2 * On-chip DMA controller framework.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qemu/timer.h"
23 #include "hw/arm/soc_dma.h"
25 static void transfer_mem2mem(struct soc_dma_ch_s
*ch
)
27 memcpy(ch
->paddr
[0], ch
->paddr
[1], ch
->bytes
);
28 ch
->paddr
[0] += ch
->bytes
;
29 ch
->paddr
[1] += ch
->bytes
;
32 static void transfer_mem2fifo(struct soc_dma_ch_s
*ch
)
34 ch
->io_fn
[1](ch
->io_opaque
[1], ch
->paddr
[0], ch
->bytes
);
35 ch
->paddr
[0] += ch
->bytes
;
38 static void transfer_fifo2mem(struct soc_dma_ch_s
*ch
)
40 ch
->io_fn
[0](ch
->io_opaque
[0], ch
->paddr
[1], ch
->bytes
);
41 ch
->paddr
[1] += ch
->bytes
;
44 /* This is further optimisable but isn't very important because often
45 * DMA peripherals forbid this kind of transfers and even when they don't,
46 * oprating systems may not need to use them. */
47 static void *fifo_buf
;
49 static void transfer_fifo2fifo(struct soc_dma_ch_s
*ch
)
51 if (ch
->bytes
> fifo_size
)
52 fifo_buf
= g_realloc(fifo_buf
, fifo_size
= ch
->bytes
);
54 /* Implement as transfer_fifo2linear + transfer_linear2fifo. */
55 ch
->io_fn
[0](ch
->io_opaque
[0], fifo_buf
, ch
->bytes
);
56 ch
->io_fn
[1](ch
->io_opaque
[1], fifo_buf
, ch
->bytes
);
62 uint64_t ch_enable_mask
;
66 struct memmap_entry_s
{
67 enum soc_dma_port_type type
;
83 struct soc_dma_ch_s ch
[];
86 static void soc_dma_ch_schedule(struct soc_dma_ch_s
*ch
, int delay_bytes
)
88 int64_t now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
89 struct dma_s
*dma
= (struct dma_s
*) ch
->dma
;
91 timer_mod(ch
->timer
, now
+ delay_bytes
/ dma
->channel_freq
);
94 static void soc_dma_ch_run(void *opaque
)
96 struct soc_dma_ch_s
*ch
= (struct soc_dma_ch_s
*) opaque
;
99 ch
->dma
->setup_fn(ch
);
104 soc_dma_ch_schedule(ch
, ch
->bytes
);
108 static inline struct memmap_entry_s
*soc_dma_lookup(struct dma_s
*dma
,
111 struct memmap_entry_s
*lo
;
115 hi
= dma
->memmap_size
;
119 if (lo
[hi
].addr
<= addr
)
126 static inline enum soc_dma_port_type
soc_dma_ch_update_type(
127 struct soc_dma_ch_s
*ch
, int port
)
129 struct dma_s
*dma
= (struct dma_s
*) ch
->dma
;
130 struct memmap_entry_s
*entry
= soc_dma_lookup(dma
, ch
->vaddr
[port
]);
132 if (entry
->type
== soc_dma_port_fifo
) {
133 while (entry
< dma
->memmap
+ dma
->memmap_size
&&
134 entry
->u
.fifo
.out
!= port
)
136 if (entry
->addr
!= ch
->vaddr
[port
] || entry
->u
.fifo
.out
!= port
)
137 return soc_dma_port_other
;
139 if (ch
->type
[port
] != soc_dma_access_const
)
140 return soc_dma_port_other
;
142 ch
->io_fn
[port
] = entry
->u
.fifo
.fn
;
143 ch
->io_opaque
[port
] = entry
->u
.fifo
.opaque
;
144 return soc_dma_port_fifo
;
145 } else if (entry
->type
== soc_dma_port_mem
) {
146 if (entry
->addr
> ch
->vaddr
[port
] ||
147 entry
->addr
+ entry
->u
.mem
.size
<= ch
->vaddr
[port
])
148 return soc_dma_port_other
;
150 /* TODO: support constant memory address for source port as used for
151 * drawing solid rectangles by PalmOS(R). */
152 if (ch
->type
[port
] != soc_dma_access_const
)
153 return soc_dma_port_other
;
155 ch
->paddr
[port
] = (uint8_t *) entry
->u
.mem
.base
+
156 (ch
->vaddr
[port
] - entry
->addr
);
157 /* TODO: save bytes left to the end of the mapping somewhere so we
158 * can check we're not reading beyond it. */
159 return soc_dma_port_mem
;
161 return soc_dma_port_other
;
164 void soc_dma_ch_update(struct soc_dma_ch_s
*ch
)
166 enum soc_dma_port_type src
, dst
;
168 src
= soc_dma_ch_update_type(ch
, 0);
169 if (src
== soc_dma_port_other
) {
171 ch
->transfer_fn
= ch
->dma
->transfer_fn
;
174 dst
= soc_dma_ch_update_type(ch
, 1);
176 /* TODO: use src and dst as array indices. */
177 if (src
== soc_dma_port_mem
&& dst
== soc_dma_port_mem
)
178 ch
->transfer_fn
= transfer_mem2mem
;
179 else if (src
== soc_dma_port_mem
&& dst
== soc_dma_port_fifo
)
180 ch
->transfer_fn
= transfer_mem2fifo
;
181 else if (src
== soc_dma_port_fifo
&& dst
== soc_dma_port_mem
)
182 ch
->transfer_fn
= transfer_fifo2mem
;
183 else if (src
== soc_dma_port_fifo
&& dst
== soc_dma_port_fifo
)
184 ch
->transfer_fn
= transfer_fifo2fifo
;
186 ch
->transfer_fn
= ch
->dma
->transfer_fn
;
188 ch
->update
= (dst
!= soc_dma_port_other
);
191 static void soc_dma_ch_freq_update(struct dma_s
*s
)
193 if (s
->enabled_count
)
194 /* We completely ignore channel priorities and stuff */
195 s
->channel_freq
= s
->soc
.freq
/ s
->enabled_count
;
197 /* TODO: Signal that we want to disable the functional clock and let
198 * the platform code decide what to do with it, i.e. check that
199 * auto-idle is enabled in the clock controller and if we are stopping
200 * the clock, do the same with any parent clocks that had only one
201 * user keeping them on and auto-idle enabled. */
205 void soc_dma_set_request(struct soc_dma_ch_s
*ch
, int level
)
207 struct dma_s
*dma
= (struct dma_s
*) ch
->dma
;
209 dma
->enabled_count
+= level
- ch
->enable
;
212 dma
->ch_enable_mask
|= 1 << ch
->num
;
214 dma
->ch_enable_mask
&= ~(1 << ch
->num
);
216 if (level
!= ch
->enable
) {
217 soc_dma_ch_freq_update(dma
);
221 timer_del(ch
->timer
);
222 else if (!ch
->running
)
225 soc_dma_ch_schedule(ch
, 1);
229 void soc_dma_reset(struct soc_dma_s
*soc
)
231 struct dma_s
*s
= (struct dma_s
*) soc
;
234 s
->ch_enable_mask
= 0;
235 s
->enabled_count
= 0;
236 soc_dma_ch_freq_update(s
);
239 /* TODO: take a functional-clock argument */
240 struct soc_dma_s
*soc_dma_init(int n
)
243 struct dma_s
*s
= g_malloc0(sizeof(*s
) + n
* sizeof(*s
->ch
));
247 for (i
= 0; i
< n
; i
++) {
248 s
->ch
[i
].dma
= &s
->soc
;
250 s
->ch
[i
].timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, soc_dma_ch_run
, &s
->ch
[i
]);
253 soc_dma_reset(&s
->soc
);
259 void soc_dma_port_add_fifo(struct soc_dma_s
*soc
, hwaddr virt_base
,
260 soc_dma_io_t fn
, void *opaque
, int out
)
262 struct memmap_entry_s
*entry
;
263 struct dma_s
*dma
= (struct dma_s
*) soc
;
265 dma
->memmap
= g_realloc(dma
->memmap
, sizeof(*entry
) *
266 (dma
->memmap_size
+ 1));
267 entry
= soc_dma_lookup(dma
, virt_base
);
269 if (dma
->memmap_size
) {
270 if (entry
->type
== soc_dma_port_mem
) {
271 if (entry
->addr
<= virt_base
&&
272 entry
->addr
+ entry
->u
.mem
.size
> virt_base
) {
273 error_report("%s: FIFO at %"PRIx64
274 " collides with RAM region at %"PRIx64
275 "-%"PRIx64
, __func__
,
276 virt_base
, entry
->addr
,
277 (entry
->addr
+ entry
->u
.mem
.size
));
281 if (entry
->addr
<= virt_base
)
284 while (entry
< dma
->memmap
+ dma
->memmap_size
&&
285 entry
->addr
<= virt_base
) {
286 if (entry
->addr
== virt_base
&& entry
->u
.fifo
.out
== out
) {
287 error_report("%s: FIFO at %"PRIx64
288 " collides FIFO at %"PRIx64
,
289 __func__
, virt_base
, entry
->addr
);
296 memmove(entry
+ 1, entry
,
297 (uint8_t *) (dma
->memmap
+ dma
->memmap_size
++) -
302 entry
->addr
= virt_base
;
303 entry
->type
= soc_dma_port_fifo
;
304 entry
->u
.fifo
.fn
= fn
;
305 entry
->u
.fifo
.opaque
= opaque
;
306 entry
->u
.fifo
.out
= out
;
309 void soc_dma_port_add_mem(struct soc_dma_s
*soc
, uint8_t *phys_base
,
310 hwaddr virt_base
, size_t size
)
312 struct memmap_entry_s
*entry
;
313 struct dma_s
*dma
= (struct dma_s
*) soc
;
315 dma
->memmap
= g_realloc(dma
->memmap
, sizeof(*entry
) *
316 (dma
->memmap_size
+ 1));
317 entry
= soc_dma_lookup(dma
, virt_base
);
319 if (dma
->memmap_size
) {
320 if (entry
->type
== soc_dma_port_mem
) {
321 if ((entry
->addr
>= virt_base
&& entry
->addr
< virt_base
+ size
) ||
322 (entry
->addr
<= virt_base
&&
323 entry
->addr
+ entry
->u
.mem
.size
> virt_base
)) {
324 error_report("%s: RAM at %"PRIx64
"-%"PRIx64
325 " collides with RAM region at %"PRIx64
326 "-%"PRIx64
, __func__
,
327 virt_base
, virt_base
+ size
,
328 entry
->addr
, entry
->addr
+ entry
->u
.mem
.size
);
332 if (entry
->addr
<= virt_base
)
335 if (entry
->addr
>= virt_base
&&
336 entry
->addr
< virt_base
+ size
) {
337 error_report("%s: RAM at %"PRIx64
"-%"PRIx64
338 " collides with FIFO at %"PRIx64
,
339 __func__
, virt_base
, virt_base
+ size
,
344 while (entry
< dma
->memmap
+ dma
->memmap_size
&&
345 entry
->addr
<= virt_base
)
349 memmove(entry
+ 1, entry
,
350 (uint8_t *) (dma
->memmap
+ dma
->memmap_size
++) -
355 entry
->addr
= virt_base
;
356 entry
->type
= soc_dma_port_mem
;
357 entry
->u
.mem
.base
= phys_base
;
358 entry
->u
.mem
.size
= size
;
361 /* TODO: port removal for ports like PCMCIA memory */