
6382 tcg_rnd, tcg_zero);
6384 tcg_temp_free_i64(tcg_zero);
6385 } else {
6386 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6390 /* Now do the shift right */
6391 if (round && extended_result) {
6392 /* extended case, >64 bit precision required */
6393 if (ext_lshift == 0) {
6394 /* special case, only high bits matter */
6395 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6396 } else {
6397 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6398 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6399 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6401 } else {
6402 if (is_u) {
6403 if (shift == 64) {
6404 /* essentially shifting in 64 zeros */
6405 tcg_gen_movi_i64(tcg_src, 0);
6406 } else {
6407 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6409 } else {
6410 if (shift == 64) {
6411 /* effectively extending the sign-bit */
6412 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6413 } else {
6414 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6419 if (accumulate) {
6420 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6421 } else {
6422 tcg_gen_mov_i64(tcg_res, tcg_src);
6425 if (extended_result) {
6426 tcg_temp_free_i64(tcg_src_hi);
6430 /* Common SHL/SLI - Shift left with an optional insert */
6431 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6432 bool insert, int shift)
6434 if (insert) { /* SLI */
6435 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6436 } else { /* SHL */
6437 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6441 /* SRI: shift right with insert */
6442 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6443 int size, int shift)
6445 int esize = 8 << size;
6447 /* shift count same as element size is valid but does nothing;
6448 * special case to avoid potential shift by 64.
6450 if (shift != esize) {
6451 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6452 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6456 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6457 static void handle_scalar_simd_shri(DisasContext *s,
6458 bool is_u, int immh, int immb,
6459 int opcode, int rn, int rd)
6461 const int size = 3;
6462 int immhb = immh << 3 | immb;
6463 int shift = 2 * (8 << size) - immhb;
6464 bool accumulate = false;
6465 bool round = false;
6466 bool insert = false;
6467 TCGv_i64 tcg_rn;
6468 TCGv_i64 tcg_rd;
6469 TCGv_i64 tcg_round;
6471 if (!extract32(immh, 3, 1)) {
6472 unallocated_encoding(s);
6473 return;
6476 if (!fp_access_check(s)) {
6477 return;
6480 switch (opcode) {
6481 case 0x02: /* SSRA / USRA (accumulate) */
6482 accumulate = true;
6483 break;
6484 case 0x04: /* SRSHR / URSHR (rounding) */
6485 round = true;
6486 break;
6487 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6488 accumulate = round = true;
6489 break;
6490 case 0x08: /* SRI */
6491 insert = true;
6492 break;
6495 if (round) {
6496 uint64_t round_const = 1ULL << (shift - 1);
6497 tcg_round = tcg_const_i64(round_const);
6498 } else {
6499 TCGV_UNUSED_I64(tcg_round);
6502 tcg_rn = read_fp_dreg(s, rn);
6503 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6505 if (insert) {
6506 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6507 } else {
6508 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6509 accumulate, is_u, size, shift);
6512 write_fp_dreg(s, rd, tcg_rd);
6514 tcg_temp_free_i64(tcg_rn);
6515 tcg_temp_free_i64(tcg_rd);
6516 if (round) {
6517 tcg_temp_free_i64(tcg_round);
6521 /* SHL/SLI - Scalar shift left */
6522 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6523 int immh, int immb, int opcode,
6524 int rn, int rd)
6526 int size = 32 - clz32(immh) - 1;
6527 int immhb = immh << 3 | immb;
6528 int shift = immhb - (8 << size);
6529 TCGv_i64 tcg_rn = new_tmp_a64(s);
6530 TCGv_i64 tcg_rd = new_tmp_a64(s);
6532 if (!extract32(immh, 3, 1)) {
6533 unallocated_encoding(s);
6534 return;
6537 if (!fp_access_check(s)) {
6538 return;
6541 tcg_rn = read_fp_dreg(s, rn);
6542 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6544 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6546 write_fp_dreg(s, rd, tcg_rd);
6548 tcg_temp_free_i64(tcg_rn);
6549 tcg_temp_free_i64(tcg_rd);
6552 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6553 * (signed/unsigned) narrowing */
6554 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6555 bool is_u_shift, bool is_u_narrow,
6556 int immh, int immb, int opcode,
6557 int rn, int rd)
6559 int immhb = immh << 3 | immb;
6560 int size = 32 - clz32(immh) - 1;
6561 int esize = 8 << size;
6562 int shift = (2 * esize) - immhb;
6563 int elements = is_scalar ? 1 : (64 / esize);
6564 bool round = extract32(opcode, 0, 1);
6565 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6566 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6567 TCGv_i32 tcg_rd_narrowed;
6568 TCGv_i64 tcg_final;
6570 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6571 { gen_helper_neon_narrow_sat_s8,
6572 gen_helper_neon_unarrow_sat8 },
6573 { gen_helper_neon_narrow_sat_s16,
6574 gen_helper_neon_unarrow_sat16 },
6575 { gen_helper_neon_narrow_sat_s32,
6576 gen_helper_neon_unarrow_sat32 },
6577 { NULL, NULL },
6579 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6580 gen_helper_neon_narrow_sat_u8,
6581 gen_helper_neon_narrow_sat_u16,
6582 gen_helper_neon_narrow_sat_u32,
6583 NULL
6585 NeonGenNarrowEnvFn *narrowfn;
6587 int i;
6589 assert(size < 4);
6591 if (extract32(immh, 3, 1)) {
6592 unallocated_encoding(s);
6593 return;
6596 if (!fp_access_check(s)) {
6597 return;
6600 if (is_u_shift) {
6601 narrowfn = unsigned_narrow_fns[size];
6602 } else {
6603 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6606 tcg_rn = tcg_temp_new_i64();
6607 tcg_rd = tcg_temp_new_i64();
6608 tcg_rd_narrowed = tcg_temp_new_i32();
6609 tcg_final = tcg_const_i64(0);
6611 if (round) {
6612 uint64_t round_const = 1ULL << (shift - 1);
6613 tcg_round = tcg_const_i64(round_const);
6614 } else {
6615 TCGV_UNUSED_I64(tcg_round);
6618 for (i = 0; i < elements; i++) {
6619 read_vec_element(s, tcg_rn, rn, i, ldop);
6620 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6621 false, is_u_shift, size+1, shift);
6622 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6623 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6624 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6627 if (!is_q) {
6628 clear_vec_high(s, rd);
6629 write_vec_element(s, tcg_final, rd, 0, MO_64);
6630 } else {
6631 write_vec_element(s, tcg_final, rd, 1, MO_64);
6634 if (round) {
6635 tcg_temp_free_i64(tcg_round);
6637 tcg_temp_free_i64(tcg_rn);
6638 tcg_temp_free_i64(tcg_rd);
6639 tcg_temp_free_i32(tcg_rd_narrowed);
6640 tcg_temp_free_i64(tcg_final);
6641 return;
6644 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6645 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6646 bool src_unsigned, bool dst_unsigned,
6647 int immh, int immb, int rn, int rd)
6649 int immhb = immh << 3 | immb;
6650 int size = 32 - clz32(immh) - 1;
6651 int shift = immhb - (8 << size);
6652 int pass;
6654 assert(immh != 0);
6655 assert(!(scalar && is_q));
6657 if (!scalar) {
6658 if (!is_q && extract32(immh, 3, 1)) {
6659 unallocated_encoding(s);
6660 return;
6663 /* Since we use the variable-shift helpers we must
6664 * replicate the shift count into each element of
6665 * the tcg_shift value.
6667 switch (size) {
6668 case 0:
6669 shift |= shift << 8;
6670 /* fall through */
6671 case 1:
6672 shift |= shift << 16;
6673 break;
6674 case 2:
6675 case 3:
6676 break;
6677 default:
6678 g_assert_not_reached();
6682 if (!fp_access_check(s)) {
6683 return;
6686 if (size == 3) {
6687 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6688 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6689 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6690 { NULL, gen_helper_neon_qshl_u64 },
6692 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6693 int maxpass = is_q ? 2 : 1;
6695 for (pass = 0; pass < maxpass; pass++) {
6696 TCGv_i64 tcg_op = tcg_temp_new_i64();
6698 read_vec_element(s, tcg_op, rn, pass, MO_64);
6699 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6700 write_vec_element(s, tcg_op, rd, pass, MO_64);
6702 tcg_temp_free_i64(tcg_op);
6704 tcg_temp_free_i64(tcg_shift);
6706 if (!is_q) {
6707 clear_vec_high(s, rd);
6709 } else {
6710 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6711 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6713 { gen_helper_neon_qshl_s8,
6714 gen_helper_neon_qshl_s16,
6715 gen_helper_neon_qshl_s32 },
6716 { gen_helper_neon_qshlu_s8,
6717 gen_helper_neon_qshlu_s16,
6718 gen_helper_neon_qshlu_s32 }
6719 }, {
6720 { NULL, NULL, NULL },
6721 { gen_helper_neon_qshl_u8,
6722 gen_helper_neon_qshl_u16,
6723 gen_helper_neon_qshl_u32 }
6726 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6727 TCGMemOp memop = scalar ? size : MO_32;
6728 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6730 for (pass = 0; pass < maxpass; pass++) {
6731 TCGv_i32 tcg_op = tcg_temp_new_i32();
6733 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6734 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6735 if (scalar) {
6736 switch (size) {
6737 case 0:
6738 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6739 break;
6740 case 1:
6741 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6742 break;
6743 case 2:
6744 break;
6745 default:
6746 g_assert_not_reached();
6748 write_fp_sreg(s, rd, tcg_op);
6749 } else {
6750 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6753 tcg_temp_free_i32(tcg_op);
6755 tcg_temp_free_i32(tcg_shift);
6757 if (!is_q && !scalar) {
6758 clear_vec_high(s, rd);
6763 /* Common vector code for handling integer to FP conversion */
6764 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6765 int elements, int is_signed,
6766 int fracbits, int size)
6768 bool is_double = size == 3 ? true : false;
6769 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6770 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6771 TCGv_i64 tcg_int = tcg_temp_new_i64();
6772 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6773 int pass;
6775 for (pass = 0; pass < elements; pass++) {
6776 read_vec_element(s, tcg_int, rn, pass, mop);
6778 if (is_double) {
6779 TCGv_i64 tcg_double = tcg_temp_new_i64();
6780 if (is_signed) {
6781 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6782 tcg_shift, tcg_fpst);
6783 } else {
6784 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6785 tcg_shift, tcg_fpst);
6787 if (elements == 1) {
6788 write_fp_dreg(s, rd, tcg_double);
6789 } else {
6790 write_vec_element(s, tcg_double, rd, pass, MO_64);
6792 tcg_temp_free_i64(tcg_double);
6793 } else {
6794 TCGv_i32 tcg_single = tcg_temp_new_i32();
6795 if (is_signed) {
6796 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6797 tcg_shift, tcg_fpst);
6798 } else {
6799 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6800 tcg_shift, tcg_fpst);
6802 if (elements == 1) {
6803 write_fp_sreg(s, rd, tcg_single);
6804 } else {
6805 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6807 tcg_temp_free_i32(tcg_single);
6811 if (!is_double && elements == 2) {
6812 clear_vec_high(s, rd);
6815 tcg_temp_free_i64(tcg_int);
6816 tcg_temp_free_ptr(tcg_fpst);
6817 tcg_temp_free_i32(tcg_shift);
6820 /* UCVTF/SCVTF - Integer to FP conversion */
6821 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6822 bool is_q, bool is_u,
6823 int immh, int immb, int opcode,
6824 int rn, int rd)
6826 bool is_double = extract32(immh, 3, 1);
6827 int size = is_double ? MO_64 : MO_32;
6828 int elements;
6829 int immhb = immh << 3 | immb;
6830 int fracbits = (is_double ? 128 : 64) - immhb;
6832 if (!extract32(immh, 2, 2)) {
6833 unallocated_encoding(s);
6834 return;
6837 if (is_scalar) {
6838 elements = 1;
6839 } else {
6840 elements = is_double ? 2 : is_q ? 4 : 2;
6841 if (is_double && !is_q) {
6842 unallocated_encoding(s);
6843 return;
6847 if (!fp_access_check(s)) {
6848 return;
6851 /* immh == 0 would be a failure of the decode logic */
6852 g_assert(immh);
6854 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6857 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6858 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6859 bool is_q, bool is_u,
6860 int immh, int immb, int rn, int rd)
6862 bool is_double = extract32(immh, 3, 1);
6863 int immhb = immh << 3 | immb;
6864 int fracbits = (is_double ? 128 : 64) - immhb;
6865 int pass;
6866 TCGv_ptr tcg_fpstatus;
6867 TCGv_i32 tcg_rmode, tcg_shift;
6869 if (!extract32(immh, 2, 2)) {
6870 unallocated_encoding(s);
6871 return;
6874 if (!is_scalar && !is_q && is_double) {
6875 unallocated_encoding(s);
6876 return;
6879 if (!fp_access_check(s)) {
6880 return;
6883 assert(!(is_scalar && is_q));
6885 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6886 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6887 tcg_fpstatus = get_fpstatus_ptr();
6888 tcg_shift = tcg_const_i32(fracbits);
6890 if (is_double) {
6891 int maxpass = is_scalar ? 1 : 2;
6893 for (pass = 0; pass < maxpass; pass++) {
6894 TCGv_i64 tcg_op = tcg_temp_new_i64();
6896 read_vec_element(s, tcg_op, rn, pass, MO_64);
6897 if (is_u) {
6898 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6899 } else {
6900 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6902 write_vec_element(s, tcg_op, rd, pass, MO_64);
6903 tcg_temp_free_i64(tcg_op);
6905 if (!is_q) {
6906 clear_vec_high(s, rd);
6908 } else {
6909 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6910 for (pass = 0; pass < maxpass; pass++) {
6911 TCGv_i32 tcg_op = tcg_temp_new_i32();
6913 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6914 if (is_u) {
6915 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6916 } else {
6917 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6919 if (is_scalar) {
6920 write_fp_sreg(s, rd, tcg_op);
6921 } else {
6922 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6924 tcg_temp_free_i32(tcg_op);
6926 if (!is_q && !is_scalar) {
6927 clear_vec_high(s, rd);
6931 tcg_temp_free_ptr(tcg_fpstatus);
6932 tcg_temp_free_i32(tcg_shift);
6933 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6934 tcg_temp_free_i32(tcg_rmode);
6937 /* C3.6.9 AdvSIMD scalar shift by immediate
6938 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6939 * +-----+---+-------------+------+------+--------+---+------+------+
6940 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6941 * +-----+---+-------------+------+------+--------+---+------+------+
6943 * This is the scalar version so it works on a fixed sized registers
6945 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6947 int rd = extract32(insn, 0, 5);
6948 int rn = extract32(insn, 5, 5);
6949 int opcode = extract32(insn, 11, 5);
6950 int immb = extract32(insn, 16, 3);
6951 int immh = extract32(insn, 19, 4);
6952 bool is_u = extract32(insn, 29, 1);
6954 if (immh == 0) {
6955 unallocated_encoding(s);
6956 return;
6959 switch (opcode) {
6960 case 0x08: /* SRI */
6961 if (!is_u) {
6962 unallocated_encoding(s);
6963 return;
6965 /* fall through */
6966 case 0x00: /* SSHR / USHR */
6967 case 0x02: /* SSRA / USRA */
6968 case 0x04: /* SRSHR / URSHR */
6969 case 0x06: /* SRSRA / URSRA */
6970 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
6971 break;
6972 case 0x0a: /* SHL / SLI */
6973 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
6974 break;
6975 case 0x1c: /* SCVTF, UCVTF */
6976 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
6977 opcode, rn, rd);
6978 break;
6979 case 0x10: /* SQSHRUN, SQSHRUN2 */
6980 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
6981 if (!is_u) {
6982 unallocated_encoding(s);
6983 return;
6985 handle_vec_simd_sqshrn(s, true, false, false, true,
6986 immh, immb, opcode, rn, rd);
6987 break;
6988 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
6989 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
6990 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
6991 immh, immb, opcode, rn, rd);
6992 break;
6993 case 0xc: /* SQSHLU */
6994 if (!is_u) {
6995 unallocated_encoding(s);
6996 return;
6998 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
6999 break;
7000 case 0xe: /* SQSHL, UQSHL */
7001 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7002 break;
7003 case 0x1f: /* FCVTZS, FCVTZU */
7004 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7005 break;
7006 default:
7007 unallocated_encoding(s);
7008 break;
7012 /* C3.6.10 AdvSIMD scalar three different
7013 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7014 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7015 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7016 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7018 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7020 bool is_u = extract32(insn, 29, 1);
7021 int size = extract32(insn, 22, 2);
7022 int opcode = extract32(insn, 12, 4);
7023 int rm = extract32(insn, 16, 5);
7024 int rn = extract32(insn, 5, 5);
7025 int rd = extract32(insn, 0, 5);
7027 if (is_u) {
7028 unallocated_encoding(s);
7029 return;
7032 switch (opcode) {
7033 case 0x9: /* SQDMLAL, SQDMLAL2 */
7034 case 0xb: /* SQDMLSL, SQDMLSL2 */
7035 case 0xd: /* SQDMULL, SQDMULL2 */
7036 if (size == 0 || size == 3) {
7037 unallocated_encoding(s);
7038 return;
7040 break;
7041 default:
7042 unallocated_encoding(s);
7043 return;
7046 if (!fp_access_check(s)) {
7047 return;
7050 if (size == 2) {
7051 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7052 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7053 TCGv_i64 tcg_res = tcg_temp_new_i64();
7055 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7056 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7058 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7059 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7061 switch (opcode) {
7062 case 0xd: /* SQDMULL, SQDMULL2 */
7063 break;
7064 case 0xb: /* SQDMLSL, SQDMLSL2 */
7065 tcg_gen_neg_i64(tcg_res, tcg_res);
7066 /* fall through */
7067 case 0x9: /* SQDMLAL, SQDMLAL2 */
7068 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7069 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7070 tcg_res, tcg_op1);
7071 break;
7072 default:
7073 g_assert_not_reached();
7076 write_fp_dreg(s, rd, tcg_res);
7078 tcg_temp_free_i64(tcg_op1);
7079 tcg_temp_free_i64(tcg_op2);
7080 tcg_temp_free_i64(tcg_res);
7081 } else {
7082 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7083 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7084 TCGv_i64 tcg_res = tcg_temp_new_i64();
7086 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7087 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7089 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7090 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7092 switch (opcode) {
7093 case 0xd: /* SQDMULL, SQDMULL2 */
7094 break;
7095 case 0xb: /* SQDMLSL, SQDMLSL2 */
7096 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7097 /* fall through */
7098 case 0x9: /* SQDMLAL, SQDMLAL2 */
7100 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7101 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7102 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7103 tcg_res, tcg_op3);
7104 tcg_temp_free_i64(tcg_op3);
7105 break;
7107 default:
7108 g_assert_not_reached();
7111 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7112 write_fp_dreg(s, rd, tcg_res);
7114 tcg_temp_free_i32(tcg_op1);
7115 tcg_temp_free_i32(tcg_op2);
7116 tcg_temp_free_i64(tcg_res);
7120 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7121 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7123 /* Handle 64x64->64 opcodes which are shared between the scalar
7124 * and vector 3-same groups. We cover every opcode where size == 3
7125 * is valid in either the three-reg-same (integer, not pairwise)
7126 * or scalar-three-reg-same groups. (Some opcodes are not yet
7127 * implemented.)
7129 TCGCond cond;
7131 switch (opcode) {
7132 case 0x1: /* SQADD */
7133 if (u) {
7134 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7135 } else {
7136 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7138 break;
7139 case 0x5: /* SQSUB */
7140 if (u) {
7141 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7142 } else {
7143 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7145 break;
7146 case 0x6: /* CMGT, CMHI */
7147 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
7148 * We implement this using setcond (test) and then negating.
7150 cond = u ? TCG_COND_GTU : TCG_COND_GT;
7151 do_cmop:
7152 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
7153 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7154 break;
7155 case 0x7: /* CMGE, CMHS */
7156 cond = u ? TCG_COND_GEU : TCG_COND_GE;
7157 goto do_cmop;
7158 case 0x11: /* CMTST, CMEQ */
7159 if (u) {
7160 cond = TCG_COND_EQ;
7161 goto do_cmop;
7163 /* CMTST : test is "if (X & Y != 0)". */
7164 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7165 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7166 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7167 break;
7168 case 0x8: /* SSHL, USHL */
7169 if (u) {
7170 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7171 } else {
7172 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7174 break;
7175 case 0x9: /* SQSHL, UQSHL */
7176 if (u) {
7177 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7178 } else {
7179 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7181 break;
7182 case 0xa: /* SRSHL, URSHL */
7183 if (u) {
7184 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7185 } else {
7186 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7188 break;
7189 case 0xb: /* SQRSHL, UQRSHL */
7190 if (u) {
7191 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7192 } else {
7193 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7195 break;
7196 case 0x10: /* ADD, SUB */
7197 if (u) {
7198 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7199 } else {
7200 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7202 break;
7203 default:
7204 g_assert_not_reached();
7208 /* Handle the 3-same-operands float operations; shared by the scalar
7209 * and vector encodings. The caller must filter out any encodings
7210 * not allocated for the encoding it is dealing with.
7212 static void handle_3same_float(DisasContext *s, int size, int elements,
7213 int fpopcode, int rd, int rn, int rm)
7215 int pass;
7216 TCGv_ptr fpst = get_fpstatus_ptr();
7218 for (pass = 0; pass < elements; pass++) {
7219 if (size) {
7220 /* Double */
7221 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7222 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7223 TCGv_i64 tcg_res = tcg_temp_new_i64();
7225 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7226 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7228 switch (fpopcode) {
7229 case 0x39: /* FMLS */
7230 /* As usual for ARM, separate negation for fused multiply-add */
7231 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7232 /* fall through */
7233 case 0x19: /* FMLA */
7234 read_vec_element(s, tcg_res, rd, pass, MO_64);
7235 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7236 tcg_res, fpst);
7237 break;
7238 case 0x18: /* FMAXNM */
7239 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7240 break;
7241 case 0x1a: /* FADD */
7242 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7243 break;
7244 case 0x1b: /* FMULX */
7245 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7246 break;
7247 case 0x1c: /* FCMEQ */
7248 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7249 break;
7250 case 0x1e: /* FMAX */
7251 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7252 break;
7253 case 0x1f: /* FRECPS */
7254 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7255 break;
7256 case 0x38: /* FMINNM */
7257 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7258 break;
7259 case 0x3a: /* FSUB */
7260 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7261 break;
7262 case 0x3e: /* FMIN */
7263 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7264 break;
7265 case 0x3f: /* FRSQRTS */
7266 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7267 break;
7268 case 0x5b: /* FMUL */
7269 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7270 break;
7271 case 0x5c: /* FCMGE */
7272 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7273 break;
7274 case 0x5d: /* FACGE */
7275 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7276 break;
7277 case 0x5f: /* FDIV */
7278 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7279 break;
7280 case 0x7a: /* FABD */
7281 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7282 gen_helper_vfp_absd(tcg_res, tcg_res);
7283 break;
7284 case 0x7c: /* FCMGT */
7285 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7286 break;
7287 case 0x7d: /* FACGT */
7288 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7289 break;
7290 default:
7291 g_assert_not_reached();
7294 write_vec_element(s, tcg_res, rd, pass, MO_64);
7296 tcg_temp_free_i64(tcg_res);
7297 tcg_temp_free_i64(tcg_op1);
7298 tcg_temp_free_i64(tcg_op2);
7299 } else {
7300 /* Single */
7301 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7302 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7303 TCGv_i32 tcg_res = tcg_temp_new_i32();
7305 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7306 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7308 switch (fpopcode) {
7309 case 0x39: /* FMLS */
7310 /* As usual for ARM, separate negation for fused multiply-add */
7311 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7312 /* fall through */
7313 case 0x19: /* FMLA */
7314 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7315 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7316 tcg_res, fpst);
7317 break;
7318 case 0x1a: /* FADD */
7319 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7320 break;
7321 case 0x1b: /* FMULX */
7322 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7323 break;
7324 case 0x1c: /* FCMEQ */
7325 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7326 break;
7327 case 0x1e: /* FMAX */
7328 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7329 break;
7330 case 0x1f: /* FRECPS */
7331 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7332 break;
7333 case 0x18: /* FMAXNM */
7334 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7335 break;
7336 case 0x38: /* FMINNM */
7337 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7338 break;
7339 case 0x3a: /* FSUB */
7340 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7341 break;
7342 case 0x3e: /* FMIN */
7343 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7344 break;
7345 case 0x3f: /* FRSQRTS */
7346 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7347 break;
7348 case 0x5b: /* FMUL */
7349 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7350 break;
7351 case 0x5c: /* FCMGE */
7352 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7353 break;
7354 case 0x5d: /* FACGE */
7355 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7356 break;
7357 case 0x5f: /* FDIV */
7358 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7359 break;
7360 case 0x7a: /* FABD */
7361 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7362 gen_helper_vfp_abss(tcg_res, tcg_res);
7363 break;
7364 case 0x7c: /* FCMGT */
7365 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7366 break;
7367 case 0x7d: /* FACGT */
7368 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7369 break;
7370 default:
7371 g_assert_not_reached();
7374 if (elements == 1) {
7375 /* scalar single so clear high part */
7376 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7378 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7379 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7380 tcg_temp_free_i64(tcg_tmp);
7381 } else {
7382 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7385 tcg_temp_free_i32(tcg_res);
7386 tcg_temp_free_i32(tcg_op1);
7387 tcg_temp_free_i32(tcg_op2);
7391 tcg_temp_free_ptr(fpst);
7393 if ((elements << size) < 4) {
7394 /* scalar, or non-quad vector op */
7395 clear_vec_high(s, rd);
7399 /* C3.6.11 AdvSIMD scalar three same
7400 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7401 * +-----+---+-----------+------+---+------+--------+---+------+------+
7402 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7403 * +-----+---+-----------+------+---+------+--------+---+------+------+
7405 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7407 int rd = extract32(insn, 0, 5);
7408 int rn = extract32(insn, 5, 5);
7409 int opcode = extract32(insn, 11, 5);
7410 int rm = extract32(insn, 16, 5);
7411 int size = extract32(insn, 22, 2);
7412 bool u = extract32(insn, 29, 1);
7413 TCGv_i64 tcg_rd;
7415 if (opcode >= 0x18) {
7416 /* Floating point: U, size[1] and opcode indicate operation */
7417 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7418 switch (fpopcode) {
7419 case 0x1b: /* FMULX */
7420 case 0x1f: /* FRECPS */
7421 case 0x3f: /* FRSQRTS */
7422 case 0x5d: /* FACGE */
7423 case 0x7d: /* FACGT */
7424 case 0x1c: /* FCMEQ */
7425 case 0x5c: /* FCMGE */
7426 case 0x7c: /* FCMGT */
7427 case 0x7a: /* FABD */
7428 break;
7429 default:
7430 unallocated_encoding(s);
7431 return;
7434 if (!fp_access_check(s)) {
7435 return;
7438 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7439 return;
7442 switch (opcode) {
7443 case 0x1: /* SQADD, UQADD */
7444 case 0x5: /* SQSUB, UQSUB */
7445 case 0x9: /* SQSHL, UQSHL */
7446 case 0xb: /* SQRSHL, UQRSHL */
7447 break;
7448 case 0x8: /* SSHL, USHL */
7449 case 0xa: /* SRSHL, URSHL */
7450 case 0x6: /* CMGT, CMHI */
7451 case 0x7: /* CMGE, CMHS */
7452 case 0x11: /* CMTST, CMEQ */
7453 case 0x10: /* ADD, SUB (vector) */
7454 if (size != 3) {
7455 unallocated_encoding(s);
7456 return;
7458 break;
7459 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7460 if (size != 1 && size != 2) {
7461 unallocated_encoding(s);
7462 return;
7464 break;
7465 default:
7466 unallocated_encoding(s);
7467 return;
7470 if (!fp_access_check(s)) {
7471 return;
7474 tcg_rd = tcg_temp_new_i64();
7476 if (size == 3) {
7477 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7478 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7480 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7481 tcg_temp_free_i64(tcg_rn);
7482 tcg_temp_free_i64(tcg_rm);
7483 } else {
7484 /* Do a single operation on the lowest element in the vector.
7485 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7486 * no side effects for all these operations.
7487 * OPTME: special-purpose helpers would avoid doing some
7488 * unnecessary work in the helper for the 8 and 16 bit cases.
7490 NeonGenTwoOpEnvFn *genenvfn;
7491 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7492 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7493 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7495 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7496 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7498 switch (opcode) {
7499 case 0x1: /* SQADD, UQADD */
7501 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7502 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7503 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7504 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7506 genenvfn = fns[size][u];
7507 break;
7509 case 0x5: /* SQSUB, UQSUB */
7511 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7512 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7513 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7514 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7516 genenvfn = fns[size][u];
7517 break;
7519 case 0x9: /* SQSHL, UQSHL */
7521 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7522 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7523 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7524 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7526 genenvfn = fns[size][u];
7527 break;
7529 case 0xb: /* SQRSHL, UQRSHL */
7531 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7532 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7533 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7534 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7536 genenvfn = fns[size][u];
7537 break;
7539 case 0x16: /* SQDMULH, SQRDMULH */
7541 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7542 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7543 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7545 assert(size == 1 || size == 2);
7546 genenvfn = fns[size - 1][u];
7547 break;
7549 default:
7550 g_assert_not_reached();
7553 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7554 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7555 tcg_temp_free_i32(tcg_rd32);
7556 tcg_temp_free_i32(tcg_rn);
7557 tcg_temp_free_i32(tcg_rm);
7560 write_fp_dreg(s, rd, tcg_rd);
7562 tcg_temp_free_i64(tcg_rd);
7565 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7566 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7567 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7569 /* Handle 64->64 opcodes which are shared between the scalar and
7570 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7571 * is valid in either group and also the double-precision fp ops.
7572 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7573 * requires them.
7575 TCGCond cond;
7577 switch (opcode) {
7578 case 0x4: /* CLS, CLZ */
7579 if (u) {
7580 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
7581 } else {
7582 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
7584 break;
7585 case 0x5: /* NOT */
7586 /* This opcode is shared with CNT and RBIT but we have earlier
7587 * enforced that size == 3 if and only if this is the NOT insn.
7589 tcg_gen_not_i64(tcg_rd, tcg_rn);
7590 break;
7591 case 0x7: /* SQABS, SQNEG */
7592 if (u) {
7593 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7594 } else {
7595 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7597 break;
7598 case 0xa: /* CMLT */
7599 /* 64 bit integer comparison against zero, result is
7600 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7601 * subtracting 1.
7603 cond = TCG_COND_LT;
7604 do_cmop:
7605 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7606 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7607 break;
7608 case 0x8: /* CMGT, CMGE */
7609 cond = u ? TCG_COND_GE : TCG_COND_GT;
7610 goto do_cmop;
7611 case 0x9: /* CMEQ, CMLE */
7612 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7613 goto do_cmop;
7614 case 0xb: /* ABS, NEG */
7615 if (u) {
7616 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7617 } else {
7618 TCGv_i64 tcg_zero = tcg_const_i64(0);
7619 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7620 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7621 tcg_rn, tcg_rd);
7622 tcg_temp_free_i64(tcg_zero);
7624 break;
7625 case 0x2f: /* FABS */
7626 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7627 break;
7628 case 0x6f: /* FNEG */
7629 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7630 break;
7631 case 0x7f: /* FSQRT */
7632 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7633 break;
7634 case 0x1a: /* FCVTNS */
7635 case 0x1b: /* FCVTMS */
7636 case 0x1c: /* FCVTAS */
7637 case 0x3a: /* FCVTPS */
7638 case 0x3b: /* FCVTZS */
7640 TCGv_i32 tcg_shift = tcg_const_i32(0);
7641 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7642 tcg_temp_free_i32(tcg_shift);
7643 break;
7645 case 0x5a: /* FCVTNU */
7646 case 0x5b: /* FCVTMU */
7647 case 0x5c: /* FCVTAU */
7648 case 0x7a: /* FCVTPU */
7649 case 0x7b: /* FCVTZU */
7651 TCGv_i32 tcg_shift = tcg_const_i32(0);
7652 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7653 tcg_temp_free_i32(tcg_shift);
7654 break;
7656 case 0x18: /* FRINTN */
7657 case 0x19: /* FRINTM */
7658 case 0x38: /* FRINTP */
7659 case 0x39: /* FRINTZ */
7660 case 0x58: /* FRINTA */
7661 case 0x79: /* FRINTI */
7662 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7663 break;
7664 case 0x59: /* FRINTX */
7665 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7666 break;
7667 default:
7668 g_assert_not_reached();
7672 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7673 bool is_scalar, bool is_u, bool is_q,
7674 int size, int rn, int rd)
7676 bool is_double = (size == 3);
7677 TCGv_ptr fpst;
7679 if (!fp_access_check(s)) {
7680 return;
7683 fpst = get_fpstatus_ptr();
7685 if (is_double) {
7686 TCGv_i64 tcg_op = tcg_temp_new_i64();
7687 TCGv_i64 tcg_zero = tcg_const_i64(0);
7688 TCGv_i64 tcg_res = tcg_temp_new_i64();
7689 NeonGenTwoDoubleOPFn *genfn;
7690 bool swap = false;
7691 int pass;
7693 switch (opcode) {
7694 case 0x2e: /* FCMLT (zero) */
7695 swap = true;
7696 /* fallthrough */
7697 case 0x2c: /* FCMGT (zero) */
7698 genfn = gen_helper_neon_cgt_f64;
7699 break;
7700 case 0x2d: /* FCMEQ (zero) */
7701 genfn = gen_helper_neon_ceq_f64;
7702 break;
7703 case 0x6d: /* FCMLE (zero) */
7704 swap = true;
7705 /* fall through */
7706 case 0x6c: /* FCMGE (zero) */
7707 genfn = gen_helper_neon_cge_f64;
7708 break;
7709 default:
7710 g_assert_not_reached();
7713 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7714 read_vec_element(s, tcg_op, rn, pass, MO_64);
7715 if (swap) {
7716 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7717 } else {
7718 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7720 write_vec_element(s, tcg_res, rd, pass, MO_64);
7722 if (is_scalar) {
7723 clear_vec_high(s, rd);
7726 tcg_temp_free_i64(tcg_res);
7727 tcg_temp_free_i64(tcg_zero);
7728 tcg_temp_free_i64(tcg_op);
7729 } else {
7730 TCGv_i32 tcg_op = tcg_temp_new_i32();
7731 TCGv_i32 tcg_zero = tcg_const_i32(0);
7732 TCGv_i32 tcg_res = tcg_temp_new_i32();
7733 NeonGenTwoSingleOPFn *genfn;
7734 bool swap = false;
7735 int pass, maxpasses;
7737 switch (opcode) {
7738 case 0x2e: /* FCMLT (zero) */
7739 swap = true;
7740 /* fall through */
7741 case 0x2c: /* FCMGT (zero) */
7742 genfn = gen_helper_neon_cgt_f32;
7743 break;
7744 case 0x2d: /* FCMEQ (zero) */
7745 genfn = gen_helper_neon_ceq_f32;
7746 break;
7747 case 0x6d: /* FCMLE (zero) */
7748 swap = true;
7749 /* fall through */
7750 case 0x6c: /* FCMGE (zero) */
7751 genfn = gen_helper_neon_cge_f32;
7752 break;
7753 default:
7754 g_assert_not_reached();
7757 if (is_scalar) {
7758 maxpasses = 1;
7759 } else {
7760 maxpasses = is_q ? 4 : 2;
7763 for (pass = 0; pass < maxpasses; pass++) {
7764 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7765 if (swap) {
7766 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7767 } else {
7768 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7770 if (is_scalar) {
7771 write_fp_sreg(s, rd, tcg_res);
7772 } else {
7773 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7776 tcg_temp_free_i32(tcg_res);
7777 tcg_temp_free_i32(tcg_zero);
7778 tcg_temp_free_i32(tcg_op);
7779 if (!is_q && !is_scalar) {
7780 clear_vec_high(s, rd);
7784 tcg_temp_free_ptr(fpst);
7787 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7788 bool is_scalar, bool is_u, bool is_q,
7789 int size, int rn, int rd)
7791 bool is_double = (size == 3);
7792 TCGv_ptr fpst = get_fpstatus_ptr();
7794 if (is_double) {
7795 TCGv_i64 tcg_op = tcg_temp_new_i64();
7796 TCGv_i64 tcg_res = tcg_temp_new_i64();
7797 int pass;
7799 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7800 read_vec_element(s, tcg_op, rn, pass, MO_64);
7801 switch (opcode) {
7802 case 0x3d: /* FRECPE */
7803 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7804 break;
7805 case 0x3f: /* FRECPX */
7806 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7807 break;
7808 case 0x7d: /* FRSQRTE */
7809 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7810 break;
7811 default:
7812 g_assert_not_reached();
7814 write_vec_element(s, tcg_res, rd, pass, MO_64);
7816 if (is_scalar) {
7817 clear_vec_high(s, rd);
7820 tcg_temp_free_i64(tcg_res);
7821 tcg_temp_free_i64(tcg_op);
7822 } else {
7823 TCGv_i32 tcg_op = tcg_temp_new_i32();
7824 TCGv_i32 tcg_res = tcg_temp_new_i32();
7825 int pass, maxpasses;
7827 if (is_scalar) {
7828 maxpasses = 1;
7829 } else {
7830 maxpasses = is_q ? 4 : 2;
7833 for (pass = 0; pass < maxpasses; pass++) {
7834 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7836 switch (opcode) {
7837 case 0x3c: /* URECPE */
7838 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7839 break;
7840 case 0x3d: /* FRECPE */
7841 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7842 break;
7843 case 0x3f: /* FRECPX */
7844 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7845 break;
7846 case 0x7d: /* FRSQRTE */
7847 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7848 break;
7849 default:
7850 g_assert_not_reached();
7853 if (is_scalar) {
7854 write_fp_sreg(s, rd, tcg_res);
7855 } else {
7856 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7859 tcg_temp_free_i32(tcg_res);
7860 tcg_temp_free_i32(tcg_op);
7861 if (!is_q && !is_scalar) {
7862 clear_vec_high(s, rd);
7865 tcg_temp_free_ptr(fpst);
7868 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7869 int opcode, bool u, bool is_q,
7870 int size, int rn, int rd)
7872 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7873 * in the source becomes a size element in the destination).
7875 int pass;
7876 TCGv_i32 tcg_res[2];
7877 int destelt = is_q ? 2 : 0;
7878 int passes = scalar ? 1 : 2;
7880 if (scalar) {
7881 tcg_res[1] = tcg_const_i32(0);
7884 for (pass = 0; pass < passes; pass++) {
7885 TCGv_i64 tcg_op = tcg_temp_new_i64();
7886 NeonGenNarrowFn *genfn = NULL;
7887 NeonGenNarrowEnvFn *genenvfn = NULL;
7889 if (scalar) {
7890 read_vec_element(s, tcg_op, rn, pass, size + 1);
7891 } else {
7892 read_vec_element(s, tcg_op, rn, pass, MO_64);
7894 tcg_res[pass] = tcg_temp_new_i32();
7896 switch (opcode) {
7897 case 0x12: /* XTN, SQXTUN */
7899 static NeonGenNarrowFn * const xtnfns[3] = {
7900 gen_helper_neon_narrow_u8,
7901 gen_helper_neon_narrow_u16,
7902 tcg_gen_extrl_i64_i32,
7904 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7905 gen_helper_neon_unarrow_sat8,
7906 gen_helper_neon_unarrow_sat16,
7907 gen_helper_neon_unarrow_sat32,
7909 if (u) {
7910 genenvfn = sqxtunfns[size];
7911 } else {
7912 genfn = xtnfns[size];
7914 break;
7916 case 0x14: /* SQXTN, UQXTN */
7918 static NeonGenNarrowEnvFn * const fns[3][2] = {
7919 { gen_helper_neon_narrow_sat_s8,
7920 gen_helper_neon_narrow_sat_u8 },
7921 { gen_helper_neon_narrow_sat_s16,
7922 gen_helper_neon_narrow_sat_u16 },
7923 { gen_helper_neon_narrow_sat_s32,
7924 gen_helper_neon_narrow_sat_u32 },
7926 genenvfn = fns[size][u];
7927 break;
7929 case 0x16: /* FCVTN, FCVTN2 */
7930 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7931 if (size == 2) {
7932 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7933 } else {
7934 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7935 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7936 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7937 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7938 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7939 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7940 tcg_temp_free_i32(tcg_lo);
7941 tcg_temp_free_i32(tcg_hi);
7943 break;
7944 case 0x56: /* FCVTXN, FCVTXN2 */
7945 /* 64 bit to 32 bit float conversion
7946 * with von Neumann rounding (round to odd)
7948 assert(size == 2);
7949 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7950 break;
7951 default:
7952 g_assert_not_reached();
7955 if (genfn) {
7956 genfn(tcg_res[pass], tcg_op);
7957 } else if (genenvfn) {
7958 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7961 tcg_temp_free_i64(tcg_op);
7964 for (pass = 0; pass < 2; pass++) {
7965 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
7966 tcg_temp_free_i32(tcg_res[pass]);
7968 if (!is_q) {
7969 clear_vec_high(s, rd);
7973 /* Remaining saturating accumulating ops */
7974 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
7975 bool is_q, int size, int rn, int rd)
7977 bool is_double = (size == 3);
7979 if (is_double) {
7980 TCGv_i64 tcg_rn = tcg_temp_new_i64();
7981 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7982 int pass;
7984 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7985 read_vec_element(s, tcg_rn, rn, pass, MO_64);
7986 read_vec_element(s, tcg_rd, rd, pass, MO_64);
7988 if (is_u) { /* USQADD */
7989 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7990 } else { /* SUQADD */
7991 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7993 write_vec_element(s, tcg_rd, rd, pass, MO_64);
7995 if (is_scalar) {
7996 clear_vec_high(s, rd);
7999 tcg_temp_free_i64(tcg_rd);
8000 tcg_temp_free_i64(tcg_rn);
8001 } else {
8002 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8003 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8004 int pass, maxpasses;
8006 if (is_scalar) {
8007 maxpasses = 1;
8008 } else {
8009 maxpasses = is_q ? 4 : 2;
8012 for (pass = 0; pass < maxpasses; pass++) {
8013 if (is_scalar) {
8014 read_vec_element_i32(s, tcg_rn, rn, pass, size);
8015 read_vec_element_i32(s, tcg_rd, rd, pass, size);
8016 } else {
8017 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
8018 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8021 if (is_u) { /* USQADD */
8022 switch (size) {
8023 case 0:
8024 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8025 break;
8026 case 1:
8027 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8028 break;
8029 case 2:
8030 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8031 break;
8032 default:
8033 g_assert_not_reached();
8035 } else { /* SUQADD */
8036 switch (size) {
8037 case 0:
8038 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8039 break;
8040 case 1:
8041 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8042 break;
8043 case 2:
8044 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8045 break;
8046 default:
8047 g_assert_not_reached();
8051 if (is_scalar) {
8052 TCGv_i64 tcg_zero = tcg_const_i64(0);
8053 write_vec_element(s, tcg_zero, rd, 0, MO_64);
8054 tcg_temp_free_i64(tcg_zero);
8056 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8059 if (!is_q) {
8060 clear_vec_high(s, rd);
8063 tcg_temp_free_i32(tcg_rd);
8064 tcg_temp_free_i32(tcg_rn);
8068 /* C3.6.12 AdvSIMD scalar two reg misc
8069 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8070 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8071 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
8072 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8074 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
8076 int rd = extract32(insn, 0, 5);
8077 int rn = extract32(insn, 5, 5);
8078 int opcode = extract32(insn, 12, 5);
8079 int size = extract32(insn, 22, 2);
8080 bool u = extract32(insn, 29, 1);
8081 bool is_fcvt = false;
8082 int rmode;
8083 TCGv_i32 tcg_rmode;
8084 TCGv_ptr tcg_fpstatus;
8086 switch (opcode) {
8087 case 0x3: /* USQADD / SUQADD*/
8088 if (!fp_access_check(s)) {
8089 return;
8091 handle_2misc_satacc(s, true, u, false, size, rn, rd);
8092 return;
8093 case 0x7: /* SQABS / SQNEG */
8094 break;
8095 case 0xa: /* CMLT */
8096 if (u) {
8097 unallocated_encoding(s);
8098 return;
8100 /* fall through */
8101 case 0x8: /* CMGT, CMGE */
8102 case 0x9: /* CMEQ, CMLE */
8103 case 0xb: /* ABS, NEG */
8104 if (size != 3) {
8105 unallocated_encoding(s);
8106 return;
8108 break;
8109 case 0x12: /* SQXTUN */
8110 if (!u) {
8111 unallocated_encoding(s);
8112 return;
8114 /* fall through */
8115 case 0x14: /* SQXTN, UQXTN */
8116 if (size == 3) {
8117 unallocated_encoding(s);
8118 return;
8120 if (!fp_access_check(s)) {
8121 return;
8123 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
8124 return;
8125 case 0xc ... 0xf:
8126 case 0x16 ... 0x1d:
8127 case 0x1f:
8128 /* Floating point: U, size[1] and opcode indicate operation;
8129 * size[0] indicates single or double precision.
8131 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
8132 size = extract32(size, 0, 1) ? 3 : 2;
8133 switch (opcode) {
8134 case 0x2c: /* FCMGT (zero) */
8135 case 0x2d: /* FCMEQ (zero) */
8136 case 0x2e: /* FCMLT (zero) */
8137 case 0x6c: /* FCMGE (zero) */
8138 case 0x6d: /* FCMLE (zero) */
8139 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
8140 return;
8141 case 0x1d: /* SCVTF */
8142 case 0x5d: /* UCVTF */
8144 bool is_signed = (opcode == 0x1d);
8145 if (!fp_access_check(s)) {
8146 return;
8148 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
8149 return;
8151 case 0x3d: /* FRECPE */
8152 case 0x3f: /* FRECPX */
8153 case 0x7d: /* FRSQRTE */
8154 if (!fp_access_check(s)) {
8155 return;
8157 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
8158 return;
8159 case 0x1a: /* FCVTNS */
8160 case 0x1b: /* FCVTMS */
8161 case 0x3a: /* FCVTPS */
8162 case 0x3b: /* FCVTZS */
8163 case 0x5a: /* FCVTNU */
8164 case 0x5b: /* FCVTMU */
8165 case 0x7a: /* FCVTPU */
8166 case 0x7b: /* FCVTZU */
8167 is_fcvt = true;
8168 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8169 break;
8170 case 0x1c: /* FCVTAS */
8171 case 0x5c: /* FCVTAU */
8172 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8173 is_fcvt = true;
8174 rmode = FPROUNDING_TIEAWAY;
8175 break;
8176 case 0x56: /* FCVTXN, FCVTXN2 */
8177 if (size == 2) {
8178 unallocated_encoding(s);
8179 return;
8181 if (!fp_access_check(s)) {
8182 return;
8184 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8185 return;
8186 default:
8187 unallocated_encoding(s);
8188 return;
8190 break;
8191 default:
8192 unallocated_encoding(s);
8193 return;
8196 if (!fp_access_check(s)) {
8197 return;
8200 if (is_fcvt) {
8201 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8202 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8203 tcg_fpstatus = get_fpstatus_ptr();
8204 } else {
8205 TCGV_UNUSED_I32(tcg_rmode);
8206 TCGV_UNUSED_PTR(tcg_fpstatus);
8209 if (size == 3) {
8210 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8211 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8213 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8214 write_fp_dreg(s, rd, tcg_rd);
8215 tcg_temp_free_i64(tcg_rd);
8216 tcg_temp_free_i64(tcg_rn);
8217 } else {
8218 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8219 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8221 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8223 switch (opcode) {
8224 case 0x7: /* SQABS, SQNEG */
8226 NeonGenOneOpEnvFn *genfn;
8227 static NeonGenOneOpEnvFn * const fns[3][2] = {
8228 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8229 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8230 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8232 genfn = fns[size][u];
8233 genfn(tcg_rd, cpu_env, tcg_rn);
8234 break;
8236 case 0x1a: /* FCVTNS */
8237 case 0x1b: /* FCVTMS */
8238 case 0x1c: /* FCVTAS */
8239 case 0x3a: /* FCVTPS */
8240 case 0x3b: /* FCVTZS */
8242 TCGv_i32 tcg_shift = tcg_const_i32(0);
8243 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8244 tcg_temp_free_i32(tcg_shift);
8245 break;
8247 case 0x5a: /* FCVTNU */
8248 case 0x5b: /* FCVTMU */
8249 case 0x5c: /* FCVTAU */
8250 case 0x7a: /* FCVTPU */
8251 case 0x7b: /* FCVTZU */
8253 TCGv_i32 tcg_shift = tcg_const_i32(0);
8254 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8255 tcg_temp_free_i32(tcg_shift);
8256 break;
8258 default:
8259 g_assert_not_reached();
8262 write_fp_sreg(s, rd, tcg_rd);
8263 tcg_temp_free_i32(tcg_rd);
8264 tcg_temp_free_i32(tcg_rn);
8267 if (is_fcvt) {
8268 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8269 tcg_temp_free_i32(tcg_rmode);
8270 tcg_temp_free_ptr(tcg_fpstatus);
8274 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8275 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8276 int immh, int immb, int opcode, int rn, int rd)
8278 int size = 32 - clz32(immh) - 1;
8279 int immhb = immh << 3 | immb;
8280 int shift = 2 * (8 << size) - immhb;
8281 bool accumulate = false;
8282 bool round = false;
8283 bool insert = false;
8284 int dsize = is_q ? 128 : 64;
8285 int esize = 8 << size;
8286 int elements = dsize/esize;
8287 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8288 TCGv_i64 tcg_rn = new_tmp_a64(s);
8289 TCGv_i64 tcg_rd = new_tmp_a64(s);
8290 TCGv_i64 tcg_round;
8291 int i;
8293 if (extract32(immh, 3, 1) && !is_q) {
8294 unallocated_encoding(s);
8295 return;
8298 if (size > 3 && !is_q) {
8299 unallocated_encoding(s);
8300 return;
8303 if (!fp_access_check(s)) {
8304 return;
8307 switch (opcode) {
8308 case 0x02: /* SSRA / USRA (accumulate) */
8309 accumulate = true;
8310 break;
8311 case 0x04: /* SRSHR / URSHR (rounding) */
8312 round = true;
8313 break;
8314 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8315 accumulate = round = true;
8316 break;
8317 case 0x08: /* SRI */
8318 insert = true;
8319 break;
8322 if (round) {
8323 uint64_t round_const = 1ULL << (shift - 1);
8324 tcg_round = tcg_const_i64(round_const);
8325 } else {
8326 TCGV_UNUSED_I64(tcg_round);
8329 for (i = 0; i < elements; i++) {
8330 read_vec_element(s, tcg_rn, rn, i, memop);
8331 if (accumulate || insert) {
8332 read_vec_element(s, tcg_rd, rd, i, memop);
8335 if (insert) {
8336 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8337 } else {
8338 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8339 accumulate, is_u, size, shift);
8342 write_vec_element(s, tcg_rd, rd, i, size);
8345 if (!is_q) {
8346 clear_vec_high(s, rd);
8349 if (round) {
8350 tcg_temp_free_i64(tcg_round);
8354 /* SHL/SLI - Vector shift left */
8355 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8356 int immh, int immb, int opcode, int rn, int rd)
8358 int size = 32 - clz32(immh) - 1;
8359 int immhb = immh << 3 | immb;
8360 int shift = immhb - (8 << size);
8361 int dsize = is_q ? 128 : 64;
8362 int esize = 8 << size;
8363 int elements = dsize/esize;
8364 TCGv_i64 tcg_rn = new_tmp_a64(s);
8365 TCGv_i64 tcg_rd = new_tmp_a64(s);
8366 int i;
8368 if (extract32(immh, 3, 1) && !is_q) {
8369 unallocated_encoding(s);
8370 return;
8373 if (size > 3 && !is_q) {
8374 unallocated_encoding(s);
8375 return;
8378 if (!fp_access_check(s)) {
8379 return;
8382 for (i = 0; i < elements; i++) {
8383 read_vec_element(s, tcg_rn, rn, i, size);
8384 if (insert) {
8385 read_vec_element(s, tcg_rd, rd, i, size);
8388 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8390 write_vec_element(s, tcg_rd, rd, i, size);
8393 if (!is_q) {
8394 clear_vec_high(s, rd);
8398 /* USHLL/SHLL - Vector shift left with widening */
8399 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8400 int immh, int immb, int opcode, int rn, int rd)
8402 int size = 32 - clz32(immh) - 1;
8403 int immhb = immh << 3 | immb;
8404 int shift = immhb - (8 << size);
8405 int dsize = 64;
8406 int esize = 8 << size;
8407 int elements = dsize/esize;
8408 TCGv_i64 tcg_rn = new_tmp_a64(s);
8409 TCGv_i64 tcg_rd = new_tmp_a64(s);
8410 int i;
8412 if (size >= 3) {
8413 unallocated_encoding(s);
8414 return;
8417 if (!fp_access_check(s)) {
8418 return;
8421 /* For the LL variants the store is larger than the load,
8422 * so if rd == rn we would overwrite parts of our input.
8423 * So load everything right now and use shifts in the main loop.
8425 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8427 for (i = 0; i < elements; i++) {
8428 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8429 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8430 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8431 write_vec_element(s, tcg_rd, rd, i, size + 1);
8435 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8436 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8437 int immh, int immb, int opcode, int rn, int rd)
8439 int immhb = immh << 3 | immb;
8440 int size = 32 - clz32(immh) - 1;
8441 int dsize = 64;
8442 int esize = 8 << size;
8443 int elements = dsize/esize;
8444 int shift = (2 * esize) - immhb;
8445 bool round = extract32(opcode, 0, 1);
8446 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8447 TCGv_i64 tcg_round;
8448 int i;
8450 if (extract32(immh, 3, 1)) {
8451 unallocated_encoding(s);
8452 return;
8455 if (!fp_access_check(s)) {
8456 return;
8459 tcg_rn = tcg_temp_new_i64();
8460 tcg_rd = tcg_temp_new_i64();
8461 tcg_final = tcg_temp_new_i64();
8462 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8464 if (round) {
8465 uint64_t round_const = 1ULL << (shift - 1);
8466 tcg_round = tcg_const_i64(round_const);
8467 } else {
8468 TCGV_UNUSED_I64(tcg_round);
8471 for (i = 0; i < elements; i++) {
8472 read_vec_element(s, tcg_rn, rn, i, size+1);
8473 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8474 false, true, size+1, shift);
8476 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8479 if (!is_q) {
8480 clear_vec_high(s, rd);
8481 write_vec_element(s, tcg_final, rd, 0, MO_64);
8482 } else {
8483 write_vec_element(s, tcg_final, rd, 1, MO_64);
8486 if (round) {
8487 tcg_temp_free_i64(tcg_round);
8489 tcg_temp_free_i64(tcg_rn);
8490 tcg_temp_free_i64(tcg_rd);
8491 tcg_temp_free_i64(tcg_final);
8492 return;
8496 /* C3.6.14 AdvSIMD shift by immediate
8497 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8498 * +---+---+---+-------------+------+------+--------+---+------+------+
8499 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8500 * +---+---+---+-------------+------+------+--------+---+------+------+
8502 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8504 int rd = extract32(insn, 0, 5);
8505 int rn = extract32(insn, 5, 5);
8506 int opcode = extract32(insn, 11, 5);
8507 int immb = extract32(insn, 16, 3);
8508 int immh = extract32(insn, 19, 4);
8509 bool is_u = extract32(insn, 29, 1);
8510 bool is_q = extract32(insn, 30, 1);
8512 switch (opcode) {
8513 case 0x08: /* SRI */
8514 if (!is_u) {
8515 unallocated_encoding(s);
8516 return;
8518 /* fall through */
8519 case 0x00: /* SSHR / USHR */
8520 case 0x02: /* SSRA / USRA (accumulate) */
8521 case 0x04: /* SRSHR / URSHR (rounding) */
8522 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8523 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8524 break;
8525 case 0x0a: /* SHL / SLI */
8526 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8527 break;
8528 case 0x10: /* SHRN */
8529 case 0x11: /* RSHRN / SQRSHRUN */
8530 if (is_u) {
8531 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8532 opcode, rn, rd);
8533 } else {
8534 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8536 break;
8537 case 0x12: /* SQSHRN / UQSHRN */
8538 case 0x13: /* SQRSHRN / UQRSHRN */
8539 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8540 opcode, rn, rd);
8541 break;
8542 case 0x14: /* SSHLL / USHLL */
8543 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8544 break;
8545 case 0x1c: /* SCVTF / UCVTF */
8546 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8547 opcode, rn, rd);
8548 break;
8549 case 0xc: /* SQSHLU */
8550 if (!is_u) {
8551 unallocated_encoding(s);
8552 return;
8554 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8555 break;
8556 case 0xe: /* SQSHL, UQSHL */
8557 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8558 break;
8559 case 0x1f: /* FCVTZS/ FCVTZU */
8560 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8561 return;
8562 default:
8563 unallocated_encoding(s);
8564 return;
8568 /* Generate code to do a "long" addition or subtraction, ie one done in
8569 * TCGv_i64 on vector lanes twice the width specified by size.
8571 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8572 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8574 static NeonGenTwo64OpFn * const fns[3][2] = {
8575 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8576 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8577 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8579 NeonGenTwo64OpFn *genfn;
8580 assert(size < 3);
8582 genfn = fns[size][is_sub];
8583 genfn(tcg_res, tcg_op1, tcg_op2);
8586 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8587 int opcode, int rd, int rn, int rm)
8589 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8590 TCGv_i64 tcg_res[2];
8591 int pass, accop;
8593 tcg_res[0] = tcg_temp_new_i64();
8594 tcg_res[1] = tcg_temp_new_i64();
8596 /* Does this op do an adding accumulate, a subtracting accumulate,
8597 * or no accumulate at all?
8599 switch (opcode) {
8600 case 5:
8601 case 8:
8602 case 9:
8603 accop = 1;
8604 break;
8605 case 10:
8606 case 11:
8607 accop = -1;
8608 break;
8609 default:
8610 accop = 0;
8611 break;
8614 if (accop != 0) {
8615 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8616 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8619 /* size == 2 means two 32x32->64 operations; this is worth special
8620 * casing because we can generally handle it inline.
8622 if (size == 2) {
8623 for (pass = 0; pass < 2; pass++) {
8624 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8625 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8626 TCGv_i64 tcg_passres;
8627 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8629 int elt = pass + is_q * 2;
8631 read_vec_element(s, tcg_op1, rn, elt, memop);
8632 read_vec_element(s, tcg_op2, rm, elt, memop);
8634 if (accop == 0) {
8635 tcg_passres = tcg_res[pass];
8636 } else {
8637 tcg_passres = tcg_temp_new_i64();
8640 switch (opcode) {
8641 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8642 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8643 break;
8644 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8645 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8646 break;
8647 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8648 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8650 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8651 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8653 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8654 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8655 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8656 tcg_passres,
8657 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8658 tcg_temp_free_i64(tcg_tmp1);
8659 tcg_temp_free_i64(tcg_tmp2);
8660 break;
8662 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8663 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8664 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8665 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8666 break;
8667 case 9: /* SQDMLAL, SQDMLAL2 */
8668 case 11: /* SQDMLSL, SQDMLSL2 */
8669 case 13: /* SQDMULL, SQDMULL2 */
8670 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8671 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8672 tcg_passres, tcg_passres);
8673 break;
8674 default:
8675 g_assert_not_reached();
8678 if (opcode == 9 || opcode == 11) {
8679 /* saturating accumulate ops */
8680 if (accop < 0) {
8681 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8683 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8684 tcg_res[pass], tcg_passres);
8685 } else if (accop > 0) {
8686 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8687 } else if (accop < 0) {
8688 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8691 if (accop != 0) {
8692 tcg_temp_free_i64(tcg_passres);
8695 tcg_temp_free_i64(tcg_op1);
8696 tcg_temp_free_i64(tcg_op2);
8698 } else {
8699 /* size 0 or 1, generally helper functions */
8700 for (pass = 0; pass < 2; pass++) {
8701 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8702 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8703 TCGv_i64 tcg_passres;
8704 int elt = pass + is_q * 2;
8706 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8707 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8709 if (accop == 0) {
8710 tcg_passres = tcg_res[pass];
8711 } else {
8712 tcg_passres = tcg_temp_new_i64();
8715 switch (opcode) {
8716 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8717 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8719 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8720 static NeonGenWidenFn * const widenfns[2][2] = {
8721 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8722 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8724 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8726 widenfn(tcg_op2_64, tcg_op2);
8727 widenfn(tcg_passres, tcg_op1);
8728 gen_neon_addl(size, (opcode == 2), tcg_passres,
8729 tcg_passres, tcg_op2_64);
8730 tcg_temp_free_i64(tcg_op2_64);
8731 break;
8733 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8734 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8735 if (size == 0) {
8736 if (is_u) {
8737 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8738 } else {
8739 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8741 } else {
8742 if (is_u) {
8743 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8744 } else {
8745 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8748 break;
8749 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8750 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8751 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8752 if (size == 0) {
8753 if (is_u) {
8754 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8755 } else {
8756 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8758 } else {
8759 if (is_u) {
8760 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8761 } else {
8762 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8765 break;
8766 case 9: /* SQDMLAL, SQDMLAL2 */
8767 case 11: /* SQDMLSL, SQDMLSL2 */
8768 case 13: /* SQDMULL, SQDMULL2 */
8769 assert(size == 1);
8770 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8771 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8772 tcg_passres, tcg_passres);
8773 break;
8774 case 14: /* PMULL */
8775 assert(size == 0);
8776 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8777 break;
8778 default:
8779 g_assert_not_reached();
8781 tcg_temp_free_i32(tcg_op1);
8782 tcg_temp_free_i32(tcg_op2);
8784 if (accop != 0) {
8785 if (opcode == 9 || opcode == 11) {
8786 /* saturating accumulate ops */
8787 if (accop < 0) {
8788 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8790 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8791 tcg_res[pass],
8792 tcg_passres);
8793 } else {
8794 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8795 tcg_res[pass], tcg_passres);
8797 tcg_temp_free_i64(tcg_passres);
8802 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8803 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8804 tcg_temp_free_i64(tcg_res[0]);
8805 tcg_temp_free_i64(tcg_res[1]);
8808 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8809 int opcode, int rd, int rn, int rm)
8811 TCGv_i64 tcg_res[2];
8812 int part = is_q ? 2 : 0;
8813 int pass;
8815 for (pass = 0; pass < 2; pass++) {
8816 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8817 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8818 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8819 static NeonGenWidenFn * const widenfns[3][2] = {
8820 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8821 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8822 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8824 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8826 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8827 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8828 widenfn(tcg_op2_wide, tcg_op2);
8829 tcg_temp_free_i32(tcg_op2);
8830 tcg_res[pass] = tcg_temp_new_i64();
8831 gen_neon_addl(size, (opcode == 3),
8832 tcg_res[pass], tcg_op1, tcg_op2_wide);
8833 tcg_temp_free_i64(tcg_op1);
8834 tcg_temp_free_i64(tcg_op2_wide);
8837 for (pass = 0; pass < 2; pass++) {
8838 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8839 tcg_temp_free_i64(tcg_res[pass]);
8843 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8845 tcg_gen_addi_i64(in, in, 1U << 31);
8846 tcg_gen_extrh_i64_i32(res, in);
8849 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8850 int opcode, int rd, int rn, int rm)
8852 TCGv_i32 tcg_res[2];
8853 int part = is_q ? 2 : 0;
8854 int pass;
8856 for (pass = 0; pass < 2; pass++) {
8857 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8858 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8859 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8860 static NeonGenNarrowFn * const narrowfns[3][2] = {
8861 { gen_helper_neon_narrow_high_u8,
8862 gen_helper_neon_narrow_round_high_u8 },
8863 { gen_helper_neon_narrow_high_u16,
8864 gen_helper_neon_narrow_round_high_u16 },
8865 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8867 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8869 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8870 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8872 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8874 tcg_temp_free_i64(tcg_op1);
8875 tcg_temp_free_i64(tcg_op2);
8877 tcg_res[pass] = tcg_temp_new_i32();
8878 gennarrow(tcg_res[pass], tcg_wideres);
8879 tcg_temp_free_i64(tcg_wideres);
8882 for (pass = 0; pass < 2; pass++) {
8883 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8884 tcg_temp_free_i32(tcg_res[pass]);
8886 if (!is_q) {
8887 clear_vec_high(s, rd);
8891 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8893 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8894 * is the only three-reg-diff instruction which produces a
8895 * 128-bit wide result from a single operation. However since
8896 * it's possible to calculate the two halves more or less
8897 * separately we just use two helper calls.
8899 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8900 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8901 TCGv_i64 tcg_res = tcg_temp_new_i64();
8903 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8904 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8905 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8906 write_vec_element(s, tcg_res, rd, 0, MO_64);
8907 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8908 write_vec_element(s, tcg_res, rd, 1, MO_64);
8910 tcg_temp_free_i64(tcg_op1);
8911 tcg_temp_free_i64(tcg_op2);
8912 tcg_temp_free_i64(tcg_res);
8915 /* C3.6.15 AdvSIMD three different
8916 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8917 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8918 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8919 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8921 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8923 /* Instructions in this group fall into three basic classes
8924 * (in each case with the operation working on each element in
8925 * the input vectors):
8926 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8927 * 128 bit input)
8928 * (2) wide 64 x 128 -> 128
8929 * (3) narrowing 128 x 128 -> 64
8930 * Here we do initial decode, catch unallocated cases and
8931 * dispatch to separate functions for each class.
8933 int is_q = extract32(insn, 30, 1);
8934 int is_u = extract32(insn, 29, 1);
8935 int size = extract32(insn, 22, 2);
8936 int opcode = extract32(insn, 12, 4);
8937 int rm = extract32(insn, 16, 5);
8938 int rn = extract32(insn, 5, 5);
8939 int rd = extract32(insn, 0, 5);
8941 switch (opcode) {
8942 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8943 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8944 /* 64 x 128 -> 128 */
8945 if (size == 3) {
8946 unallocated_encoding(s);
8947 return;
8949 if (!fp_access_check(s)) {
8950 return;
8952 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8953 break;
8954 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8955 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8956 /* 128 x 128 -> 64 */
8957 if (size == 3) {
8958 unallocated_encoding(s);
8959 return;
8961 if (!fp_access_check(s)) {
8962 return;
8964 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
8965 break;
8966 case 14: /* PMULL, PMULL2 */
8967 if (is_u || size == 1 || size == 2) {
8968 unallocated_encoding(s);
8969 return;
8971 if (size == 3) {
8972 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
8973 unallocated_encoding(s);
8974 return;
8976 if (!fp_access_check(s)) {
8977 return;
8979 handle_pmull_64(s, is_q, rd, rn, rm);
8980 return;
8982 goto is_widening;
8983 case 9: /* SQDMLAL, SQDMLAL2 */
8984 case 11: /* SQDMLSL, SQDMLSL2 */
8985 case 13: /* SQDMULL, SQDMULL2 */
8986 if (is_u || size == 0) {
8987 unallocated_encoding(s);
8988 return;
8990 /* fall through */
8991 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8992 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8993 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8994 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8995 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8996 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8997 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
8998 /* 64 x 64 -> 128 */
8999 if (size == 3) {
9000 unallocated_encoding(s);
9001 return;
9003 is_widening:
9004 if (!fp_access_check(s)) {
9005 return;
9008 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
9009 break;
9010 default:
9011 /* opcode 15 not allocated */
9012 unallocated_encoding(s);
9013 break;
9017 /* Logic op (opcode == 3) subgroup of C3.6.16. */
9018 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
9020 int rd = extract32(insn, 0, 5);
9021 int rn = extract32(insn, 5, 5);
9022 int rm = extract32(insn, 16, 5);
9023 int size = extract32(insn, 22, 2);
9024 bool is_u = extract32(insn, 29, 1);
9025 bool is_q = extract32(insn, 30, 1);
9026 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
9027 int pass;
9029 if (!fp_access_check(s)) {
9030 return;
9033 tcg_op1 = tcg_temp_new_i64();
9034 tcg_op2 = tcg_temp_new_i64();
9035 tcg_res[0] = tcg_temp_new_i64();
9036 tcg_res[1] = tcg_temp_new_i64();
9038 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
9039 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9040 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9042 if (!is_u) {
9043 switch (size) {
9044 case 0: /* AND */
9045 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
9046 break;
9047 case 1: /* BIC */
9048 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9049 break;
9050 case 2: /* ORR */
9051 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
9052 break;
9053 case 3: /* ORN */
9054 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9055 break;
9057 } else {
9058 if (size != 0) {
9059 /* B* ops need res loaded to operate on */
9060 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9063 switch (size) {
9064 case 0: /* EOR */
9065 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
9066 break;
9067 case 1: /* BSL bitwise select */
9068 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
9069 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9070 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
9071 break;
9072 case 2: /* BIT, bitwise insert if true */
9073 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9074 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
9075 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9076 break;
9077 case 3: /* BIF, bitwise insert if false */
9078 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9079 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
9080 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9081 break;
9086 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
9087 if (!is_q) {
9088 tcg_gen_movi_i64(tcg_res[1], 0);
9090 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
9092 tcg_temp_free_i64(tcg_op1);
9093 tcg_temp_free_i64(tcg_op2);
9094 tcg_temp_free_i64(tcg_res[0]);
9095 tcg_temp_free_i64(tcg_res[1]);
9098 /* Helper functions for 32 bit comparisons */
9099 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9101 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
9104 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9106 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
9109 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9111 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
9114 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9116 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
9119 /* Pairwise op subgroup of C3.6.16.
9121 * This is called directly or via the handle_3same_float for float pairwise
9122 * operations where the opcode and size are calculated differently.
9124 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
9125 int size, int rn, int rm, int rd)
9127 TCGv_ptr fpst;
9128 int pass;
9130 /* Floating point operations need fpst */
9131 if (opcode >= 0x58) {
9132 fpst = get_fpstatus_ptr();
9133 } else {
9134 TCGV_UNUSED_PTR(fpst);
9137 if (!fp_access_check(s)) {
9138 return;
9141 /* These operations work on the concatenated rm:rn, with each pair of
9142 * adjacent elements being operated on to produce an element in the result.
9144 if (size == 3) {
9145 TCGv_i64 tcg_res[2];
9147 for (pass = 0; pass < 2; pass++) {
9148 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9149 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9150 int passreg = (pass == 0) ? rn : rm;
9152 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
9153 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
9154 tcg_res[pass] = tcg_temp_new_i64();
9156 switch (opcode) {
9157 case 0x17: /* ADDP */
9158 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9159 break;
9160 case 0x58: /* FMAXNMP */
9161 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9162 break;
9163 case 0x5a: /* FADDP */
9164 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9165 break;
9166 case 0x5e: /* FMAXP */
9167 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9168 break;
9169 case 0x78: /* FMINNMP */
9170 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9171 break;
9172 case 0x7e: /* FMINP */
9173 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9174 break;
9175 default:
9176 g_assert_not_reached();
9179 tcg_temp_free_i64(tcg_op1);
9180 tcg_temp_free_i64(tcg_op2);
9183 for (pass = 0; pass < 2; pass++) {
9184 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9185 tcg_temp_free_i64(tcg_res[pass]);
9187 } else {
9188 int maxpass = is_q ? 4 : 2;
9189 TCGv_i32 tcg_res[4];
9191 for (pass = 0; pass < maxpass; pass++) {
9192 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9193 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9194 NeonGenTwoOpFn *genfn = NULL;
9195 int passreg = pass < (maxpass / 2) ? rn : rm;
9196 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9198 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9199 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9200 tcg_res[pass] = tcg_temp_new_i32();
9202 switch (opcode) {
9203 case 0x17: /* ADDP */
9205 static NeonGenTwoOpFn * const fns[3] = {
9206 gen_helper_neon_padd_u8,
9207 gen_helper_neon_padd_u16,
9208 tcg_gen_add_i32,
9210 genfn = fns[size];
9211 break;
9213 case 0x14: /* SMAXP, UMAXP */
9215 static NeonGenTwoOpFn * const fns[3][2] = {
9216 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9217 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9218 { gen_max_s32, gen_max_u32 },
9220 genfn = fns[size][u];
9221 break;
9223 case 0x15: /* SMINP, UMINP */
9225 static NeonGenTwoOpFn * const fns[3][2] = {
9226 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9227 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9228 { gen_min_s32, gen_min_u32 },
9230 genfn = fns[size][u];
9231 break;
9233 /* The FP operations are all on single floats (32 bit) */
9234 case 0x58: /* FMAXNMP */
9235 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9236 break;
9237 case 0x5a: /* FADDP */
9238 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9239 break;
9240 case 0x5e: /* FMAXP */
9241 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9242 break;
9243 case 0x78: /* FMINNMP */
9244 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9245 break;
9246 case 0x7e: /* FMINP */
9247 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9248 break;
9249 default:
9250 g_assert_not_reached();
9253 /* FP ops called directly, otherwise call now */
9254 if (genfn) {
9255 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9258 tcg_temp_free_i32(tcg_op1);
9259 tcg_temp_free_i32(tcg_op2);
9262 for (pass = 0; pass < maxpass; pass++) {
9263 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9264 tcg_temp_free_i32(tcg_res[pass]);
9266 if (!is_q) {
9267 clear_vec_high(s, rd);
9271 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9272 tcg_temp_free_ptr(fpst);
9276 /* Floating point op subgroup of C3.6.16. */
9277 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9279 /* For floating point ops, the U, size[1] and opcode bits
9280 * together indicate the operation. size[0] indicates single
9281 * or double.
9283 int fpopcode = extract32(insn, 11, 5)
9284 | (extract32(insn, 23, 1) << 5)
9285 | (extract32(insn, 29, 1) << 6);
9286 int is_q = extract32(insn, 30, 1);
9287 int size = extract32(insn, 22, 1);
9288 int rm = extract32(insn, 16, 5);
9289 int rn = extract32(insn, 5, 5);
9290 int rd = extract32(insn, 0, 5);
9292 int datasize = is_q ? 128 : 64;
9293 int esize = 32 << size;
9294 int elements = datasize / esize;
9296 if (size == 1 && !is_q) {
9297 unallocated_encoding(s);
9298 return;
9301 switch (fpopcode) {
9302 case 0x58: /* FMAXNMP */
9303 case 0x5a: /* FADDP */
9304 case 0x5e: /* FMAXP */
9305 case 0x78: /* FMINNMP */
9306 case 0x7e: /* FMINP */
9307 if (size && !is_q) {
9308 unallocated_encoding(s);
9309 return;
9311 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9312 rn, rm, rd);
9313 return;
9314 case 0x1b: /* FMULX */
9315 case 0x1f: /* FRECPS */
9316 case 0x3f: /* FRSQRTS */
9317 case 0x5d: /* FACGE */
9318 case 0x7d: /* FACGT */
9319 case 0x19: /* FMLA */
9320 case 0x39: /* FMLS */
9321 case 0x18: /* FMAXNM */
9322 case 0x1a: /* FADD */
9323 case 0x1c: /* FCMEQ */
9324 case 0x1e: /* FMAX */
9325 case 0x38: /* FMINNM */
9326 case 0x3a: /* FSUB */
9327 case 0x3e: /* FMIN */
9328 case 0x5b: /* FMUL */
9329 case 0x5c: /* FCMGE */
9330 case 0x5f: /* FDIV */
9331 case 0x7a: /* FABD */
9332 case 0x7c: /* FCMGT */
9333 if (!fp_access_check(s)) {
9334 return;
9337 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9338 return;
9339 default:
9340 unallocated_encoding(s);
9341 return;
9345 /* Integer op subgroup of C3.6.16. */
9346 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9348 int is_q = extract32(insn, 30, 1);
9349 int u = extract32(insn, 29, 1);
9350 int size = extract32(insn, 22, 2);
9351 int opcode = extract32(insn, 11, 5);
9352 int rm = extract32(insn, 16, 5);
9353 int rn = extract32(insn, 5, 5);
9354 int rd = extract32(insn, 0, 5);
9355 int pass;
9357 switch (opcode) {
9358 case 0x13: /* MUL, PMUL */
9359 if (u && size != 0) {
9360 unallocated_encoding(s);
9361 return;
9363 /* fall through */
9364 case 0x0: /* SHADD, UHADD */
9365 case 0x2: /* SRHADD, URHADD */
9366 case 0x4: /* SHSUB, UHSUB */
9367 case 0xc: /* SMAX, UMAX */
9368 case 0xd: /* SMIN, UMIN */
9369 case 0xe: /* SABD, UABD */
9370 case 0xf: /* SABA, UABA */
9371 case 0x12: /* MLA, MLS */
9372 if (size == 3) {
9373 unallocated_encoding(s);
9374 return;
9376 break;
9377 case 0x16: /* SQDMULH, SQRDMULH */
9378 if (size == 0 || size == 3) {
9379 unallocated_encoding(s);
9380 return;
9382 break;
9383 default:
9384 if (size == 3 && !is_q) {
9385 unallocated_encoding(s);
9386 return;
9388 break;
9391 if (!fp_access_check(s)) {
9392 return;
9395 if (size == 3) {
9396 assert(is_q);
9397 for (pass = 0; pass < 2; pass++) {
9398 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9399 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9400 TCGv_i64 tcg_res = tcg_temp_new_i64();
9402 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9403 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9405 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9407 write_vec_element(s, tcg_res, rd, pass, MO_64);
9409 tcg_temp_free_i64(tcg_res);
9410 tcg_temp_free_i64(tcg_op1);
9411 tcg_temp_free_i64(tcg_op2);
9413 } else {
9414 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9415 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9416 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9417 TCGv_i32 tcg_res = tcg_temp_new_i32();
9418 NeonGenTwoOpFn *genfn = NULL;
9419 NeonGenTwoOpEnvFn *genenvfn = NULL;
9421 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9422 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9424 switch (opcode) {
9425 case 0x0: /* SHADD, UHADD */
9427 static NeonGenTwoOpFn * const fns[3][2] = {
9428 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9429 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9430 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9432 genfn = fns[size][u];
9433 break;
9435 case 0x1: /* SQADD, UQADD */
9437 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9438 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9439 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9440 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9442 genenvfn = fns[size][u];
9443 break;
9445 case 0x2: /* SRHADD, URHADD */
9447 static NeonGenTwoOpFn * const fns[3][2] = {
9448 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9449 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9450 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9452 genfn = fns[size][u];
9453 break;
9455 case 0x4: /* SHSUB, UHSUB */
9457 static NeonGenTwoOpFn * const fns[3][2] = {
9458 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9459 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9460 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9462 genfn = fns[size][u];
9463 break;
9465 case 0x5: /* SQSUB, UQSUB */
9467 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9468 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9469 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9470 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9472 genenvfn = fns[size][u];
9473 break;
9475 case 0x6: /* CMGT, CMHI */
9477 static NeonGenTwoOpFn * const fns[3][2] = {
9478 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9479 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9480 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9482 genfn = fns[size][u];
9483 break;
9485 case 0x7: /* CMGE, CMHS */
9487 static NeonGenTwoOpFn * const fns[3][2] = {
9488 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9489 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9490 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9492 genfn = fns[size][u];
9493 break;
9495 case 0x8: /* SSHL, USHL */
9497 static NeonGenTwoOpFn * const fns[3][2] = {
9498 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9499 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9500 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9502 genfn = fns[size][u];
9503 break;
9505 case 0x9: /* SQSHL, UQSHL */
9507 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9508 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9509 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9510 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9512 genenvfn = fns[size][u];
9513 break;
9515 case 0xa: /* SRSHL, URSHL */
9517 static NeonGenTwoOpFn * const fns[3][2] = {
9518 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9519 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9520 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9522 genfn = fns[size][u];
9523 break;
9525 case 0xb: /* SQRSHL, UQRSHL */
9527 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9528 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9529 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9530 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9532 genenvfn = fns[size][u];
9533 break;
9535 case 0xc: /* SMAX, UMAX */
9537 static NeonGenTwoOpFn * const fns[3][2] = {
9538 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9539 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9540 { gen_max_s32, gen_max_u32 },
9542 genfn = fns[size][u];
9543 break;
9546 case 0xd: /* SMIN, UMIN */
9548 static NeonGenTwoOpFn * const fns[3][2] = {
9549 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9550 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9551 { gen_min_s32, gen_min_u32 },
9553 genfn = fns[size][u];
9554 break;
9556 case 0xe: /* SABD, UABD */
9557 case 0xf: /* SABA, UABA */
9559 static NeonGenTwoOpFn * const fns[3][2] = {
9560 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9561 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9562 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9564 genfn = fns[size][u];
9565 break;
9567 case 0x10: /* ADD, SUB */
9569 static NeonGenTwoOpFn * const fns[3][2] = {
9570 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9571 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9572 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9574 genfn = fns[size][u];
9575 break;
9577 case 0x11: /* CMTST, CMEQ */
9579 static NeonGenTwoOpFn * const fns[3][2] = {
9580 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9581 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9582 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9584 genfn = fns[size][u];
9585 break;
9587 case 0x13: /* MUL, PMUL */
9588 if (u) {
9589 /* PMUL */
9590 assert(size == 0);
9591 genfn = gen_helper_neon_mul_p8;
9592 break;
9594 /* fall through : MUL */
9595 case 0x12: /* MLA, MLS */
9597 static NeonGenTwoOpFn * const fns[3] = {
9598 gen_helper_neon_mul_u8,
9599 gen_helper_neon_mul_u16,
9600 tcg_gen_mul_i32,
9602 genfn = fns[size];
9603 break;
9605 case 0x16: /* SQDMULH, SQRDMULH */
9607 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9608 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9609 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9611 assert(size == 1 || size == 2);
9612 genenvfn = fns[size - 1][u];
9613 break;
9615 default:
9616 g_assert_not_reached();
9619 if (genenvfn) {
9620 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9621 } else {
9622 genfn(tcg_res, tcg_op1, tcg_op2);
9625 if (opcode == 0xf || opcode == 0x12) {
9626 /* SABA, UABA, MLA, MLS: accumulating ops */
9627 static NeonGenTwoOpFn * const fns[3][2] = {
9628 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9629 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9630 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9632 bool is_sub = (opcode == 0x12 && u); /* MLS */
9634 genfn = fns[size][is_sub];
9635 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9636 genfn(tcg_res, tcg_op1, tcg_res);
9639 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9641 tcg_temp_free_i32(tcg_res);
9642 tcg_temp_free_i32(tcg_op1);
9643 tcg_temp_free_i32(tcg_op2);
9647 if (!is_q) {
9648 clear_vec_high(s, rd);
9652 /* C3.6.16 AdvSIMD three same
9653 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9654 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9655 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9656 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9658 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9660 int opcode = extract32(insn, 11, 5);
9662 switch (opcode) {
9663 case 0x3: /* logic ops */
9664 disas_simd_3same_logic(s, insn);
9665 break;
9666 case 0x17: /* ADDP */
9667 case 0x14: /* SMAXP, UMAXP */
9668 case 0x15: /* SMINP, UMINP */
9670 /* Pairwise operations */
9671 int is_q = extract32(insn, 30, 1);
9672 int u = extract32(insn, 29, 1);
9673 int size = extract32(insn, 22, 2);
9674 int rm = extract32(insn, 16, 5);
9675 int rn = extract32(insn, 5, 5);
9676 int rd = extract32(insn, 0, 5);
9677 if (opcode == 0x17) {
9678 if (u || (size == 3 && !is_q)) {
9679 unallocated_encoding(s);
9680 return;
9682 } else {
9683 if (size == 3) {
9684 unallocated_encoding(s);
9685 return;
9688 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9689 break;
9691 case 0x18 ... 0x31:
9692 /* floating point ops, sz[1] and U are part of opcode */
9693 disas_simd_3same_float(s, insn);
9694 break;
9695 default:
9696 disas_simd_3same_int(s, insn);
9697 break;
9701 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9702 int size, int rn, int rd)
9704 /* Handle 2-reg-misc ops which are widening (so each size element
9705 * in the source becomes a 2*size element in the destination.
9706 * The only instruction like this is FCVTL.
9708 int pass;
9710 if (size == 3) {
9711 /* 32 -> 64 bit fp conversion */
9712 TCGv_i64 tcg_res[2];
9713 int srcelt = is_q ? 2 : 0;
9715 for (pass = 0; pass < 2; pass++) {
9716 TCGv_i32 tcg_op = tcg_temp_new_i32();
9717 tcg_res[pass] = tcg_temp_new_i64();
9719 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9720 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9721 tcg_temp_free_i32(tcg_op);
9723 for (pass = 0; pass < 2; pass++) {
9724 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9725 tcg_temp_free_i64(tcg_res[pass]);
9727 } else {
9728 /* 16 -> 32 bit fp conversion */
9729 int srcelt = is_q ? 4 : 0;
9730 TCGv_i32 tcg_res[4];
9732 for (pass = 0; pass < 4; pass++) {
9733 tcg_res[pass] = tcg_temp_new_i32();
9735 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9736 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9737 cpu_env);
9739 for (pass = 0; pass < 4; pass++) {
9740 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9741 tcg_temp_free_i32(tcg_res[pass]);
9746 static void handle_rev(DisasContext *s, int opcode, bool u,
9747 bool is_q, int size, int rn, int rd)
9749 int op = (opcode << 1) | u;
9750 int opsz = op + size;
9751 int grp_size = 3 - opsz;
9752 int dsize = is_q ? 128 : 64;
9753 int i;
9755 if (opsz >= 3) {
9756 unallocated_encoding(s);
9757 return;
9760 if (!fp_access_check(s)) {
9761 return;
9764 if (size == 0) {
9765 /* Special case bytes, use bswap op on each group of elements */
9766 int groups = dsize / (8 << grp_size);
9768 for (i = 0; i < groups; i++) {
9769 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9771 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9772 switch (grp_size) {
9773 case MO_16:
9774 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9775 break;
9776 case MO_32:
9777 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9778 break;
9779 case MO_64:
9780 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9781 break;
9782 default:
9783 g_assert_not_reached();
9785 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9786 tcg_temp_free_i64(tcg_tmp);
9788 if (!is_q) {
9789 clear_vec_high(s, rd);
9791 } else {
9792 int revmask = (1 << grp_size) - 1;
9793 int esize = 8 << size;
9794 int elements = dsize / esize;
9795 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9796 TCGv_i64 tcg_rd = tcg_const_i64(0);
9797 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9799 for (i = 0; i < elements; i++) {
9800 int e_rev = (i & 0xf) ^ revmask;
9801 int off = e_rev * esize;
9802 read_vec_element(s, tcg_rn, rn, i, size);
9803 if (off >= 64) {
9804 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9805 tcg_rn, off - 64, esize);
9806 } else {
9807 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9810 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9811 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9813 tcg_temp_free_i64(tcg_rd_hi);
9814 tcg_temp_free_i64(tcg_rd);
9815 tcg_temp_free_i64(tcg_rn);
9819 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9820 bool is_q, int size, int rn, int rd)
9822 /* Implement the pairwise operations from 2-misc:
9823 * SADDLP, UADDLP, SADALP, UADALP.
9824 * These all add pairs of elements in the input to produce a
9825 * double-width result element in the output (possibly accumulating).
9827 bool accum = (opcode == 0x6);
9828 int maxpass = is_q ? 2 : 1;
9829 int pass;
9830 TCGv_i64 tcg_res[2];
9832 if (size == 2) {
9833 /* 32 + 32 -> 64 op */
9834 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9836 for (pass = 0; pass < maxpass; pass++) {
9837 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9838 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9840 tcg_res[pass] = tcg_temp_new_i64();
9842 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9843 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9844 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9845 if (accum) {
9846 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9847 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9850 tcg_temp_free_i64(tcg_op1);
9851 tcg_temp_free_i64(tcg_op2);
9853 } else {
9854 for (pass = 0; pass < maxpass; pass++) {
9855 TCGv_i64 tcg_op = tcg_temp_new_i64();
9856 NeonGenOneOpFn *genfn;
9857 static NeonGenOneOpFn * const fns[2][2] = {
9858 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9859 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9862 genfn = fns[size][u];
9864 tcg_res[pass] = tcg_temp_new_i64();
9866 read_vec_element(s, tcg_op, rn, pass, MO_64);
9867 genfn(tcg_res[pass], tcg_op);
9869 if (accum) {
9870 read_vec_element(s, tcg_op, rd, pass, MO_64);
9871 if (size == 0) {
9872 gen_helper_neon_addl_u16(tcg_res[pass],
9873 tcg_res[pass], tcg_op);
9874 } else {
9875 gen_helper_neon_addl_u32(tcg_res[pass],
9876 tcg_res[pass], tcg_op);
9879 tcg_temp_free_i64(tcg_op);
9882 if (!is_q) {
9883 tcg_res[1] = tcg_const_i64(0);
9885 for (pass = 0; pass < 2; pass++) {
9886 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9887 tcg_temp_free_i64(tcg_res[pass]);
9891 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9893 /* Implement SHLL and SHLL2 */
9894 int pass;
9895 int part = is_q ? 2 : 0;
9896 TCGv_i64 tcg_res[2];
9898 for (pass = 0; pass < 2; pass++) {
9899 static NeonGenWidenFn * const widenfns[3] = {
9900 gen_helper_neon_widen_u8,
9901 gen_helper_neon_widen_u16,
9902 tcg_gen_extu_i32_i64,
9904 NeonGenWidenFn *widenfn = widenfns[size];
9905 TCGv_i32 tcg_op = tcg_temp_new_i32();
9907 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9908 tcg_res[pass] = tcg_temp_new_i64();
9909 widenfn(tcg_res[pass], tcg_op);
9910 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9912 tcg_temp_free_i32(tcg_op);
9915 for (pass = 0; pass < 2; pass++) {
9916 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9917 tcg_temp_free_i64(tcg_res[pass]);
9921 /* C3.6.17 AdvSIMD two reg misc
9922 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9923 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9924 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9925 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9927 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9929 int size = extract32(insn, 22, 2);
9930 int opcode = extract32(insn, 12, 5);
9931 bool u = extract32(insn, 29, 1);
9932 bool is_q = extract32(insn, 30, 1);
9933 int rn = extract32(insn, 5, 5);
9934 int rd = extract32(insn, 0, 5);
9935 bool need_fpstatus = false;
9936 bool need_rmode = false;
9937 int rmode = -1;
9938 TCGv_i32 tcg_rmode;
9939 TCGv_ptr tcg_fpstatus;
9941 switch (opcode) {
9942 case 0x0: /* REV64, REV32 */
9943 case 0x1: /* REV16 */
9944 handle_rev(s, opcode, u, is_q, size, rn, rd);
9945 return;
9946 case 0x5: /* CNT, NOT, RBIT */
9947 if (u && size == 0) {
9948 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9949 size = 3;
9950 break;
9951 } else if (u && size == 1) {
9952 /* RBIT */
9953 break;
9954 } else if (!u && size == 0) {
9955 /* CNT */
9956 break;
9958 unallocated_encoding(s);
9959 return;
9960 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9961 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9962 if (size == 3) {
9963 unallocated_encoding(s);
9964 return;
9966 if (!fp_access_check(s)) {
9967 return;
9970 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
9971 return;
9972 case 0x4: /* CLS, CLZ */
9973 if (size == 3) {
9974 unallocated_encoding(s);
9975 return;
9977 break;
9978 case 0x2: /* SADDLP, UADDLP */
9979 case 0x6: /* SADALP, UADALP */
9980 if (size == 3) {
9981 unallocated_encoding(s);
9982 return;
9984 if (!fp_access_check(s)) {
9985 return;
9987 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
9988 return;
9989 case 0x13: /* SHLL, SHLL2 */
9990 if (u == 0 || size == 3) {
9991 unallocated_encoding(s);
9992 return;
9994 if (!fp_access_check(s)) {
9995 return;
9997 handle_shll(s, is_q, size, rn, rd);
9998 return;
9999 case 0xa: /* CMLT */
10000 if (u == 1) {
10001 unallocated_encoding(s);
10002 return;
10004 /* fall through */
10005 case 0x8: /* CMGT, CMGE */
10006 case 0x9: /* CMEQ, CMLE */
10007 case 0xb: /* ABS, NEG */
10008 if (size == 3 && !is_q) {
10009 unallocated_encoding(s);
10010 return;
10012 break;
10013 case 0x3: /* SUQADD, USQADD */
10014 if (size == 3 && !is_q) {
10015 unallocated_encoding(s);
10016 return;
10018 if (!fp_access_check(s)) {
10019 return;
10021 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
10022 return;
10023 case 0x7: /* SQABS, SQNEG */
10024 if (size == 3 && !is_q) {
10025 unallocated_encoding(s);
10026 return;
10028 break;
10029 case 0xc ... 0xf:
10030 case 0x16 ... 0x1d:
10031 case 0x1f:
10033 /* Floating point: U, size[1] and opcode indicate operation;
10034 * size[0] indicates single or double precision.
10036 int is_double = extract32(size, 0, 1);
10037 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10038 size = is_double ? 3 : 2;
10039 switch (opcode) {
10040 case 0x2f: /* FABS */
10041 case 0x6f: /* FNEG */
10042 if (size == 3 && !is_q) {
10043 unallocated_encoding(s);
10044 return;
10046 break;
10047 case 0x1d: /* SCVTF */
10048 case 0x5d: /* UCVTF */
10050 bool is_signed = (opcode == 0x1d) ? true : false;
10051 int elements = is_double ? 2 : is_q ? 4 : 2;
10052 if (is_double && !is_q) {
10053 unallocated_encoding(s);
10054 return;
10056 if (!fp_access_check(s)) {
10057 return;
10059 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
10060 return;
10062 case 0x2c: /* FCMGT (zero) */
10063 case 0x2d: /* FCMEQ (zero) */
10064 case 0x2e: /* FCMLT (zero) */
10065 case 0x6c: /* FCMGE (zero) */
10066 case 0x6d: /* FCMLE (zero) */
10067 if (size == 3 && !is_q) {
10068 unallocated_encoding(s);
10069 return;
10071 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
10072 return;
10073 case 0x7f: /* FSQRT */
10074 if (size == 3 && !is_q) {
10075 unallocated_encoding(s);
10076 return;
10078 break;
10079 case 0x1a: /* FCVTNS */
10080 case 0x1b: /* FCVTMS */
10081 case 0x3a: /* FCVTPS */
10082 case 0x3b: /* FCVTZS */
10083 case 0x5a: /* FCVTNU */
10084 case 0x5b: /* FCVTMU */
10085 case 0x7a: /* FCVTPU */
10086 case 0x7b: /* FCVTZU */
10087 need_fpstatus = true;
10088 need_rmode = true;
10089 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10090 if (size == 3 && !is_q) {
10091 unallocated_encoding(s);
10092 return;
10094 break;
10095 case 0x5c: /* FCVTAU */
10096 case 0x1c: /* FCVTAS */
10097 need_fpstatus = true;
10098 need_rmode = true;
10099 rmode = FPROUNDING_TIEAWAY;
10100 if (size == 3 && !is_q) {
10101 unallocated_encoding(s);
10102 return;
10104 break;
10105 case 0x3c: /* URECPE */
10106 if (size == 3) {
10107 unallocated_encoding(s);
10108 return;
10110 /* fall through */
10111 case 0x3d: /* FRECPE */
10112 case 0x7d: /* FRSQRTE */
10113 if (size == 3 && !is_q) {
10114 unallocated_encoding(s);
10115 return;
10117 if (!fp_access_check(s)) {
10118 return;
10120 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
10121 return;
10122 case 0x56: /* FCVTXN, FCVTXN2 */
10123 if (size == 2) {
10124 unallocated_encoding(s);
10125 return;
10127 /* fall through */
10128 case 0x16: /* FCVTN, FCVTN2 */
10129 /* handle_2misc_narrow does a 2*size -> size operation, but these
10130 * instructions encode the source size rather than dest size.
10132 if (!fp_access_check(s)) {
10133 return;
10135 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
10136 return;
10137 case 0x17: /* FCVTL, FCVTL2 */
10138 if (!fp_access_check(s)) {
10139 return;
10141 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
10142 return;
10143 case 0x18: /* FRINTN */
10144 case 0x19: /* FRINTM */
10145 case 0x38: /* FRINTP */
10146 case 0x39: /* FRINTZ */
10147 need_rmode = true;
10148 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10149 /* fall through */
10150 case 0x59: /* FRINTX */
10151 case 0x79: /* FRINTI */
10152 need_fpstatus = true;
10153 if (size == 3 && !is_q) {
10154 unallocated_encoding(s);
10155 return;
10157 break;
10158 case 0x58: /* FRINTA */
10159 need_rmode = true;
10160 rmode = FPROUNDING_TIEAWAY;
10161 need_fpstatus = true;
10162 if (size == 3 && !is_q) {
10163 unallocated_encoding(s);
10164 return;
10166 break;
10167 case 0x7c: /* URSQRTE */
10168 if (size == 3) {
10169 unallocated_encoding(s);
10170 return;
10172 need_fpstatus = true;
10173 break;
10174 default:
10175 unallocated_encoding(s);
10176 return;
10178 break;
10180 default:
10181 unallocated_encoding(s);
10182 return;
10185 if (!fp_access_check(s)) {
10186 return;
10189 if (need_fpstatus) {
10190 tcg_fpstatus = get_fpstatus_ptr();
10191 } else {
10192 TCGV_UNUSED_PTR(tcg_fpstatus);
10194 if (need_rmode) {
10195 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10196 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10197 } else {
10198 TCGV_UNUSED_I32(tcg_rmode);
10201 if (size == 3) {
10202 /* All 64-bit element operations can be shared with scalar 2misc */
10203 int pass;
10205 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10206 TCGv_i64 tcg_op = tcg_temp_new_i64();
10207 TCGv_i64 tcg_res = tcg_temp_new_i64();
10209 read_vec_element(s, tcg_op, rn, pass, MO_64);
10211 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10212 tcg_rmode, tcg_fpstatus);
10214 write_vec_element(s, tcg_res, rd, pass, MO_64);
10216 tcg_temp_free_i64(tcg_res);
10217 tcg_temp_free_i64(tcg_op);
10219 } else {
10220 int pass;
10222 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10223 TCGv_i32 tcg_op = tcg_temp_new_i32();
10224 TCGv_i32 tcg_res = tcg_temp_new_i32();
10225 TCGCond cond;
10227 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10229 if (size == 2) {
10230 /* Special cases for 32 bit elements */
10231 switch (opcode) {
10232 case 0xa: /* CMLT */
10233 /* 32 bit integer comparison against zero, result is
10234 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10235 * and inverting.
10237 cond = TCG_COND_LT;
10238 do_cmop:
10239 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10240 tcg_gen_neg_i32(tcg_res, tcg_res);
10241 break;
10242 case 0x8: /* CMGT, CMGE */
10243 cond = u ? TCG_COND_GE : TCG_COND_GT;
10244 goto do_cmop;
10245 case 0x9: /* CMEQ, CMLE */
10246 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10247 goto do_cmop;
10248 case 0x4: /* CLS */
10249 if (u) {
10250 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
10251 } else {
10252 tcg_gen_clrsb_i32(tcg_res, tcg_op);
10254 break;
10255 case 0x7: /* SQABS, SQNEG */
10256 if (u) {
10257 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10258 } else {
10259 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10261 break;
10262 case 0xb: /* ABS, NEG */
10263 if (u) {
10264 tcg_gen_neg_i32(tcg_res, tcg_op);
10265 } else {
10266 TCGv_i32 tcg_zero = tcg_const_i32(0);
10267 tcg_gen_neg_i32(tcg_res, tcg_op);
10268 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10269 tcg_zero, tcg_op, tcg_res);
10270 tcg_temp_free_i32(tcg_zero);
10272 break;
10273 case 0x2f: /* FABS */
10274 gen_helper_vfp_abss(tcg_res, tcg_op);
10275 break;
10276 case 0x6f: /* FNEG */
10277 gen_helper_vfp_negs(tcg_res, tcg_op);
10278 break;
10279 case 0x7f: /* FSQRT */
10280 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10281 break;
10282 case 0x1a: /* FCVTNS */
10283 case 0x1b: /* FCVTMS */
10284 case 0x1c: /* FCVTAS */
10285 case 0x3a: /* FCVTPS */
10286 case 0x3b: /* FCVTZS */
10288 TCGv_i32 tcg_shift = tcg_const_i32(0);
10289 gen_helper_vfp_tosls(tcg_res, tcg_op,
10290 tcg_shift, tcg_fpstatus);
10291 tcg_temp_free_i32(tcg_shift);
10292 break;
10294 case 0x5a: /* FCVTNU */
10295 case 0x5b: /* FCVTMU */
10296 case 0x5c: /* FCVTAU */
10297 case 0x7a: /* FCVTPU */
10298 case 0x7b: /* FCVTZU */
10300 TCGv_i32 tcg_shift = tcg_const_i32(0);
10301 gen_helper_vfp_touls(tcg_res, tcg_op,
10302 tcg_shift, tcg_fpstatus);
10303 tcg_temp_free_i32(tcg_shift);
10304 break;
10306 case 0x18: /* FRINTN */
10307 case 0x19: /* FRINTM */
10308 case 0x38: /* FRINTP */
10309 case 0x39: /* FRINTZ */
10310 case 0x58: /* FRINTA */
10311 case 0x79: /* FRINTI */
10312 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10313 break;
10314 case 0x59: /* FRINTX */
10315 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10316 break;
10317 case 0x7c: /* URSQRTE */
10318 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10319 break;
10320 default:
10321 g_assert_not_reached();
10323 } else {
10324 /* Use helpers for 8 and 16 bit elements */
10325 switch (opcode) {
10326 case 0x5: /* CNT, RBIT */
10327 /* For these two insns size is part of the opcode specifier
10328 * (handled earlier); they always operate on byte elements.
10330 if (u) {
10331 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10332 } else {
10333 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10335 break;
10336 case 0x7: /* SQABS, SQNEG */
10338 NeonGenOneOpEnvFn *genfn;
10339 static NeonGenOneOpEnvFn * const fns[2][2] = {
10340 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10341 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10343 genfn = fns[size][u];
10344 genfn(tcg_res, cpu_env, tcg_op);
10345 break;
10347 case 0x8: /* CMGT, CMGE */
10348 case 0x9: /* CMEQ, CMLE */
10349 case 0xa: /* CMLT */
10351 static NeonGenTwoOpFn * const fns[3][2] = {
10352 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10353 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10354 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10356 NeonGenTwoOpFn *genfn;
10357 int comp;
10358 bool reverse;
10359 TCGv_i32 tcg_zero = tcg_const_i32(0);
10361 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10362 comp = (opcode - 0x8) * 2 + u;
10363 /* ...but LE, LT are implemented as reverse GE, GT */
10364 reverse = (comp > 2);
10365 if (reverse) {
10366 comp = 4 - comp;
10368 genfn = fns[comp][size];
10369 if (reverse) {
10370 genfn(tcg_res, tcg_zero, tcg_op);
10371 } else {
10372 genfn(tcg_res, tcg_op, tcg_zero);
10374 tcg_temp_free_i32(tcg_zero);
10375 break;
10377 case 0xb: /* ABS, NEG */
10378 if (u) {
10379 TCGv_i32 tcg_zero = tcg_const_i32(0);
10380 if (size) {
10381 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10382 } else {
10383 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10385 tcg_temp_free_i32(tcg_zero);
10386 } else {
10387 if (size) {
10388 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10389 } else {
10390 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10393 break;
10394 case 0x4: /* CLS, CLZ */
10395 if (u) {
10396 if (size == 0) {
10397 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10398 } else {
10399 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10401 } else {
10402 if (size == 0) {
10403 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10404 } else {
10405 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10408 break;
10409 default:
10410 g_assert_not_reached();
10414 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10416 tcg_temp_free_i32(tcg_res);
10417 tcg_temp_free_i32(tcg_op);
10420 if (!is_q) {
10421 clear_vec_high(s, rd);
10424 if (need_rmode) {
10425 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10426 tcg_temp_free_i32(tcg_rmode);
10428 if (need_fpstatus) {
10429 tcg_temp_free_ptr(tcg_fpstatus);
10433 /* C3.6.13 AdvSIMD scalar x indexed element
10434 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10435 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10436 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10437 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10438 * C3.6.18 AdvSIMD vector x indexed element
10439 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10440 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10441 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10442 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10444 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10446 /* This encoding has two kinds of instruction:
10447 * normal, where we perform elt x idxelt => elt for each
10448 * element in the vector
10449 * long, where we perform elt x idxelt and generate a result of
10450 * double the width of the input element
10451 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10453 bool is_scalar = extract32(insn, 28, 1);
10454 bool is_q = extract32(insn, 30, 1);
10455 bool u = extract32(insn, 29, 1);
10456 int size = extract32(insn, 22, 2);
10457 int l = extract32(insn, 21, 1);
10458 int m = extract32(insn, 20, 1);
10459 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10460 int rm = extract32(insn, 16, 4);
10461 int opcode = extract32(insn, 12, 4);
10462 int h = extract32(insn, 11, 1);
10463 int rn = extract32(insn, 5, 5);
10464 int rd = extract32(insn, 0, 5);
10465 bool is_long = false;
10466 bool is_fp = false;
10467 int index;
10468 TCGv_ptr fpst;
10470 switch (opcode) {
10471 case 0x0: /* MLA */
10472 case 0x4: /* MLS */
10473 if (!u || is_scalar) {
10474 unallocated_encoding(s);
10475 return;
10477 break;
10478 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10479 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10480 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10481 if (is_scalar) {
10482 unallocated_encoding(s);
10483 return;
10485 is_long = true;
10486 break;
10487 case 0x3: /* SQDMLAL, SQDMLAL2 */
10488 case 0x7: /* SQDMLSL, SQDMLSL2 */
10489 case 0xb: /* SQDMULL, SQDMULL2 */
10490 is_long = true;
10491 /* fall through */
10492 case 0xc: /* SQDMULH */
10493 case 0xd: /* SQRDMULH */
10494 if (u) {
10495 unallocated_encoding(s);
10496 return;
10498 break;
10499 case 0x8: /* MUL */
10500 if (u || is_scalar) {
10501 unallocated_encoding(s);
10502 return;
10504 break;
10505 case 0x1: /* FMLA */
10506 case 0x5: /* FMLS */
10507 if (u) {
10508 unallocated_encoding(s);
10509 return;
10511 /* fall through */
10512 case 0x9: /* FMUL, FMULX */
10513 if (!extract32(size, 1, 1)) {
10514 unallocated_encoding(s);
10515 return;
10517 is_fp = true;
10518 break;
10519 default:
10520 unallocated_encoding(s);
10521 return;
10524 if (is_fp) {
10525 /* low bit of size indicates single/double */
10526 size = extract32(size, 0, 1) ? 3 : 2;
10527 if (size == 2) {
10528 index = h << 1 | l;
10529 } else {
10530 if (l || !is_q) {
10531 unallocated_encoding(s);
10532 return;
10534 index = h;
10536 rm |= (m << 4);
10537 } else {
10538 switch (size) {
10539 case 1:
10540 index = h << 2 | l << 1 | m;
10541 break;
10542 case 2:
10543 index = h << 1 | l;
10544 rm |= (m << 4);
10545 break;
10546 default:
10547 unallocated_encoding(s);
10548 return;
10552 if (!fp_access_check(s)) {
10553 return;
10556 if (is_fp) {
10557 fpst = get_fpstatus_ptr();
10558 } else {
10559 TCGV_UNUSED_PTR(fpst);
10562 if (size == 3) {
10563 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10564 int pass;
10566 assert(is_fp && is_q && !is_long);
10568 read_vec_element(s, tcg_idx, rm, index, MO_64);
10570 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10571 TCGv_i64 tcg_op = tcg_temp_new_i64();
10572 TCGv_i64 tcg_res = tcg_temp_new_i64();
10574 read_vec_element(s, tcg_op, rn, pass, MO_64);
10576 switch (opcode) {
10577 case 0x5: /* FMLS */
10578 /* As usual for ARM, separate negation for fused multiply-add */
10579 gen_helper_vfp_negd(tcg_op, tcg_op);
10580 /* fall through */
10581 case 0x1: /* FMLA */
10582 read_vec_element(s, tcg_res, rd, pass, MO_64);
10583 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10584 break;
10585 case 0x9: /* FMUL, FMULX */
10586 if (u) {
10587 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10588 } else {
10589 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10591 break;
10592 default:
10593 g_assert_not_reached();
10596 write_vec_element(s, tcg_res, rd, pass, MO_64);
10597 tcg_temp_free_i64(tcg_op);
10598 tcg_temp_free_i64(tcg_res);
10601 if (is_scalar) {
10602 clear_vec_high(s, rd);
10605 tcg_temp_free_i64(tcg_idx);
10606 } else if (!is_long) {
10607 /* 32 bit floating point, or 16 or 32 bit integer.
10608 * For the 16 bit scalar case we use the usual Neon helpers and
10609 * rely on the fact that 0 op 0 == 0 with no side effects.
10611 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10612 int pass, maxpasses;
10614 if (is_scalar) {
10615 maxpasses = 1;
10616 } else {
10617 maxpasses = is_q ? 4 : 2;
10620 read_vec_element_i32(s, tcg_idx, rm, index, size);
10622 if (size == 1 && !is_scalar) {
10623 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10624 * the index into both halves of the 32 bit tcg_idx and then use
10625 * the usual Neon helpers.
10627 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10630 for (pass = 0; pass < maxpasses; pass++) {
10631 TCGv_i32 tcg_op = tcg_temp_new_i32();
10632 TCGv_i32 tcg_res = tcg_temp_new_i32();
10634 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10636 switch (opcode) {
10637 case 0x0: /* MLA */
10638 case 0x4: /* MLS */
10639 case 0x8: /* MUL */
10641 static NeonGenTwoOpFn * const fns[2][2] = {
10642 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10643 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10645 NeonGenTwoOpFn *genfn;
10646 bool is_sub = opcode == 0x4;
10648 if (size == 1) {
10649 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10650 } else {
10651 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10653 if (opcode == 0x8) {
10654 break;
10656 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10657 genfn = fns[size - 1][is_sub];
10658 genfn(tcg_res, tcg_op, tcg_res);
10659 break;
10661 case 0x5: /* FMLS */
10662 /* As usual for ARM, separate negation for fused multiply-add */
10663 gen_helper_vfp_negs(tcg_op, tcg_op);
10664 /* fall through */
10665 case 0x1: /* FMLA */
10666 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10667 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10668 break;
10669 case 0x9: /* FMUL, FMULX */
10670 if (u) {
10671 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10672 } else {
10673 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10675 break;
10676 case 0xc: /* SQDMULH */
10677 if (size == 1) {
10678 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10679 tcg_op, tcg_idx);
10680 } else {
10681 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10682 tcg_op, tcg_idx);
10684 break;
10685 case 0xd: /* SQRDMULH */
10686 if (size == 1) {
10687 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10688 tcg_op, tcg_idx);
10689 } else {
10690 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10691 tcg_op, tcg_idx);
10693 break;
10694 default:
10695 g_assert_not_reached();
10698 if (is_scalar) {
10699 write_fp_sreg(s, rd, tcg_res);
10700 } else {
10701 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10704 tcg_temp_free_i32(tcg_op);
10705 tcg_temp_free_i32(tcg_res);
10708 tcg_temp_free_i32(tcg_idx);
10710 if (!is_q) {
10711 clear_vec_high(s, rd);
10713 } else {
10714 /* long ops: 16x16->32 or 32x32->64 */
10715 TCGv_i64 tcg_res[2];
10716 int pass;
10717 bool satop = extract32(opcode, 0, 1);
10718 TCGMemOp memop = MO_32;
10720 if (satop || !u) {
10721 memop |= MO_SIGN;
10724 if (size == 2) {
10725 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10727 read_vec_element(s, tcg_idx, rm, index, memop);
10729 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10730 TCGv_i64 tcg_op = tcg_temp_new_i64();
10731 TCGv_i64 tcg_passres;
10732 int passelt;
10734 if (is_scalar) {
10735 passelt = 0;
10736 } else {
10737 passelt = pass + (is_q * 2);
10740 read_vec_element(s, tcg_op, rn, passelt, memop);
10742 tcg_res[pass] = tcg_temp_new_i64();
10744 if (opcode == 0xa || opcode == 0xb) {
10745 /* Non-accumulating ops */
10746 tcg_passres = tcg_res[pass];
10747 } else {
10748 tcg_passres = tcg_temp_new_i64();
10751 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10752 tcg_temp_free_i64(tcg_op);
10754 if (satop) {
10755 /* saturating, doubling */
10756 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10757 tcg_passres, tcg_passres);
10760 if (opcode == 0xa || opcode == 0xb) {
10761 continue;
10764 /* Accumulating op: handle accumulate step */
10765 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10767 switch (opcode) {
10768 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10769 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10770 break;
10771 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10772 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10773 break;
10774 case 0x7: /* SQDMLSL, SQDMLSL2 */
10775 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10776 /* fall through */
10777 case 0x3: /* SQDMLAL, SQDMLAL2 */
10778 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10779 tcg_res[pass],
10780 tcg_passres);
10781 break;
10782 default:
10783 g_assert_not_reached();
10785 tcg_temp_free_i64(tcg_passres);
10787 tcg_temp_free_i64(tcg_idx);
10789 if (is_scalar) {
10790 clear_vec_high(s, rd);
10792 } else {
10793 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10795 assert(size == 1);
10796 read_vec_element_i32(s, tcg_idx, rm, index, size);
10798 if (!is_scalar) {
10799 /* The simplest way to handle the 16x16 indexed ops is to
10800 * duplicate the index into both halves of the 32 bit tcg_idx
10801 * and then use the usual Neon helpers.
10803 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10806 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10807 TCGv_i32 tcg_op = tcg_temp_new_i32();
10808 TCGv_i64 tcg_passres;
10810 if (is_scalar) {
10811 read_vec_element_i32(s, tcg_op, rn, pass, size);
10812 } else {
10813 read_vec_element_i32(s, tcg_op, rn,
10814 pass + (is_q * 2), MO_32);
10817 tcg_res[pass] = tcg_temp_new_i64();
10819 if (opcode == 0xa || opcode == 0xb) {
10820 /* Non-accumulating ops */
10821 tcg_passres = tcg_res[pass];
10822 } else {
10823 tcg_passres = tcg_temp_new_i64();
10826 if (memop & MO_SIGN) {
10827 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10828 } else {
10829 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10831 if (satop) {
10832 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10833 tcg_passres, tcg_passres);
10835 tcg_temp_free_i32(tcg_op);
10837 if (opcode == 0xa || opcode == 0xb) {
10838 continue;
10841 /* Accumulating op: handle accumulate step */
10842 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10844 switch (opcode) {
10845 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10846 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10847 tcg_passres);
10848 break;
10849 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10850 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10851 tcg_passres);
10852 break;
10853 case 0x7: /* SQDMLSL, SQDMLSL2 */
10854 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10855 /* fall through */
10856 case 0x3: /* SQDMLAL, SQDMLAL2 */
10857 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10858 tcg_res[pass],
10859 tcg_passres);
10860 break;
10861 default:
10862 g_assert_not_reached();
10864 tcg_temp_free_i64(tcg_passres);
10866 tcg_temp_free_i32(tcg_idx);
10868 if (is_scalar) {
10869 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10873 if (is_scalar) {
10874 tcg_res[1] = tcg_const_i64(0);
10877 for (pass = 0; pass < 2; pass++) {
10878 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10879 tcg_temp_free_i64(tcg_res[pass]);
10883 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10884 tcg_temp_free_ptr(fpst);
10888 /* C3.6.19 Crypto AES
10889 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10890 * +-----------------+------+-----------+--------+-----+------+------+
10891 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10892 * +-----------------+------+-----------+--------+-----+------+------+
10894 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10896 int size = extract32(insn, 22, 2);
10897 int opcode = extract32(insn, 12, 5);
10898 int rn = extract32(insn, 5, 5);
10899 int rd = extract32(insn, 0, 5);
10900 int decrypt;
10901 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10902 CryptoThreeOpEnvFn *genfn;
10904 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10905 || size != 0) {
10906 unallocated_encoding(s);
10907 return;
10910 switch (opcode) {
10911 case 0x4: /* AESE */
10912 decrypt = 0;
10913 genfn = gen_helper_crypto_aese;
10914 break;
10915 case 0x6: /* AESMC */
10916 decrypt = 0;
10917 genfn = gen_helper_crypto_aesmc;
10918 break;
10919 case 0x5: /* AESD */
10920 decrypt = 1;
10921 genfn = gen_helper_crypto_aese;
10922 break;
10923 case 0x7: /* AESIMC */
10924 decrypt = 1;
10925 genfn = gen_helper_crypto_aesmc;
10926 break;
10927 default:
10928 unallocated_encoding(s);
10929 return;
10932 /* Note that we convert the Vx register indexes into the
10933 * index within the vfp.regs[] array, so we can share the
10934 * helper with the AArch32 instructions.
10936 tcg_rd_regno = tcg_const_i32(rd << 1);
10937 tcg_rn_regno = tcg_const_i32(rn << 1);
10938 tcg_decrypt = tcg_const_i32(decrypt);
10940 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10942 tcg_temp_free_i32(tcg_rd_regno);
10943 tcg_temp_free_i32(tcg_rn_regno);
10944 tcg_temp_free_i32(tcg_decrypt);
10947 /* C3.6.20 Crypto three-reg SHA
10948 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10949 * +-----------------+------+---+------+---+--------+-----+------+------+
10950 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10951 * +-----------------+------+---+------+---+--------+-----+------+------+
10953 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10955 int size = extract32(insn, 22, 2);
10956 int opcode = extract32(insn, 12, 3);
10957 int rm = extract32(insn, 16, 5);
10958 int rn = extract32(insn, 5, 5);
10959 int rd = extract32(insn, 0, 5);
10960 CryptoThreeOpEnvFn *genfn;
10961 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10962 int feature = ARM_FEATURE_V8_SHA256;
10964 if (size != 0) {
10965 unallocated_encoding(s);
10966 return;
10969 switch (opcode) {
10970 case 0: /* SHA1C */
10971 case 1: /* SHA1P */
10972 case 2: /* SHA1M */
10973 case 3: /* SHA1SU0 */
10974 genfn = NULL;
10975 feature = ARM_FEATURE_V8_SHA1;
10976 break;
10977 case 4: /* SHA256H */
10978 genfn = gen_helper_crypto_sha256h;
10979 break;
10980 case 5: /* SHA256H2 */
10981 genfn = gen_helper_crypto_sha256h2;
10982 break;
10983 case 6: /* SHA256SU1 */
10984 genfn = gen_helper_crypto_sha256su1;
10985 break;
10986 default:
10987 unallocated_encoding(s);
10988 return;
10991 if (!arm_dc_feature(s, feature)) {
10992 unallocated_encoding(s);
10993 return;
10996 tcg_rd_regno = tcg_const_i32(rd << 1);
10997 tcg_rn_regno = tcg_const_i32(rn << 1);
10998 tcg_rm_regno = tcg_const_i32(rm << 1);
11000 if (genfn) {
11001 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
11002 } else {
11003 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
11005 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
11006 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
11007 tcg_temp_free_i32(tcg_opcode);
11010 tcg_temp_free_i32(tcg_rd_regno);
11011 tcg_temp_free_i32(tcg_rn_regno);
11012 tcg_temp_free_i32(tcg_rm_regno);
11015 /* C3.6.21 Crypto two-reg SHA
11016 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
11017 * +-----------------+------+-----------+--------+-----+------+------+
11018 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
11019 * +-----------------+------+-----------+--------+-----+------+------+
11021 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
11023 int size = extract32(insn, 22, 2);
11024 int opcode = extract32(insn, 12, 5);
11025 int rn = extract32(insn, 5, 5);
11026 int rd = extract32(insn, 0, 5);
11027 CryptoTwoOpEnvFn *genfn;
11028 int feature;
11029 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
11031 if (size != 0) {
11032 unallocated_encoding(s);
11033 return;
11036 switch (opcode) {
11037 case 0: /* SHA1H */
11038 feature = ARM_FEATURE_V8_SHA1;
11039 genfn = gen_helper_crypto_sha1h;
11040 break;
11041 case 1: /* SHA1SU1 */
11042 feature = ARM_FEATURE_V8_SHA1;
11043 genfn = gen_helper_crypto_sha1su1;
11044 break;
11045 case 2: /* SHA256SU0 */
11046 feature = ARM_FEATURE_V8_SHA256;
11047 genfn = gen_helper_crypto_sha256su0;
11048 break;
11049 default:
11050 unallocated_encoding(s);
11051 return;
11054 if (!arm_dc_feature(s, feature)) {
11055 unallocated_encoding(s);
11056 return;
11059 tcg_rd_regno = tcg_const_i32(rd << 1);
11060 tcg_rn_regno = tcg_const_i32(rn << 1);
11062 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
11064 tcg_temp_free_i32(tcg_rd_regno);
11065 tcg_temp_free_i32(tcg_rn_regno);
11068 /* C3.6 Data processing - SIMD, inc Crypto
11070 * As the decode gets a little complex we are using a table based
11071 * approach for this part of the decode.
11073 static const AArch64DecodeTable data_proc_simd[] = {
11074 /* pattern , mask , fn */
11075 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
11076 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
11077 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11078 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
11079 { 0x0e000400, 0x9fe08400, disas_simd_copy },
11080 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
11081 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
11082 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
11083 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11084 { 0x0e000000, 0xbf208c00, disas_simd_tb },
11085 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
11086 { 0x2e000000, 0xbf208400, disas_simd_ext },
11087 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
11088 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
11089 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11090 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
11091 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
11092 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
11093 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11094 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
11095 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
11096 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
11097 { 0x00000000, 0x00000000, NULL }
11100 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11102 /* Note that this is called with all non-FP cases from
11103 * table C3-6 so it must UNDEF for entries not specifically
11104 * allocated to instructions in that table.
11106 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11107 if (fn) {
11108 fn(s, insn);
11109 } else {
11110 unallocated_encoding(s);
11114 /* C3.6 Data processing - SIMD and floating point */
11115 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11117 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11118 disas_data_proc_fp(s, insn);
11119 } else {
11120 /* SIMD, including crypto */
11121 disas_data_proc_simd(s, insn);
11125 /* C3.1 A64 instruction index by encoding */
11126 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
11128 uint32_t insn;
11130 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
11131 s->insn = insn;
11132 s->pc += 4;
11134 s->fp_access_checked = false;
11136 switch (extract32(insn, 25, 4)) {
11137 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
11138 unallocated_encoding(s);
11139 break;
11140 case 0x8: case 0x9: /* Data processing - immediate */
11141 disas_data_proc_imm(s, insn);
11142 break;
11143 case 0xa: case 0xb: /* Branch, exception generation and system insns */
11144 disas_b_exc_sys(s, insn);
11145 break;
11146 case 0x4:
11147 case 0x6:
11148 case 0xc:
11149 case 0xe: /* Loads and stores */
11150 disas_ldst(s, insn);
11151 break;
11152 case 0x5:
11153 case 0xd: /* Data processing - register */
11154 disas_data_proc_reg(s, insn);
11155 break;
11156 case 0x7:
11157 case 0xf: /* Data processing - SIMD and floating point */
11158 disas_data_proc_simd_fp(s, insn);
11159 break;
11160 default:
11161 assert(FALSE); /* all 15 cases should be handled above */
11162 break;
11165 /* if we allocated any temporaries, free them here */
11166 free_tmp_a64(s);
11169 void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
11171 CPUState *cs = CPU(cpu);
11172 CPUARMState *env = &cpu->env;
11173 DisasContext dc1, *dc = &dc1;
11174 target_ulong pc_start;
11175 target_ulong next_page_start;
11176 int num_insns;
11177 int max_insns;
11179 pc_start = tb->pc;
11181 dc->tb = tb;
11183 dc->is_jmp = DISAS_NEXT;
11184 dc->pc = pc_start;
11185 dc->singlestep_enabled = cs->singlestep_enabled;
11186 dc->condjmp = 0;
11188 dc->aarch64 = 1;
11189 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11190 * there is no secure EL1, so we route exceptions to EL3.
11192 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11193 !arm_el_is_aa64(env, 3);
11194 dc->thumb = 0;
11195 dc->sctlr_b = 0;
11196 dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE;
11197 dc->condexec_mask = 0;
11198 dc->condexec_cond = 0;
11199 dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
11200 dc->tbi0 = ARM_TBFLAG_TBI0(tb->flags);
11201 dc->tbi1 = ARM_TBFLAG_TBI1(tb->flags);
11202 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11203 #if !defined(CONFIG_USER_ONLY)
11204 dc->user = (dc->current_el == 0);
11205 #endif
11206 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
11207 dc->vec_len = 0;
11208 dc->vec_stride = 0;
11209 dc->cp_regs = cpu->cp_regs;
11210 dc->features = env->features;
11212 /* Single step state. The code-generation logic here is:
11213 * SS_ACTIVE == 0:
11214 * generate code with no special handling for single-stepping (except
11215 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11216 * this happens anyway because those changes are all system register or
11217 * PSTATE writes).
11218 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11219 * emit code for one insn
11220 * emit code to clear PSTATE.SS
11221 * emit code to generate software step exception for completed step
11222 * end TB (as usual for having generated an exception)
11223 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11224 * emit code to generate a software step exception
11225 * end the TB
11227 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
11228 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
11229 dc->is_ldex = false;
11230 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11232 init_tmp_a64_array(dc);
11234 next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
11235 num_insns = 0;
11236 max_insns = tb->cflags & CF_COUNT_MASK;
11237 if (max_insns == 0) {
11238 max_insns = CF_COUNT_MASK;
11240 if (max_insns > TCG_MAX_INSNS) {
11241 max_insns = TCG_MAX_INSNS;
11244 gen_tb_start(tb);
11246 tcg_clear_temp_count();
11248 do {
11249 dc->insn_start_idx = tcg_op_buf_count();
11250 tcg_gen_insn_start(dc->pc, 0, 0);
11251 num_insns++;
11253 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
11254 CPUBreakpoint *bp;
11255 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11256 if (bp->pc == dc->pc) {
11257 if (bp->flags & BP_CPU) {
11258 gen_a64_set_pc_im(dc->pc);
11259 gen_helper_check_breakpoints(cpu_env);
11260 /* End the TB early; it likely won't be executed */
11261 dc->is_jmp = DISAS_UPDATE;
11262 } else {
11263 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11264 /* The address covered by the breakpoint must be
11265 included in [tb->pc, tb->pc + tb->size) in order
11266 to for it to be properly cleared -- thus we
11267 increment the PC here so that the logic setting
11268 tb->size below does the right thing. */
11269 dc->pc += 4;
11270 goto done_generating;
11272 break;
11277 if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
11278 gen_io_start();
11281 if (dc->ss_active && !dc->pstate_ss) {
11282 /* Singlestep state is Active-pending.
11283 * If we're in this state at the start of a TB then either
11284 * a) we just took an exception to an EL which is being debugged
11285 * and this is the first insn in the exception handler
11286 * b) debug exceptions were masked and we just unmasked them
11287 * without changing EL (eg by clearing PSTATE.D)
11288 * In either case we're going to take a swstep exception in the
11289 * "did not step an insn" case, and so the syndrome ISV and EX
11290 * bits should be zero.
11292 assert(num_insns == 1);
11293 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11294 default_exception_el(dc));
11295 dc->is_jmp = DISAS_EXC;
11296 break;
11299 disas_a64_insn(env, dc);
11301 if (tcg_check_temp_count()) {
11302 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11303 dc->pc);
11306 /* Translation stops when a conditional branch is encountered.
11307 * Otherwise the subsequent code could get translated several times.
11308 * Also stop translation when a page boundary is reached. This
11309 * ensures prefetch aborts occur at the right place.
11311 } while (!dc->is_jmp && !tcg_op_buf_full() &&
11312 !cs->singlestep_enabled &&
11313 !singlestep &&
11314 !dc->ss_active &&
11315 dc->pc < next_page_start &&
11316 num_insns < max_insns);
11318 if (tb->cflags & CF_LAST_IO) {
11319 gen_io_end();
11322 if (unlikely(cs->singlestep_enabled || dc->ss_active)
11323 && dc->is_jmp != DISAS_EXC) {
11324 /* Note that this means single stepping WFI doesn't halt the CPU.
11325 * For conditional branch insns this is harmless unreachable code as
11326 * gen_goto_tb() has already handled emitting the debug exception
11327 * (and thus a tb-jump is not possible when singlestepping).
11329 assert(dc->is_jmp != DISAS_TB_JUMP);
11330 if (dc->is_jmp != DISAS_JUMP) {
11331 gen_a64_set_pc_im(dc->pc);
11333 if (cs->singlestep_enabled) {
11334 gen_exception_internal(EXCP_DEBUG);
11335 } else {
11336 gen_step_complete_exception(dc);
11338 } else {
11339 switch (dc->is_jmp) {
11340 case DISAS_NEXT:
11341 gen_goto_tb(dc, 1, dc->pc);
11342 break;
11343 default:
11344 case DISAS_UPDATE:
11345 gen_a64_set_pc_im(dc->pc);
11346 /* fall through */
11347 case DISAS_JUMP:
11348 /* indicate that the hash table must be used to find the next TB */
11349 tcg_gen_exit_tb(0);
11350 break;
11351 case DISAS_TB_JUMP:
11352 case DISAS_EXC:
11353 case DISAS_SWI:
11354 break;
11355 case DISAS_WFE:
11356 gen_a64_set_pc_im(dc->pc);
11357 gen_helper_wfe(cpu_env);
11358 break;
11359 case DISAS_YIELD:
11360 gen_a64_set_pc_im(dc->pc);
11361 gen_helper_yield(cpu_env);
11362 break;
11363 case DISAS_WFI:
11364 /* This is a special case because we don't want to just halt the CPU
11365 * if trying to debug across a WFI.
11367 gen_a64_set_pc_im(dc->pc);
11368 gen_helper_wfi(cpu_env);
11369 /* The helper doesn't necessarily throw an exception, but we
11370 * must go back to the main loop to check for interrupts anyway.
11372 tcg_gen_exit_tb(0);
11373 break;
11377 done_generating:
11378 gen_tb_end(tb, num_insns);
11380 #ifdef DEBUG_DISAS
11381 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) &&
11382 qemu_log_in_addr_range(pc_start)) {
11383 qemu_log_lock();
11384 qemu_log("----------------\n");
11385 qemu_log("IN: %s\n", lookup_symbol(pc_start));
11386 log_target_disas(cs, pc_start, dc->pc - pc_start,
11387 4 | (bswap_code(dc->sctlr_b) ? 2 : 0));
11388 qemu_log("\n");
11389 qemu_log_unlock();
11391 #endif
11392 tb->size = dc->pc - pc_start;
11393 tb->icount = num_insns;